1
|
Petersen EJ, Ceger P, Allen DG, Coyle J, Derk R, Reyero NG, Gordon J, Kleinstreuer N, Matheson J, McShan D, Nelson BC, Patri AK, Rice P, Rojanasakul L, Sasidharan A, Scarano L, Chang X. U.S. Federal Agency interests and key considerations for new approach methodologies for nanomaterials. ALTEX 2021; 39:183–206. [PMID: 34874455 PMCID: PMC9115850 DOI: 10.14573/altex.2105041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/02/2021] [Indexed: 12/22/2022]
Abstract
Engineered nanomaterials (ENMs) come in a wide array of shapes, sizes, surface coatings, and compositions, and often possess novel or enhanced properties compared to larger sized particles of the same elemental composition. To ensure the safe commercialization of products containing ENMs, it is important to thoroughly understand their potential risks. Given that ENMs can be created in an almost infinite number of variations, it is not feasible to conduct in vivo testing on each type of ENM. Instead, new approach methodologies (NAMs) such as in vitro or in chemico test methods may be needed, given their capacity for higher throughput testing, lower cost, and ability to provide information on toxicological mechanisms. However, the different behaviors of ENMs compared to dissolved chemicals may challenge safety testing of ENMs using NAMs. In this study, member agencies within the Interagency Coordinating Committee on the Validation of Alternative Methods were queried about what types of ENMs are of agency interest and whether there is agency-specific guidance for ENM toxicity testing. To support the ability of NAMs to provide robust results in ENM testing, two key issues in the usage of NAMs, namely dosimetry and interference/bias controls, are thoroughly discussed.
Collapse
Affiliation(s)
- Elijah J. Petersen
- U.S. Department of Commerce, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Patricia Ceger
- Integrated Laboratory Systems LLC, Research Triangle Park, NC, USA
| | - David G. Allen
- Integrated Laboratory Systems LLC, Research Triangle Park, NC, USA
| | - Jayme Coyle
- National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Morgantown, WV, USA
- Current affiliation: UES, Inc., Dayton, OH, USA
| | - Raymond Derk
- National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Morgantown, WV, USA
| | | | - John Gordon
- U.S. Consumer Product Safety Commission, Bethesda, MD, USA
| | - Nicole Kleinstreuer
- National Institute of Environmental Health Sciences, National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, Research Triangle Park, NC, USA
| | | | - Danielle McShan
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, USA
| | - Bryant C. Nelson
- U.S. Department of Commerce, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Anil K. Patri
- U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, USA
| | - Penelope Rice
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Liying Rojanasakul
- National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Morgantown, WV, USA
| | - Abhilash Sasidharan
- U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, Washington, DC, USA
| | - Louis Scarano
- U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxics, Washington, DC, USA
| | - Xiaoqing Chang
- Integrated Laboratory Systems LLC, Research Triangle Park, NC, USA
| |
Collapse
|
2
|
Guimarães ATB, Malafaia G. Multiple toxicity endpoints induced by carbon nanofibers in Amazon turtle juveniles: Outspreading warns about toxicological risks to reptiles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146514. [PMID: 34030253 DOI: 10.1016/j.scitotenv.2021.146514] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
The toxicity of carbon-based nanomaterials (CNs) has been observed in different organisms; however, little is known about the impact of water polluted with carbon nanofibers (CNFs) on reptiles. Thus, the aim of the current study was to assess the chronic effects (7.5 months) of 1 and 10 mg/L of CNF on Podocnemis expansa (Amazon turtle) juveniles (4 months old) based on different biomarkers. Increased total organic carbon (TOC) concentrations observed in the liver and brain (which suggests CNF uptake) were closely correlated to changes in REDOX systems of turtles exposed to CNFs, mainly to higher nitrite, hydrogen peroxide and lipid peroxidation levels. Increased levels of antioxidants such as total glutathione, catalase and superoxide dismutase in the exposed animals were also observed. The uptake of CNFs and the observed biochemical changes were associated with higher frequency of erythrocyte nuclear abnormalities (assessed through micronucleus assays), as well as with both damage in erythrocyte DNA (assessed through comet assays) and higher apoptosis and necrosis rates in erythrocytes of exposed turtles. Cerebral and hepatic acetylcholinesterase (AChE) increased in turtles exposed to CNFs, and this finding suggested the neurotoxic effect of these nanomaterials. Data in the current study reinforced the toxic potential of CNFs and evidenced the biochemical, mutagenic, genotoxic, cytotoxic, and neurotoxic effects of CNFs on P. expansa.
Collapse
Affiliation(s)
- Abraão Tiago Batista Guimarães
- Post-Graduation Program in Biotechnology and Biodiversity, Goiano Federal Institute and Federal University of Goiás, GO, Brazil; Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urataí Campus, GO, Brazil
| | - Guilherme Malafaia
- Post-Graduation Program in Biotechnology and Biodiversity, Goiano Federal Institute and Federal University of Goiás, GO, Brazil; Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urataí Campus, GO, Brazil; Post-Graduate Program in Ecology and Conservation of Natural Resources, Federal University of Uberlândia, MG, Brazil.
| |
Collapse
|
3
|
Montalvão MF, Guimarães ATB, Rodrigues ASDL, Malafaia G. Carbon nanofibers are bioaccumulated in Aphylla williamsoni (Odonata) larvae and cause REDOX imbalance and changes of acetylcholinesterase activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143991. [PMID: 33302068 DOI: 10.1016/j.scitotenv.2020.143991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/11/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Carbon-based materials have been considered very promising for the technological industry due to their unique physical and chemical properties, namely: ability to reduce production costs and to improve the efficiency of several products. However, there is little information on what is the level of exposure that leads to adverse effects and what kind of effects is expected in aquatic biota. Thus, the aim of the present study was to evaluate the toxicity of carbon nanofibers (CNFs) in dragonfly larvae (Aphylla williamsoni) based on predictive oxidative-stress biomarkers, antioxidant activity reduction and neurotoxicity. After ephemeral models' exposure to CNFs (48 h; at 500 μg/L), data have shown that these pollutants did not change larvae's nutritional status given the concentration of total soluble carbohydrates, total proteins and triglycerides in them. However, the levels of both nitric oxide and substances reactive to thiobarbituric acid (lipid peroxidation indicators) have increased and the antioxidant activity based on total thiol levels and on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (%) has reduced, and it suggests REDOX imbalance induction by CNFs. In addition, larvae exposed to these pollutants showed significant acetylcholinesterase activity reduction in comparison to the control group. Thus, the present study has brought further knowledge about how carbon-based materials can affect benthic macroinvertebrates and emphasized their ecotoxicological potential in freshwater environments.
Collapse
Affiliation(s)
- Mateus Flores Montalvão
- Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Abraão Tiago Batista Guimarães
- Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil; Laboratório de Pesquisas Biológicas, Programa de Pós-Graduação em Conservação de Recursos Naturais do Cerrado, Instituto Federal Goiano, Urutaí, GO, Brazil
| | - Aline Sueli de Lima Rodrigues
- Laboratório de Pesquisas Biológicas, Programa de Pós-Graduação em Conservação de Recursos Naturais do Cerrado, Instituto Federal Goiano, Urutaí, GO, Brazil
| | - Guilherme Malafaia
- Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil; Laboratório de Pesquisas Biológicas, Programa de Pós-Graduação em Conservação de Recursos Naturais do Cerrado, Instituto Federal Goiano, Urutaí, GO, Brazil; Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
4
|
Gomes AR, Chagas TQ, Silva AM, Sueli de Lima Rodrigues A, Marinho da Luz T, Emmanuela de Andrade Vieira J, Malafaia G. Trophic transfer of carbon nanofibers among eisenia fetida, danio rerio and oreochromis niloticus and their toxicity at upper trophic level. CHEMOSPHERE 2021; 263:127657. [PMID: 32814134 DOI: 10.1016/j.chemosphere.2020.127657] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/08/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Although the toxicity of carbon-based nanomaterials has already been demonstrated in several studies, their transfer in the food chain and impact on the upper trophic level remain unexplored. Thus, based on the experimental food chain "Eisenia fetida → Danio rerio → Oreochromis niloticus", the current study tested the hypothesis that carbon nanofibers (CNFs) accumulated in animals are transferred to the upper trophic level and cause mutagenic and cytotoxic changes. E. fetida individuals were exposed to CNFs and offered to D. rerio, which were later used to feed O. niloticus. The quantification of total organic carbon provided evidence of CNFs accumulation at all evaluated trophic levels. Such accumulation was associated with higher frequency of erythrocyte nuclear abnormalities such as constricted erythrocyte nuclei, vacuole, blebbed, kidney-shaped and micronucleated erythrocytes in Nile tilapia exposed to CNFs via food chain. The cytotoxic effect was inferred based on the smaller size of the erythrocyte nuclei and on the lower "nuclear/cytoplasmic" area ratio in tilapia exposed to CNFs via food chain. Our study provided pioneering evidence about CNFs accumulation at trophic levels of the experimental chain, as well as about the mutagenic and cytotoxic effect of these materials on O. niloticus.
Collapse
Affiliation(s)
- Alex Rodrigues Gomes
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus Urutaí, GO, Brazil
| | - Thales Quintão Chagas
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus Urutaí, GO, Brazil
| | - Abner Marcelino Silva
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus Urutaí, GO, Brazil
| | - Aline Sueli de Lima Rodrigues
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus Urutaí, GO, Brazil
| | - Thiarlen Marinho da Luz
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus Urutaí, GO, Brazil
| | - Julya Emmanuela de Andrade Vieira
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus Urutaí, GO, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus Urutaí, GO, Brazil.
| |
Collapse
|