1
|
Barrett CF, Pace MC, Corbett CW, Kennedy AH, Thixton-Nolan HL, Freudenstein JV. Organellar phylogenomics at the epidendroid orchid base, with a focus on the mycoheterotrophic Wullschlaegelia. ANNALS OF BOTANY 2024; 134:1207-1228. [PMID: 38804968 PMCID: PMC11688536 DOI: 10.1093/aob/mcae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND AND AIMS Heterotrophic plants have long been a challenge for systematists, exemplified by the base of the orchid subfamily Epidendroideae, which contains numerous mycoheterotrophic species. METHODS Here we address the utility of organellar genomes in resolving relationships at the epidendroid base, specifically employing models of heterotachy, or lineage-specific rate variation over time. We further conduct comparative analyses of plastid genome evolution in heterotrophs and structural variation in matK. KEY RESULTS We present the first complete plastid genomes (plastomes) of Wullschlaegelia, the sole genus of the tribe Wullschlaegelieae, revealing a highly reduced genome of 37 kb, which retains a fraction of the genes present in related autotrophs. Plastid phylogenomic analyses recovered a strongly supported clade composed exclusively of mycoheterotrophic species with long branches. We further analysed mitochondrial gene sets, which recovered similar relationships to those in other studies using nuclear data, but the placement of Wullschlaegelia remains uncertain. We conducted comparative plastome analyses among Wullschlaegelia and other heterotrophic orchids, revealing a suite of correlated substitutional and structural changes relative to autotrophic species. Lastly, we investigated evolutionary and structural variation in matK, which is retained in Wullschlaegelia and a few other 'late stage' heterotrophs and found evidence for structural conservation despite rapid substitution rates in both Wullschlaegelia and the leafless Gastrodia. CONCLUSIONS Our analyses reveal the limits of what the plastid genome can tell us on orchid relationships in this part of the tree, even when applying parameter-rich heterotachy models. Our study underscores the need for increased taxon sampling across all three genomes at the epidendroid base, and illustrates the need for further research on addressing heterotachy in phylogenomic analyses.
Collapse
Affiliation(s)
- Craig F Barrett
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA
| | - Matthew C Pace
- New York Botanical Garden, Bronx, New York, NY 10458, USA
| | - Cameron W Corbett
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA
| | - Aaron H Kennedy
- Mycology and Nematology Genetic Diversity and Biology Laboratory, USDA-APHIS, Beltsville, MD 20705, USA
| | | | - John V Freudenstein
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH 43212, USA
| |
Collapse
|
2
|
DeTar RA, Chustecki JM, Martinez-Hottovy A, Ceriotti LF, Broz AK, Lou X, Sanchez-Puerta MV, Elowsky C, Christensen AC, Sloan DB. Photosynthetic demands on translational machinery drive retention of redundant tRNA metabolism in plant organelles. Proc Natl Acad Sci U S A 2024; 121:e2421485121. [PMID: 39693336 DOI: 10.1073/pnas.2421485121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024] Open
Abstract
Eukaryotic nuclear genomes often encode distinct sets of translation machinery for function in the cytosol vs. organelles (mitochondria and plastids). This raises questions about why multiple translation systems are maintained even though they are capable of comparable functions and whether they evolve differently depending on the compartment where they operate. These questions are particularly interesting in plants because translation machinery, including aminoacyl-transfer RNA (tRNA) synthetases (aaRS), is often dual-targeted to the plastids and mitochondria. These organelles have different functions, with much higher rates of translation in plastids to supply the abundant, rapid-turnover proteins required for photosynthesis. Previous studies have indicated that plant organellar aaRS evolve more slowly compared to mitochondrial aaRS in eukaryotes that lack plastids. Thus, we investigated the evolution of nuclear-encoded organellar and cytosolic aaRS and tRNA maturation enzymes across a broad sampling of angiosperms, including nonphotosynthetic (heterotrophic) plant species with reduced plastid gene expression, to test the hypothesis that translational demands associated with photosynthesis constrain the evolution of enzymes involved in organellar tRNA metabolism. Remarkably, heterotrophic plants exhibited wholesale loss of many organelle-targeted aaRS and other enzymes, even though translation still occurs in their mitochondria and plastids. These losses were often accompanied by apparent retargeting of cytosolic enzymes and tRNAs to the organelles, sometimes preserving aaRS-tRNA charging relationships but other times creating surprising mismatches between cytosolic aaRS and mitochondrial tRNA substrates. Our findings indicate that the presence of a photosynthetic plastid drives the retention of specialized systems for organellar tRNA metabolism.
Collapse
Affiliation(s)
- Rachael A DeTar
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - Joanna M Chustecki
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Ana Martinez-Hottovy
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Luis Federico Ceriotti
- Instituto de Biología Agrícola de Mendoza, Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Agrarias, Chacras de Coria, Mendoza M5528AHB, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Ciudad de Mendoza, Mendoza M5502JMA, Argentina
| | - Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - Xiaorui Lou
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - M Virginia Sanchez-Puerta
- Instituto de Biología Agrícola de Mendoza, Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Agrarias, Chacras de Coria, Mendoza M5528AHB, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Ciudad de Mendoza, Mendoza M5502JMA, Argentina
| | - Christian Elowsky
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Alan C Christensen
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
3
|
Ó Cinnéide E, Scaife C, Dillon ET, Wolfe KH. Evolution of the Genetic Code in the Ascoideales (CUG-Ser2) Yeast Clade: The Ancestral tRNA-Leu(CAG) Gene Is Retained in Most Saccharomycopsis Species but Is Nonessential and Not Used for Translation. Genome Biol Evol 2024; 16:evae166. [PMID: 39081261 PMCID: PMC11342251 DOI: 10.1093/gbe/evae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/24/2024] Open
Abstract
In the yeast genera Saccharomycopsis and Ascoidea, which comprise the taxonomic order Ascoideales, nuclear genes use a nonstandard genetic code in which CUG codons are translated as serine instead of leucine, due to a tRNA-Ser with the unusual anticodon CAG. However, some species in this clade also retain an ancestral tRNA-Leu gene with the same anticodon. One of these species, Ascoidea asiatica, has been shown to have a stochastic proteome in which proteins contain ∼50% Ser and 50% Leu at CUG codon sites, whereas previously examined Saccharomycopsis species translate CUG only as Ser. Here, we investigated the presence, conservation, and possible functionality of the tRNA-Leu(CAG) gene in the genus Saccharomycopsis. We sequenced the genomes of 23 strains that, together with previously available data, include almost every known species of this genus. We found that most Saccharomycopsis species have genes for both tRNA-Leu(CAG) and tRNA-Ser(CAG). However, tRNA-Leu(CAG) has been lost in Saccharomycopsis synnaedendra and Saccharomycopsis microspora, and its predicted cloverleaf structure is aberrant in all the other Saccharomycopsis species. We deleted the tRNA-Leu(CAG) gene of Saccharomycopsis capsularis and found that it is not essential. Proteomic analyses in vegetative and sporulating cultures of S. capsularis and Saccharomycopsis fermentans showed only translation of CUG as Ser. Despite its unusual structure, the tRNA-Leu(CAG) gene shows evidence of sequence conservation among Saccharomycopsis species, particularly in its acceptor stem and leucine identity elements, which suggests that it may have been retained in order to carry out an unknown nontranslational function.
Collapse
Affiliation(s)
- Eoin Ó Cinnéide
- UCD Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Caitriona Scaife
- Mass Spectrometry Core Facility, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Eugène T Dillon
- Mass Spectrometry Core Facility, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Kenneth H Wolfe
- UCD Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Howe CJ, Barbrook AC. Dinoflagellate chloroplasts as a model for extreme genome reduction and fragmentation in organelles - The COCOA principle for gene retention. Protist 2024; 175:126048. [PMID: 38981407 DOI: 10.1016/j.protis.2024.126048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024]
Abstract
The genomes of peridinin-containing dinoflagellate chloroplasts have a very unusual organisation. These genomes are highly fragmented and greatly reduced, with most of the usual complement of chloroplast genes relocated to the nucleus. Dinoflagellate chloroplasts highlight evolutionary changes that are found to varying extents in a number of other organelle genomes. These include the chloroplast genome of the green alga Boodlea and other Cladophorales, and the mitochondrial genomes of blood-sucking and chewing lice, the parasitic plant Rhopalocnemis phalloides, the red alga Rhodosorus marinus and other members of the Stylonematophyceae, diplonemid flagellates, and some Cnidaria. Consideration of the coding content of the remnant chloroplast genomes indicates that organelles may preferentially retain genes for proteins important in initiating assembly of complexes, and the same is largely true for mitochondria. We propose a new principle, of CO-location for COntrol of Assembly (COCOA), indicating the importance of retaining these genes in the organelle. This adds to, but does not invalidate, the existing hypotheses of the multisubunit completion principle, CO-location for Redox Regulation (CORR) and Control by Epistasy of Synthesis (CES).
Collapse
Affiliation(s)
- Christopher J Howe
- Department of Biochemistry, University of Cambridge, Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK; Stellenbosch Institute for Advanced Study, (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch 7600, South Africa.
| | - Adrian C Barbrook
- Department of Biochemistry, University of Cambridge, Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK.
| |
Collapse
|
5
|
Giannakis K, Richards L, Johnston IG. Ecological Predictors of Organelle Genome Evolution: Phylogenetic Correlations with Taxonomically Broad, Sparse, Unsystematized Data. Syst Biol 2024; 73:419-433. [PMID: 38459872 PMCID: PMC11282362 DOI: 10.1093/sysbio/syae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
Comparative analysis of variables across phylogenetically linked observations can reveal mechanisms and insights in evolutionary biology. As the taxonomic breadth of the sample of interest increases, challenges of data sparsity, poor phylogenetic resolution, and complicated evolutionary dynamics emerge. Here, we investigate a cross-eukaryotic question where all these problems exist: which organismal ecology features are correlated with gene retention in mitochondrial and chloroplast DNA (organelle DNA or oDNA). Through a wide palette of synthetic control studies, we first characterize the specificity and sensitivity of a collection of parametric and non-parametric phylogenetic comparative approaches to identify relationships in the face of such sparse and awkward datasets. This analysis is not directly focused on oDNA, and so provides generalizable insights into comparative approaches with challenging data. We then combine and curate ecological data coupled to oDNA genome information across eukaryotes, including a new semi-automated approach for gathering data on organismal traits from less systematized open-access resources including encyclopedia articles on species and taxa. The curation process also involved resolving several issues with existing datasets, including enforcing the clade-specificity of several ecological features and fixing incorrect annotations. Combining this unique dataset with our benchmarked comparative approaches, we confirm support for several known links between organismal ecology and organelle gene retention, identify several previously unidentified relationships constituting possible ecological contributors to oDNA genome evolution, and provide support for a recently hypothesized link between environmental demand and oDNA retention. We, with caution, discuss the implications of these findings for organelle evolution and of this pipeline for broad comparative analyses in other fields.
Collapse
Affiliation(s)
| | - Luke Richards
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Iain G Johnston
- Department of Mathematics, University of Bergen, Bergen 5007, Norway
- Computational Biology Unit, University of Bergen, Bergen 5006, Norway
| |
Collapse
|
6
|
Giannakis K, Richards L, Dauda KA, Johnston IG. Connecting Species-Specific Extents of Genome Reduction in Mitochondria and Plastids. Mol Biol Evol 2024; 41:msae097. [PMID: 38758976 PMCID: PMC11144018 DOI: 10.1093/molbev/msae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024] Open
Abstract
Mitochondria and plastids have both dramatically reduced their genomes since the endosymbiotic events that created them. The similarities and differences in the evolution of the two organelle genome types have been the target of discussion and investigation for decades. Ongoing work has suggested that similar mechanisms may modulate the reductive evolution of the two organelles in a given species, but quantitative data and statistical analyses exploring this picture remain limited outside of some specific cases like parasitism. Here, we use cross-eukaryote organelle genome data to explore evidence for coevolution of mitochondrial and plastid genome reduction. Controlling for differences between clades and pseudoreplication due to relatedness, we find that extents of mtDNA and ptDNA gene retention are related to each other across taxa, in a generally positive correlation that appears to differ quantitatively across eukaryotes, for example, between algal and nonalgal species. We find limited evidence for coevolution of specific mtDNA and ptDNA gene pairs, suggesting that the similarities between the two organelle types may be due mainly to independent responses to consistent evolutionary drivers.
Collapse
Affiliation(s)
| | - Luke Richards
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Kazeem A Dauda
- Department of Mathematics, University of Bergen, Bergen, Norway
| | - Iain G Johnston
- Department of Mathematics, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| |
Collapse
|
7
|
Sanchez-Puerta MV, Ceriotti LF, Gatica-Soria LM, Roulet ME, Garcia LE, Sato HA. Invited Review Beyond parasitic convergence: unravelling the evolution of the organellar genomes in holoparasites. ANNALS OF BOTANY 2023; 132:909-928. [PMID: 37503831 PMCID: PMC10808021 DOI: 10.1093/aob/mcad108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND The molecular evolution of organellar genomes in angiosperms has been studied extensively, with some lineages, such as parasitic ones, displaying unique characteristics. Parasitism has emerged 12 times independently in angiosperm evolution. Holoparasitism is the most severe form of parasitism, and is found in ~10 % of parasitic angiosperms. Although a few holoparasitic species have been examined at the molecular level, most reports involve plastomes instead of mitogenomes. Parasitic plants establish vascular connections with their hosts through haustoria to obtain water and nutrients, which facilitates the exchange of genetic information, making them more susceptible to horizontal gene transfer (HGT). HGT is more prevalent in the mitochondria than in the chloroplast or nuclear compartments. SCOPE This review summarizes current knowledge on the plastid and mitochondrial genomes of holoparasitic angiosperms, compares the genomic features across the different lineages, and discusses their convergent evolutionary trajectories and distinctive features. We focused on Balanophoraceae (Santalales), which exhibits extraordinary traits in both their organelles. CONCLUSIONS Apart from morphological similarities, plastid genomes of holoparasitic plants also display other convergent features, such as rampant gene loss, biased nucleotide composition and accelerated evolutionary rates. In addition, the plastomes of Balanophoraceae have extremely low GC and gene content, and two unexpected changes in the genetic code. Limited data on the mitochondrial genomes of holoparasitic plants preclude thorough comparisons. Nonetheless, no obvious genomic features distinguish them from the mitochondria of free-living angiosperms, except for a higher incidence of HGT. HGT appears to be predominant in holoparasitic angiosperms with a long-lasting endophytic stage. Among the Balanophoraceae, mitochondrial genomes exhibit disparate evolutionary paths with notable levels of heteroplasmy in Rhopalocnemis and unprecedented levels of HGT in Lophophytum. Despite their differences, these Balanophoraceae share a multichromosomal mitogenome, a feature also found in a few free-living angiosperms.
Collapse
Affiliation(s)
- M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA, Mendoza, Argentina
| | - Luis F Ceriotti
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA, Mendoza, Argentina
| | - Leonardo M Gatica-Soria
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA, Mendoza, Argentina
| | - M Emilia Roulet
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
| | - Laura E Garcia
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA, Mendoza, Argentina
| | - Hector A Sato
- Facultad de Ciencias Agrarias, Cátedra de Botánica General–Herbario JUA, Alberdi 47, Universidad Nacional de Jujuy, 4600 Jujuy, Argentina
| |
Collapse
|
8
|
Howe CJ, Nisbet RER, Barbrook AC. Evolution: The plasticity of plastids. Curr Biol 2023; 33:R1058-R1060. [PMID: 37875081 DOI: 10.1016/j.cub.2023.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Many chloroplast-bearing plants and algae lost their photosynthetic activity during evolution but retained their chloroplasts for other functions. A group of dinoflagellate algae apparently lost one half of their photosynthetic machinery but retained the other, providing a novel mechanism for light perception.
Collapse
Affiliation(s)
- Christopher J Howe
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK.
| | - R Ellen R Nisbet
- School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK.
| | - Adrian C Barbrook
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK.
| |
Collapse
|
9
|
Kim W, Lautenschläger T, Bolin JF, Rees M, Nzuzi A, Zhou R, Wanke S, Jost M. Extreme plastomes in holoparasitic Balanophoraceae are not the norm. BMC Genomics 2023; 24:330. [PMID: 37322447 DOI: 10.1186/s12864-023-09422-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Balanophoraceae plastomes are known for their highly condensed and re-arranged nature alongside the most extreme nucleotide compositional bias known to date, culminating in two independent reconfigurations of their genetic code. Currently, a large portion of the Balanophoraceae diversity remains unexplored, hindering, among others, evolutionary pattern recognition. Here, we explored newly sequenced plastomes of Sarcophyte sanguinea and Thonningia sanguinea. The reconstructed plastomes were analyzed using various methods of comparative genomics based on a representative taxon sampling. RESULTS Sarcophyte, recovered sister to the other sampled Balanophoraceae s. str., has plastomes up to 50% larger than those currently published. Its gene set contains five genes lost in any other species, including matK. Five cis-spliced introns are maintained. In contrast, the Thonningia plastome is similarly reduced to published Balanophoraceae and retains only a single cis-spliced intron. Its protein-coding genes show a more biased codon usage compared to Sarcophyte, with an accumulation of in-frame TAG stop codons. Structural plastome comparison revealed multiple, previously unknown, structural rearrangements within Balanophoraceae. CONCLUSIONS For the "minimal plastomes" of Thonningia, we propose a genetic code change identical to sister genus Balanophora. Sarcophyte however differs drastically from our current understanding on Balanophoraceae plastomes. With a less-extreme nucleotide composition, there is no evidence for an altered genetic code. Using comparative genomics, we identified a hotspot for plastome reconfiguration in Balanophoraceae. Based on previously published and newly identified structural reconfigurations, we propose an updated model of evolutionary plastome trajectories for Balanophoraceae, illustrating a much greater plastome diversity than previously known.
Collapse
Affiliation(s)
- Woorin Kim
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| | - Thea Lautenschläger
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
- Botanischer Garten Hamburg, Universität Hamburg, Hamburg, Germany
| | - Jay F Bolin
- Department of Biology, Catawba College, Salisbury, USA
| | - Mathew Rees
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
- Royal Botanic Garden, Edinburgh, UK
| | - Albertina Nzuzi
- Instituto Nacional da Biodiversidade e Conservação, Luanda, Angola
| | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-Sen University, Guangzhou, China
| | - Stefan Wanke
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Matthias Jost
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
10
|
Garrett N, Viruel J, Klimpert N, Soto Gomez M, Lam VKY, Merckx VSFT, Graham SW. Plastid phylogenomics and molecular evolution of Thismiaceae (Dioscoreales). AMERICAN JOURNAL OF BOTANY 2023; 110:e16141. [PMID: 36779918 DOI: 10.1002/ajb2.16141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 05/11/2023]
Abstract
PREMISE Species in Thismiaceae can no longer photosynthesize and instead obtain carbon from soil fungi. Here we infer Thismiaceae phylogeny using plastid genome data and characterize the molecular evolution of this genome. METHODS We assembled five Thismiaceae plastid genomes from genome skimming data, adding to previously published data for phylogenomic inference. We investigated plastid-genome structural changes, considering locally colinear blocks (LCBs). We also characterized possible shifts in selection pressure in retained genes by considering changes in the ratio of nonsynonymous to synonymous changes (ω). RESULTS Thismiaceae experienced two major pulses of gene loss around the early diversification of the family, with subsequent scattered gene losses across descendent lineages. In addition to massive size reduction, Thismiaceae plastid genomes experienced occasional inversions, and there were likely two independent losses of the plastid inverted repeat (IR) region. Retained plastid genes remain under generally strong purifying selection (ω << 1), with significant and sporadic weakening or strengthening in several instances. The bifunctional trnE-UUC gene of Thismia huangii may retain a secondary role in heme biosynthesis, despite a probable loss of functionality in protein translation. Several cis-spliced group IIA introns have been retained, despite the loss of the plastid intron maturase, matK. CONCLUSIONS We infer that most gene losses in Thismiaceae occurred early and rapidly, following the initial loss of photosynthesis in its stem lineage. As a species-rich, fully mycoheterotrophic lineage, Thismiaceae provide a model system for uncovering the unique and divergent ways in which plastid genomes evolve in heterotrophic plants.
Collapse
Affiliation(s)
- Natalie Garrett
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Juan Viruel
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK
| | - Nathaniel Klimpert
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | | | - Vivienne K Y Lam
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Vincent S F T Merckx
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, 1098, XH, Amsterdam, The Netherlands
| | - Sean W Graham
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Mathur V, Salomaki ED, Wakeman KC, Na I, Kwong WK, Kolisko M, Keeling PJ. Reconstruction of Plastid Proteomes of Apicomplexans and Close Relatives Reveals the Major Evolutionary Outcomes of Cryptic Plastids. Mol Biol Evol 2023; 40:6969433. [PMID: 36610734 PMCID: PMC9847631 DOI: 10.1093/molbev/msad002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/18/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
Apicomplexans and related lineages comprise many obligate symbionts of animals; some of which cause notorious diseases such as malaria. They evolved from photosynthetic ancestors and transitioned into a symbiotic lifestyle several times, giving rise to species with diverse non-photosynthetic plastids. Here, we sought to reconstruct the evolution of the cryptic plastids in the apicomplexans, chrompodellids, and squirmids (ACS clade) by generating five new single-cell transcriptomes from understudied gregarine lineages, constructing a robust phylogenomic tree incorporating all ACS clade sequencing datasets available, and using these to examine in detail, the evolutionary distribution of all 162 proteins recently shown to be in the apicoplast by spatial proteomics in Toxoplasma. This expanded homology-based reconstruction of plastid proteins found in the ACS clade confirms earlier work showing convergence in the overall metabolic pathways retained once photosynthesis is lost, but also reveals differences in the degrees of plastid reduction in specific lineages. We show that the loss of the plastid genome is common and unexpectedly find many lineage- and species-specific plastid proteins, suggesting the presence of evolutionary innovations and neofunctionalizations that may confer new functional and metabolic capabilities that are yet to be discovered in these enigmatic organelles.
Collapse
Affiliation(s)
| | - Eric D Salomaki
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Kevin C Wakeman
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| | - Ina Na
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver V6T 1Z4, BC, Canada
| | - Waldan K Kwong
- Present address: Instituto Gulbenkian de Ciência (IGC) Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Martin Kolisko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver V6T 1Z4, BC, Canada
| |
Collapse
|
12
|
Klimpert NJ, Mayer JLS, Sarzi DS, Prosdocimi F, Pinheiro F, Graham SW. Phylogenomics and plastome evolution of a Brazilian mycoheterotrophic orchid, Pogoniopsis schenckii. AMERICAN JOURNAL OF BOTANY 2022; 109:2030-2050. [PMID: 36254561 DOI: 10.1002/ajb2.16084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
PREMISE Pogoniopsis likely represents an independent photosynthesis loss in orchids. We use phylogenomic data to better identify the phylogenetic placement of this fully mycoheterotrophic taxon, and investigate its molecular evolution. METHODS We performed likelihood analysis of plastid and mitochondrial phylogenomic data to localize the position of Pogoniopsis schenckii in orchid phylogeny, and investigated the evolution of its plastid genome. RESULTS All analyses place Pogoniopsis in subfamily Epidendroideae, with strongest support from mitochondrial data, which also place it near tribe Sobralieae with moderately strong support. Extreme rate elevation in Pogoniopsis plastid genes broadly depresses branch support; in contrast, mitochondrial genes are only mildly rate elevated and display very modest and localized reductions in bootstrap support. Despite considerable genome reduction, including loss of photosynthesis genes and multiple translation apparatus genes, gene order in Pogoniopsis plastomes is identical to related autotrophs, apart from moderately shifted inverted repeat (IR) boundaries. All cis-spliced introns have been lost in retained genes. Two plastid genes (accD, rpl2) show significant strengthening of purifying selection. A retained plastid tRNA gene (trnE-UUC) of Pogoniopsis lacks an anticodon; we predict that it no longer functions in translation but retains a secondary role in heme biosynthesis. CONCLUSIONS Slowly evolving mitochondrial genes clarify the placement of Pogoniopsis in orchid phylogeny, a strong contrast with analysis of rate-elevated plastome data. We documented the effects of the novel loss of photosynthesis: for example, despite massive gene loss, its plastome is fully colinear with other orchids, and it displays only moderate shifts in selective pressure in retained genes.
Collapse
Affiliation(s)
- Nathaniel J Klimpert
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Juliana Lischka Sampaio Mayer
- Departamento de Biologia Vegetal, Universidade Estadual de Campinas, 255 Rua Monteiro Lobato, Campinas, São Paulo, 13.083-862, Brazil
| | - Deise Schroder Sarzi
- Laboratório de Genômica e Biodiversidade, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, UFRJ/CCS/Bloco B33, Rio de Janeiro, RJ, 21.941-902, Brazil
| | - Francisco Prosdocimi
- Laboratório de Genômica e Biodiversidade, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, UFRJ/CCS/Bloco B33, Rio de Janeiro, RJ, 21.941-902, Brazil
| | - Fábio Pinheiro
- Departamento de Biologia Vegetal, Universidade Estadual de Campinas, 255 Rua Monteiro Lobato, Campinas, São Paulo, 13.083-862, Brazil
| | - Sean W Graham
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
13
|
Raval PK, Garg SG, Gould SB. Endosymbiotic selective pressure at the origin of eukaryotic cell biology. eLife 2022; 11:e81033. [PMID: 36355038 PMCID: PMC9648965 DOI: 10.7554/elife.81033] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
The dichotomy that separates prokaryotic from eukaryotic cells runs deep. The transition from pro- to eukaryote evolution is poorly understood due to a lack of reliable intermediate forms and definitions regarding the nature of the first host that could no longer be considered a prokaryote, the first eukaryotic common ancestor, FECA. The last eukaryotic common ancestor, LECA, was a complex cell that united all traits characterising eukaryotic biology including a mitochondrion. The role of the endosymbiotic organelle in this radical transition towards complex life forms is, however, sometimes questioned. In particular the discovery of the asgard archaea has stimulated discussions regarding the pre-endosymbiotic complexity of FECA. Here we review differences and similarities among models that view eukaryotic traits as isolated coincidental events in asgard archaeal evolution or, on the contrary, as a result of and in response to endosymbiosis. Inspecting eukaryotic traits from the perspective of the endosymbiont uncovers that eukaryotic cell biology can be explained as having evolved as a solution to housing a semi-autonomous organelle and why the addition of another endosymbiont, the plastid, added no extra compartments. Mitochondria provided the selective pressures for the origin (and continued maintenance) of eukaryotic cell complexity. Moreover, they also provided the energetic benefit throughout eukaryogenesis for evolving thousands of gene families unique to eukaryotes. Hence, a synthesis of the current data lets us conclude that traits such as the Golgi apparatus, the nucleus, autophagosomes, and meiosis and sex evolved as a response to the selective pressures an endosymbiont imposes.
Collapse
Affiliation(s)
- Parth K Raval
- Institute for Molecular Evolution, Heinrich-Heine-University DüsseldorfDusseldorfGermany
| | - Sriram G Garg
- Evolutionary Biochemistry Group, Max-Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University DüsseldorfDusseldorfGermany
| |
Collapse
|
14
|
Zhang M, Zhang XH, Ge CL, Chen BH. Danxiaorchismangdangshanensis (Orchidaceae, Epidendroideae), a new species from central Fujian Province based on morphological and genomic data. PHYTOKEYS 2022; 212:37-55. [PMID: 36761311 PMCID: PMC9836500 DOI: 10.3897/phytokeys.212.91534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/30/2022] [Indexed: 06/18/2023]
Abstract
Danxiaorchismangdangshanensis, a new mycoheterotrophic species from Fujian Province, China, is described and illustrated. The new species is morphologically similar to D.singchiana, but its callus of labellum is a less distinctive Y-shape with three auricles on the apex, four pollinia that are narrowly elliptic in shape and equal in size, and it lacks fine roots. The plastome of D.mangdangshanensis is highly degraded. Phylogenetic analyses distinguished D.mangdangshanensis from its congeners, D.singchiana and D.yangii, with strong support based on nrITS + matK and plastomes, respectively.
Collapse
Affiliation(s)
- Miao Zhang
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, ChinaFujian Normal UniversityFuzhouChina
| | - Xiao-Hui Zhang
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, ChinaFujian Normal UniversityFuzhouChina
| | - Chang-Li Ge
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, ChinaFujian Normal UniversityFuzhouChina
| | - Bing-Hua Chen
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, ChinaFujian Normal UniversityFuzhouChina
| |
Collapse
|
15
|
Kořený L, Oborník M, Horáková E, Waller RF, Lukeš J. The convoluted history of haem biosynthesis. Biol Rev Camb Philos Soc 2021; 97:141-162. [PMID: 34472688 DOI: 10.1111/brv.12794] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 01/14/2023]
Abstract
The capacity of haem to transfer electrons, bind diatomic gases, and catalyse various biochemical reactions makes it one of the essential biomolecules on Earth and one that was likely used by the earliest forms of cellular life. Since the description of haem biosynthesis, our understanding of this multi-step pathway has been almost exclusively derived from a handful of model organisms from narrow taxonomic contexts. Recent advances in genome sequencing and functional studies of diverse and previously neglected groups have led to discoveries of alternative routes of haem biosynthesis that deviate from the 'classical' pathway. In this review, we take an evolutionarily broad approach to illuminate the remarkable diversity and adaptability of haem synthesis, from prokaryotes to eukaryotes, showing the range of strategies that organisms employ to obtain and utilise haem. In particular, the complex evolutionary histories of eukaryotes that involve multiple endosymbioses and horizontal gene transfers are reflected in the mosaic origin of numerous metabolic pathways with haem biosynthesis being a striking case. We show how different evolutionary trajectories and distinct life strategies resulted in pronounced tensions and differences in the spatial organisation of the haem biosynthesis pathway, in some cases leading to a complete loss of a haem-synthesis capacity and, rarely, even loss of a requirement for haem altogether.
Collapse
Affiliation(s)
- Luděk Kořený
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, U.K
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice (Budweis), 370 05, Czech Republic.,Faculty of Sciences, University of South Bohemia, Branišovská, České Budějovice (Budweis), 31, Czech Republic
| | - Eva Horáková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice (Budweis), 370 05, Czech Republic
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, U.K
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice (Budweis), 370 05, Czech Republic.,Faculty of Sciences, University of South Bohemia, Branišovská, České Budějovice (Budweis), 31, Czech Republic
| |
Collapse
|
16
|
Cordoba J, Perez E, Van Vlierberghe M, Bertrand AR, Lupo V, Cardol P, Baurain D. De Novo Transcriptome Meta-Assembly of the Mixotrophic Freshwater Microalga Euglena gracilis. Genes (Basel) 2021; 12:842. [PMID: 34072576 PMCID: PMC8227486 DOI: 10.3390/genes12060842] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 01/01/2023] Open
Abstract
Euglena gracilis is a well-known photosynthetic microeukaryote considered as the product of a secondary endosymbiosis between a green alga and a phagotrophic unicellular belonging to the same eukaryotic phylum as the parasitic trypanosomatids. As its nuclear genome has proven difficult to sequence, reliable transcriptomes are important for functional studies. In this work, we assembled a new consensus transcriptome by combining sequencing reads from five independent studies. Based on a detailed comparison with two previously released transcriptomes, our consensus transcriptome appears to be the most complete so far. Remapping the reads on it allowed us to compare the expression of the transcripts across multiple culture conditions at once and to infer a functionally annotated network of co-expressed genes. Although the emergence of meaningful gene clusters indicates that some biological signal lies in gene expression levels, our analyses confirm that gene regulation in euglenozoans is not primarily controlled at the transcriptional level. Regarding the origin of E. gracilis, we observe a heavily mixed gene ancestry, as previously reported, and rule out sequence contamination as a possible explanation for these observations. Instead, they indicate that this complex alga has evolved through a convoluted process involving much more than two partners.
Collapse
Affiliation(s)
- Javier Cordoba
- InBioS—PhytoSYSTEMS, Laboratoire de Génétique et Physiologie des Microalgues, ULiège, B-4000 Liège, Belgium; (J.C.); (E.P.); (P.C.)
| | - Emilie Perez
- InBioS—PhytoSYSTEMS, Laboratoire de Génétique et Physiologie des Microalgues, ULiège, B-4000 Liège, Belgium; (J.C.); (E.P.); (P.C.)
- InBioS—PhytoSYSTEMS, Unit of Eukaryotic Phylogenomics, ULiège, B-4000 Liège, Belgium; (M.V.V.); (A.R.B.); (V.L.)
| | - Mick Van Vlierberghe
- InBioS—PhytoSYSTEMS, Unit of Eukaryotic Phylogenomics, ULiège, B-4000 Liège, Belgium; (M.V.V.); (A.R.B.); (V.L.)
| | - Amandine R. Bertrand
- InBioS—PhytoSYSTEMS, Unit of Eukaryotic Phylogenomics, ULiège, B-4000 Liège, Belgium; (M.V.V.); (A.R.B.); (V.L.)
| | - Valérian Lupo
- InBioS—PhytoSYSTEMS, Unit of Eukaryotic Phylogenomics, ULiège, B-4000 Liège, Belgium; (M.V.V.); (A.R.B.); (V.L.)
| | - Pierre Cardol
- InBioS—PhytoSYSTEMS, Laboratoire de Génétique et Physiologie des Microalgues, ULiège, B-4000 Liège, Belgium; (J.C.); (E.P.); (P.C.)
| | - Denis Baurain
- InBioS—PhytoSYSTEMS, Unit of Eukaryotic Phylogenomics, ULiège, B-4000 Liège, Belgium; (M.V.V.); (A.R.B.); (V.L.)
| |
Collapse
|
17
|
Ceriotti LF, Roulet ME, Sanchez-Puerta MV. Plastomes in the holoparasitic family Balanophoraceae: Extremely high AT content, severe gene content reduction, and two independent genetic code changes. Mol Phylogenet Evol 2021; 162:107208. [PMID: 34029719 DOI: 10.1016/j.ympev.2021.107208] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 12/29/2022]
Abstract
The transition to a heterotrophic lifestyle in angiosperms is characterized by convergent evolutionary changes. Plastid genome remodeling includes dramatic functional and physical reductions with the highest degrees observed in fully heterotrophic plants. Genes related to photosynthesis are generally absent or pseudogenized, while a few genes related to other metabolic processes that take place within the plastid are almost invariably maintained. The family Balanophoraceae consists of root holoparasites that present reduced plastid genomes with an extraordinarily elevated AT content and the single genetic code change ever documented in land plant plastomes (the stop codon TAG now codes for tryptophan). Here, we studied the plastomes of Lophophytum leandri and Ombrophytum subterraneum (Balanophoraceae) that showed the remarkable absence of the gene trnE, a highly biased nucleotide composition, and an independent genetic code change (the standard stop codon TGA codes for tryptophan). This is the second genetic code change identified in land plant plastomes. Analysis of the transcriptome of Lophophytum indicated that the entire C5 pathway typical of plants is conserved despite the lack of trnE in its plastome. A hypothetical model of plastome evolution in the Balanophoraceae is presented.
Collapse
Affiliation(s)
- Luis Federico Ceriotti
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, M5528AHB Chacras de Coria, Argentina; Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA Mendoza, Argentina
| | - M Emilia Roulet
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, M5528AHB Chacras de Coria, Argentina
| | - M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, M5528AHB Chacras de Coria, Argentina; Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA Mendoza, Argentina.
| |
Collapse
|
18
|
Yudina SV, Schelkunov MI, Nauheimer L, Crayn D, Chantanaorrapint S, Hroneš M, Sochor M, Dančák M, Mar SS, Luu HT, Nuraliev MS, Logacheva MD. Comparative Analysis of Plastid Genomes in the Non-photosynthetic Genus Thismia Reveals Ongoing Gene Set Reduction. FRONTIERS IN PLANT SCIENCE 2021; 12:602598. [PMID: 33796122 PMCID: PMC8009136 DOI: 10.3389/fpls.2021.602598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/22/2021] [Indexed: 05/14/2023]
Abstract
Heterotrophic plants provide intriguing examples of reductive evolution. This is especially evident in the reduction of their plastid genomes, which can potentially proceed toward complete genome loss. Several milestones at the beginning of this path of degradation have been described; however, little is known about the latest stages of plastome reduction. Here we analyze a diversity of plastid genomes in a set of closely related non-photosynthetic plants. We demonstrate how a gradual loss of genes shapes the miniaturized plastomes of these plants. The subject of our study, the genus Thismia, represents the mycoheterotrophic monocot family Thismiaceae, a group that may have experienced a very ancient (60-80 mya) transition to heterotrophy. In all 18 species examined, the plastome is reduced to 14-18 kb and is highly AT-biased. The most complete observed gene set includes accD, seven ribosomal protein genes, three rRNA, and two tRNA genes. Different clades of Thismia have undergone further gene loss (complete absence or pseudogenization) compared to this set: in particular, we report two independent losses of rps2 and rps18.
Collapse
Affiliation(s)
- Sophia V. Yudina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Institute for Information Transmission Problems, Moscow, Russia
- Joint Russian-Vietnamese Tropical Scientific and Technological Center, Hanoi, Vietnam
| | - Mikhail I. Schelkunov
- Institute for Information Transmission Problems, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Lars Nauheimer
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
| | - Darren Crayn
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
| | - Sahut Chantanaorrapint
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Michal Hroneš
- Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Michal Sochor
- Centre of the Region Haná for Biotechnological and Agricultural Research, Crop Research Institute, Olomouc, Czechia
| | - Martin Dančák
- Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | | | - Hong Truong Luu
- Southern Institute of Ecology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Maxim S. Nuraliev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Joint Russian-Vietnamese Tropical Scientific and Technological Center, Hanoi, Vietnam
| | - Maria D. Logacheva
- Institute for Information Transmission Problems, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
19
|
Yu Y, Li HT, Wu YH, Li DZ. Correlation Analysis Reveals an Important Role of GC Content in Accumulation of Deletion Mutations in the Coding Region of Angiosperm Plastomes. J Mol Evol 2021; 89:73-80. [PMID: 33433638 DOI: 10.1007/s00239-020-09987-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
Variation in GC content is assumed to correlate with various processes, including mutation biases, recombination, and environmental parameters. To date, most genomic studies exploring the evolution of GC content have focused on nuclear genomes, but relatively few have concentrated on organelle genomes. We explored the mechanisms maintaining the GC content in angiosperm plastomes, with a particular focus on the hypothesis of phylogenetic dependence and the correlation with deletion mutations. We measured three genetic traits, namely, GC content, A/T tracts, and G/C tracts, in the coding region of plastid genomes for 1382 angiosperm species representing 350 families and 64 orders, and tested the phylogenetic signal. Then, we performed correlation analyses and revealed the variation in evolutionary rate of selected traits using RRphylo. The plastid GC content in the coding region varied from 28.10% to 43.20% across angiosperms, with a few non-photosynthetic species showing highly reduced values, highlighting the significance of functional constraints. We found strong phylogenetic signal in A/T tracts, but weak ones in GC content and G/C tracts, indicating adaptive potential. GC content was positively and negatively correlated with G/C and A/T tracts, respectively, suggesting a trade-off between these two deletion events. GC content evolved at various rates across the phylogeny, with significant increases in monocots and Lamiids, and a decrease in Fabids, implying the effects of some other factors. We hypothesize that variation in plastid GC content might be a mixed strategy of species to optimize fitness in fluctuating climates, partly through influencing the trade-off between AT → GC and GC → AT mutations.
Collapse
Affiliation(s)
- Ying Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Hong-Tao Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yu-Huan Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
20
|
Li Z, Ma X, Wen Y, Chen S, Jiang Y, Jin X. Plastome of the mycoheterotrophic eudicot Exacum paucisquama (Gentianaceae) exhibits extensive gene loss and a highly expanded inverted repeat region. PeerJ 2020; 8:e9157. [PMID: 32551191 PMCID: PMC7292021 DOI: 10.7717/peerj.9157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/18/2020] [Indexed: 11/20/2022] Open
Abstract
Mycoheterotrophic plants are highly specialized species able to acquire organic carbon from symbiotic fungi, with relaxed dependence on photosynthesis for carbon fixation. The relaxation of the functional constraint of photosynthesis and thereby the relaxed selective pressure on functional photosynthetic genes usually lead to substantial gene loss and a highly degraded plastid genome in heterotrophs. In this study, we sequenced and analyzed the plastome of the eudicot Exacum paucisquama, providing the first plastid genome of a mycoheterotroph in the family Gentianaceae to date. The E. paucisquama plastome was 44,028 bp in length, which is much smaller than the plastomes of autotrophic eudicots. Although the E. paucisquama plastome had a quadripartite structure, a distinct boundary shift was observed in comparison with the plastomes of other eudicots. We detected extensive gene loss and only 21 putative functional genes (15 protein-coding genes, four rRNA genes and two tRNA genes). Our results provide valuable information for comparative evolutionary analyses of plastomes of heterotrophic species belonging to different phylogenetic groups.
Collapse
Affiliation(s)
- Zhanghai Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiao Ma
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yi Wen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sisi Chen
- Nanchang University, Nanchang, China
| | - Yan Jiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohua Jin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences (CAS-SEABRI), Xishuangbanna, China
| |
Collapse
|
21
|
Severe Plastid Genome Size Reduction in a Mycoheterotrophic Orchid, Danxiaorchis singchiana, Reveals Heavy Gene Loss and Gene Relocations. PLANTS 2020; 9:plants9040521. [PMID: 32316476 PMCID: PMC7238169 DOI: 10.3390/plants9040521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 11/17/2022]
Abstract
Danxiaorchis singchiana (Orchidaceae) is a leafless mycoheterotrophic orchid in the subfamily Epidendroideae. We sequenced the complete plastome of D. singchiana. The plastome has a reduced size of 87,931 bp, which includes a pair of inverted repeat (IR) regions of 13,762 bp each that are separated by a large single copy (LSC) region of 42,575 bp and a small single copy (SSC) region of 17,831 bp. When compared to its sister taxa, Cremastra appendiculata and Corallorhiza striata var. involuta, D. singchiana showed an inverted gene block in the LSC and SSC regions. A total of 61 genes were predicted, including 21 tRNA, 4 rRNA, and 36 protein-coding genes. While most of the housekeeping genes were still intact and seem to be protein-coding, only four photosynthesis-related genes appeared presumably intact. The majority of the presumably intact protein-coding genes seem to have undergone purifying selection (dN/dS < 1), and only the psaC gene was positively selected (dN/dS > 1) when compared to that in Cr. appendiculata. Phylogenetic analysis of 26 complete plastome sequences from 24 species of the tribe Epidendreae had revealed that D. singchiana diverged after Cr. appendiculata and is sister to the genus Corallorhiza with strong bootstrap support (100%).
Collapse
|
22
|
Comprehensive genomic analyses with 115 plastomes from algae to seed plants: structure, gene contents, GC contents, and introns. Genes Genomics 2020; 42:553-570. [PMID: 32200544 DOI: 10.1007/s13258-020-00923-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Chloroplasts are a common character in plants. The chloroplasts in each plant lineage have shaped their own genomes, plastomes, by structural changes and transferring many genes to nuclear genomes during plant evolution. Some plastid genes have introns that are mostly group II introns. OBJECTIVE This study aimed to get genomic and evolutionary insights on the plastomes from green algae to flowering plants. METHODS Plastomes of 115 species from green algae, bryophytes, pteridophytes (spore bearing vascular plants), gymnosperms, and angiosperms were mined from NCBI organelle genome database. Plastome structure, gene contents and GC contents were analyzed by the in-house developed Phyton code. Intronic features including presence/absence, length, intron phases were analyzed by manually in the annotated information in NCBI. RESULTS The canonical quadripartite structures were retained in most plastomes except of a few plastomes that had lost an invert repeat (IR). Expansion or reduction or deletion of IRs resulted in the length variation of the plastomes. The number of protein coding genes ranged from 40 to 92 with an average 79.43 ± 5.84 per plastome and gene losses were apparent in specific lineages. The number of trn genes ranged from 13 to 33 with an average 21.19 ± 2.42 per plastome. Ribosomal RNA genes, rrn, were located in the IRs so that they were present in a duplicate except of the species that had lost one of the IR. GC contents were variable from 24.9 to 51.0% with an average 38.21 ± 3.27%, indicating bias to high AT contents. Plastid introns were present in 18 protein coding genes, six trn genes, and one rrn gene. Intron losses occurred among the orthologous genes in different plant lineages. The plastid introns were long compared with the nuclear introns, which might be related with the spliceosome nuclear introns and self-splicing group II plastid introns. The trnK-UUU intron contained the maturase encoding matK gene except in the chlorophyte algae and monilophyte ferns in which the trnK-UUU was lost, but matK retained. There were many annotation artefacts in the intron positions in the NCBI database. In the analysis of intron phases, phase 0 introns were more frequent than those of phase 2 and 3 introns. Phase polymorphism was observed in the introns of clpP which was derived from nucleotide insertion. Plastid trn introns were long compared to the archaeal or eukaryotic nuclear tRNA introns. Of the six plastid trn introns, one was at the D loop and other five were at the anticodon loop. The insertion sites were conserved among the trn genes in archaea, eukaryotic nuclear and plastid tRNA genes. CONCLUSIONS Current study refurbrished the previous findings of structural variations, gene contents, and GC contents of the chloroplast genomes from green algae to flowering plants. The study also included some noble findings and discussions on the plastome introns including their length variations and phase variation. We also presented and corrected some false annotations on the introns in protein coding and tRNA genes in the genome database, which might be confirmed by the chloroplast transcriptome analysis in the future.
Collapse
|
23
|
Dinoflagellates with relic endosymbiont nuclei as models for elucidating organellogenesis. Proc Natl Acad Sci U S A 2020; 117:5364-5375. [PMID: 32094181 DOI: 10.1073/pnas.1911884117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Nucleomorphs are relic endosymbiont nuclei so far found only in two algal groups, cryptophytes and chlorarachniophytes, which have been studied to model the evolutionary process of integrating an endosymbiont alga into a host-governed plastid (organellogenesis). However, past studies suggest that DNA transfer from the endosymbiont to host nuclei had already ceased in both cryptophytes and chlorarachniophytes, implying that the organellogenesis at the genetic level has been completed in the two systems. Moreover, we have yet to pinpoint the closest free-living relative of the endosymbiotic alga engulfed by the ancestral chlorarachniophyte or cryptophyte, making it difficult to infer how organellogenesis altered the endosymbiont genome. To counter the above issues, we need novel nucleomorph-bearing algae, in which endosymbiont-to-host DNA transfer is on-going and for which endosymbiont/plastid origins can be inferred at a fine taxonomic scale. Here, we report two previously undescribed dinoflagellates, strains MGD and TGD, with green algal endosymbionts enclosing plastids as well as relic nuclei (nucleomorphs). We provide evidence for the presence of DNA in the two nucleomorphs and the transfer of endosymbiont genes to the host (dinoflagellate) genomes. Furthermore, DNA transfer between the host and endosymbiont nuclei was found to be in progress in both the MGD and TGD systems. Phylogenetic analyses successfully resolved the origins of the endosymbionts at the genus level. With the combined evidence, we conclude that the host-endosymbiont integration in MGD/TGD is less advanced than that in cryptophytes/chrorarachniophytes, and propose the two dinoflagellates as models for elucidating organellogenesis.
Collapse
|
24
|
Kayama M, Maciszewski K, Yabuki A, Miyashita H, Karnkowska A, Kamikawa R. Highly Reduced Plastid Genomes of the Non-photosynthetic Dictyochophyceans Pteridomonas spp. (Ochrophyta, SAR) Are Retained for tRNA-Glu-Based Organellar Heme Biosynthesis. FRONTIERS IN PLANT SCIENCE 2020; 11:602455. [PMID: 33329672 PMCID: PMC7728698 DOI: 10.3389/fpls.2020.602455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/03/2020] [Indexed: 05/05/2023]
Abstract
Organisms that have lost their photosynthetic capabilities are present in a variety of eukaryotic lineages, such as plants and disparate algal groups. Most of such non-photosynthetic eukaryotes still carry plastids, as these organelles retain essential biological functions. Most non-photosynthetic plastids possess genomes with varied protein-coding contents. Such remnant plastids are known to be present in the non-photosynthetic, bacteriovorous alga Pteridomonas danica (Dictyochophyceae, Ochrophyta), which, regardless of its obligatory heterotrophic lifestyle, has been reported to retain the typically plastid-encoded gene for ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) large subunit (rbcL). The presence of rbcL without photosynthetic activity suggests that investigating the function of plastids in Pteridomonas spp. would likely bring unique insights into understanding the reductive evolution of plastids, their genomes, and plastid functions retained after the loss of photosynthesis. In this study, we demonstrate that two newly established strains of the non-photosynthetic genus Pteridomonas possess highly reduced plastid genomes lacking rbcL gene, in contrast to the previous report. Interestingly, we discovered that all plastid-encoded proteins in Pteridomonas spp. are involved only in housekeeping processes (e.g., transcription, translation and protein degradation), indicating that all metabolite synthesis pathways in their plastids are supported fully by nuclear genome-encoded proteins. Moreover, through an in-depth survey of the available transcriptomic data of another strain of the genus, we detected no candidate sequences for nuclear-encoded, plastid-directed Fe-S cluster assembly pathway proteins, suggesting complete loss of this pathway in the organelle, despite its widespread conservation in non-photosynthetic plastids. Instead, the transcriptome contains plastid-targeted components of heme biosynthesis, glycolysis, and pentose phosphate pathways. The retention of the plastid genomes in Pteridomonas spp. is not explained by the Suf-mediated constraint against loss of plastid genomes, previously proposed for Alveolates, as they lack Suf genes. Bearing all these findings in mind, we propose the hypothesis that plastid DNA is retained in Pteridomonas spp. for the purpose of providing glutamyl-tRNA, encoded by trnE gene, as a substrate for the heme biosynthesis pathway.
Collapse
Affiliation(s)
- Motoki Kayama
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Kacper Maciszewski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Akinori Yabuki
- Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Hideaki Miyashita
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
- *Correspondence: Anna Karnkowska,
| | - Ryoma Kamikawa
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Ryoma Kamikawa,
| |
Collapse
|
25
|
Li X, Qian X, Yao G, Zhao Z, Zhang D. Plastome of mycoheterotrophic Burmannia itoana Mak. (Burmanniaceae) exhibits extensive degradation and distinct rearrangements. PeerJ 2019; 7:e7787. [PMID: 31608171 PMCID: PMC6788436 DOI: 10.7717/peerj.7787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/29/2019] [Indexed: 02/03/2023] Open
Abstract
Plastomes of heterotrophs went through varying degrees of degradation along with the transition from autotrophic to heterotrophic lifestyle. Here, we identified the plastome of mycoheterotrophic species Burmannia itoana and compared it with those of its reported relatives including three autotrophs and one heterotroph (Thismia tentaculata) in Dioscoreales. B. itoana yields a rampantly degraded plastome reduced in size and gene numbers at the advanced stages of degradation. Its length is 44,463 bp with a quadripartite structure. B. itoana plastome contains 33 tentatively functional genes and six tentative pseudogenes, including several unusually retained genes. These unusual retention suggest that the inverted repeats (IRs) regions and possibility of being compensated may prolong retention of genes in plastome at the advanced stage of degradation. Otherwise, six rearrangements including four inversions (Inv1/Inv2/Inv3/Inv4) and two translocations (Trans1/Trans2) were detected in B. itoana plastome vs. its autotrophic relative B. disticha. We speculate that Inv1 may be mediated by recombination of distinct tRNA genes, while Inv2 is likely consequence of extreme gene losses due to the shift to heterotrophic lifestyle. The other four rearrangements involved in IRs and small single copy region may attribute to multiple waves of IRs and overlapping inversions. Our study fills the gap of knowledge about plastomes of heterotroph in Burmannia and provides a new evidence for the convergent degradation patterns of plastomes en route to heterotrophic lifestyle.
Collapse
Affiliation(s)
- Xiaojuan Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xin Qian
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gang Yao
- South China Limestone Plants Research Center, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Zhongtao Zhao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Dianxiang Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
26
|
Omelchenko DO, Krinitsina AA, Belenikin MS, Konorov EA, Kuptsov SV, Logacheva MD, Speranskaya AS. Complete plastome sequencing of Allium paradoxum reveals unusual rearrangements and the loss of the ndh genes as compared to Allium ursinum and other onions. Gene 2019; 726:144154. [PMID: 31589962 DOI: 10.1016/j.gene.2019.144154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 07/12/2019] [Accepted: 10/02/2019] [Indexed: 01/17/2023]
Abstract
In this work the complete chloroplast DNAs of Allium paradoxum and Allium ursinum, two edible species of Allium subg. Amerallium (the first lineage), were sequenced, assembled, annotated, and compared with complete Allium plastomes of the second and third evolutionary lines from GenBank database. The A. ursinum plastome contains 90 predicted genes (81 unique) including 5 pseudogenes, while A. paradoxum has 88 predicted genes (79 unique) including 19 pseudogenes. The comparative analysis has revealed that the A. paradoxum plastome differs markedly from those of other species. Due to many deletions, the A. paradoxum plastome is the shortest of known for Allium species, being only 145,819 bp long. The most prominent distinctions are (1) a 4825 bp long local inversion that spans from the ndhE to the rpl32 gene in the small single copy region and (2) pseudogenization, or the loss of all NADH-genes. In contrast, the plastome of A. ursinum - a species from the first evolutionary line (as well as A. paradoxum) - resembles the Allium species of the second and third evolutionary lines, showing no large rearrangements or discrepancies in gene content. It is unclear yet whether only A. paradoxum was affected by some evolutionary events or its close relatives from both sect. Briseis and other sections of Amerallium were altered as well. We speculate the sunlight-intolerant, shade-loving nature of A. paradoxum and the impairment of the ndh genes in its plastome could be interrelated phenomena.
Collapse
Affiliation(s)
- Denis O Omelchenko
- Lomonosov Moscow State University, Leninskie Gory, GSP-1, Moscow 119991, Russia; Institute for Information Transmission Problems, Bolshoy Karetny per. 19, build.1, Moscow 127051, Russia; Skolkovo Institute of Science and Technology, Nobel St. 3, Moscow Region 143026, Russia.
| | - Anastasia A Krinitsina
- Lomonosov Moscow State University, Leninskie Gory, GSP-1, Moscow 119991, Russia; All-Russia Research Institute of Agricultural Biotechnology, Timiryasevskaya St. 42, Moscow 127550, Russia.
| | - Maxim S Belenikin
- Moscow Institute of Physics and Technology, Institutskiy Ln. 9, Dolgoprudny Moscow Region 141701, Russia
| | - Evgenii A Konorov
- Vavilov Institute of General Genetics RAS, Gubkina St. 3, Moscow 119991, Russia; V.M. Gorbatov Federal Research Center for Food Systems RAS, Talalikhina 26, Moscow 109316, Russia
| | - Sergey V Kuptsov
- Lomonosov Moscow State University, Leninskie Gory, GSP-1, Moscow 119991, Russia
| | - Maria D Logacheva
- Lomonosov Moscow State University, Leninskie Gory, GSP-1, Moscow 119991, Russia; Institute for Information Transmission Problems, Bolshoy Karetny per. 19, build.1, Moscow 127051, Russia; Skolkovo Institute of Science and Technology, Nobel St. 3, Moscow Region 143026, Russia
| | - Anna S Speranskaya
- Lomonosov Moscow State University, Leninskie Gory, GSP-1, Moscow 119991, Russia; Central Research Institute of Epidemiology, Novogireevskaya St. 3a, Moscow 111123, Russia.
| |
Collapse
|
27
|
Schelkunov MI, Nuraliev MS, Logacheva MD. Rhopalocnemis phalloides has one of the most reduced and mutated plastid genomes known. PeerJ 2019; 7:e7500. [PMID: 31565552 PMCID: PMC6745192 DOI: 10.7717/peerj.7500] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/16/2019] [Indexed: 11/20/2022] Open
Abstract
Although most plant species are photosynthetic, several hundred species have lost the ability to photosynthesize and instead obtain nutrients via various types of heterotrophic feeding. Their plastid genomes markedly differ from the plastid genomes of photosynthetic plants. In this work, we describe the sequenced plastid genome of the heterotrophic plant Rhopalocnemis phalloides, which belongs to the family Balanophoraceae and feeds by parasitizing other plants. The genome is highly reduced (18,622 base pairs vs. approximately 150 kbp in autotrophic plants) and possesses an extraordinarily high AT content, 86.8%, which is inferior only to AT contents of plastid genomes of Balanophora, a genus from the same family. The gene content of this genome is quite typical of heterotrophic plants, with all of the genes related to photosynthesis having been lost. The remaining genes are notably distorted by a high mutation rate and the aforementioned AT content. The high AT content has led to sequence convergence between some of the remaining genes and their homologs from AT-rich plastid genomes of protists. Overall, the plastid genome of R. phalloides is one of the most unusual plastid genomes known.
Collapse
Affiliation(s)
- Mikhail I. Schelkunov
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute for Information Transmission Problems, Moscow, Russia
| | - Maxim S. Nuraliev
- Faculty of Biology, Moscow State University, Moscow, Russia
- Joint Russian–Vietnamese Tropical Scientific and Technological Center, Cau Giay, Hanoi, Vietnam
| | - Maria D. Logacheva
- Skolkovo Institute of Science and Technology, Moscow, Russia
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| |
Collapse
|
28
|
Barrett CF, Sinn BT, Kennedy AH. Unprecedented Parallel Photosynthetic Losses in a Heterotrophic Orchid Genus. Mol Biol Evol 2019; 36:1884-1901. [PMID: 31058965 PMCID: PMC6736286 DOI: 10.1093/molbev/msz111] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Heterotrophic plants are evolutionary experiments in genomic, morphological, and physiological change. Yet, genomic sampling gaps exist among independently derived heterotrophic lineages, leaving unanswered questions about the process of genome modification. Here, we have sequenced complete plastid genomes for all species of the leafless orchid genus Hexalectris, including multiple individuals for most, and leafy relatives Basiphyllaea and Bletia. Our objectives are to determine the number of independent losses of photosynthesis and to test hypotheses on the process of genome degradation as a result of relaxed selection. We demonstrate four to five independent losses of photosynthesis in Hexalectris based on degradation of the photosynthetic apparatus, with all but two species displaying evidence of losses, and variation in gene loss extending below the species level. Degradation in the atp complex is advanced in Hexalectris warnockii, whereas only minimal degradation (i.e., physical loss) has occurred among some "housekeeping" genes. We find genomic rearrangements, shifts in Inverted Repeat boundaries including complete loss in one accession of H. arizonica, and correlations among substitutional and genomic attributes. Our unprecedented finding of multiple, independent transitions to a fully mycoheterotrophic lifestyle in a single genus reveals that the number of such transitions among land plants is likely underestimated. This study underscores the importance of dense taxon sampling, which is highly informative for advancing models of genome evolution in heterotrophs. Mycoheterotrophs such as Hexalectris provide forward-genetic opportunities to study the consequences of radical genome evolution beyond what is possible with mutational studies in model organisms alone.
Collapse
Affiliation(s)
- Craig F Barrett
- Department of Biology, West Virginia University, Morgantown, WV
| | - Brandon T Sinn
- Department of Biology, West Virginia University, Morgantown, WV
| | - Aaron H Kennedy
- Mycology and Nematology Genetic Diversity and Biology Laboratory, USDA-APHIS, Beltsville, MD
| |
Collapse
|
29
|
There Is Treasure Everywhere: Reductive Plastid Evolution in Apicomplexa in Light of Their Close Relatives. Biomolecules 2019; 9:biom9080378. [PMID: 31430853 PMCID: PMC6722601 DOI: 10.3390/biom9080378] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/05/2023] Open
Abstract
The phylum Apicomplexa (Alveolates) comprises a group of host-associated protists, predominately intracellular parasites, including devastating parasites like Plasmodium falciparum, the causative agent of malaria. One of the more fascinating characteristics of Apicomplexa is their highly reduced (and occasionally lost) remnant plastid, termed the apicoplast. Four core metabolic pathways are retained in the apicoplast: heme synthesis, iron–sulfur cluster synthesis, isoprenoid synthesis, and fatty acid synthesis. It has been suggested that one or more of these pathways are essential for plastid and plastid genome retention. The past decade has witnessed the discovery of several apicomplexan relatives, and next-generation sequencing efforts are revealing that they retain variable plastid metabolic capacities. These data are providing clues about the core genes and pathways of reduced plastids, while at the same time further confounding our view on the evolutionary history of the apicoplast. Here, we examine the evolutionary history of the apicoplast, explore plastid metabolism in Apicomplexa and their close relatives, and propose that the differences among reduced plastids result from a game of endosymbiotic roulette. Continued exploration of the Apicomplexa and their relatives is sure to provide new insights into the evolution of the apicoplast and apicomplexans as a whole.
Collapse
|
30
|
Klinger CM, Richardson E. Small Genomes and Big Data: Adaptation of Plastid Genomics to the High-Throughput Era. Biomolecules 2019; 9:E299. [PMID: 31344945 PMCID: PMC6723049 DOI: 10.3390/biom9080299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022] Open
Abstract
Plastid genome sequences are becoming more readily available with the increase in high-throughput sequencing, and whole-organelle genetic data is available for algae and plants from across the diversity of photosynthetic eukaryotes. This has provided incredible opportunities for studying species which may not be amenable to in vivo study or genetic manipulation or may not yet have been cultured. Research into plastid genomes has pushed the limits of what can be deduced from genomic information, and in particular genomic information obtained from public databases. In this Review, we discuss how research into plastid genomes has benefitted enormously from the explosion of publicly available genome sequence. We describe two case studies in how using publicly available gene data has supported previously held hypotheses about plastid traits from lineage-restricted experiments across algal and plant diversity. We propose how this approach could be used across disciplines for inferring functional and biological characteristics from genomic approaches, including integration of new computational and bioinformatic approaches such as machine learning. We argue that the techniques developed to gain the maximum possible insight from plastid genomes can be applied across the eukaryotic tree of life.
Collapse
Affiliation(s)
- Christen M Klinger
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Elisabeth Richardson
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
31
|
Discovering the in vitro potent inhibitors against Babesia and Theileria parasites by repurposing the Malaria Box: A review. Vet Parasitol 2019; 274:108895. [PMID: 31494399 DOI: 10.1016/j.vetpar.2019.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/27/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022]
Abstract
There is an innovative approach to discovering and developing novel potent and safe anti-Babesia and anti-Theileria agents for the control of animal piroplasmosis. Large-scale screening of 400 compounds from a Malaria Box (a treasure trove of 400 diverse compounds with antimalarial activity has been established by Medicines for Malaria Venture) against the in vitro growth of bovine Babesia and equine Babesia and Theileria parasites was performed, and the data were published in a brief with complete dataset from 236 screens of the Malaria Box compounds. Therefore, in this review, we explored and discussed in detail the in vitro inhibitory effects of 400 antimalarial compounds (200 drug-like and 200 probe-like) from the Malaria Box against Babesia (B.) bovis, B. bigemina, B. caballi, and Theileria (T.) equi. Seventeen hits were the most interesting with regard to bovine Babesia parasites, with mean selectivity indices (SIs) greater than 300 and half maximal inhibitory concentration (IC50s) ranging from 50 to 410 nM. The most interesting compounds with regard to equine Babesia and Theileria parasites were MMV020490 and MMV020275, with mean SIs > 258.68 and >251.55, respectively, and IC50s ranging from 76 to 480 nM. Ten novel anti-B. bovis, anti-B. bigemina, anti-T. equi, and anti-B. caballi hits, MMV666093, MMV396794, MMV006706, MMV665941, MMV085203, MMV396693, MMV006787, MMV073843, MMV007092, and MMV665875, with nanomole levels of IC50 were identified. The most interesting hits were MMV396693, MMV073843, MMV666093, and MMV665875, with mean SIs greater than 307.8 and IC50s ranging from 43 to 630 nM for both bovine Babesia and equine Babesia and Theileria parasites. Screening the Malaria Box against the in vitro growth of Babesia and Theileria parasites helped with the discovery of new drugs than those traditionally used, diminazene aceturate and imidocarb dipropionate, and indicated the potential of the Malaria Box in finding new, potent antibabesial drugs.
Collapse
|
32
|
Shahar N, Weiner I, Stotsky L, Tuller T, Yacoby I. Prediction and large-scale analysis of primary operons in plastids reveals unique genetic features in the evolution of chloroplasts. Nucleic Acids Res 2019; 47:3344-3352. [PMID: 30828719 PMCID: PMC6468310 DOI: 10.1093/nar/gkz151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/30/2019] [Accepted: 02/21/2019] [Indexed: 11/14/2022] Open
Abstract
While bacterial operons have been thoroughly studied, few analyses of chloroplast operons exist, limiting the ability to study fundamental elements of these structures and utilize them for synthetic biology. Here, we describe the creation of a plastome-specific operon database (link provided below) achieved by combining experimental tools and predictive modeling. Using a Reverse-Transcription-PCR based method and published data, we determined the transcription-state of 213 gene pairs from four plastomes of evolutionary distinct organisms. By analyzing sequence-based features computed for our dataset, we were able to highlight fundamental characteristics differentiating between operon pairs and non-operon pairs. These include an interesting tendency toward maintaining similar messenger RNA-folding profiles in operon gene pairs, a feature that failed to yield any informative separation in cyanobacteria, suggesting that it catches unique traits of operon gene expression, which have evolved post-endosymbiosis. Subsequently, we used this feature set to train a random-forest classifier for operon prediction. As our results demonstrate the ability of our predictor to obtain accurate (84%) and robust predictions on unlabeled datasets, we proceeded to building operon maps for 2018 sequenced plastids. Our database may now present new opportunities for promoting metabolic engineering and synthetic biology in chloroplasts.
Collapse
Affiliation(s)
- Noam Shahar
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Iddo Weiner
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lior Stotsky
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Iftach Yacoby
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
33
|
Su HJ, Barkman TJ, Hao W, Jones SS, Naumann J, Skippington E, Wafula EK, Hu JM, Palmer JD, dePamphilis CW. Novel genetic code and record-setting AT-richness in the highly reduced plastid genome of the holoparasitic plant Balanophora. Proc Natl Acad Sci U S A 2019; 116:934-943. [PMID: 30598433 PMCID: PMC6338844 DOI: 10.1073/pnas.1816822116] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Plastid genomes (plastomes) vary enormously in size and gene content among the many lineages of nonphotosynthetic plants, but key lineages remain unexplored. We therefore investigated plastome sequence and expression in the holoparasitic and morphologically bizarre Balanophoraceae. The two Balanophora plastomes examined are remarkable, exhibiting features rarely if ever seen before in plastomes or in any other genomes. At 15.5 kb in size and with only 19 genes, they are among the most reduced plastomes known. They have no tRNA genes for protein synthesis, a trait found in only three other plastid lineages, and thus Balanophora plastids must import all tRNAs needed for translation. Balanophora plastomes are exceptionally compact, with numerous overlapping genes, highly reduced spacers, loss of all cis-spliced introns, and shrunken protein genes. With A+T contents of 87.8% and 88.4%, the Balanophora genomes are the most AT-rich genomes known save for a single mitochondrial genome that is merely bloated with AT-rich spacer DNA. Most plastid protein genes in Balanophora consist of ≥90% AT, with several between 95% and 98% AT, resulting in the most biased codon usage in any genome described to date. A potential consequence of its radical compositional evolution is the novel genetic code used by Balanophora plastids, in which TAG has been reassigned from stop to tryptophan. Despite its many exceptional properties, the Balanophora plastome must be functional because all examined genes are transcribed, its only intron is correctly trans-spliced, and its protein genes, although highly divergent, are evolving under various degrees of selective constraint.
Collapse
Affiliation(s)
- Huei-Jiun Su
- Department of Earth and Life Sciences, University of Taipei, 100 Taipei, Taiwan
- Department of Biology, Pennsylvania State University, University Park, PA 16802
- Institute of Molecular Evolutionary Genetics, Pennsylvania State University, University Park, PA 16802
| | - Todd J Barkman
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Weilong Hao
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | - Samuel S Jones
- Graduate Program in Plant Biology, Pennsylvania State University, University Park, PA 16802
| | - Julia Naumann
- Department of Biology, Pennsylvania State University, University Park, PA 16802
- Institute of Molecular Evolutionary Genetics, Pennsylvania State University, University Park, PA 16802
| | | | - Eric K Wafula
- Department of Biology, Pennsylvania State University, University Park, PA 16802
- Institute of Molecular Evolutionary Genetics, Pennsylvania State University, University Park, PA 16802
| | - Jer-Ming Hu
- Institute of Ecology and Evolutionary Biology, National Taiwan University, 106 Taipei, Taiwan
| | - Jeffrey D Palmer
- Department of Biology, Indiana University, Bloomington, IN 47405;
| | - Claude W dePamphilis
- Department of Biology, Pennsylvania State University, University Park, PA 16802;
- Institute of Molecular Evolutionary Genetics, Pennsylvania State University, University Park, PA 16802
- Graduate Program in Plant Biology, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
34
|
Ng SM, Lee XW, Mat-Isa MN, Aizat-Juhari MA, Adam JH, Mohamed R, Wan KL, Firdaus-Raih M. Comparative analysis of nucleus-encoded plastid-targeting proteins in Rafflesia cantleyi against photosynthetic and non-photosynthetic representatives reveals orthologous systems with potentially divergent functions. Sci Rep 2018; 8:17258. [PMID: 30467394 PMCID: PMC6250676 DOI: 10.1038/s41598-018-35173-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/31/2018] [Indexed: 12/11/2022] Open
Abstract
Parasitic plants are known to discard photosynthesis thus leading to the deletion or loss of the plastid genes. Despite plastid genome reduction in non-photosynthetic plants, some nucleus-encoded proteins are transported back to the plastid to carry out specific functions. In this work, we study such proteins in Rafflesia cantleyi, a member of the holoparasitic genus well-known for producing the largest single flower in the world. Our analyses of three transcriptome datasets, two holoparasites (R. cantleyi and Phelipanche aegyptiaca) and one photosynthetic plant (Arabidopsis thaliana), suggest that holoparasites, such as R. cantleyi, retain some common plastid associated processes such as biosynthesis of amino acids and lipids, but are missing photosynthesis components that can be extensions of these pathways. The reconstruction of two selected biosynthetic pathways involving plastids correlates the trend of plastid retention to pathway complexity - transcriptome evidence for R. cantleyi suggests alternate mechanisms in regulating the plastidial heme and terpenoid backbone biosynthesis pathways. The evolution to holoparasitism from autotrophy trends towards devolving the plastid genes to the nuclear genome despite the functional sites remaining in the plastid, or maintaining non-photosynthetic processes in the plastid, before the eventual loss of the plastid and any site dependent functions.
Collapse
Affiliation(s)
- Siuk-Mun Ng
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
- Codon Genomics SB, No 26, Jalan Dutamas 7, Taman Dutamas Balakong, 43200, Seri Kembangan, Selangor, Malaysia
| | - Xin-Wei Lee
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Mohd-Noor Mat-Isa
- Malaysia Genome Institute, Jalan Bangi, 43000, Kajang, Selangor, Malaysia
| | - Mohd Afiq Aizat-Juhari
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Jumaat Haji Adam
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Rahmah Mohamed
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Kiew-Lian Wan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| | - Mohd Firdaus-Raih
- Centre for Frontier Sciences, Faculty of Science and Technology and Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| |
Collapse
|
35
|
Petersen G, Zervas A, Pedersen HÆ, Seberg O. Genome Reports: Contracted Genes and Dwarfed Plastome in Mycoheterotrophic Sciaphila thaidanica (Triuridaceae, Pandanales). Genome Biol Evol 2018; 10:976-981. [PMID: 29608731 PMCID: PMC5952968 DOI: 10.1093/gbe/evy064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2018] [Indexed: 12/30/2022] Open
Abstract
With a reduced need for photosynthesis, the plastome of parasitic and mycoheterotrophic plants degrades. In the tiny, fully mycoheterotrophic plant Sciaphila thaidanica, we find one of the smallest plastomes yet encountered. Its size is just 12,780 bp and it contains only 20 potentially functional housekeeping genes. Thus S. thaidanica fits the proposed model of gene loss in achlorophyllous plants. The most astonishing feature of the plastome is its extremely compact nature, with more than half of the genes having overlapping reading frames. Additionally, intergenic sequences have been reduced to a bare minimum, and the retained genes have been reduced in length both compared with the orthologous genes in another mycoheterotrophic species of Sciaphila and in the autotrophic relative Carludovica.
Collapse
Affiliation(s)
- Gitte Petersen
- Natural History Museum of Denmark, University of Copenhagen, Denmark
| | - Athanasios Zervas
- Natural History Museum of Denmark, University of Copenhagen, Denmark
| | - Henrik Æ Pedersen
- Natural History Museum of Denmark, University of Copenhagen, Denmark
| | - Ole Seberg
- Natural History Museum of Denmark, University of Copenhagen, Denmark
| |
Collapse
|
36
|
Sloan DB, Warren JM, Williams AM, Wu Z, Abdel-Ghany SE, Chicco AJ, Havird JC. Cytonuclear integration and co-evolution. Nat Rev Genet 2018; 19:635-648. [PMID: 30018367 PMCID: PMC6469396 DOI: 10.1038/s41576-018-0035-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The partitioning of genetic material between the nucleus and cytoplasmic (mitochondrial and plastid) genomes within eukaryotic cells necessitates coordinated integration between these genomic compartments, with important evolutionary and biomedical implications. Classic questions persist about the pervasive reduction of cytoplasmic genomes via a combination of gene loss, transfer and functional replacement - and yet why they are almost always retained in some minimal form. One striking consequence of cytonuclear integration is the existence of 'chimeric' enzyme complexes composed of subunits encoded in two different genomes. Advances in structural biology and comparative genomics are yielding important insights into the evolution of such complexes, including correlated sequence changes and recruitment of novel subunits. Thus, chimeric cytonuclear complexes provide a powerful window into the mechanisms of molecular co-evolution.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA.
| | - Jessica M Warren
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Alissa M Williams
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Zhiqiang Wu
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Adam J Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Justin C Havird
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
37
|
Over-accumulation of astaxanthin in Haematococcus pluvialis through chloroplast genetic engineering. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.02.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
de Vries J, Gould SB. The monoplastidic bottleneck in algae and plant evolution. J Cell Sci 2018; 131:jcs.203414. [PMID: 28893840 DOI: 10.1242/jcs.203414] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Plastids in plants and algae evolved from the endosymbiotic integration of a cyanobacterium by a heterotrophic eukaryote. New plastids can only emerge through fission; thus, the synchronization of bacterial division with the cell cycle of the eukaryotic host was vital to the origin of phototrophic eukaryotes. Most of the sampled algae house a single plastid per cell and basal-branching relatives of polyplastidic lineages are all monoplastidic, as are some non-vascular plants during certain stages of their life cycle. In this Review, we discuss recent advances in our understanding of the molecular components necessary for plastid division, including those of the peptidoglycan wall (of which remnants were recently identified in moss), in a wide range of phototrophic eukaryotes. Our comparison of the phenotype of 131 species harbouring plastids of either primary or secondary origin uncovers that one prerequisite for an algae or plant to house multiple plastids per nucleus appears to be the loss of the bacterial genes minD and minE from the plastid genome. The presence of a single plastid whose division is coupled to host cytokinesis was a prerequisite of plastid emergence. An escape from such a monoplastidic bottleneck succeeded rarely and appears to be coupled to the evolution of additional layers of control over plastid division and a complex morphology. The existence of a quality control checkpoint of plastid transmission remains to be demonstrated and is tied to understanding the monoplastidic bottleneck.
Collapse
Affiliation(s)
- Jan de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada, B3H 4R2
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
39
|
Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists. Curr Genet 2017; 64:365-387. [DOI: 10.1007/s00294-017-0761-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/22/2017] [Accepted: 10/04/2017] [Indexed: 11/24/2022]
|
40
|
Braukmann TWA, Broe MB, Stefanović S, Freudenstein JV. On the brink: the highly reduced plastomes of nonphotosynthetic Ericaceae. THE NEW PHYTOLOGIST 2017; 216:254-266. [PMID: 28731202 DOI: 10.1111/nph.14681] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/29/2017] [Indexed: 06/07/2023]
Abstract
Ericaceae (the heather family) is a large and diverse group of plants that forms elaborate symbiotic relationships with mycorrhizal fungi, and includes several nonphotosynthetic lineages. Using an extensive sample of fully mycoheterotrophic (MH) species, we explored inter- and intraspecific variation as well as selective constraints acting on the plastomes of these unusual plants. The plastomes of seven MH genera were analysed in a phylogenetic context with two geographically disparate individuals sequenced for Allotropa, Monotropa, and Pityopus. The plastomes of nonphotosynthetic Ericaceae are highly reduced in size (c. 33-41 kbp) and content, having lost all photosynthesis-related genes, and are reduced to encoding housekeeping genes as well as a protease subunit (clpP)-like and acetyl-CoA carboxylase subunit D (accD)-like open reading frames. Despite an increase in the rate of their nucleotide substitutions, the remaining protein-coding genes are typically under purifying selection in full MHs. We also identified ribosomal proteins under relaxed or neutral selection. These plastomes also exhibit striking structural rearrangements. Intraspecific variation within MH Ericaceae ranges from a few differences (Allotropa) to extensive population divergences (Monotropa, Hypopitys), which indicates that cryptic speciation may be occurring in several lineages. The pattern of gene loss within fully MH Ericaceae plastomes suggests an advanced state of degradation.
Collapse
Affiliation(s)
- Thomas W A Braukmann
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Michael B Broe
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH, 43212-1157, USA
| | - Saša Stefanović
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - John V Freudenstein
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH, 43212-1157, USA
| |
Collapse
|
41
|
Yurina NP, Sharapova LS, Odintsova MS. Structure of Plastid Genomes of Photosynthetic Eukaryotes. BIOCHEMISTRY (MOSCOW) 2017; 82:678-691. [PMID: 28601077 DOI: 10.1134/s0006297917060049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This review presents current views on the plastid genomes of higher plants and summarizes data on the size, structural organization, gene content, and other features of plastid DNAs. Special emphasis is placed on the properties of organization of land plant plastid genomes (nucleoids) that distinguish them from bacterial genomes. The prospects of genetic engineering of chloroplast genomes are discussed.
Collapse
Affiliation(s)
- N P Yurina
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | |
Collapse
|
42
|
Qiu H, Lee JM, Yoon HS, Bhattacharya D. Hypothesis: Gene-rich plastid genomes in red algae may be an outcome of nuclear genome reduction. JOURNAL OF PHYCOLOGY 2017; 53:715-719. [PMID: 28095611 DOI: 10.1111/jpy.12514] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/13/2016] [Indexed: 06/06/2023]
Abstract
Red algae (Rhodophyta) putatively diverged from the eukaryote tree of life >1.2 billion years ago and are the source of plastids in the ecologically important diatoms, haptophytes, and dinoflagellates. In general, red algae contain the largest plastid gene inventory among all such organelles derived from primary, secondary, or additional rounds of endosymbiosis. In contrast, their nuclear gene inventory is reduced when compared to their putative sister lineage, the Viridiplantae, and other photosynthetic lineages. The latter is thought to have resulted from a phase of genome reduction that occurred in the stem lineage of Rhodophyta. A recent comparative analysis of a taxonomically broad collection of red algal and Viridiplantae plastid genomes demonstrates that the red algal ancestor encoded ~1.5× more plastid genes than Viridiplantae. This difference is primarily explained by more extensive endosymbiotic gene transfer (EGT) in the stem lineage of Viridiplantae, when compared to red algae. We postulate that limited EGT in Rhodophytes resulted from the countervailing force of ancient, and likely recurrent, nuclear genome reduction. In other words, the propensity for nuclear gene loss led to the retention of red algal plastid genes that would otherwise have undergone intracellular gene transfer to the nucleus. This hypothesis recognizes the primacy of nuclear genome evolution over that of plastids, which have no inherent control of their gene inventory and can change dramatically (e.g., secondarily non-photosynthetic eukaryotes, dinoflagellates) in response to selection acting on the host lineage.
Collapse
Affiliation(s)
- Huan Qiu
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, New Jersey, 08901, USA
| | - Jun Mo Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, New Jersey, 08901, USA
| |
Collapse
|
43
|
Graham SW, Lam VKY, Merckx VSFT. Plastomes on the edge: the evolutionary breakdown of mycoheterotroph plastid genomes. THE NEW PHYTOLOGIST 2017; 214:48-55. [PMID: 28067952 DOI: 10.1111/nph.14398] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 11/14/2016] [Indexed: 05/23/2023]
Abstract
Contents 48 I. 48 II. 50 III. 53 54 References 54 SUMMARY: We examine recent evidence for ratchet-like genome degradation in mycoheterotrophs, plants that obtain nutrition from fungi. Initial loss of the NADH dehydrogenase-like (NDH) complex may often set off an irreversible evolutionary cascade of photosynthetic gene losses. Genes for plastid-encoded subunits of RNA polymerase and photosynthetic enzymes with secondary functions (Rubisco and ATP synthase) can persist initially, with nonsynchronous and quite broad windows in the relative timing of their loss. Delayed losses of five core nonbioenergetic genes (especially trnE and accD, which respectively code for glutamyl tRNA and a subunit of acetyl-CoA carboxylase) probably explain long-term persistence of heterotrophic plastomes. The observed range of changes of mycoheterotroph plastomes is similar to that of holoparasites, although greater diversity of both probably remains to be discovered. These patterns of gene loss/retention can inform research programs on plastome function.
Collapse
Affiliation(s)
- Sean W Graham
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| | - Vivienne K Y Lam
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| | - Vincent S F T Merckx
- Understanding Evolution Group, Naturalis Biodiversity Center, Vondellaan 55, 2332 AA, Leiden, the Netherlands
| |
Collapse
|
44
|
Yu J, Wang C, Gong X. Degeneration of photosynthetic capacity in mixotrophic plants, Chimaphila japonica and Pyrola decorata (Ericaceae). PLANT DIVERSITY 2017; 39:80-88. [PMID: 30159495 PMCID: PMC6112300 DOI: 10.1016/j.pld.2016.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/17/2016] [Accepted: 11/21/2016] [Indexed: 05/25/2023]
Abstract
The evolution of photosynthesis is an important feature of mixotrophic plants. Previous inferences proposed that mixotrophic taxa tend to retain most genes relating to photosynthetic functions but vary in plastid gene content. However, no sequence data are available to test this hypothesis in Ericaceae. To investigate changes in plastid genomes that may result from a transition from autotrophy to mixotrophy, the plastomes of two mixotrophic plants, Pyrola decorata and Chimaphila japonica, were sequenced at Illumina's Genome Analyzer and compared to the published plastome of the autotrophic plant Rhododendron simsii, which also belongs to Ericaceae. The greatest discrepancy between mixotrophic and autotrophic plants was that ndh genes for both P. decorata and C. japonica plastomes have nearly all become pseudogenes. P. decorata and C. japonica also retained all genes directly involved in photosynthesis under strong selection. The calculated rate of nonsynonymous nucleotide substitutions and synonymous substitutions of protein-coding genes (dN/dS) showed that substitution rates in shade plants were apparently higher than those in sunlight plants. The two mixotrophic plastomes were generally very similar to that of non-parasitic plants, although ndh genes were largely pseudogenized. Photosynthesis genes under strong selection were retained in the two mixotrophs, however, with greatly increased substitution rates. Further research is needed to gain a clearer understanding of the evolution of autotrophy and mixotrophy in Ericaceae.
Collapse
Affiliation(s)
- Jiaojun Yu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, PR China
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Kunming, PR China
| | - Chaobo Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, PR China
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Kunming, PR China
| | - Xun Gong
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, PR China
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Kunming, PR China
| |
Collapse
|
45
|
Lie AAY, Liu Z, Terrado R, Tatters AO, Heidelberg KB, Caron DA. Effect of light and prey availability on gene expression of the mixotrophic chrysophyte, Ochromonas sp. BMC Genomics 2017; 18:163. [PMID: 28196482 PMCID: PMC5310065 DOI: 10.1186/s12864-017-3549-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/02/2017] [Indexed: 12/21/2022] Open
Abstract
Background Ochromonas is a genus of mixotrophic chrysophytes that is found ubiquitously in many aquatic environments. Species in this genus can be important consumers of bacteria but vary in their ability to perform photosynthesis. We studied the effect of light and bacteria on growth and gene expression of a predominantly phagotrophic Ochromonas species. Axenic cultures of Ochromonas sp. were fed with heat-killed bacteria (HKB) and grown in constant light or darkness. RNA was extracted from cultures in the light or in the dark with HKB present (Light + HKB; Dark + HKB), and in the light after HKB were depleted (Light + depleted HKB). Results There were no significant differences in the growth or bacterial ingestion rates between algae grown in light or dark conditions. The availability of light led to a differential expression of only 8% of genes in the transcriptome. A number of genes associated with photosynthesis, phagotrophy, and tetrapyrrole synthesis was upregulated in the Light + HKB treatment compared to Dark + HKB. Conversely, the comparison between the Light + HKB and Light + depleted HKB treatments revealed that the presence of HKB led to differential expression of 59% of genes, including the majority of genes involved in major carbon and nitrogen metabolic pathways. Genes coding for unidirectional enzymes for the utilization of glucose were upregulated in the presence of HKB, implying increased glycolytic activities during phagotrophy. Algae without HKB upregulated their expression of genes coding for ammonium transporters, implying uptake of inorganic nitrogen from the culture medium when prey were unavailable. Conclusions Transcriptomic results agreed with previous observations that light had minimal effect on the population growth of Ochromonas sp. However, light led to the upregulation of a number of phototrophy- and phagotrophy-related genes, while the availability of bacterial prey led to prominent changes in major carbon and nitrogen metabolic pathways. Our study demonstrated the potential of transcriptomic approaches to improve our understanding of the trophic physiologies of complex mixotrophs, and revealed responses in Ochromonas sp. not apparent from traditional culture studies. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3549-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alle A Y Lie
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA, 90089-0371, USA.
| | - Zhenfeng Liu
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA, 90089-0371, USA
| | - Ramon Terrado
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA, 90089-0371, USA
| | - Avery O Tatters
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA, 90089-0371, USA
| | - Karla B Heidelberg
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA, 90089-0371, USA
| | - David A Caron
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA, 90089-0371, USA
| |
Collapse
|
46
|
Evolution of the Tetrapyrrole Biosynthetic Pathway in Secondary Algae: Conservation, Redundancy and Replacement. PLoS One 2016; 11:e0166338. [PMID: 27861576 PMCID: PMC5115734 DOI: 10.1371/journal.pone.0166338] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/26/2016] [Indexed: 11/29/2022] Open
Abstract
Tetrapyrroles such as chlorophyll and heme are indispensable for life because they are involved in energy fixation and consumption, i.e. photosynthesis and oxidative phosphorylation. In eukaryotes, the tetrapyrrole biosynthetic pathway is shaped by past endosymbioses. We investigated the origins and predicted locations of the enzymes of the heme pathway in the chlorarachniophyte Bigelowiella natans, the cryptophyte Guillardia theta, the “green” dinoflagellate Lepidodinium chlorophorum, and three dinoflagellates with diatom endosymbionts (“dinotoms”): Durinskia baltica, Glenodinium foliaceum and Kryptoperidinium foliaceum. Bigelowiella natans appears to contain two separate heme pathways analogous to those found in Euglena gracilis; one is predicted to be mitochondrial-cytosolic, while the second is predicted to be plastid-located. In the remaining algae, only plastid-type tetrapyrrole synthesis is present, with a single remnant of the mitochondrial-cytosolic pathway, a ferrochelatase of G. theta putatively located in the mitochondrion. The green dinoflagellate contains a single pathway composed of mostly rhodophyte-origin enzymes, and the dinotoms hold two heme pathways of apparently plastidal origin. We suggest that heme pathway enzymes in B. natans and L. chlorophorum share a predominantly rhodophytic origin. This implies the ancient presence of a rhodophyte-derived plastid in the chlorarachniophyte alga, analogous to the green dinoflagellate, or an exceptionally massive horizontal gene transfer.
Collapse
|
47
|
Roquet C, Coissac É, Cruaud C, Boleda M, Boyer F, Alberti A, Gielly L, Taberlet P, Thuiller W, Van Es J, Lavergne S. Understanding the evolution of holoparasitic plants: the complete plastid genome of the holoparasite Cytinus hypocistis (Cytinaceae). ANNALS OF BOTANY 2016; 118:885-896. [PMID: 27443299 PMCID: PMC5055816 DOI: 10.1093/aob/mcw135] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/09/2016] [Accepted: 05/12/2016] [Indexed: 05/19/2023]
Abstract
Background and Aims Plant plastid genomes are highly conserved in size, gene content and structure; however, parasitic plants are a noticeable exception to this evolutionary stability. Although the evolution of parasites could help to better understand plastome evolution in general, complete plastomes of parasites have been sequenced only for some lineages so far. Here we contribute to filling this gap by providing and analysing the complete plastome sequence of Cytinus hypocistis, the first parasite sequenced for Malvales and a species suspected to have an extremely small genome. Methods We sequenced and assembled de novo the plastid genome of Cytinus hypocistis using a shotgun approach on genomic DNA. Phylogenomic analyses based on coding regions were performed on Malvidae. For each coding region present in Cytinus, we tested for relaxation or intensification of selective pressures in the Cytinus lineage compared with autotrophic Malvales. Key Results Cytinus hypocistis has an extremely divergent genome that is among the smallest sequenced to date (19·4 kb), with only 23 genes and no inverted repeat regions. Phylogenomic analysis confirmed the position of Cytinus within Malvales. All coding regions of Cytinus plastome presented very high substitution rates compared with non-parasitic Malvales. Conclusions Some regions were inferred to be under relaxed negative selection in Cytinus, suggesting that further plastome reduction is occurring due to relaxed purifying selection associated with the loss of photosynthetic activity. On the other hand, increased selection intensity and strong positive selection were detected for rpl22 in the Cytinus lineage, which might indicate an evolutionary role in the host-parasite arms race, a point that needs further research.
Collapse
Affiliation(s)
- Cristina Roquet
- Laboratoire d’Ecologie Alpine, Université Grenoble Alpes, BP 53, FR-38000 Grenoble, France
- Laboratoire d’Ecologie Alpine, CNRS, BP 53, FR-38000 Grenoble, France
- *For correspondence. E-mail
| | - Éric Coissac
- Laboratoire d’Ecologie Alpine, Université Grenoble Alpes, BP 53, FR-38000 Grenoble, France
- Laboratoire d’Ecologie Alpine, CNRS, BP 53, FR-38000 Grenoble, France
| | - Corinne Cruaud
- CEA-Institut de Génomique, Genoscope, Centre National de Séquençage, FR-91057 Evry Cedex, France
| | - Martí Boleda
- Laboratoire d’Ecologie Alpine, Université Grenoble Alpes, BP 53, FR-38000 Grenoble, France
- Laboratoire d’Ecologie Alpine, CNRS, BP 53, FR-38000 Grenoble, France
| | - Frédéric Boyer
- Laboratoire d’Ecologie Alpine, Université Grenoble Alpes, BP 53, FR-38000 Grenoble, France
- Laboratoire d’Ecologie Alpine, CNRS, BP 53, FR-38000 Grenoble, France
| | - Adriana Alberti
- CEA-Institut de Génomique, Genoscope, Centre National de Séquençage, FR-91057 Evry Cedex, France
| | - Ludovic Gielly
- Laboratoire d’Ecologie Alpine, Université Grenoble Alpes, BP 53, FR-38000 Grenoble, France
- Laboratoire d’Ecologie Alpine, CNRS, BP 53, FR-38000 Grenoble, France
| | - Pierre Taberlet
- Laboratoire d’Ecologie Alpine, Université Grenoble Alpes, BP 53, FR-38000 Grenoble, France
- Laboratoire d’Ecologie Alpine, CNRS, BP 53, FR-38000 Grenoble, France
| | - Wilfried Thuiller
- Laboratoire d’Ecologie Alpine, Université Grenoble Alpes, BP 53, FR-38000 Grenoble, France
- Laboratoire d’Ecologie Alpine, CNRS, BP 53, FR-38000 Grenoble, France
| | - Jérémie Van Es
- Conservatoire Botanique National Alpin, Domaine de Charance, FR-05000 Gap, France
| | - Sébastien Lavergne
- Laboratoire d’Ecologie Alpine, Université Grenoble Alpes, BP 53, FR-38000 Grenoble, France
- Laboratoire d’Ecologie Alpine, CNRS, BP 53, FR-38000 Grenoble, France
| |
Collapse
|
48
|
Lee J, Cho CH, Park SI, Choi JW, Song HS, West JA, Bhattacharya D, Yoon HS. Parallel evolution of highly conserved plastid genome architecture in red seaweeds and seed plants. BMC Biol 2016; 14:75. [PMID: 27589960 PMCID: PMC5010701 DOI: 10.1186/s12915-016-0299-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/17/2016] [Indexed: 11/10/2022] Open
Abstract
Background The red algae (Rhodophyta) diverged from the green algae and plants (Viridiplantae) over one billion years ago within the kingdom Archaeplastida. These photosynthetic lineages provide an ideal model to study plastid genome reduction in deep time. To this end, we assembled a large dataset of the plastid genomes that were available, including 48 from the red algae (17 complete and three partial genomes produced for this analysis) to elucidate the evolutionary history of these organelles. Results We found extreme conservation of plastid genome architecture in the major lineages of the multicellular Florideophyceae red algae. Only three minor structural types were detected in this group, which are explained by recombination events of the duplicated rDNA operons. A similar high level of structural conservation (although with different gene content) was found in seed plants. Three major plastid genome architectures were identified in representatives of 46 orders of angiosperms and three orders of gymnosperms. Conclusions Our results provide a comprehensive account of plastid gene loss and rearrangement events involving genome architecture within Archaeplastida and lead to one over-arching conclusion: from an ancestral pool of highly rearranged plastid genomes in red and green algae, the aquatic (Florideophyceae) and terrestrial (seed plants) multicellular lineages display high conservation in plastid genome architecture. This phenomenon correlates with, and could be explained by, the independent and widely divergent (separated by >400 million years) origins of complex sexual cycles and reproductive structures that led to the rapid diversification of these lineages. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0299-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- JunMo Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Chung Hyun Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seung In Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ji Won Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyun Suk Song
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - John A West
- School of Biosciences 2, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
49
|
Feng YL, Wicke S, Li JW, Han Y, Lin CS, Li DZ, Zhou TT, Huang WC, Huang LQ, Jin XH. Lineage-Specific Reductions of Plastid Genomes in an Orchid Tribe with Partially and Fully Mycoheterotrophic Species. Genome Biol Evol 2016; 8:2164-75. [PMID: 27412609 PMCID: PMC4987110 DOI: 10.1093/gbe/evw144] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 11/13/2022] Open
Abstract
The plastid genome (plastome) of heterotrophic plants like mycoheterotrophs and parasites shows massive gene losses in consequence to the relaxation of functional constraints on photosynthesis. To understand the patterns of this convergent plastome reduction syndrome in heterotrophic plants, we studied 12 closely related orchids of three different lifeforms from the tribe Neottieae (Orchidaceae). We employ a comparative genomics approach to examine structural and selectional changes in plastomes within Neottieae. Both leafy and leafless heterotrophic species have functionally reduced plastid genome. Our analyses show that genes for the NAD(P)H dehydrogenase complex, the photosystems, and the RNA polymerase have been lost functionally multiple times independently. The physical reduction proceeds in a highly lineage-specific manner, accompanied by structural reconfigurations such as inversions or modifications of the large inverted repeats. Despite significant but minor selectional changes, all retained genes continue to evolve under purifying selection. All leafless Neottia species, including both visibly green and nongreen members, are fully mycoheterotrophic, likely evolved from leafy and partially mycoheterotrophic species. The plastomes of Neottieae span many stages of plastome degradation, including the longest plastome of a mycoheterotroph, providing invaluable insights into the mechanisms of plastome evolution along the transition from autotrophy to full mycoheterotrophy.
Collapse
Affiliation(s)
- Yan-Lei Feng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Susann Wicke
- Institute for Evolution and Biodiversity, University of Muenster, Germany
| | - Jian-Wu Li
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun Township, Mengla County, Yunnan, China
| | - Yu Han
- Nanchang University, Jiangxi, China
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - De-Zhu Li
- Key Laboratory of Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ting-Ting Zhou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Wei-Chang Huang
- Chenshan Shanghai Botanical Garden, Shanghai, Songjiang, China
| | - Lu-Qi Huang
- National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Xiao-Hua Jin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
50
|
Logacheva MD, Schelkunov MI, Shtratnikova VY, Matveeva MV, Penin AA. Comparative analysis of plastid genomes of non-photosynthetic Ericaceae and their photosynthetic relatives. Sci Rep 2016; 6:30042. [PMID: 27452401 PMCID: PMC4958920 DOI: 10.1038/srep30042] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/27/2016] [Indexed: 12/24/2022] Open
Abstract
Although plastid genomes of flowering plants are typically highly conserved regarding their size, gene content and order, there are some exceptions. Ericaceae, a large and diverse family of flowering plants, warrants special attention within the context of plastid genome evolution because it includes both non-photosynthetic and photosynthetic species with rearranged plastomes and putative losses of "essential" genes. We characterized plastid genomes of three species of Ericaceae, non-photosynthetic Monotropa uniflora and Hypopitys monotropa and photosynthetic Pyrola rotundifolia, using high-throughput sequencing. As expected for non-photosynthetic plants, M. uniflora and H. monotropa have small plastid genomes (46 kb and 35 kb, respectively) lacking genes related to photosynthesis, whereas P. rotundifolia has a larger genome (169 kb) with a gene set similar to other photosynthetic plants. The examined genomes contain an unusually high number of repeats and translocations. Comparative analysis of the expanded set of Ericaceae plastomes suggests that the genes clpP and accD that are present in the plastid genomes of almost all plants have not been lost in this family (as was previously thought) but rather persist in these genomes in unusual forms. Also we found a new gene in P. rotundifolia that emerged as a result of duplication of rps4 gene.
Collapse
Affiliation(s)
- Maria D. Logacheva
- Lomonosov Moscow State University, A.N Belozersky Institute of Physico-Chemical Biology, Moscow, Russia
- Kazan Federal University, Institute of Fundamental Biology and Medicine, Kazan, Russia
| | - Mikhail I. Schelkunov
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Victoria Y. Shtratnikova
- Lomonosov Moscow State University, Department of Bioengineering and Bioinformatics, Moscow, Russia
| | - Maria V. Matveeva
- Kazan Federal University, Institute of Fundamental Biology and Medicine, Kazan, Russia
| | - Aleksey A. Penin
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Lomonosov Moscow State University, Department of Genetics, Moscow, Russia
| |
Collapse
|