1
|
Dai W, Zhou X, Zhao J, Lei L, Huang Y, Jia F, Tang Z, Ji J, Jin Q. Tumor microenvironment-modulated nanoparticles with cascade energy transfer as internal light sources for photodynamic therapy of deep-seated tumors. Biomaterials 2025; 312:122743. [PMID: 39111233 DOI: 10.1016/j.biomaterials.2024.122743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Photodynamic therapy (PDT) is an appealing modality for cancer treatments. However, the limited tissue penetration depth of external-excitation light makes PDT impossible in treating deep-seated tumors. Meanwhile, tumor hypoxia and intracellular reductive microenvironment restrain the generation of reactive oxygen species (ROS). To overcome these limitations, a tumor-targeted self-illuminating supramolecular nanoparticle T-NPCe6-L-N is proposed by integrating photosensitizer Ce6 with luminol and nitric oxide (NO) for chemiluminescence resonance energy transfer (CRET)-activated PDT. The high H2O2 level in tumor can trigger chemiluminescence of luminol to realize CRET-activated PDT without exposure of external light. Meanwhile, the released NO significantly relieves tumor hypoxia via vascular normalization and reduces intracellular reductive GSH level, further enhancing ROS abundance. Importantly, due to the different ROS levels between cancer cells and normal cells, T-NPCe6-L-N can selectively trigger PDT in cancer cells while sparing normal cells, which ensured low side effect. The combination of CRET-based photosensitizer-activation and tumor microenvironment modulation overcomes the innate challenges of conventional PDT, demonstrating efficient inhibition of orthotopic and metastatic tumors on mice. It also provoked potent immunogenic cell death to ensure long-term suppression effects. The proof-of-concept research proved as a new strategy to solve the dilemma of PDT in treatment of deep-seated tumors.
Collapse
Affiliation(s)
- Wenbin Dai
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, PR China
| | - Xianchi Zhou
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, PR China
| | - Jinchao Zhao
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, 322000, PR China
| | - Lei Lei
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, 322000, PR China
| | - Yue Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, PR China
| | - Fan Jia
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, PR China.
| | - Zhe Tang
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, 322000, PR China; Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, PR China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
2
|
El-Zehery IM, El-Mesery M, El-Sherbiny M, El Gayar AM, Eisa NH. Carbenoxolone upregulates TRAIL\TRAILR2 expression and enhances the anti-neoplastic effect of doxorubicin in experimentally induced hepatocellular carcinoma in rats. Biochem Biophys Res Commun 2024; 741:150876. [PMID: 39579528 DOI: 10.1016/j.bbrc.2024.150876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/25/2024]
Abstract
AIMS This study investigates the in vivo anticancer activity of carbenoxolone (CBX) and its role in fighting hepatocellular carcinoma (HCC) progression and alleviating resistance against doxorubicin (DOX). Moreover, the molecular mechanism of action of CBX is explored. METHODS HCC was induced in Sprague Dawley rats via biweekly administration of thioacetamide (TAA) (200 mg/kg) intraperitoneally (i.p.) for 16 weeks after administering a single dose of diethylnitrosamine (DEN) (200 mg/kg, i.p.). A prophylactic model was established by treating rats with i.p. CBX (20 mg/kg/day) for 4 weeks starting on week 13 post-TAA injection. A therapeutic model was established by treating rats with CBX, DOX, or their combination for 7 weeks following 16 weeks of TAA administration. Serum Alpha-fetoprotein (AFP) and biochemical markers of hepatic functions were assessed. Histopathological examinations of hepatic tissues were performed. Immunohistochemical and qRT-PCR analyses were applied to assess the differential expressions of TRAIL/TRAILR2, Bcl-2, TGF-β1, and caspases 3, 8, and 9. RESULTS CBX markedly improved hepatic functions, reduced serum AFP levels, and alleviated TAA-induced hepatic histopathological alterations. CBX triggered apoptosis as evident by upregulating apoptotic markers: TRAIL/TRAILR2, caspases 3, 8, and 9, and downregulating the antiapoptotic protein Bcl-2. CBX downregulated TGF-β1. Interestingly, CBX/DOX combination mitigated hepatic damage and induced apoptosis in a way that surpassed DOX-only treatment. CONCLUSION The current study proposes that CBX is a promising anti-tumor compound, which can work effectively under prophylactic and therapeutic modes. Interestingly, CBX enhanced the anti-tumor effect of DOX. CBX exerted these effects via, in part, stimulating TRAIL-induced apoptosis along with attenuating fibrosis.
Collapse
MESH Headings
- Animals
- Doxorubicin
- Rats, Sprague-Dawley
- Male
- Carbenoxolone/pharmacology
- Rats
- Up-Regulation/drug effects
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/chemically induced
- Carcinoma, Hepatocellular/genetics
- Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism
- Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/chemically induced
- Apoptosis/drug effects
- Antibiotics, Antineoplastic
- Drug Synergism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/chemically induced
- Liver Neoplasms/genetics
- Antineoplastic Agents/pharmacology
- TNF-Related Apoptosis-Inducing Ligand
Collapse
Affiliation(s)
- Iman M El-Zehery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Mohamed El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt; Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh, 11597, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Amal M El Gayar
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Nada H Eisa
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
3
|
Mezencev R, Feshuk M, Kolaczkowski L, Peterson GC, Zhao QJ, Watford S, Weaver JA. The association between histopathologic effects and liver weight changes induced in mice and rats by chemical exposures: an analysis of the data from Toxicity Reference Database (ToxRefDB). Toxicol Sci 2024; 200:404-413. [PMID: 38656946 DOI: 10.1093/toxsci/kfae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Absolute (ALW) and relative (RLW) liver weight changes are sensitive endpoints in repeat-dose rodent toxicity studies, and their changes are often used for quantitative assessment of health effects induced by hepatotoxic chemicals using the benchmark dose-response modeling (BMD) approach. To find biologically relevant liver weight changes to chemical exposures, we evaluated all data available for liver weight changes and associated liver histopathologic findings from the Toxicity Reference Database (ToxRefDB). Our analysis of 389 subchronic mouse and rat studies for 273 chemicals found significant differences in treatment-related ALW and RLW changes between dose groups with and without liver histopathologic changes. In addition, we demonstrate that chemical treatment-induced ALW and RLW changes can predict the presence of histopathologic findings and inform the selection of biologically relevant liver weight changes for BMD modeling and derivation of toxicity values.
Collapse
Affiliation(s)
- Roman Mezencev
- Center for Public Health and Environmental Assessment, Office of Research and Development, US EPA, Washington, District of Columbia, USA
| | - Madison Feshuk
- Center for Computational Toxicology and Exposure, Office of Research and Development, US EPA, Research Triangle Park, North Carolina, USA
| | - Lori Kolaczkowski
- Center for Computational Toxicology and Exposure, Office of Research and Development, US EPA, Research Triangle Park, North Carolina, USA
- Oak Ridge Associated Universities, National Student Services Contract, Oak Ridge, Tennessee, USA
| | - Geoffrey Colin Peterson
- Center for Public Health and Environmental Assessment, Office of Research and Development, US EPA, Washington, District of Columbia, USA
| | - Q Jay Zhao
- Center for Public Health and Environmental Assessment, Office of Research and Development, US EPA, Cincinnati, Ohio, USA
| | - Sean Watford
- Center for Public Health and Environmental Assessment, Office of Research and Development, US EPA, Washington, District of Columbia, USA
| | - J Andre Weaver
- Center for Public Health and Environmental Assessment, Office of Research and Development, US EPA, Research Triangle Park, North Carolina, USA
| |
Collapse
|
4
|
Chen Q, Riviere JE, Lin Z. Toxicokinetics, dose-response, and risk assessment of nanomaterials: Methodology, challenges, and future perspectives. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1808. [PMID: 36416026 PMCID: PMC9699155 DOI: 10.1002/wnan.1808] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 11/24/2022]
Abstract
The rapid growth of nanomaterial applications has raised safety concerns for human health. A number of studies have been conducted to assess the toxicokinetics, toxicology, dose-response, and risk assessment of different nanomaterials using in vitro and in vivo animal and human models. However, current studies cannot meet the demand for efficient assessment of toxicokinetics, dose-response relationships, or the toxicological risk arising from the rapidly increasing number of newly synthesized nanomaterials. In this article, we review the methods for conducting toxicokinetics, hazard identification, dose-response, exposure, and risk assessment studies of nanomaterials, identify the knowledge gaps, and discuss the challenges remaining. We provide the rationale behind the appropriate design of nanomaterial plasma toxicokinetic and tissue distribution studies, including caveats on the interpretation and correlation of in vitro and in vivo toxicology studies. The potential of using physiologically based pharmacokinetic (PBPK) models to extrapolate toxicokinetic and toxicity findings from in vitro to in vivo and from animals to humans is discussed, and the knowledge gaps of PBPK modeling for nanomaterials are identified. While challenges still exist, there has been progress in the toxicokinetics, hazard identification, and risk assessment of nanomaterials in the past two decades. Recent advancements in the field are highlighted with relevant examples. We also share latest guidelines as well as our perspectives on future studies needed to characterize the toxicokinetics, toxicity, and dose-response relationship in support of nanomaterial risk assessment. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Qiran Chen
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
| | - Jim E. Riviere
- 1Data Consortium, Kansas State University, Olathe, Kansas, USA
- Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Zhoumeng Lin
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Chen Q, Chou WC, Lin Z. Integration of Toxicogenomics and Physiologically Based Pharmacokinetic Modeling in Human Health Risk Assessment of Perfluorooctane Sulfonate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3623-3633. [PMID: 35194992 DOI: 10.1021/acs.est.1c06479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Toxicogenomics and physiologically based pharmacokinetic (PBPK) models are useful approaches in chemical risk assessment, but the methodology to incorporate toxicogenomic data into a PBPK model to inform risk assessment remains to be developed. This study aimed to develop a probabilistic human health risk assessment approach by integrating toxicogenomic dose-response data and PBPK modeling using perfluorooctane sulfonate (PFOS) as a case study. Based on the available human in vitro and mouse in vivo toxicogenomic data, we identified the differentially expressed genes (DEGs) at each exposure paradigm/duration. Kyoto Encyclopedia of Genes and Genomes and disease ontology enrichment analyses were conducted on the DEGs to identify significantly enriched pathways and diseases. The dose-response data of DEGs were analyzed using the Bayesian benchmark dose (BMD) method. Using a previously published PBPK model, the gene BMDs were converted to human equivalent doses (HEDs), which were summarized to pathway and disease HEDs and then extrapolated to reference doses (RfDs) by considering an uncertainty factor of 30 for mouse in vivo data and 10 for human in vitro data. The results suggested that the median RfDs at different exposure paradigms were similar to the 2016 U.S. Environmental Protection Agency's recommended RfD, while the RfDs for the most sensitive pathways and diseases were closer to the recent European Food Safety Authority's guidance values. In conclusion, genomic dose-response data and PBPK modeling can be integrated to become a useful alternative approach in risk assessment of environmental chemicals. This approach considers multiple endpoints, provides toxicity mechanistic insights, and does not rely on apical toxicity endpoints.
Collapse
Affiliation(s)
- Qiran Chen
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida 32610, United States
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32608, United States
| | - Wei-Chun Chou
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida 32610, United States
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32608, United States
| | - Zhoumeng Lin
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida 32610, United States
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32608, United States
| |
Collapse
|