1
|
Koparde SV, Nille OS, Kolekar AG, Bote PP, Gaikwad KV, Anbhule PV, Pawar SP, Kolekar GB. Okra peel-derived nitrogen-doped carbon dots: Eco-friendly synthesis and multi-functional applications in heavy metal ion sensing, nitro compound detection and environmental remediation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124659. [PMID: 38943759 DOI: 10.1016/j.saa.2024.124659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/23/2024] [Accepted: 06/11/2024] [Indexed: 07/01/2024]
Abstract
The present study explores the kitchen waste okra peels derived synthesis of nitrogen doped carbon dots (N-CDs) via simple carbonization followed by reflux method. The synthesized N-CDs was characterized using, TEM, XPS, FTIR, XRD, Raman, UV-Visible and Fluorescence Spectroscopy. The N-CDs emits bright blue emission at 420 nm with 12 % of quantum yield as well as it follows excitation dependent emission. Further, the N-CDs were employed as a fluorescence sensor for detection of hazardous metal ions and nitro compounds. Among various metal ions and nitro compounds, the N-CDs shows fluorescence quenching response towards Cr6+, and Mn7+ metal ions as well as 4-nitroaniline (4-NA) and picric acid (PA) with significant hypsochromic and bathochromic shift for Mn7+, 4-NA and PA respectively. The developed fluorescent probe shows relatively low limit of detection (LOD) of 1.46 µg/mL, 1.05 µg/mL, 2.1 µg/mL and 2.2 µg/mL for the above analytes respectively. The N-CDs did not show any significant interference with coexisting ions and successfully applied for real water sample analysis. In addition, circular economy approach was employed for adsorption of dyes by reactivating leftover waste carbon residue which was obtained after reflux. Thus, the kitchen waste valorization and circular economy approach based N-CDs have potential applications in the field of detection of emerging pollutants, and environmental remediation.
Collapse
Affiliation(s)
- Sneha V Koparde
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry Shivaji University, Kolhapur-416004, (MS), India; Department of Chemistry, Rajarshi Chhatrapati Shahu College, Kolhapur-416003, (MS), India
| | - Omkar S Nille
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry Shivaji University, Kolhapur-416004, (MS), India
| | - Akanksha G Kolekar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry Shivaji University, Kolhapur-416004, (MS), India
| | - Prachi P Bote
- Department of Chemistry, Rajarshi Chhatrapati Shahu College, Kolhapur-416003, (MS), India
| | - Kishor V Gaikwad
- Department of Chemistry, Rajarshi Chhatrapati Shahu College, Kolhapur-416003, (MS), India
| | - Prashant V Anbhule
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry Shivaji University, Kolhapur-416004, (MS), India
| | - Samadhan P Pawar
- Department of Chemistry, Rajarshi Chhatrapati Shahu College, Kolhapur-416003, (MS), India.
| | - Govind B Kolekar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry Shivaji University, Kolhapur-416004, (MS), India.
| |
Collapse
|
2
|
do Nascimento LM, dos Santos MF, da Paz CA, de Araújo DB, Ferreira RDC, Deiga YDS, de Souza LV, Câmara TM, dos Santos RG, Barbosa ADS, Hamoy MKO, do Amaral ALG, Eiró-Quirino L, Cabral TDS, da Silva MAPDS, Muto NA, Hamoy M. Morphographic Changes in the Electrocardiogram of Colossoma macropomum Caused by Exposure to Manganese. Int J Mol Sci 2024; 25:8910. [PMID: 39201596 PMCID: PMC11354609 DOI: 10.3390/ijms25168910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 09/02/2024] Open
Abstract
Manganese (Mn2+) is an abundant chemical element in the earth's crust and is present in soil, water, and industrial environments, including mining, welding, and battery manufacturing. Manganese (Mn) is an essential metal needed as a cofactor for many enzymes to maintain proper biological functions. Excessive exposure to Mn in high doses can result in a condition known as manganism, which results in disorders of the neurological, cardiac, and pulmonary systems. The aim of this study was to assess cardiac susceptibility to manganese intoxication in Colossoma macropomum subjected to a fixed concentration of 4 mg/mL for a period of up to 96 h. This study used 45 Tambaquis (30.38 ± 3.5 g) divided into five groups of 9 animals/treatment. The treated groups were exposed to the manganese concentration for a period of 24, 48, 72, and 96 h, after which the animals' ECGs were recorded, showing heart rate, R-R interval, P-Q interval, QRS complex duration and S-T interval. The results showed that cardiac activity decreased as the contact time increased, with an increase in the P-Q and S-T intervals. This indicates that the breakdown of circulatory homeostasis in these animals was caused by contact time with manganese.
Collapse
Affiliation(s)
- Lorena Meirelis do Nascimento
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences-ICB/UFPA, Belém 66077-830, PA, Brazil (A.L.G.d.A.)
| | - Murilo Farias dos Santos
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences-ICB/UFPA, Belém 66077-830, PA, Brazil (A.L.G.d.A.)
| | - Clarissa Araújo da Paz
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences-ICB/UFPA, Belém 66077-830, PA, Brazil (A.L.G.d.A.)
| | - Daniella Bastos de Araújo
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences-ICB/UFPA, Belém 66077-830, PA, Brazil (A.L.G.d.A.)
| | - Rayllan da Cunha Ferreira
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences-ICB/UFPA, Belém 66077-830, PA, Brazil (A.L.G.d.A.)
| | - Yris da Silva Deiga
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences-ICB/UFPA, Belém 66077-830, PA, Brazil (A.L.G.d.A.)
| | - Luana Vasconcelos de Souza
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences-ICB/UFPA, Belém 66077-830, PA, Brazil (A.L.G.d.A.)
| | - Tays Mata Câmara
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences-ICB/UFPA, Belém 66077-830, PA, Brazil (A.L.G.d.A.)
| | - Rodrigo Gonçalves dos Santos
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences-ICB/UFPA, Belém 66077-830, PA, Brazil (A.L.G.d.A.)
| | - Anara de Sousa Barbosa
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences-ICB/UFPA, Belém 66077-830, PA, Brazil (A.L.G.d.A.)
| | - Maria Klara Otake Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences-ICB/UFPA, Belém 66077-830, PA, Brazil (A.L.G.d.A.)
| | - Anthony Lucas Gurgel do Amaral
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences-ICB/UFPA, Belém 66077-830, PA, Brazil (A.L.G.d.A.)
| | - Luciana Eiró-Quirino
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences-ICB/UFPA, Belém 66077-830, PA, Brazil (A.L.G.d.A.)
| | | | | | - Nilton Akio Muto
- Center for the Valorization of Bioactive Compounds from the Amazon, Institute of Biological Sciences, Federal University of Pará, Belém 66077-830, PA, Brazil
| | - Moisés Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences-ICB/UFPA, Belém 66077-830, PA, Brazil (A.L.G.d.A.)
| |
Collapse
|
3
|
Chakraborty P, Krishnani KK, Mulchandani A, Paniprasad K, Sarkar DJ, Sawant PB, Kumar N, Sarkar B, Mallik A, Pal P, Nagendrasai K, Das BK. Speciation-specific chromium bioaccumulation and detoxification in fish using hydrogel microencapsulated biogenic nanosilver and zeolite synergizing with biomarkers. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:298. [PMID: 38980518 DOI: 10.1007/s10653-024-02061-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/31/2024] [Indexed: 07/10/2024]
Abstract
Grass carp intestinal waste-mediated biosynthesized nanosilver (AgNPs) was valorized using guaran and zeolite matrices, resulting in AgNPs-guaran, AgNPs-zeolite, and AgNPs-guaran -zeolite composites. The valorized products were examined using Environmental Scanning Electron Microscopy, Energy Dispersive X-ray analysis and X-ray Diffraction analysis to confirm uniform dispersion and entrapment of AgNPs within the matrixes. These valorized products were evaluated for their efficacy in detoxifying the ubiquitous and toxic hexavalent chromium (Cr6+) in aquatic environments, with Anabas testudineus exposed to 2 mg l-1 of Cr6+ for 60 days. Remarkable reduction of Cr6+ concentration to 0.86 ± 0.007 mg l-1 was achieved with AgNPs-guaran-zeolite composite, indicating successful reclamation of contaminated water and food safety assurance. Consistency in results was further corroborated by minimal stress-related alterations in fish physiological parameters and integrated biomarker response within the experimental group treated with the AgNPs-guaran-zeolite composite. Despite observed chromium accumulation in fish tissues, evidence of physiological stability was apparent, potentially attributable to trivalent chromium accumulation, serving as an essential nutrient for the fish. Additionally, the challenge study involving Anabas testudineus exposed to Aeromonas hydrophila exhibited the lowest cumulative mortality (11.11%) and highest survival rate (87.5%) within the same experimental group. The current study presents a novel approach encompassing the valorization of AgNPs for Cr6+ detoxification under neutral to alkaline pH conditions, offering a comprehensive framework for environmental remediation.
Collapse
Affiliation(s)
- Puja Chakraborty
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - Kishore Kumar Krishnani
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India.
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834010, India.
| | - Ashok Mulchandani
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA
| | - Kurcheti Paniprasad
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - Dhruba Jyoti Sarkar
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, Kolkata, India
| | - Paramita Banerjee Sawant
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra, 413115, India
| | - Biplab Sarkar
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834010, India
| | - Abhijit Mallik
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - Prasenjit Pal
- College of Fisheries, Central Agricultural University, Imphal, 799210, India
| | - Kurapati Nagendrasai
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, Kolkata, India
| |
Collapse
|
4
|
Khan Q, Yousafzai AM. Plant based synthesis of silver nanoparticles, antimicrobial efficiency, and toxicological assessment using freshwater fish (Cyprinus carpio). Microsc Res Tech 2024; 87:53-64. [PMID: 37728059 DOI: 10.1002/jemt.24411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/26/2023] [Accepted: 08/20/2023] [Indexed: 09/21/2023]
Abstract
Silver nanoparticles (AgNPs) are widely used and have various applications, including medicine, electronics, and textiles. However, their increasing use raises concern about their potential environmental impact, particularly on aquatic organisms, such as fish, which are the primary consumers of aquatic environments and can be exposed to AgNPs through various routes. For this purpose, the leaves of the plant species Bellis perennis were used as a reductive agent to convert silver nitrate into AgNPs, to assess its toxicity against fish. Well-dispersed and undersized AgNPs were obtained and confirmed using analytical techniques, including Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). Moreover, the AgNPs have shown significant antibacterial activity against Aeromonas hydrophila (25.71 ± 0.63) and Vibrio harveyi (22.39 ± 0.29). In addition, the toxicity of the obtained AgNPs was assessed by exposing Cyprinus carpio to various concentrations, including 0.06, 0.1, and 0.2 mg/L. The findings revealed that the AgNPs were significantly accumulated in the intestine, followed by the gills, liver, muscles, kidney, and brain. This bioaccumulation led to histological alterations and destruction in the villi of the intestine, regeneration of liver cells, and degeneration of the gill lamella. RESEARCH HIGHLIGHTS: Plants based synthesis of AgNPs is mostly considered as eco-friendly A significant antibacterial activity was obtained The plant mediated AgNPs were found less toxic The AgNPs was profoundly accumulated and causes histological alterations.
Collapse
Affiliation(s)
- Qaisar Khan
- Department of Zoology, Islamia College University, Peshawar, Pakistan
| | | |
Collapse
|
5
|
Hossain MM, Jahan I, Al Nahian A, Zhuang Z, Maxwell SJ, Ali MY, Sethupathy S, Zhu D. Immediate health risk: Concentration of heavy metals in contaminated freshwater fishes from the river channel of Turag-Tongi-Balu. ENVIRONMENTAL TOXICOLOGY 2024; 39:120-134. [PMID: 37665211 DOI: 10.1002/tox.23959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
The consumption of contaminated finfish from the polluted river channel of Turag-Tongi-Balu, Kamarpara site, Dhaka poses significant health hazards to humans. We used mass spectrometry on chemically digested liquid samples from five fish species from Turag-Tongi-Balu to estimate the concentrations of 10 elements (Cr, Mn, Ni, Cu, Zn, As, Se, Cd, Fe, and Pb). Except M. vittatus, the mean concentrations of Cd, Mn, Pb, and Se exceeded the Food Safety Guideline (FSG) value in all fish species. Among the species studied, L. rohita, C. punctata, C. batrachus, H. fossilis, and M. vittatus exhibited higher Mn concentrations surpassing the FSG threshold, thus elevating the non-carcinogenic risk across all species. There were statistically significant differences (p < .05) in the mean concentrations of heavy metals among fish species. The Target Hazard Quotient (THQ) value of Mn poses a significant non-carcinogenic risk to human health, while the hazard of other metals is negligible. Except for M. vittus, the Hazard Index value (HI ≥ 1) revealed the risk that all metals exceed the limit and pose a threat to human health. Cd, As, and Ni metals pose a significant carcinogenic risk to human health from the consumption of fish samples, which is a particularly alarming target cancer risk (TCR). In conclusion, regular dietary consumption of fish from this polluted ecosystem of the Turag-Tongi-Balu River channel's Kamarpara site poses a significant health risk and is indicated as cancer. This study emphasizes the significance of monitoring heavy metal contamination in finfish and minimizing the risk to human health with effective measures.
Collapse
Affiliation(s)
- Md Muzammel Hossain
- Biofuels Institue, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Zoology, Faculty of Life and Earth Science, Jagannath University, Dhaka, Bangladesh
| | - Iffat Jahan
- Department of Chemistry, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Abdullah Al Nahian
- Genetic Engineering and Biotechnology, University of Chittagong, Chittagong, Bangladesh
| | - Zhipeng Zhuang
- Biofuels Institue, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Stephen J Maxwell
- College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
| | - Mohamed Yassin Ali
- Biofuels Institue, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Biochemistry, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Sivasamy Sethupathy
- Biofuels Institue, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Daochen Zhu
- Biofuels Institue, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
6
|
Ali Z, Khan I, Iqbal MS, Zhang Q, Ai X, Shi H, Ding L, Hong M. Toxicological effects of copper on bioaccumulation and mRNA expression of antioxidant, immune, and apoptosis-related genes in Chinese striped-necked turtle ( Mauremys sinensis). Front Physiol 2023; 14:1296259. [PMID: 38028770 PMCID: PMC10665912 DOI: 10.3389/fphys.2023.1296259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Heavy metals are among the most ubiquitous environmental pollutants of recent decades. Copper is commonly used to control algal blooms or macrophyte and waste infestations, its ambient concentration has increased significantly, indicating possible environmental risk. To investigate the effects of copper exposure on bioaccumulation, antioxidant defense, immune response, and apoptosis in the Chinese Striped-necked Turtle Mauremys sinensis, three experimental groups, control (0.0 mg/L), Cu2 (2 mg/L) and Cu4 (4 mg/L) were designed, and sampled at 14 and 28 days. Results showed that copper accumulates in different organs depending on the concentration and exposure time, Liver > Kidney > Gut > Heart > Brain > Muscle and the time order was 28 days > 14 days. The liver enzymes AST, ALT, and ALP decreased when the turtles were exposed to copper stress, while the contents of bilirubin TBIL, DBIL, IBIL, and LDH showed a significant upward trend. Similarly, the mRNA expression level of acetylcholinesterase AChE in the brain was significantly downregulated upon copper exposure. An upward trend was noticed in the liver Metallothionein MT mRNA expression levels compared to the control group. The mRNA expression levels of antioxidant enzymes CAT, SOD, MnSOD, and GSH-PX1 in the liver increased initially and then significantly decreased. Furthermore, the relative mRNA expression levels of inflammatory cytokines IL-1β, IL-8, TNF-α, and IFN-γ involved in inflammatory response significantly upregulated. Copper significantly increased the hepatic mRNA transcription of heat shock proteins HSP70 and HSP90 at different exposure durations. In addition, the relative mRNA levels of caspase3, caspase8, and caspase9 related to the caspase-dependent apoptotic pathway significantly increased under copper stress. These results explain that copper toxicity causes bioaccumulation, promotes oxidative stress, obstructs immunity, and induces inflammation and apoptosis by altering their gene expression levels in M. sinensis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| |
Collapse
|
7
|
Senoro DB, Plasus MMG, Gorospe AFB, Nolos RC, Baaco AT, Lin C. Metals and Metalloid Concentrations in Fish, Its Spatial Distribution in PPC, Philippines and the Attributable Risks. TOXICS 2023; 11:621. [PMID: 37505586 PMCID: PMC10383155 DOI: 10.3390/toxics11070621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Fish is an important source of protein in human meals around the world. However, the fish that we are eating may be contaminated with toxicants such as metals and metalloids (MMs), which may pose health risks to consumers. Information on MMs content in fishes and their potential spatial distribution scenarios would provide knowledge to the community to create strategies and protect human health. Hence, this study assessed and determined the health risk levels of MMs in both brackish and marine water fish (BMF) in Puerto Princesa City (PPC), Palawan Province, Philippines. PPC has an existing abandoned open mine pit near the PPC coastline called the "pit lake". The concentrations of As, Ba, Cu, Fe, Mn, Hg, and Zn in fishes were analyzed using portable Olympus Vanta X-ray Fluorescence (pXRF), and the spatial distribution of MMs concentrations in BMF was analyzed using a GIS (geographic information system). Fishes were sampled from fishing boat landing sites and nearby seafood markets. The results revealed that the concentration of MMs in marine fish was generally higher than the brackish water fish. It was recorded that the Hg concentration in marine water fish meat was higher than in brackish water fish meat. The Mn concentration in marine water fish exceeded the permissible limits set by international bodies. An elevated concentration of Mn in BMF was detected across the northern part of PPC, and an elevated concentration of Hg in marine fishes was recorded in the southeast area, where the fish landing sites are located. Ba was also detected in BMF across the southern part of PPC. Moreover, an elevated concentration of Cu was detected in MBF in the northeast and in marine fish in the southeastern area of PPC. Further, this paper elaborates the non-carcinogenic and carcinogenic risks of these fishes to the PPC population and tourists with respect to the MMs content in fish meat.
Collapse
Affiliation(s)
- Delia B Senoro
- School of Civil, Environmental and Geological Engineering, Mapua University, Manila 1002, Philippines
- Resiliency and Sustainable Development Laboratory, Yuchengco Innovation Center, Mapua University, Manila 1002, Philippines
- Mapua-MSC Joint Research Laboratory, Marinduque State College, Boac 4900, Philippines
| | - Maria Mojena G Plasus
- College of Fisheries and Aquatic Sciences, Abba Building, Western Philippines University, San Juan 5300, Philippines
| | - Alejandro Felipe B Gorospe
- Resiliency and Sustainable Development Laboratory, Yuchengco Innovation Center, Mapua University, Manila 1002, Philippines
| | - Ronnel C Nolos
- Mapua-MSC Joint Research Laboratory, Marinduque State College, Boac 4900, Philippines
- College of Environmental Studies, Marinduque State College, Boac 4900, Philippines
| | - Allaine T Baaco
- College of Fisheries and Aquatic Sciences, Abba Building, Western Philippines University, San Juan 5300, Philippines
- College of Agriculture, Forestry and Environmental Sciences, Western Philippines University, San Juan 5302, Philippines
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| |
Collapse
|
8
|
Jamil Emon F, Rohani MF, Sumaiya N, Tuj Jannat MF, Akter Y, Shahjahan M, Abdul Kari Z, Tahiluddin AB, Goh KW. Bioaccumulation and Bioremediation of Heavy Metals in Fishes-A Review. TOXICS 2023; 11:510. [PMID: 37368610 DOI: 10.3390/toxics11060510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 06/29/2023]
Abstract
Heavy metals, the most potent contaminants of the environment, are discharged into the aquatic ecosystems through the effluents of several industries, resulting in serious aquatic pollution. This type of severe heavy metal contamination in aquaculture systems has attracted great attention throughout the world. These toxic heavy metals are transmitted into the food chain through their bioaccumulation in different tissues of aquatic species and have aroused serious public health concerns. Heavy metal toxicity negatively affects the growth, reproduction, and physiology of fish, which is threatening the sustainable development of the aquaculture sector. Recently, several techniques, such as adsorption, physio-biochemical, molecular, and phytoremediation mechanisms have been successfully applied to reduce the toxicants in the environment. Microorganisms, especially several bacterial species, play a key role in this bioremediation process. In this context, the present review summarizes the bioaccumulation of different heavy metals into fishes, their toxic effects, and possible bioremediation techniques to protect the fishes from heavy metal contamination. Additionally, this paper discusses existing strategies to bioremediate heavy metals from aquatic ecosystems and the scope of genetic and molecular approaches for the effective bioremediation of heavy metals.
Collapse
Affiliation(s)
- Farhan Jamil Emon
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Fazle Rohani
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Nusrat Sumaiya
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mst Fatema Tuj Jannat
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Yeasmin Akter
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
| | - Albaris B Tahiluddin
- College of Fisheries, Mindanao State University-Tawi-Tawi College of Technology and Oceanography, Sanga-Sanga, Bongao 7500, Philippines
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| |
Collapse
|
9
|
Gnocchi KG, Boldrini-França J, Passos LS, Gomes AS, Coppo GC, Pereira TM, Chippari-Gomes AR. Multiple biomarkers response of Astyanax lacustris (Teleostei: Characidae) exposed to manganese and temperature increase. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104124. [PMID: 37044292 DOI: 10.1016/j.etap.2023.104124] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/12/2022] [Accepted: 04/08/2023] [Indexed: 06/15/2023]
Abstract
The present study aimed to evaluate the toxicity of Mn (6.65 mg/L) at different exposure times (96 h, 7, 14, and 21 days) and evaluate its possible toxic effects on the fish Astyanax lacustris through multi-biomarkers and the maximum critical temperature (CT Max). The results show an increase in the Mn accumulation (liver and gills) with increasing exposure time. The glutathione S-transferase (GST) activity showed differences in the group exposed to Mn for 96 h compared to the group exposed for 21 days. The acetylcholinesterase (AChE) activity increased in the fish exposed for 7 days compared to the control group. On the other hand, no genotoxic changes were observed. The CT Max showed that the loss of equilibrium of 50% of the fish occurs at a temperature of 39ºC, with and without the Mn presence. Furthermore, the catalase gene expression (oxidative stress) did not show alterations.
Collapse
Affiliation(s)
- Karla Giavarini Gnocchi
- Laboratory of Applied Ichthyology, Vila Velha University, Rua José Dantas de Melo, 29102-770 Vila Velha, Brazil
| | - Johara Boldrini-França
- Laboratory of Applied Ichthyology, Vila Velha University, Rua José Dantas de Melo, 29102-770 Vila Velha, Brazil
| | - Larissa Souza Passos
- Laboratory of Applied Ichthyology, Vila Velha University, Rua José Dantas de Melo, 29102-770 Vila Velha, Brazil; Center for Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário, 13416-000 Piracicaba, Brazil.
| | - Aline Silva Gomes
- Laboratory of Applied Ichthyology, Vila Velha University, Rua José Dantas de Melo, 29102-770 Vila Velha, Brazil
| | - Gabriel Carvalho Coppo
- Laboratory of Applied Ichthyology, Vila Velha University, Rua José Dantas de Melo, 29102-770 Vila Velha, Brazil; Benthic Ecology Group, Department of Oceanography, Federal University of Espírito Santo, Av. Fernando Ferrari, 29055-460 Vitória, Brazil
| | - Tatiana Miura Pereira
- Laboratory of Applied Ichthyology, Vila Velha University, Rua José Dantas de Melo, 29102-770 Vila Velha, Brazil
| | | |
Collapse
|
10
|
Gao X, Ma C, Wang H, Zhang C, Huang Y. Multi-walled carbon nanotube induced liver injuries possibly by promoting endoplasmic reticulum stress in Cyprinus carpio. CHEMOSPHERE 2023; 325:138383. [PMID: 36907489 DOI: 10.1016/j.chemosphere.2023.138383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
The mass production and discharge of carbon nanotubes (CNTs) to the water environment are of great concern since they threaten the health of organisms in the aquatic ecosystem. CNTs induce multi-organ injuries in fish, but limited literature is available regarding the mechanisms involved. In the present study, juvenile common carp (Cyprinus carpio) were exposed to multi-walled carbon nanotubes (MWCNTs) (0.25 mg L-1 and 2.5 mg L-1) for four weeks. MWCNTs caused dose-dependent alterations in the pathological morphology of liver tissues. Ultrastructural changes manifested as nuclear deformation, chromatin condensation, endoplasmic reticulum (ER) disorderly arrangement, mitochondria vacuolation, and mitochondrial membrane destruction. TUNEL analysis indicated that the apoptosis rate in hepatocytes markedly increased upon exposure to MWCNTs. Moreover, the apoptosis was confirmed by significant upregulation of mRNA levels of apoptosis-related genes (Bcl-2, XBP1, Bax, and caspase3) in MWCNTs-exposure groups, except for Bcl-2 expression which was not significantly changed in HSC groups (2.5 mg L-1 MWCNTs). Furthermore, real-time PCR assay indicated the increased expression of ER stress (ERS) marker genes (GRP78, PERK, and eIF2α) in the exposure groups compared to the control groups, suggesting that the PERK/eIF2α signaling pathway involved in the injuries of the liver tissue. Overall, the results above indicate that MWCNTs induce ERS by activating the PERK/eIF2α pathway in the liver of common carp, and resulted in the initiation of apoptosis procedure.
Collapse
Affiliation(s)
- Xiaochan Gao
- School of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China.
| | - Chaoran Ma
- School of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China.
| | - Hongjun Wang
- School of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China.
| | - Chunnuan Zhang
- School of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China.
| | - Yong Huang
- School of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
11
|
Mortada WI, El-Naggar A, Mosa A, Palansooriya KN, Yousaf B, Tang R, Wang S, Cai Y, Chang SX. Biogeochemical behaviour and toxicology of chromium in the soil-water-human nexus: A review. CHEMOSPHERE 2023; 331:138804. [PMID: 37137390 DOI: 10.1016/j.chemosphere.2023.138804] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023]
Abstract
Chromium (Cr) affects human health if it accumulates in organs to elevated concentrations. The toxicity risk of Cr in the ecosphere depends upon the dominant Cr species and their bioavailability in the lithosphere, hydrosphere, and biosphere. However, the soil-water-human nexus that controls the biogeochemical behaviour of Cr and its potential toxicity is not fully understood. This paper synthesizes information on different dimensions of Cr ecotoxicological hazards in the soil and water and their subsequent effects on human health. The various routes of environmental exposure of Cr to humans and other organisms are also discussed. Human exposure to Cr(VI) causes both carcinogenic and non-carcinogenic health effects via complicated reactions that include oxidative stress, chromosomal and DNA damage, and mutagenesis. Chromium (VI) inhalation can cause lung cancer; however, incidences of other types of cancer following Cr(VI) exposure are low but probable. The non-carcinogenic health consequences of Cr(VI) exposure are primarily respiratory and cutaneous. Research on the biogeochemical behaviour of Cr and its toxicological hazards on human and other biological routes is therefore urgently needed to develop a holistic approach to understanding the soil-water-human nexus that controls the toxicological hazards of Cr and its detoxification.
Collapse
Affiliation(s)
- Wael I Mortada
- Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| | - Ali El-Naggar
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China; Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt; Department of Renewable Resources, University of Alberta, Edmonton, Alberta, T6G 2H1, Canada
| | - Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt.
| | | | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China; Department of Environmental Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Ronggui Tang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, 196 W Huayang Rd, Yangzhou, Jiangsu, PR China
| | - Yanjiang Cai
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China
| | - Scott X Chang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China; Department of Renewable Resources, University of Alberta, Edmonton, Alberta, T6G 2H1, Canada.
| |
Collapse
|
12
|
Leite LAR, Pedreira Filho WDR, de Azevedo RK, Abdallah VD. Bioaccumulation and health risk assessment of trace metal contamination in the musculature of the trahira fish (Hoplias malabaricus) from two neotropical rivers in southeastern Brazil. J Trace Elem Med Biol 2023; 78:127185. [PMID: 37163817 DOI: 10.1016/j.jtemb.2023.127185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/14/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Fish are an important source of nutrition for humans. Artisanal fishing plays a fundamental role in Brazil fish production. In Brazil, the unrestrained increase, diffusion, and little importance for environmental causes of other economic activities, such as the agricultural industry, has caused irreparable damage, leading to the contamination of water bodies. Among the countless pollutants that reach water bodies, trace metals are extremely problematic. Here, we evaluated the bioaccumulation and health risk of trace metal contamination in the musculature of the trahira fish (Hoplias malabaricus), collected from two rivers in southeastern Brazil. METHODS During the period from May 2017 to November 2019, 90 fish were collected, 45 from each river. River water samples were also taken during the same collection periods. From fish, muscle tissue samples were taken, and together with river water samples, analyzed for the recovery of trace metals (Al, Cr, Mn, Fe, Ni, Cu, As, Cd, and Pb) through the technique of Inductively Coupled Plasma Mass Spectrometry (ICP-MS). RESULTS In general, fish as well as the waters of the Jacaré-Guaçú River had higher concentrations of metals. The elements Al, Cr and Cd stood out from the others analyzed metals for having a hazard index (HQ) above 1 (Al), for being up to 10 times above the concentrations allowed by Brazilian legislation (Cr) and for having a high bioconcentration factor (Cd), indicating a biomagnification process through the food chain. CONCLUSION In general, trace metal concentrations in the waters and fish of the Jacaré-Guaçú were higher than in the Jacaré-Pepira, which shows that the Jacaré-Guaçú is the one that suffers more anthropogenic action between the two rivers. In addition, some elements such as Al, Cr and Cd, due to its high concentrations, should receive some attention as they can pose risks to the health of fish, which can jeopardize the survival of their populations, and especially to humans who use these animals as a food source.
Collapse
Affiliation(s)
| | - Walter Dos Reis Pedreira Filho
- Fundação Jorge Duprat de Segurança e Medicina do Trabalho (FUNDACENTRO), Centro Técnico Nacional (CTN), Divisão de Agentes Químicos, São Paulo, Brazil
| | | | - Vanessa Doro Abdallah
- Centro Universitário CESMAC, Programa de Pós-graduação em Análise de Sistemas Ambientais, Maceió, Brazil; Universidade Federal do Alagoas, Setor de Parasitologia e Patologia, Maceió, Brazil
| |
Collapse
|
13
|
Zhou Q, Cui J, Liu Y, Gu L, Teng X, Tang Y. EGCG alleviated Mn exposure-caused carp kidney damage via trpm2-NLRP3-TNF-α-JNK pathway: Oxidative stress, inflammation, and tight junction dysfunction. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108582. [PMID: 36754155 DOI: 10.1016/j.fsi.2023.108582] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 05/12/2023]
Abstract
Manganese (Mn), an essential trace metal element in organisms. However, with extensive use of Mn in industry and agriculture, Mn becomes a heavy metal pollutant in water. (-)-epigallocatechin gallate (EGCG), an tea polyphenols, can alleviate metal toxicity. Kidney is an important detoxifying organ, but toxic mechanism of Mn to kidneys is unclear, which needs further research. Carp is an Asian important economical species for fisheries and a biological model for studying environmental toxicology. Thus, we established excess Mn and EGCG-supplemented carp model to explore molecular mechanism of EGCG alleviating Mn-caused carp kidney damage. In this experiment, we set a control group (the Con group), a Mn treatment group (the Mn group, 90 mg/L Mn), a EGCG supplement group (the EG group, 75 mg/kg EGCG), and a combined group (the Mn + EG group, 90 mg/L Mn and 75 mg/kg EGCG). Transcriptome, qRT-PCR, kit, and morphology method results indicated that excess Mn caused oxidative stress, inflammatory damage, and tight junction dysfunction in carp kidneys. Excess Mn-triggered oxidative stress caused tight junction dysfunction via trpm2-NLRP3-TNF-α-JNK pathway and inflammation. EGCG reversed the harm of Mn to fish through the above mechanism. The findings of this study provided the evidence of EGCG-alleviated Mn poisoning and offered new ideas for reducing heavy metal environmental pollution risk.
Collapse
Affiliation(s)
- Qin Zhou
- College of Animal Science and Technology, Northeast Agricultural University, China
| | - Jiawen Cui
- College of Animal Science and Technology, Northeast Agricultural University, China
| | - Yuhang Liu
- College of Animal Science and Technology, Northeast Agricultural University, China
| | - Lepeng Gu
- College of Animal Science and Technology, Northeast Agricultural University, China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, China.
| | - You Tang
- Electrical and Information Engineering College, Jilin Agricultural Science and Technology University, China.
| |
Collapse
|
14
|
Sungwienwong I, Dankhanob L, Kerdkok D, Tongraung P, Apiratikul N. Functionalized Silver Nanoparticles for Rapid Detection of Mn
2+
Employing a Smartphone Platform. ChemistrySelect 2023. [DOI: 10.1002/slct.202204514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Itthipol Sungwienwong
- Department of Chemistry Faculty of Science Srinakharinwirot University 114 Sukhumvit 23 Rd., Wattana Bangkok Thailand
| | - Lalita Dankhanob
- Department of Chemistry Faculty of Science Srinakharinwirot University 114 Sukhumvit 23 Rd., Wattana Bangkok Thailand
| | - Dhanapat Kerdkok
- Department of Chemistry Faculty of Science Srinakharinwirot University 114 Sukhumvit 23 Rd., Wattana Bangkok Thailand
| | - Pan Tongraung
- Department of Chemistry Faculty of Science Srinakharinwirot University 114 Sukhumvit 23 Rd., Wattana Bangkok Thailand
| | - Nuttapon Apiratikul
- Department of Chemistry Faculty of Science Srinakharinwirot University 114 Sukhumvit 23 Rd., Wattana Bangkok Thailand
| |
Collapse
|
15
|
Sule K, Anikovskiy M, Prenner EJ. Lipid Structure Determines the Differential Impact of Single Metal Additions and Binary Mixtures of Manganese, Calcium and Magnesium on Membrane Fluidity and Liposome Size. Int J Mol Sci 2023; 24:1066. [PMID: 36674581 PMCID: PMC9860990 DOI: 10.3390/ijms24021066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 01/08/2023] Open
Abstract
Unilamellar vesicles of the biologically relevant lipids phosphatidic acid (PA) and phosphatidylserine (PS) with fully saturated (DM-) or partly unsaturated (PO-) acyl side chains were exposed to Ca, Mn and Mg in single metal additions; in equimolar mixtures or by sequential additions of one metal at a time. Laurdan generalized polarization measured the membrane fluidity, while dynamic light scattering reported liposome size changes complemented by zeta potential. All metals induced membrane rigidity and increased liposome sizes across all systems. Mn had the strongest effect overall, but Mg was comparable for DMPS. Lipid side chain architecture was important as GP values for binary mixtures were higher than expected from the sum of values for single additions added to POPS but smaller for DMPS. Sequential additions were predominantly different for Ca:Mg mixtures. Mn induced the strongest increase of liposome size in saturated lipids whereas Ca effects dominated unsaturated matrices. Binary additions induced larger sizes than the sum of single additions for POPS, but much lower changes in DMPA. The order of addition was relevant for PS systems. Thus, lipid structure determines metal effects, but their impact is modulated by other ions. Thus, metal effects may differ with the local lipid architecture and metal concentrations within cells.
Collapse
Affiliation(s)
- Kevin Sule
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Max Anikovskiy
- Department of Chemistry, Nanoscience Program, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Elmar J. Prenner
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
16
|
Badawy AAB, Guillemin GJ. Species Differences in Tryptophan Metabolism and Disposition. Int J Tryptophan Res 2022; 15:11786469221122511. [PMID: 36325027 PMCID: PMC9620070 DOI: 10.1177/11786469221122511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/20/2022] [Indexed: 11/06/2022] Open
Abstract
Major species differences in tryptophan (Trp) metabolism and disposition exist
with important physiological, functional and toxicity implications. Unlike
mammalian and other species in which plasma Trp exists largely bound to albumin,
teleosts and other aquatic species possess little or no albumin, such that Trp
entry into their tissues is not hampered, neither is that of environmental
chemicals and toxins, hence the need for strict measures to safeguard their
aquatic environments. In species sensitive to toxicity of excess Trp, hepatic
Trp 2,3-dioxygenase (TDO) lacks the free apoenzyme and its glucocorticoid
induction mechanism. These species, which are largely herbivorous, however,
dispose of Trp more rapidly and their TDO is activated by smaller doses of Trp
than Trp-tolerant species. In general, sensitive species may possess a higher
indoleamine 2,3-dioxygenase (IDO) activity which equips them to resist immune
insults up to a point. Of the enzymes of the kynurenine pathway beyond TDO and
IDO, 2-amino-3-carboxymuconic acid-6-semialdehyde decarboxylase (ACMSD)
determines the extent of progress of the pathway towards NAD+
synthesis and its activity varies across species, with the domestic cat
(Felis catus) being the leading species possessing the
highest activity, hence its inability to utilise Trp for NAD+
synthesis. The paucity of current knowledge of Trp metabolism and disposition in
wild carnivores, invertebrates and many other animal species described here
underscores the need for further studies of the physiology of these species and
its interaction with Trp metabolism.
Collapse
Affiliation(s)
- Abdulla A-B Badawy
- Formerly School of Health Sciences,
Cardiff Metropolitan University, Cardiff, Wales, UK,Abdulla A-B Badawy, Formerly School of
Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff,
Wales, CF5 2YB, UK.
| | - Gilles J Guillemin
- Neuroinflammation Group, MND Research
Centre, Macquarie Medical School, Macquarie University, NSW, Australia
| |
Collapse
|
17
|
A Novel Selenium Polysaccharide Alleviates the Manganese (Mn)-Induced Toxicity in Hep G2 Cells and Caenorhabditis elegans. Int J Mol Sci 2022; 23:ijms23084097. [PMID: 35456914 PMCID: PMC9029073 DOI: 10.3390/ijms23084097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/14/2022] Open
Abstract
Manganese (Mn) is now known to have a variety of toxicities, particularly when exposed to it in the workplace. However, there are still ineffective methods for reducing Mn's hazardous effects. In this study, a new selenium polysaccharide (Se-PCS) was developed from the shell of Camellia oleifera to reduce Mn toxicity in vitro and in vivo. The results revealed that Se-PCS may boost cell survival in Hep G2 cells exposed to Mn and activate antioxidant enzyme activity, lowering ROS and cell apoptosis. Furthermore, after being treated with Se-PCS, Caenorhabditis elegans survived longer under Mn stress. daf-16, a tolerant critical gene, was turned on. Moreover, the antioxidant system was enhanced as the increase in strong antioxidant enzyme activity and high expression of the sod-3, ctl-2, and gst-1 genes. A variety of mutations were also used to confirm that Se-PCS downregulated the insulin signaling pathway. These findings showed that Se-PCS protected Hep G2 cells and C. elegans via the insulin/IGF-1 signaling pathway and that it could be developed into a promising medication to treat Mn toxicity.
Collapse
|
18
|
Özyurt G, Tabakoğlu ŞS, Özyurt CE. Metal Bioaccumulation in the Gill, Liver, and Muscle of Bluefish (Pomatomus saltatrix) From the Northeastern Mediterranean and Human Health Risk Assessment Associated with Their Seasonal Consumption. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 81:58-66. [PMID: 34014341 DOI: 10.1007/s00244-021-00852-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Heavy metals are continuously released into the oceans from both natural and anthropogenic sources. They are serious threats to both ecosystem and human health because of their toxicity, persistence, bioaccumulation, and biomagnification. We present metal concentrations in the economically important bluefish from Iskenderun Bay, providing valuable information on Northeastern Mediterranean aquatic ecosystem health, as well as the human health risk. The concentrations of manganese, iron, copper, zinc, selenium, cadmium, lead, and mercury were determined in the gill, liver, and muscle tissues of bluefish (Pomatomus saltatrix) caught in Iskenderun Bay (Turkey) during four seasons. Samples were analysed via inductively coupled plasma mass spectrometer. Fe and Zn were detected in the highest concentrations during all four seasons. The ranges of Fe concentrations were 61.15-108.76, 229.78-377.02, and 6.35-8.63 and those of Zn were 25.21-44.25, 42.25-76.08, and 6.27-13.59 in the gills, livers, and muscles, respectively. In contrast, Hg and Cd were not found in the bluefish tissues in any season with the exception of Cd in the gills during the spring (0.757 mg/kg, above the legal limit of 0.5 mg/kg). On a seasonal basis, no meaningful accumulation trend was observed for the muscles or gills, while the highest concentrations of Mn, Fe, Cu, Zn, and Se in the liver were found in the spring. Liver tissues possessed higher metal concentrations than gill and muscle tissues. Estimated daily and weekly intakes of the metals due to human consumption of the bluefish were considerably lower than the provisional tolerable intake. In this study, there was an inflow of metals into Iskenderun Bay; however, no significant metal accumulation was found in bluefish tissues at a rate that would harm human health.
Collapse
Affiliation(s)
- Gülsün Özyurt
- Department of Seafood Processing Technology, Faculty of Fisheries, University of Cukurova, 01330, Adana, Turkey.
| | - Şefik Surhan Tabakoğlu
- Department of Aquaculture, Faculty of Fisheries, University of Cukurova, 01330, Adana, Turkey
| | - Caner Enver Özyurt
- Department of Fisheries Technology, Faculty of Fisheries, University of Cukurova, 01330, Adana, Turkey
| |
Collapse
|