1
|
Ferdigg A, Hopp AK, Wolf G, Superti-Furga G. Membrane transporters modulating the toxicity of arsenic, cadmium, and mercury in human cells. Life Sci Alliance 2025; 8:e202402866. [PMID: 39578074 PMCID: PMC11584324 DOI: 10.26508/lsa.202402866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
Non-essential metals are extremely toxic to living organisms, posing significant health risks, particularly in developing nations where they are a major contributor to illness and death. Although their toxicity is widely acknowledged, the mechanisms by which they are regulated within human cells remain incompletely understood. Specifically, the role of membrane transporters in mediating heavy metal toxicity is not well comprehended. Our study demonstrates how specific transporters can modulate the toxicity of cadmium, mercury, and the metalloid arsenic in human cells. Using CRISPR/Cas9 loss-of-function screens, we found that the multidrug resistance protein MRP1/ABCC1 provided protection against toxicity induced by arsenic and mercury. In addition, we found that SLC39A14 and SLC30A1 increased cellular sensitivity to cadmium. Using a reporter cell line to monitor cellular metal accumulation and performing a cDNA gain-of-function screen, we were able to clarify the function of SLC30A1 in controlling cadmium toxicity through the modulation of intracellular zinc levels. This transporter-wide approach provides new insights into the complex roles of membrane transporters in influencing the toxicity of arsenic, cadmium, and mercury in human cell lines.
Collapse
Affiliation(s)
- Andrè Ferdigg
- https://ror.org/02z2dfb58 CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ann-Katrin Hopp
- https://ror.org/02z2dfb58 CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Gernot Wolf
- https://ror.org/02z2dfb58 CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Giulio Superti-Furga
- https://ror.org/02z2dfb58 CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Gao F, Shen Y, Wu H, Laue HE, Lau FK, Gillet V, Lai Y, Shrubsole MJ, Prada D, Zhang W, Liu Z, Bellenger JP, Takser L, Baccarelli AA. Associations of Stool Metal Exposures with Childhood Gut Microbiome Multiomics Profiles in a Prospective Birth Cohort Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22053-22063. [PMID: 39630952 DOI: 10.1021/acs.est.4c09642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Metal exposures are closely related to childhood developmental health. However, their effects on the childhood gut microbiome, which also impacts health, are largely unexplored using microbiome multiomics including the metagenome and metatranscriptome. This study examined the associations of fecal profiles of metal/element exposures with gut microbiome species and active functional pathways in 8- to 12-year-old children (N = 116) participating in the GESTation and Environment (GESTE) cohort study. We analyzed 19 stool metal and element concentrations (B, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Mo, Cd, Ba, and Pb). Covariate-adjusted linear regression models identified several significant microbiome associations with continuous stool metal/element concentrations. For instance, Zn was positively associated with Turicibacter sanguinis (coef = 1.354, q-value = 0.039) and negatively associated with Eubacterium eligens (coef = -0.794, q-value = 0.044). Higher concentrations of Cd were associated with lower Eubacterium eligens (coef = -0.774, q-value = 0.045). Additionally, a total of 490 significant functional pathways such as biosynthesis and degradation/utilization/assimilation were identified, corresponding to different functions, including amino acid synthesis and carbohydrate degradation. Our results suggest links among metal exposures, pediatric gut microbiome multiomics, and potential health implications. Future work will further explore their relation to childhood health.
Collapse
Affiliation(s)
- Feng Gao
- Department of Environmental Health Sciences, Fielding School of Public Health, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, California 90095, United States
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Yike Shen
- Department of Earth and Environmental Sciences, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Haotian Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Hannah E Laue
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst School of Public Health and Health Sciences, Amherst, Massachusetts 01003, United States
| | - Fion K Lau
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Virginie Gillet
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Yunjia Lai
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Martha J Shrubsole
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Diddier Prada
- Institute for Health Equity Research - IHER, Department of Population Health Science and Policy and the Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Zhonghua Liu
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York 10032, United States
| | | | - Larissa Takser
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Andrea A Baccarelli
- Office of the Dean, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| |
Collapse
|
3
|
Youssif MM, El-Attar HG, Hessel V, Wojnicki M. Recent Developments in the Adsorption of Heavy Metal Ions from Aqueous Solutions Using Various Nanomaterials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5141. [PMID: 39517417 PMCID: PMC11546202 DOI: 10.3390/ma17215141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Water pollution is caused by heavy metals, minerals, and dyes. It has become a global environmental problem. There are numerous methods for removing different types of pollutants from wastewater. Adsorption is viewed as the most promising and financially viable option. Nanostructured materials are used as effective materials for adsorption techniques to extract metal ions from wastewater. Many types of nanomaterials, such as zero-valent metals, metal oxides, carbon nanomaterials, and magnetic nanocomposites, are used as adsorbents. Magnetic nanocomposites as adsorbents have magnetic properties and abundant active functional groups, and unique nanomaterials endow them with better properties than nonmagnetic materials (classic adsorbents). Nonmagnetic materials (classic adsorbents) typically have limitations such as limited adsorption capacity, adsorbent recovery, poor selective adsorption, and secondary treatment. Magnetic nanocomposites are easy to recover, have strong selectivity and high adsorption capacity, are safe and economical, and have always been a hotspot for research. A large amount of data has been collected in this review, which is based on an extensive study of the synthesis, characterization, and adsorption capacity for the elimination of ions from wastewater and their separation from water. The effects of several experimental parameters on metal ion removal, including contact duration, temperature, adsorbent dose, pH, starting ion concentration, and ionic strength, have also been investigated. In addition, a variety of illustrations are used to describe the various adsorption kinetics and adsorption isotherm models, providing insight into the adsorption process.
Collapse
Affiliation(s)
- Mahmoud M. Youssif
- Faculty of Non-Ferrous Metals, AGH University of Krakow, al. A. Mickewicza 30, 30-059 Krakow, Poland
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Heba G. El-Attar
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Volker Hessel
- School of Chemical Engineering, University of Adelaide, Adelaide 5005, Australia;
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Marek Wojnicki
- Faculty of Non-Ferrous Metals, AGH University of Krakow, al. A. Mickewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
4
|
Defourny SV, Caioni G, Bellocci M, Melai V, Scortichini G, Salini R, Martino M, Di Teodoro G, Cocco A, Cantelmi MC, Merola C, Petrini A. Domestic dogs as environmental sentinel in comparative toxicologic pathology: Assessment of metals and rare earth elements concentrations in healthy and neoplastic mammary glands. One Health 2024; 18:100749. [PMID: 38765761 PMCID: PMC11101696 DOI: 10.1016/j.onehlt.2024.100749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/04/2024] [Accepted: 05/05/2024] [Indexed: 05/22/2024] Open
Abstract
Quantification of trace element concentrations in human and animal tissues has acquired great importance in the last few years, considering the pivotal role of these elements in several physiological and pathological processes. Variations in their concentrations appear to have a role in the development and advancement of diseases in both humans and animals, for example, cancer. The purpose of this study was to investigate the concentration of rare earth elements and metals in healthy and neoplastic Formalin-Fixed Paraffin-Embedded (FFPE) mammary gland tissue of dogs. All samples were processed to have a quantitative determination of inorganic elements including metals of known toxicological interest such as Pb, Cd, Tl, As, Hg, the trace elements Mn, Fe, Co, Cu, Zn, Se, and other elements including Cr, V, Mo, Ni, Sb, W, Sn. Moreover, rare earth elements (REEs) (Sc, Y, Lu, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb) were also investigated. Cu and Mo concentrations in mammary cancerous tissue were greater than those in normal mammary glands (p < 0.05). In non-neoplastic tissue increased concentrations of Cd, Co, Ni, Tl, and V were also reported (p < 0.05). The mammary tissue of healthy individuals had greater concentrations of REEs than the neoplastic mammary glands (p < 0.05). The results of our study confirmed differences in mammary inorganic element concentrations between healthy and neoplastic groups, highlighting the potential relevance of these fluctuations in toxicologic pathology.
Collapse
Affiliation(s)
- Sabrina V.P. Defourny
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Campo Boario, 64100 Teramo, Italy
| | - Giulia Caioni
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Mirella Bellocci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Campo Boario, 64100 Teramo, Italy
| | - Valeria Melai
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Campo Boario, 64100 Teramo, Italy
| | - Giampiero Scortichini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Campo Boario, 64100 Teramo, Italy
| | - Romolo Salini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Campo Boario, 64100 Teramo, Italy
| | - Michele Martino
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Campo Boario, 64100 Teramo, Italy
| | - Giovanni Di Teodoro
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Campo Boario, 64100 Teramo, Italy
| | - Antonio Cocco
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Campo Boario, 64100 Teramo, Italy
| | - Maria Chiara Cantelmi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Campo Boario, 64100 Teramo, Italy
| | - Carmine Merola
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Antonio Petrini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Campo Boario, 64100 Teramo, Italy
| |
Collapse
|
5
|
Ozoani H, Ezejiofor AN, Okolo KO, Orish CN, Cirovic A, Cirovic A, Orisakwe OE. Ameliorative Effects of Zn and Se Supplementation on Heavy Metal Mixture Burden via Increased Renal Metal Excretion and Restoration of Redoxo-Inflammatory Alterations. Biol Trace Elem Res 2024; 202:643-658. [PMID: 37231320 DOI: 10.1007/s12011-023-03709-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Heavy metals (HM)in the environment have provoked global attention because of its deleterious effects. This study evaluated the protection offered by Zn or Se or both against HMM-induced alterations in the kidney. Male Sprague Dawley rats were distributed into 5 groups of 7 rats each. Group I served as normal control with unrestricted access to food and water. Group II received Cd, Pb, and As (HMM) per oral daily for 60 days while groups III and IV received HMM in addition to Zn and Se respectively for 60 days. Group V received both Zn and Se in addition to HMM for 60 days. Metal accumulation in feces was assayed at days 0, 30, and 60 while accumulation in the kidney and kidney weight were measured at day 60. Kidney function tests, NO, MDA, SOD, catalase, GSH, GPx, NO, IL-6, NF-Κb, TNFα, caspase 3, and histology were assessed. There is a significant increase in urea, creatinine, and bicarbonate ions while potassium ions decreased. There was significant increase in renal function biomarkers, MDA, NO, NF-Κb, TNFα, caspase 3, and IL-6 while SOD, catalase, GSH, and GPx decrease. Administration of HMM distorted the integrity of the rat kidney, and co-treatment with Zn or Se or both offered reasonable protection suggesting that Zn or Se could be used as an antidot against the deleterious effects of these metals.
Collapse
Affiliation(s)
- Harrison Ozoani
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Choba, PMB, 5323, Nigeria
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Enugu State, University of Science & Technology, Enugu, Nigeria
| | - Anthonet N Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Choba, PMB, 5323, Nigeria
| | - Kenneth O Okolo
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Enugu State, University of Science & Technology, Enugu, Nigeria
| | - Chinna N Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, Port Harcourt, Choba, PMB, 5323, Nigeria
| | - Ana Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Aleksandar Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Choba, PMB, 5323, Nigeria.
| |
Collapse
|
6
|
Su X, Wang R, Wu Y, Yang M, Ba Y, Huang H. Lead and cadmium co-exposure modified PC12 viability and ER stress: study from a 3 × 3 factorial design. Toxicol Res (Camb) 2023; 12:1135-1142. [PMID: 38145091 PMCID: PMC10734615 DOI: 10.1093/toxres/tfad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/27/2023] [Accepted: 10/16/2023] [Indexed: 12/26/2023] Open
Abstract
Background Although exposure to individual metal does exhibit its toxicity, combined exposures provide a more effective representation of the toxic effects of different heavy metal exposures on public health as well as ecosystems. Furthermore, there are few studies on composite exposure to low concentrations of heavy metals, which is more consistent with real-life exposure. The purpose of this study was to explore the neurotoxicity induced by combined exposure to low concentrations of Lead (Pb) and cadmium (Cd) and the potential interaction of their mixture in vitro. Methods PC12 cells were incubation with the corresponding concentration of cadmium chloride and/or lead acetate. Viability of PC12 cells was measured by CCK8 assay after 12, 24 and 48h incubation. Next, We measured the ROS, mitochondrial membrane potential (MMP) and apoptosis produced by different treated cells using ROS assay kit, JC-1 MMP assay kit and annexin V-FITC/propidium iodide (PI) apoptosis assay kit, respectively. Expression of proteins related to PI3K/AKT and endoplasmic reticulum (ER) stress in PC12 cells were tested by western blotting. Our study was the first to analyze the interaction between Pb and Cd using a 3 × 3 factorial design approach to observe neurotoxicity. Results The results showed that the combined exposure of them was more cytotoxic than the single metal. The activation of PI3K/AKT signaling pathway and several parameters related to oxidative stress and ER stress were significantly altered in combined exposure to low concentrations of Pb and Cd compared with the Pb or Cd. Regarding apoptosis and ER stress, a synergistic interaction between Pb and Cd was evident. Moreover, evoked ER stress as a mechanism involved in the apoptosis of PC12 cells by the combined exposure to Pb and Cd. Conclusion The present study provides a theoretical basis used for the toxicological assessment of metal mixtures induced neurotoxicity of concern in terms of public health, and more effective control measures should be taken for the environmental pollution caused by various mixed heavy metals discharged from industry and agriculture.
Collapse
Affiliation(s)
- Xiao Su
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan province 450001, China
- Environment and Health Innovation Team, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan province 450001, China
| | - Ruike Wang
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan province 450001, China
- Environment and Health Innovation Team, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan province 450001, China
| | - Yingying Wu
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan province 450001, China
- Environment and Health Innovation Team, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan province 450001, China
| | - Mingzhi Yang
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan province 450001, China
- Environment and Health Innovation Team, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan province 450001, China
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan province 450001, China
- Environment and Health Innovation Team, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan province 450001, China
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan province 450001, China
- Environment and Health Innovation Team, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan province 450001, China
| |
Collapse
|
7
|
Azzouz A, Hejji L, Kumar V, Kim KH. Nanomaterials-based aptasensors: An efficient detection tool for heavy-metal and metalloid ions in environmental and biological samples. ENVIRONMENTAL RESEARCH 2023; 238:117170. [PMID: 37722582 DOI: 10.1016/j.envres.2023.117170] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
In light of potential risks of heavy metal exposure, diverse aptasensors have been developed through the combination of aptamers with nanomaterials for the timely and efficient detection of metals in environmental and biological matrices. Aptamer-based sensors can benefit from multiple merits such as heightened sensitivity, facile production, uncomplicated operation, exceptional specificity, enhanced stability, low immunogenicity, and cost-effectiveness. This review highlights the detection capabilities of nanomaterial-based aptasensors for heavy-metal and metalloid ions based on their performance in terms of the basic quality assurance parameters (e.g., limit of detection, linear dynamic range, and response time). Out of covered studies, dendrimer/CdTe@CdS QDs-based ECL aptasensor was found as the most sensitive option with an LOD of 2.0 aM (atto-molar: 10-18 M) detection for Hg2+. The existing challenges in the nanomaterial-based aptasensors and their scientific solutions are also discussed.
Collapse
Affiliation(s)
- Abdelmonaim Azzouz
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tetouan, Morocco
| | - Lamia Hejji
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tetouan, Morocco; Department of Chemical, Environmental, and Materials Engineering, Higher Polytechnic School of Linares, University of Jaén, Campus Científico-Tecnológico, Cinturón Sur S/n, 23700, Linares, Jaén, Spain
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, South Korea.
| |
Collapse
|
8
|
Palomar A, Quiñonero A, Medina-Laver Y, Gonzalez-Martin R, Pérez-Debén S, Alama P, Domínguez F. Antioxidant Supplementation Alleviates Mercury-Induced Cytotoxicity and Restores the Implantation-Related Functions of Primary Human Endometrial Cells. Int J Mol Sci 2023; 24:ijms24108799. [PMID: 37240143 DOI: 10.3390/ijms24108799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Mercury (Hg) cytotoxicity, which is largely mediated through oxidative stress (OS), can be relieved with antioxidants. Thus, we aimed to study the effects of Hg alone or in combination with 5 nM N-Acetyl-L-cysteine (NAC) on the primary endometrial cells' viability and function. Primary human endometrial epithelial cells (hEnEC) and stromal cells (hEnSC) were isolated from 44 endometrial biopsies obtained from healthy donors. The viability of treated endometrial and JEG-3 trophoblast cells was evaluated via tetrazolium salt metabolism. Cell death and DNA integrity were quantified following annexin V and TUNEL staining, while the reactive oxygen species (ROS) levels were quantified following DCFDA staining. Decidualization was assessed through secreted prolactin and the insulin-like growth factor-binding protein 1 (IGFBP1) in cultured media. JEG-3 spheroids were co-cultured with the hEnEC and decidual hEnSC to assess trophoblast adhesion and outgrowth on the decidual stroma, respectively. Hg compromised cell viability and amplified ROS production in trophoblast and endometrial cells and exacerbated cell death and DNA damage in trophoblast cells, impairing trophoblast adhesion and outgrowth. NAC supplementation significantly restored cell viability, trophoblast adhesion, and outgrowth. As these effects were accompanied by the significant decline in ROS production, our findings originally describe how implantation-related endometrial cell functions are restored in Hg-treated primary human endometrial co-cultures by antioxidant supplementation.
Collapse
Affiliation(s)
- Andrea Palomar
- Reproductive Medicine Research Group, IVI Foundation-IIS La Fe Health Research Institute, 46026 Valencia, Spain
| | - Alicia Quiñonero
- Reproductive Medicine Research Group, IVI Foundation-IIS La Fe Health Research Institute, 46026 Valencia, Spain
| | - Yassmin Medina-Laver
- Reproductive Medicine Research Group, IVI Foundation-IIS La Fe Health Research Institute, 46026 Valencia, Spain
| | - Roberto Gonzalez-Martin
- Reproductive Medicine Research Group, IVI Foundation-IIS La Fe Health Research Institute, 46026 Valencia, Spain
| | | | - Pilar Alama
- Department of Gynecology, IVIRMA-Valencia, 46015 Valencia, Spain
| | - Francisco Domínguez
- Reproductive Medicine Research Group, IVI Foundation-IIS La Fe Health Research Institute, 46026 Valencia, Spain
| |
Collapse
|
9
|
Ding Y, Jiang X, Chen Z, Ma S, Xiang Z, Ruan X, Li Y. Insights into As accumulation in soil-groundwater-wheat-hair system of suburban farmland: Distribution, transfer and potential health risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160752. [PMID: 36513228 DOI: 10.1016/j.scitotenv.2022.160752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/08/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Health risks caused by arsenic (As) contamination in soils and its migration in environmental media have attracted much attention. In this study, suburban farmland of KF city in the ecotone of the Yellow River and Huaihe River Basin was taken as the research area. A series of samples including topsoils (246), profile soils (280), matched wheat grains (22 groups), groundwater (26) and human hair (355) were collected. As distribution and transfer in soil-groundwater-wheat-hair (SGWH) system in typical sites were explored, and comprehensive health risk of As in SGWH system was assessed based on US EPA model and local exposure parameters. The results showed that spatial distribution of total As presented a significant high value area, and higher As contents (in the range of 0.45-29.86 mg kg-1) and bioavailability was mainly in topsoils, which indicated that anthropogenic sources have led to As enrichment in studied area. Also, it was found that the As contents in 95 % of wheat grain samples were higher than that in the control soils, and 9 % groundwater samples were above national Class I standards. Especially, average As content in hair in typical sites was obviously influenced by that in soil, wheat and groundwater. Moreover, As migration curve along soil → wheat (groundwater) → hair appeared an irregular 'V' shape, and transfer coefficients of Tf water/soil (10-5), Tf wheat/soil (10-3), Tf hair/soil (10-2), Tf hair/wheat (101) and Tf hair/water (104) presented an obvious increasing trend of magnitude, implying that human body has a higher As enrichment risk. Furthermore, comprehensive health risks for children and adults in typical sites were significant, while wheat is the main risk medium. In general, arsenic accumulation in human hair is good consistent with EPA health risk model, and their combination can better evaluate environmental exposure risk of As.
Collapse
Affiliation(s)
- Yongfeng Ding
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China.
| | - Xingyuan Jiang
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China.
| | - Zhifan Chen
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China; Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Kaifeng 475004, China.
| | - Shiyuan Ma
- Jiyuan Ecological Environment Bureau, Jiyuan 450007, China
| | - Zhetao Xiang
- Zhengzhou Ecological Environment Bureau, Zhengzhou 450007, China
| | - Xinling Ruan
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Yipeng Li
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| |
Collapse
|
10
|
Zhu Z, Li J, Ma F, Chen G, Tian H, Li J, Yang P. Poly (polyethylene glycol diacrylate‐
co
‐allyl glycidyl ether) cryogels: Preparation, modification with iminodiacetic acid, and application of Cu(II) removal. J Appl Polym Sci 2023. [DOI: 10.1002/app.53754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Zhifei Zhu
- School of Environmental Science and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan People's Republic of China
| | - Junying Li
- School of Chemistry and Chemical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan People's Republic of China
| | - Feng Ma
- School of Environmental Science and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan People's Republic of China
- School of Chemistry and Chemical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan People's Republic of China
| | - Guangxu Chen
- School of Environmental Science and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan People's Republic of China
| | - Haoran Tian
- School of Environmental Science and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan People's Republic of China
| | - Jian Li
- Shandong Analysis and Test Center Qilu University of Technology (Shandong Academy of Sciences) Jinan People's Republic of China
| | - Pengfei Yang
- School of Chemistry and Chemical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan People's Republic of China
| |
Collapse
|
11
|
Woreta G, Guadie A, Mulu M, Beshaw T, Lijalem T, Ezez D, Kokeb A, Leggesse M, Tefera M. Occurrence and accumulation of metals in lupine seeds in Ethiopia. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
12
|
Ai L, Ma B, Shao S, Zhang L, Zhang L. Heavy metals in Chinese freshwater fish: Levels, regional distribution, sources and health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158455. [PMID: 36063941 DOI: 10.1016/j.scitotenv.2022.158455] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
China is a major producer and consumer of freshwater fish, which can provide nutrients to the human body but is also of great concern because of the bioaccumulation and amplification of heavy metals that are directly related to human health. In this paper, we reviewed the accumulation and distribution patterns of lead (Pb), arsenic (As), mercury (Hg), cadmium (Cd), and chromium (Cr) in freshwater fish from 2010 to 2020 in nine basins of China (Yangtze River, Pearl River, Yellow River, Haihe River, Huaihe River, Songhua and Liaohe River, Continental, Southeast, and Southwest basins), assessed the health risks, and compared them with those in Chinese marine fish, international freshwater fish, Chinese wild freshwater fish, and artificially cultured freshwater fish. The results showed that 1) the pollution status of the five heavy metals in freshwater fish from nine basins in China is at an intermediate level internationally; 2) the magnitude of heavy metal concentration in four types of artificially farmed freshwater fish and wild freshwater fish is ranked as follows: rice-farmed fish < cage-farmed fish < pond-farmed fish < lake-farmed fish < wild fish; 3) the noncarcinogenic risk factors for heavy metals in freshwater fish in the nine major basins in China were <1 for adults, but the noncarcinogenic risk factors for heavy metals in freshwater fish in the Yellow River, Yangtze River, Pearl River, Songhua and Liaohe River, and Huaihe River basins were all >1 for children.
Collapse
Affiliation(s)
- Liuhuan Ai
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266005, PR China
| | - Bing Ma
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266005, PR China
| | - Shiwei Shao
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266005, PR China
| | - Lei Zhang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266005, PR China
| | - Lei Zhang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266005, PR China.
| |
Collapse
|
13
|
Đukić-Ćosić D, Baralić K, Javorac D, Bulat Z, Ćurčić M, Antonijević B, Đorđević V, Repić A, Buha Djordjevic A. Exploring the relationship between blood toxic metal(oid)s and serum insulin levels through benchmark modelling of human data: Possible role of arsenic as a metabolic disruptor. ENVIRONMENTAL RESEARCH 2022; 215:114283. [PMID: 36088992 DOI: 10.1016/j.envres.2022.114283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
The major goal of this study was to estimate the correlations and dose-response pattern between the measured blood toxic metals (cadmium (Cd), mercury (Hg), chromium (Cr), nickel (Ni))/metalloid (arsenic (As)) and serum insulin level by conducting Benchmark dose (BMD) analysis of human data. The study involved 435 non-occupationally exposed individuals (217 men and 218 women). The samples were collected at health care institutions in Belgrade, Serbia, from January 2019 to May 2021. Blood sample preparation was conducted by microwave digestion. Cd was measured by graphite furnace atomic absorption spectrophotometry (GF-AAS), while inductively coupled plasma-mass spectrometry (ICP-MS) was used to measure Hg, Ni, Cr and As. BMD analysis of insulin levels represented as quantal data was done using the PROAST software version 70.1 (model averaging methodology, BMD response: 10%). In the male population, there was no correlation between toxic metal/metalloid concentrations and insulin level. However, in the female population/whole population, a high positive correlation for As and Hg, and a strong negative correlation for Ni and measured serum insulin level was established. BMD modelling revealed quantitative associations between blood toxic metal/metalloid concentrations and serum insulin levels. All the estimated BMD intervals were wide except the one for As, reflecting a high degree of confidence in the estimations and possible role of As as a metabolic disruptor. These results indicate that, in the case of As blood concentrations, even values higher than BMD (BMDL): 3.27 (1.26) (male population), 2.79 (0.771) (female population), or 1.18 (2.96) μg/L (whole population) might contribute to a 10% higher risk of insulin level alterations, meaning 10% higher risk of blood insulin increasing from within reference range to above reference range. The obtained results contribute to the current body of knowledge on the use of BMD modelling for analysing human data.
Collapse
Affiliation(s)
- Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia.
| | - Dragana Javorac
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Marijana Ćurčić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Vladimir Đorđević
- First Surgical Clinic, Clinical Center of Serbia, Koste Todorovića 5, 11000, Belgrade, Serbia
| | - Aleksandra Repić
- Institute of Forensic Medicine, Faculty of Medicine University of Belgrade, 11000, Belgrade, Serbia
| | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| |
Collapse
|
14
|
Saravanan A, Kumar PS, Srinivasan S, Jeevanantham S, Vishnu M, Amith KV, Sruthi R, Saravanan R, Vo DVN. Insights on synthesis and applications of graphene-based materials in wastewater treatment: A review. CHEMOSPHERE 2022; 298:134284. [PMID: 35283157 DOI: 10.1016/j.chemosphere.2022.134284] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Graphene has excellent unique thermal, chemical, optical, and mechanical properties such as high thermal conductivity, high chemical stability, optical transmittance, high current density, higher surface area, etc. Due to their outstanding properties, the attention towards graphene-based materials and their derivatives in wastewater treatment has been increased in recent times. Different graphene-based materials such as graphene oxides, graphene quantum dots, graphene nanoplatelets, graphene nanoribbons and other graphene-based nanocomposites are synthesized through chemical vapor deposition, mechanical and electrochemical exfoliation of graphite. In this review, the specifics about the graphenes and their derivatives, the synthesis strategy of graphene-based materials are described. This review critically explained the applications of graphene-based materials in wastewater treatment. Graphene-based materials were utilized as adsorbents, electrodes, and photocatalysts for the efficient removal of toxic pollutants such as heavy metals, dyes, pharmaceutics, antibiotics, phenols, polycyclic aromatic hydrocarbons have been highlighted and discussed. Herein, the potential scope of graphene-based material in the field of wastewater treatment is critically reviewed. In addition, a brief perspective on future research directions and difficulties in the synthesis of graphene-based material are summarized.
Collapse
Affiliation(s)
- A Saravanan
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - S Srinivasan
- Department of Biomedical Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, Tamilnadu, 602105, India
| | - M Vishnu
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, Tamilnadu, 602105, India
| | - K Vishal Amith
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, Tamilnadu, 602105, India
| | - R Sruthi
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, Tamilnadu, 602105, India
| | - R Saravanan
- Department of Mechanical Engineering, Universidad de Tarapacá, Arica, Chile
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
15
|
Michaleas SN, Veskoukis AS, Samonis G, Pantos C, Androutsos G, Karamanou M. Mathieu Joseph Bonaventure Orfila (1787-1853): The Founder of Modern Toxicology. MAEDICA 2022; 17:532-537. [PMID: 36032611 PMCID: PMC9375880 DOI: 10.26574/maedica.2022.17.2.532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mateu Joseph Bonaventura Orfila i Rotger was a prominent Spanish chemist and scholar of the 19th century whose experimental work has enormously contributed to the progress of toxicology. Being a pioneer with his research on the effects of toxins and antidotes on live animals, he established basic principles of modern medicine and pharmacology. Orfila improved the accuracy of several chemical techniques such as the Marsh test. He served as an expert and well-known scientific investigator in important legal trials involving alleged poisonings with arsenic and other chemical substances. In 1840, he was asked to investigate the notorious case of Charles Lafarge's death, whose wife had been accused with murder by poisoning his food with arsenic. After four failed chemical analyses, Orfila was finally able to detect arsenic in the victim's body, leading the court to convict Madame Lafarge. Due to his overall contribution to the field, Orfila is considered the father of modern toxicology.
Collapse
Affiliation(s)
- Spyros N Michaleas
- Department of History of Medicine and Medical Ethics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Aristidis S Veskoukis
- Department of Nutrition and Dietetics, School of Physical Education, Sport Science and Dietetics, University of Thessaly, Trikala, Greece
| | - George Samonis
- Department of Medicine, University of Crete, Heraklion, Greece
| | - Constantinos Pantos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georges Androutsos
- Department of History of Medicine and Medical Ethics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Marianna Karamanou
- Department of History of Medicine and Medical Ethics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
16
|
Zhu C, Lv J, Liu K, Chen J, Liu K, Li G, Lu B, Li X. Rapid Determination of Arsenic in Traditional Chinese Medicine by Laser-Induced Breakdown Spectroscopy (LIBS). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2061985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Chenwei Zhu
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jiaxin Lv
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Kun Liu
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ji Chen
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ke Liu
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Guqiang Li
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, P.R. China
| | - Bing Lu
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xiangyou Li
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
17
|
Kim C, Ashrap P, Watkins DJ, Mukherjee B, Rosario-Pabón ZY, Vélez-Vega CM, Alshawabkeh AN, Cordero JF, Meeker JD. Maternal Metals/Metalloid Blood Levels Are Associated With Lipidomic Profiles Among Pregnant Women in Puerto Rico. Front Public Health 2022; 9:754706. [PMID: 35096734 PMCID: PMC8790322 DOI: 10.3389/fpubh.2021.754706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Background/Aim: The association between heavy metal exposure and adverse birth outcomes is well-established. However, there is a paucity of research identifying biomarker profiles that may improve the early detection of heavy metal-induced adverse birth outcomes. Because lipids are abundant in our body and associated with important signaling pathways, we assessed associations between maternal metals/metalloid blood levels with lipidomic profiles among 83 pregnant women in the Puerto Rico PROTECT birth cohort. Methods: We measured 10 metals/metalloid blood levels during 24–28 weeks of pregnancy. Prenatal plasma lipidomic profiles were identified by liquid chromatography–mass spectrometry-based shotgun lipidomics. We derived sums for each lipid class and sums for each lipid sub-class (saturated, monounsaturated, polyunsaturated), which were then regressed on metals/metalloid. False discovery rate (FDR) adjusted p-values (q-values) were used to account for multiple comparisons. Results: A total of 587 unique lipids from 19 lipid classes were profiled. When controlling for multiple comparisons, we observed that maternal exposure to manganese and zinc were negatively associated with plasmenyl-phosphatidylethanolamine (PLPE), particularly those containing polyunsaturated fatty acid (PUFA) chains. In contrast to manganese and zinc, arsenic and mercury were positively associated with PLPE and plasmenyl-phosphatidylcholine (PLPC). Conclusion: Certain metals were significantly associated with lipids that are responsible for the biophysical properties of the cell membrane and antioxidant defense in lipid peroxidation. This study highlighted lipid-metal associations and we anticipate that this study will open up new avenues for developing diagnostic tools.
Collapse
Affiliation(s)
- Christine Kim
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Pahriya Ashrap
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Zaira Y Rosario-Pabón
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, San Juan, Puerto Rico
| | - Carmen M Vélez-Vega
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, San Juan, Puerto Rico
| | - Akram N Alshawabkeh
- Department of Civil and Environmental Engineering, College of Engineering, Northeastern University, Boston, MA, United States
| | - José F Cordero
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, United States
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| |
Collapse
|
18
|
Association between Heavy Metal Exposure and Dyslipidemia among Korean Adults: From the Korean National Environmental Health Survey, 2015-2017. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063181. [PMID: 35328872 PMCID: PMC8951064 DOI: 10.3390/ijerph19063181] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/22/2022]
Abstract
Cardiovascular disease (CVD) is a leading cause of death in Korea. Dyslipidemia, characterized by the presence of abnormal lipid levels, has been suggested as an early diagnostic and preventable factor for CVD. Recent studies have shown that exposure to lead (Pb), cadmium (Cd), and mercury (Hg) affects lipid metabolism. This study aimed to verify the association between heavy metal concentrations and serum lipid profiles in the general population. A representative sample of 2591 Korean adults from the Korean National Environmental Health Survey (2015−2017) was analyzed. The associations between heavy metals [Blood Pb (BPb), blood Hg (BHg), urinary Hg (UHg), urinary Cd (UCd)] and serum lipid profiles [total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), non-low level of high-density lipoprotein cholesterol (Non-HDL-C)] were assessed using regression analysis. After adjusting for demographic and socioeconomic factors, the proportional changes in serum lipid levels were significantly associated with increases in BPb, BHg, and UHg levels (p for trend < 0.05). Overall, BPb, BHg, and Uhg levels positively correlated with dyslipidemia, whereas UCd levels did not show a significant association. Our results suggest that heavy metal exposure, at low levels, may contribute to an increased prevalence of dyslipidemia in Korean adults.
Collapse
|
19
|
Palomar A, González-Martín R, Pérez-Debén S, Medina-Laver Y, Quiñonero A, Domínguez F. Mercury impairs human primary endometrial stromal cell function. Biol Reprod 2022; 106:1022-1032. [PMID: 35084015 DOI: 10.1093/biolre/ioac016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/17/2021] [Accepted: 01/24/2022] [Indexed: 11/12/2022] Open
Abstract
Heavy metal exposures could compromise endometrial cells and decidualization. Although studies assessed mercury toxicity in cell lines, limited data are available on the concentration of mercury that induces damage in hEnSC, which could alter endometrial function. This research aims to study effects of mercury exposure on cell viability and functional features of hEnSC. Primary hEnSC were isolated from 23 endometrial biopsies obtained from healthy egg donors. After in vitro mercury exposure or control treatment of hEnSC, cell viability was evaluated via tetrazolium salt metabolism and oxidative stress was assessed by 2',7'-DCFDA assay. hEnSC were decidualized in vitro in the presence of mercury (0, 25, 50, 75, 250 and 350 nM). Decidualization was evaluated based on prolactin and IGFBP1 secretion and cytoskeletal rearrangement (F-actin staining). Cell proliferation and apoptosis were evaluated by Ki67 immunostaining and TUNEL assay. Mercury doses of 250 nM (p = 0.028) and 500 nM (p = 0.026) increased ROS production in hEnSC after 24 h. Cell viability significantly decreased after 48 h and 72 h (p = 0.032 and p = 0.016, respectively) of mercury exposure at 500 nM. After in vitro decidualization and mercury treatment, decidual hEnSC showed a dose-dependent decrease in prolactin and IGFBP1 secretion, particularly at 350 nM (p = 0.016). Cell proliferation was decreased in hEnSC treated with 350 nM mercury (p < 0.001); an increase in apoptosis followed a dose-dependent trend in non-decidual and decidual hEnSC. These findings support that mercury-induced damage could be due to an increase in ROS production.
Collapse
Affiliation(s)
- Andrea Palomar
- Instituto de Investigación Sanitaria La Fe. Valencia, Spain.,Fundación IVI. Valencia, Spain
| | | | | | | | | | - Francisco Domínguez
- Instituto de Investigación Sanitaria La Fe. Valencia, Spain.,Fundación IVI. Valencia, Spain
| |
Collapse
|