1
|
Zhang J, Zhang W, Ding C, Zhao J, Su X, Yuan Z, Chu Y, Huang Q, Su X. Non-Additive Gene Expression in Carbon and Nitrogen Metabolism Drives Growth Heterosis in Populus deltoides. PLANT, CELL & ENVIRONMENT 2025. [PMID: 39789702 DOI: 10.1111/pce.15371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 01/12/2025]
Abstract
Growth heterosis is crucial for Populus deltoides breeding, a key industrial-timber and ecological-construction tree species in temperate regions. However, the molecular mechanisms underlying carbon (C)-nitrogen (N) metabolism coordination in regulating growth heterosis remain unclear. Herein high-hybrids of P. deltoides exhibited high-parent heterosis and mid-parent heterosis in growth traits and key enzymes of C-N metabolism. In hybrids, gene expression patterns were mainly biased toward female parent. Parental contribution to growth heterosis in P. deltoides is differentiation, rather than absolute maternal or paternal dominance contributions. Parental genes were predominantly and dynamically inherited in a non-additive manner, mainly with dominant expression patterns. A total of 44 non-additive genes associated with photosynthetic C fixation, starch and sucrose metabolism, sucrose transport, photorespiration, and nitrogen metabolism coregulated growth heterosis by coordinating C-N metabolism. Growth-regulating factors 4 interacted with DELLA genes to promote growth by enhancing this coordination. Additionally, five critical genes were identified. Briefly, the above genes in high-hybrids improved photosynthesis and N utilisation by regulating carbohydrate accumulation and enzyme activity, while reducing respiratory energy consumption, thereby providing more energy for growth and promoting growth heterosis. Our findings offer new insights and theoretical basis for deep understanding genetic and molecular regulation mechanisms of tree heterosis and its application in precision hybrid breeding.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- State Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- State Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- State Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Jun Zhao
- Jiaozuo University, Jiaozuo, China
| | - Xuehui Su
- Jiaozuo Academy of Agriculture and Forestry Sciences, Jiaozuo, China
| | - Zhengsai Yuan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- State Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yanguang Chu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- State Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Qinjun Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- State Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- State Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
2
|
Hochholdinger F, Yu P. Molecular concepts to explain heterosis in crops. TRENDS IN PLANT SCIENCE 2025; 30:95-104. [PMID: 39191625 DOI: 10.1016/j.tplants.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024]
Abstract
Heterosis describes the superior performance of hybrid plants compared with their genetically distinct parents and is a pillar of global food security. Here we review the current status of the molecular dissection of heterosis. We discuss how extensive intraspecific structural genomic variation between parental genotypes leads to heterosis by genetic complementation in hybrids. Moreover, we survey how global gene expression complementation contributes to heterosis by hundreds of additionally active genes in hybrids and how overdominant single genes mediate heterosis in several species. Furthermore, we highlight the prominent role of the microbiome in improving the performance of hybrids. Taken together, the molecular understanding of heterosis will pave the way to accelerate hybrid productivity and a more sustainable agriculture.
Collapse
Affiliation(s)
- Frank Hochholdinger
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany.
| | - Peng Yu
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany; INRES, Institute of Crop Science and Resource Conservation, Root Functional Biology, University of Bonn, 53113 Bonn, Germany.
| |
Collapse
|
3
|
Sun L, Lai M, Ghouri F, Nawaz MA, Ali F, Baloch FS, Nadeem MA, Aasim M, Shahid MQ. Modern Plant Breeding Techniques in Crop Improvement and Genetic Diversity: From Molecular Markers and Gene Editing to Artificial Intelligence-A Critical Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:2676. [PMID: 39409546 PMCID: PMC11478383 DOI: 10.3390/plants13192676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/08/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024]
Abstract
With the development of new technologies in recent years, researchers have made significant progress in crop breeding. Modern breeding differs from traditional breeding because of great changes in technical means and breeding concepts. Whereas traditional breeding initially focused on high yields, modern breeding focuses on breeding orientations based on different crops' audiences or by-products. The process of modern breeding starts from the creation of material populations, which can be constructed by natural mutagenesis, chemical mutagenesis, physical mutagenesis transfer DNA (T-DNA), Tos17 (endogenous retrotransposon), etc. Then, gene function can be mined through QTL mapping, Bulked-segregant analysis (BSA), Genome-wide association studies (GWASs), RNA interference (RNAi), and gene editing. Then, at the transcriptional, post-transcriptional, and translational levels, the functions of genes are described in terms of post-translational aspects. This article mainly discusses the application of the above modern scientific and technological methods of breeding and the advantages and limitations of crop breeding and diversity. In particular, the development of gene editing technology has contributed to modern breeding research.
Collapse
Affiliation(s)
- Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Mingyu Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Amjad Nawaz
- Education Scientific Center of Nanotechnology, Far Eastern Federal University, 690091 Vladivostok, Russia;
| | - Fawad Ali
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China;
| | - Faheem Shehzad Baloch
- Dapartment of Biotechnology, Faculty of Science, Mersin University, Mersin 33343, Türkiye;
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Türkiye; (M.A.N.); (M.A.)
| | - Muhammad Aasim
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Türkiye; (M.A.N.); (M.A.)
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Huang S, Wang F, Li Y, Wang Z, Zhang R, Li J, Li C. Identification of Dwarfing Candidate Genes in Brassica napus L. LSW2018 through BSA-Seq and Genetic Mapping. PLANTS (BASEL, SWITZERLAND) 2024; 13:2298. [PMID: 39204735 PMCID: PMC11359780 DOI: 10.3390/plants13162298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Plant height, as a crucial component of plant architecture, exerts a significant influence on rapeseed (Brassica napus L.) lodging resistance, photosynthetic efficiency, yield, and mechanized harvest level. A previous study identified dwarf rapeseed LSW2018. In this study, LSW2018 (dwarf parent (PD)) was crossed with 389 (high parent (PH)) to establish the F2 population, and 30 extremely dwarf (bulk-D) and high (bulk-H) plants in the F2 population were respectively selected to construct two bulked DNA pools. Whole-genome sequencing and variation analysis (BSA-seq) were performed on these four DNA pools (PD, PH, bulk-D, and bulk-H). The BSA-seq results revealed that the genomic region responsible for the dwarf trait spanned from 19.30 to 22.19 Mb on chromosome A03, with a length of 2.89 Mb. After fine mapping with simple sequence repeat (SSR) markers, the gene was narrowed to a 0.71 Mb interval. Within this region, a total of 113 genes were identified, 42 of which contained large-effect variants. According to reference genome annotation and qRT-PCR analysis, there are 17 differentially expressed genes in this region between high and dwarf individuals. This study preliminarily reveals the genetic basis of LSW2018 dwarfing and provides a theoretical foundation for the molecular marker-assisted breeding of dwarf rapeseed.
Collapse
Affiliation(s)
- Sha Huang
- Guizhou Oil Crops Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang 550006, China
| | - Fang Wang
- Guizhou Oil Crops Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
- The Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yang Li
- Guizhou Oil Crops Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Zhuanzhuan Wang
- Guizhou Oil Crops Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
- The Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Ruimao Zhang
- Guizhou Oil Crops Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Jijun Li
- Guizhou Oil Crops Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Chao Li
- Guizhou Oil Crops Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
- The Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
5
|
Su J, Zhao L, Yang Y, Yang Y, Zhang X, Guan Z, Fang W, Chen F, Zhang F. Comparative transcriptome analysis provides molecular insights into heterosis of waterlogging tolerance in Chrysanthemum indicum. BMC PLANT BIOLOGY 2024; 24:259. [PMID: 38594635 PMCID: PMC11005212 DOI: 10.1186/s12870-024-04954-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/27/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Heterosis breeding is one of the most important breeding methods for chrysanthemum. To date, the genetic mechanisms of heterosis for waterlogging tolerance in chrysanthemum are still unclear. This study aims to analyze the expression profiles and potential heterosis-related genes of two hybrid lines and their parents with extreme differences in waterlogging tolerance under control and waterlogging stress conditions by RNA-seq. RESULTS A population of 140 F1 progeny derived from Chrysanthemum indicum (Nanchang) (waterlogging-tolerant) and Chrysanthemum indicum (Nanjing) (waterlogging-sensitive) was used to characterize the extent of genetic variation in terms of seven waterlogging tolerance-related traits across two years. Lines 98 and 95, respectively displaying positive and negative overdominance heterosis for the waterlogging tolerance traits together with their parents under control and waterlogging stress conditions, were used for RNA-seq. In consequence, the maximal number of differentially expressed genes (DEGs) occurred in line 98. Gene ontology (GO) enrichment analysis revealed multiple stress-related biological processes for the common up-regulated genes. Line 98 had a significant increase in non-additive genes under waterlogging stress, with transgressive up-regulation and paternal-expression dominant patterns being the major gene expression profiles. Further, GO analysis identified 55 and 95 transgressive up-regulation genes that overlapped with the up-regulated genes shared by two parents in terms of responses to stress and stimulus, respectively. 6,640 genes in total displaying maternal-expression dominance patterns were observed in line 95. In addition, 16 key candidate genes, including SAP12, DOX1, and ERF017 which might be of significant importance for the formation of waterlogging tolerance heterosis in line 98, were highlighted. CONCLUSION The current study provides a comprehensive overview of the root transcriptomes among F1 hybrids and their parents under waterlogging stress. These findings lay the foundation for further studies on molecular mechanisms underlying chrysanthemum heterosis on waterlogging tolerance.
Collapse
Affiliation(s)
- Jiangshuo Su
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, National Forestry and Grassland Administration, Nanjing Agricultural University, Weigang No.1, Nanjing, Jiangsu Province, 210095, P.R. China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, China
| | - Limin Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, National Forestry and Grassland Administration, Nanjing Agricultural University, Weigang No.1, Nanjing, Jiangsu Province, 210095, P.R. China
| | - Yingnan Yang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, National Forestry and Grassland Administration, Nanjing Agricultural University, Weigang No.1, Nanjing, Jiangsu Province, 210095, P.R. China
| | - Yang Yang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, National Forestry and Grassland Administration, Nanjing Agricultural University, Weigang No.1, Nanjing, Jiangsu Province, 210095, P.R. China
| | - Xuefeng Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, National Forestry and Grassland Administration, Nanjing Agricultural University, Weigang No.1, Nanjing, Jiangsu Province, 210095, P.R. China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, National Forestry and Grassland Administration, Nanjing Agricultural University, Weigang No.1, Nanjing, Jiangsu Province, 210095, P.R. China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, China
| | - Weimin Fang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, National Forestry and Grassland Administration, Nanjing Agricultural University, Weigang No.1, Nanjing, Jiangsu Province, 210095, P.R. China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, National Forestry and Grassland Administration, Nanjing Agricultural University, Weigang No.1, Nanjing, Jiangsu Province, 210095, P.R. China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, China
| | - Fei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, National Forestry and Grassland Administration, Nanjing Agricultural University, Weigang No.1, Nanjing, Jiangsu Province, 210095, P.R. China.
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, China.
| |
Collapse
|
6
|
Xie S, Luo H, Huang W, Jin W, Dong Z. Striking a growth-defense balance: Stress regulators that function in maize development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:424-442. [PMID: 37787439 DOI: 10.1111/jipb.13570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/01/2023] [Indexed: 10/04/2023]
Abstract
Maize (Zea mays) cultivation is strongly affected by both abiotic and biotic stress, leading to reduced growth and productivity. It has recently become clear that regulators of plant stress responses, including the phytohormones abscisic acid (ABA), ethylene (ET), and jasmonic acid (JA), together with reactive oxygen species (ROS), shape plant growth and development. Beyond their well established functions in stress responses, these molecules play crucial roles in balancing growth and defense, which must be finely tuned to achieve high yields in crops while maintaining some level of defense. In this review, we provide an in-depth analysis of recent research on the developmental functions of stress regulators, focusing specifically on maize. By unraveling the contributions of these regulators to maize development, we present new avenues for enhancing maize cultivation and growth while highlighting the potential risks associated with manipulating stress regulators to enhance grain yields in the face of environmental challenges.
Collapse
Affiliation(s)
- Shiyi Xie
- Maize Engineering and Technology Research Center of Hunan Province, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Hongbing Luo
- Maize Engineering and Technology Research Center of Hunan Province, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Huang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Weiwei Jin
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, Fresh Corn Research Center of BTH, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - Zhaobin Dong
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
7
|
E L, Lyu S, Wang Y, Xiao D, Liu T, Hou X, Li Y, Zhang C. Integrating Dynamic 3D Chromatin Architecture and Gene Expression Alterations Reveal Heterosis in Brassica rapa. Int J Mol Sci 2024; 25:2568. [PMID: 38473815 DOI: 10.3390/ijms25052568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/25/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Heterosis plays a significant role in enhancing variety, boosting yield, and raising economic value in crops, but the molecular mechanism is still unclear. We analyzed the transcriptomes and 3D genomes of a hybrid (F1) and its parents (w30 and 082). The analysis of the expression revealed a total of 485 specially expressed genes (SEGs), 173 differentially expressed genes (DEGs) above the parental expression level, more actively expressed genes, and up-regulated DEGs in the F1. Further study revealed that the DEGs detected in the F1 and its parents were mainly involved in the response to auxin, plant hormone signal transduction, DNA metabolic process, purine metabolism, starch, and sucrose metabolism, which suggested that these biological processes may play a crucial role in the heterosis of Brassica rapa. The analysis of 3D genome data revealed that hybrid F1 plants tend to contain more transcriptionally active A chromatin compartments after hybridization. Supplementaryly, the F1 had a smaller TAD (topologically associated domain) genome length, but the number was the highest, and the expression change in activated TAD was higher than that of repressed TAD. More specific TAD boundaries were detected between the parents and F1. Subsequently, 140 DEGs with genomic structural variants were selected as potential candidate genes. We found two DEGs with consistent expression changes in A/B compartments and TADs. Our findings suggested that genomic structural variants, such as TADs and A/B chromatin compartments, may affect gene expression and contribute to heterosis in Brassica rapa. This study provides further insight into the molecular mechanism of heterosis in Brassica rapa.
Collapse
Affiliation(s)
- Liu E
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Shanwu Lyu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yaolong Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Dong Xiao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Tongkun Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xilin Hou
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Changwei Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Zhong H, Ren B, Lou C, Zhou Y, Luo Y, Xiao J. Nonadditive and allele-specific expression of ghrelin in hybrid tilapia. Front Endocrinol (Lausanne) 2023; 14:1292730. [PMID: 38152137 PMCID: PMC10751329 DOI: 10.3389/fendo.2023.1292730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/07/2023] [Indexed: 12/29/2023] Open
Abstract
Background Interspecies hybridization is an important breeding method to generate fishes with heterosis in aquaculture. Using this method, hybrid Nile tilapia (Oreochromis niloticus, ♀) × blue tilapia (Oreochromis aureus, ♂) has been produced and widely farmed due to its growth and appetite superiorities. However, the genetic mechanism of these advanced traits is still not well understood. Ghrelin is a crucial gene that regulates growth and appetite in fishes. In the present study, we focused on the expression characteristics and its regulation of ghrelin in the hybrid. Results The tissue distribution analysis showed that ghrelin was predominantly expressed in the stomach in the hybrid. Ghrelin was more highly expressed in the stomach in the hybrid and Nile tilapia, compared to blue tilapia, showing a nonadditive pattern. Two single-nucleotide polymorphism (SNP) sites were identified including T/C and C/G from the second exon in the ghrelin gene from Nile tilapia and blue tilapia. By pyrosequencing based on the SNP sites, the allele-specific expression (ASE) of ghrelin in the hybrid was assayed. The result indicated that ghrelin in the hybrid showed higher maternal allelic transcript ratios. Fasting significantly increased ghrelin overall expression at 4, 8, 12, 24, and 48 h. In addition, higher maternal allelic transcript ratios were not changed in the fasting hybrids at 48 h. The cis and trans effects were determined by evaluating the overall expression and ASE values in the hybrid. The expression of ghrelin was mediated by compensating cis and trans effects in hybrid. Conclusion In summary, the present lines of evidence showed the nonadditive expression of ghrelin in the hybrid tilapia and its regulation by subgenomes, offering new insight into gene expression characteristics in hybrids.
Collapse
Affiliation(s)
- Huan Zhong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Bingxin Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chenyi Lou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yi Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yongju Luo
- Tilapia Genetics and Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Jun Xiao
- Tilapia Genetics and Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China
| |
Collapse
|
9
|
Mugisa I, Karungi J, Musana P, Odama R, Anyanga MO, Edema R, Gibson P, Ssali RT, Campos H, Oloka BM, Yencho GC, Yada B. Heterotic gains, transgressive segregation and fitness cost of sweetpotato weevil resistance expression in a partial diallel cross of sweetpotato. EUPHYTICA: NETHERLANDS JOURNAL OF PLANT BREEDING 2023; 219:110. [PMID: 37780031 PMCID: PMC10533626 DOI: 10.1007/s10681-023-03225-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/06/2023] [Indexed: 10/03/2023]
Abstract
Heterosis-exploiting breeding schemes are currently under consideration as a means of accelerating genetic gains in sweetpotato (Ipomoea batatas) breeding. This study was aimed at establishing heterotic gains, fitness costs and transgressive segregation associated with sweetpotato weevil (SPW) resistance in a partial diallel cross of sweetpotato. A total of 1896 clones were tested at two sites, for two seasons each in Uganda. Data on weevil severity (WED), weevil incidence (WI), storage root yield (SRY) and dry matter content (DM) were obtained. Best linear unbiased predictors (BLUPs) for each clone across environments were used to estimate heterotic gains and for regression analyses to establish relationships between key traits. In general, low mid-parent heterotic gains were detected with the highest favorable levels recorded for SRY (14.7%) and WED (- 7.9%). About 25% of the crosses exhibited desirable and significant mid-parent heterosis for weevil resistance. Over 16% of the clones displayed superior transgressive segregation, with the highest percentages recorded for SRY (21%) and WED (18%). A yield penalty of 10% was observed to be associated with SPW resistance whereas no decline in DM was detected in relation to the same. Chances of improving sweetpotato through exploiting heterosis in controlled crosses using parents of mostly similar background are somewhat minimal, as revealed by the low heterotic gains. The yield penalty detected due to SPW resistance suggests that a trade-off may be necessary between maximizing yields and developing weevil-resistant cultivars if the current needs for this crop are to be met in weevil-prone areas.
Collapse
Affiliation(s)
- Immaculate Mugisa
- National Crops Resources Research Institute (NaCRRI), NARO, Kampala, Uganda
- Department of Agricultural production, Makerere University, Kampala, Uganda
| | - Jeninah Karungi
- Department of Agricultural production, Makerere University, Kampala, Uganda
| | - Paul Musana
- National Crops Resources Research Institute (NaCRRI), NARO, Kampala, Uganda
| | - Roy Odama
- National Crops Resources Research Institute (NaCRRI), NARO, Kampala, Uganda
| | - Milton O. Anyanga
- National Crops Resources Research Institute (NaCRRI), NARO, Kampala, Uganda
| | - Richard Edema
- Department of Agricultural production, Makerere University, Kampala, Uganda
| | - Paul Gibson
- Department of Agricultural production, Makerere University, Kampala, Uganda
| | | | | | - Bonny M. Oloka
- Department of Horticultural Science, North Carolina State University, Raleigh, NC USA
| | - G. Craig Yencho
- Department of Horticultural Science, North Carolina State University, Raleigh, NC USA
| | - Benard Yada
- National Crops Resources Research Institute (NaCRRI), NARO, Kampala, Uganda
- National Crops Resources Research Institute (NaCRRI), P.O. Box 7084, Namulonge, Kampala, Uganda
| |
Collapse
|
10
|
Hudson CM, Cuenca Cambronero M, Moosmann M, Narwani A, Spaak P, Seehausen O, Matthews B. Environmentally independent selection for hybrids between divergent freshwater stickleback lineages in semi-natural ponds. J Evol Biol 2023; 36:1166-1184. [PMID: 37394735 DOI: 10.1111/jeb.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/03/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023]
Abstract
Hybridization following secondary contact of genetically divergent populations can influence the range expansion of invasive species, though specific outcomes depend on the environmental dependence of hybrid fitness. Here, using two genetically and ecologically divergent threespine stickleback lineages that differ in their history of freshwater colonization, we estimate fitness variation of parental lineages and hybrids in semi-natural freshwater ponds with contrasting histories of nutrient loading. In our experiment, we found that fish from the older freshwater lineage (Lake Geneva) and hybrids outperformed fish from the younger freshwater lineage (Lake Constance) in terms of both growth and survival, regardless of the environmental context of our ponds. Across all ponds, hybrids exhibited the highest survival. Although wild-caught adult populations differed in their functional and defence morphology, it is unclear which of these traits underlie the fitness differences observed among juveniles in our experiment. Overall, our work suggests that when hybrid fitness is insensitive to environmental conditions, as observed here, introgression may promote population expansion into unoccupied habitats and accelerate invasion success.
Collapse
Affiliation(s)
- Cameron Marshall Hudson
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry, Lucerne, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Zürich, Switzerland
| | - Maria Cuenca Cambronero
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry, Lucerne, Switzerland
- Aquatic Ecology Group, University of Vic, Central University of Catalonia, Vic, Spain
| | - Marvin Moosmann
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry, Lucerne, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Anita Narwani
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Zürich, Switzerland
| | - Piet Spaak
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Zürich, Switzerland
| | - Ole Seehausen
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry, Lucerne, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Blake Matthews
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry, Lucerne, Switzerland
| |
Collapse
|
11
|
Orantes-Bonilla M, Wang H, Lee HT, Golicz AA, Hu D, Li W, Zou J, Snowdon RJ. Transgressive and parental dominant gene expression and cytosine methylation during seed development in Brassica napus hybrids. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:113. [PMID: 37071201 PMCID: PMC10113308 DOI: 10.1007/s00122-023-04345-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/12/2023] [Indexed: 05/13/2023]
Abstract
KEY MESSAGE Transcriptomic and epigenomic profiling of gene expression and small RNAs during seed and seedling development reveals expression and methylation dominance levels with implications on early stage heterosis in oilseed rape. The enhanced performance of hybrids through heterosis remains a key aspect in plant breeding; however, the underlying mechanisms are still not fully elucidated. To investigate the potential role of transcriptomic and epigenomic patterns in early expression of hybrid vigor, we investigated gene expression, small RNA abundance and genome-wide methylation in hybrids from two distant Brassica napus ecotypes during seed and seedling developmental stages using next-generation sequencing. A total of 31117, 344, 36229 and 7399 differentially expressed genes, microRNAs, small interfering RNAs and differentially methylated regions were identified, respectively. Approximately 70% of the differentially expressed or methylated features displayed parental dominance levels where the hybrid followed the same patterns as the parents. Via gene ontology enrichment and microRNA-target association analyses during seed development, we found copies of reproductive, developmental and meiotic genes with transgressive and paternal dominance patterns. Interestingly, maternal dominance was more prominent in hypermethylated and downregulated features during seed formation, contrasting to the general maternal gamete demethylation reported during gametogenesis in angiosperms. Associations between methylation and gene expression allowed identification of putative epialleles with diverse pivotal biological functions during seed formation. Furthermore, most differentially methylated regions, differentially expressed siRNAs and transposable elements were in regions that flanked genes without differential expression. This suggests that differential expression and methylation of epigenomic features may help maintain expression of pivotal genes in a hybrid context. Differential expression and methylation patterns during seed formation in an F1 hybrid provide novel insights into genes and mechanisms with potential roles in early heterosis.
Collapse
Affiliation(s)
- Mauricio Orantes-Bonilla
- Department of Plant Breeding, Land Use and Nutrition, IFZ Research Centre for Biosystems, Justus Liebig University, Giessen, Germany
| | - Hao Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Huey Tyng Lee
- Department of Plant Breeding, Land Use and Nutrition, IFZ Research Centre for Biosystems, Justus Liebig University, Giessen, Germany
| | - Agnieszka A Golicz
- Department of Plant Breeding, Land Use and Nutrition, IFZ Research Centre for Biosystems, Justus Liebig University, Giessen, Germany
| | - Dandan Hu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Wenwen Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Rod J Snowdon
- Department of Plant Breeding, Land Use and Nutrition, IFZ Research Centre for Biosystems, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
12
|
Bocianowski J, Tomkowiak A, Bocianowska M, Sobiech A. The Use of DArTseq Technology to Identify Markers Related to the Heterosis Effects in Selected Traits in Maize. Curr Issues Mol Biol 2023; 45:2644-2660. [PMID: 37185697 PMCID: PMC10136425 DOI: 10.3390/cimb45040173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023] Open
Abstract
Spectacular scientific advances in the area of molecular biology and the development of modern biotechnological tools have had a significant impact on the development of maize heterosis breeding. One technology based on next-generation sequencing is DArTseq. The plant material used for the research consisted of 13 hybrids resulting from the crossing of inbred maize lines. A two-year field experiment was established at two Polish breeding stations: Smolice and Łagiewniki. Nine quantitative traits were observed: cob length, cob diameter, core length, core diameter, number of rows of grain, number of grains in a row, mass of grain from the cob, weight of one thousand grains, and yield. The isolated DNA was subjected to DArTseq genotyping. Association mapping was performed using a method based on the mixed linear model. A total of 81602 molecular markers (28571 SNPs and 53031 SilicoDArTs) were obtained as a result of next-generation sequencing. Out of 81602, 15409 (13850 SNPs and 1559 SilicoDArTs) were selected for association analysis. The 105 molecular markers (8 SNPs and 97 SilicoDArTs) were associated with the heterosis effect of at least one trait in at least one environment. A total of 186 effects were observed. The number of statistically significant relationships between the molecular marker and heterosis effect varied from 8 (for cob length) and 9 (for yield) to 42 (for the number of rows of grain). Of particular note were three markers (2490222, 2548691 and 7058267), which were significant in 17, 8 and 6 cases, respectively. Two of them (2490222 and 7058267) were associated with the heterosis effects of yield in three of the four environments.
Collapse
Affiliation(s)
- Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland
| | - Agnieszka Tomkowiak
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland
| | - Marianna Bocianowska
- Faculty of Chemical Technology, Poznań University of Technology, Piotrowo 3A, 60-965 Poznan, Poland
| | - Aleksandra Sobiech
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland
| |
Collapse
|
13
|
Zhu XT, Zhou R, Che J, Zheng YY, Tahir Ul Qamar M, Feng JW, Zhang J, Gao J, Chen LL. Ribosome profiling reveals the translational landscape and allele-specific translational efficiency in rice. PLANT COMMUNICATIONS 2023; 4:100457. [PMID: 36199246 PMCID: PMC10030323 DOI: 10.1016/j.xplc.2022.100457] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/23/2022] [Accepted: 10/01/2022] [Indexed: 05/04/2023]
Abstract
Translational regulation is a critical step in the process of gene expression and governs the synthesis of proteins from mRNAs. Many studies have revealed translational regulation in plants in response to various environmental stimuli. However, there have been no studies documenting the comprehensive landscape of translational regulation and allele-specific translational efficiency in multiple plant tissues, especially those of rice, a main staple crop that feeds nearly half of the world's population. Here we used RNA sequencing and ribosome profiling data to analyze the transcriptome and translatome of an elite hybrid rice, Shanyou 63 (SY63), and its parental varieties Zhenshan 97 and Minghui 63. The results revealed that gene expression patterns varied more among tissues than among varieties at the transcriptional and translational levels. We identified 3392 upstream open reading frames (uORFs), and the uORF-containing genes were enriched in transcription factors. Only 668 of 13 492 long non-coding RNAs could be translated into peptides. Finally, we discovered numerous genes with allele-specific translational efficiency in SY63 and demonstrated that some cis-regulatory elements may contribute to allelic divergence in translational efficiency. Overall, these findings may improve our understanding of translational regulation in rice and provide information for molecular breeding research.
Collapse
Affiliation(s)
- Xi-Tong Zhu
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Run Zhou
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Che
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Yu Zheng
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Tahir Ul Qamar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jia-Wu Feng
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianwei Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Junxiang Gao
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ling-Ling Chen
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
14
|
Epigenetic Changes Occurring in Plant Inbreeding. Int J Mol Sci 2023; 24:ijms24065407. [PMID: 36982483 PMCID: PMC10048984 DOI: 10.3390/ijms24065407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Inbreeding is the crossing of closely related individuals in nature or a plantation or self-pollinating plants, which produces plants with high homozygosity. This process can reduce genetic diversity in the offspring and decrease heterozygosity, whereas inbred depression (ID) can often reduce viability. Inbred depression is common in plants and animals and has played a significant role in evolution. In the review, we aim to show that inbreeding can, through the action of epigenetic mechanisms, affect gene expression, resulting in changes in the metabolism and phenotype of organisms. This is particularly important in plant breeding because epigenetic profiles can be linked to the deterioration or improvement of agriculturally important characteristics.
Collapse
|
15
|
Vinodh Kumar PN, Mallikarjuna MG, Jha SK, Mahato A, Lal SK, K R Y, Lohithaswa HC, Chinnusamy V. Unravelling structural, functional, evolutionary and genetic basis of SWEET transporters regulating abiotic stress tolerance in maize. Int J Biol Macromol 2023; 229:539-560. [PMID: 36603713 DOI: 10.1016/j.ijbiomac.2022.12.326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/11/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023]
Abstract
Sugars Will Eventually be Exported Transporters (SWEETs) are the novel sugar transporters widely distributed among living systems. SWEETs play a crucial role in various bio-physiological processes, viz., plant developmental, nectar secretion, pollen development, and regulation of biotic and abiotic stresses, in addition to their prime sugar-transporting activity. Thus, in-depth structural, evolutionary, and functional characterization of maize SWEET transporters was performed for their utility in maize improvement. The mining of SWEET genes in the latest maize genome release (v.5) showed an uneven distribution of 20 ZmSWEETs. The comprehensive structural analyses and docking of ZmSWEETs with four sugars, viz., fructose, galactose, glucose, and sucrose, revealed frequent amino acid residues forming hydrogen (asparagine, valine, serine) and hydrophobic (tryptophan, glycine, and phenylalanine) interactions. Evolutionary analyses of SWEETs showed a mixed lineage with 50-100 % commonality of ortho-groups and -sequences evolved under strong purifying selection (Ka/Ks < 0.5). The duplication analysis showed non-functionalization (ZmSWEET18 in B73) and neo- and sub-functionalization (ZmSWEET3, ZmSWEET6, ZmSWEET9, ZmSWEET19, and ZmSWEET20) events in maize. Functional analyses of ZmSWEET genes through co-expression, in silico expression and qRT-PCR assays showed the relevance of ZmSWEETs expression in regulating drought, heat, and waterlogging stress tolerances in maize. The first ever ZmSWEET-regulatory network revealed 286 direct (ZmSWEET-TF: 140 ZmSWEET-miRNA: 146) and 1226 indirect (TF-TF: 597; TF-miRNA: 629) edges. The present investigation has given new insights into the complex transcriptional and post-transcriptional regulation and the regulatory and functional relevance of ZmSWEETs in assigning stress tolerance in maize.
Collapse
Affiliation(s)
- P N Vinodh Kumar
- Division of Genetics, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India; ICAR - Indian Agricultural Research Institute, Jharkhand, India
| | | | - Shailendra Kumar Jha
- Division of Genetics, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| | - Anima Mahato
- ICAR - Indian Agricultural Research Institute, Jharkhand, India
| | - Shambhu Krishan Lal
- School of Genetic Engineering, ICAR - Indian Institute of Agricultural Biotechnology, Ranchi 834003, India
| | - Yathish K R
- Winter Nursery Centre, ICAR-Indian Institute of Maize Research, Hyderabad, India
| | | | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR- Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
16
|
Li J, Wang L, Wan J, Dang K, Lin Y, Meng S, Qiu X, Wang Q, Zhao J, Mu L, Luo H, Ding D, Chen Z, Tang J. Dynamic patterns of gene expression and regulatory variation in the maize seed coat. BMC PLANT BIOLOGY 2023; 23:82. [PMID: 36750803 PMCID: PMC9903604 DOI: 10.1186/s12870-023-04078-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Seed size is an important factor contributing to maize yield, but its molecular mechanism remains unclear. The seed coat, which serves as one of the three components of the maize grain, determines seed size to a certain extent. The seed coat also shares the maternal genotype and is an ideal material for studying heterosis. RESULTS In this study, the self-pollinated seeds of the maize hybrid Yudan888 and its parental lines were continuously collected from 0 day after pollination (DAP) to 15 DAP for phenotyping, cytological observation and RNA-seq. The phenotypic data showed that 3 DAP and 8 DAP are the best time points to study maize seed coat heterosis. Cytological observations indicated that maize seed coat heterosis might be the result of the coordination between cell number and cell size. Furthermore, the RNA-seq results showed that the nonadditive genes changed significantly between 3 and 8 DAP. However, the number of genes expressed additively was not significantly different. Our findings suggest that seed coat heterosis in hybrid is the result of nonadditive expression caused by dynamic changes in genes at different time points during seed expansion and seed coat development. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment indicated that genes related to DNA replication, cell cycle regulation, circadian rhythms and metabolite accumulation contributed significantly to hybrid seed coat heterosis. CONCLUSION Maize seed coat phenotyping allowed us to infer that 3 DAP and 8 DAP are important time points in the study of seed coat heterosis. Our findings provide evidence for genes involved in DNA replication, cell cycle regulation, circadian rhythms and metabolite accumulation in hybrid with high or low parental expression as major contributors to hybrid seed coat heterosis.
Collapse
Affiliation(s)
- Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- National Key Laboratory of Wheat and Maize Crop Science; Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Liangfa Wang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- National Key Laboratory of Wheat and Maize Crop Science; Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- Hebi Academy of Agricultural Sciences, Hebi, 458030, China
| | - Jiong Wan
- National Key Laboratory of Wheat and Maize Crop Science; Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Kuntai Dang
- National Key Laboratory of Wheat and Maize Crop Science; Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yuan Lin
- Hebi Academy of Agricultural Sciences, Hebi, 458030, China
| | - Shujun Meng
- National Key Laboratory of Wheat and Maize Crop Science; Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaoqian Qiu
- National Key Laboratory of Wheat and Maize Crop Science; Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qiyue Wang
- Hebi Academy of Agricultural Sciences, Hebi, 458030, China
| | - Jiawen Zhao
- National Key Laboratory of Wheat and Maize Crop Science; Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Liqin Mu
- National Key Laboratory of Wheat and Maize Crop Science; Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hongbing Luo
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Dong Ding
- National Key Laboratory of Wheat and Maize Crop Science; Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Zehui Chen
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China.
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science; Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
- The Shennong Laboratory, Zhengzhou, 450002, China.
| |
Collapse
|
17
|
Raza B, Hameed A, Saleem MY. Fruit nutritional composition, antioxidant and biochemical profiling of diverse tomato (Solanum lycopersicum L.) genetic resource. FRONTIERS IN PLANT SCIENCE 2022; 13:1035163. [PMID: 36311077 PMCID: PMC9608662 DOI: 10.3389/fpls.2022.1035163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Tomato is the second most important vegetable crop consumed globally, by the virtue of its antioxidant-rich phytochemicals and bioactive compounds. Identifying genotypes with high antioxidant capacities and nutritionally rich phytochemicals is imperative for improving human health. The present study aimed to analyze 21 antioxidant and nutritional compounds in 93 geographically diverse, high yielding, better quality, stress tolerant tomato genotypes (hybrids, parental lines, inbred lines, and advanced lines). Significant variation (p < 0.05) was detected for investigated traits among the tested genotypes. Principal component analysis revealed the hybrids NIAB-Jauhar, Iron-lady F1, NBH-258, Ahmar F1, NIAB-Gohar, the parents H-24, B-25, AVTO1080, Astra and AVTO1003, as well as the lines LBR-17, AVTO1315, AVTO1311 and Lyp-1 revealed superior performance for the traits such as chlorophylls, lycopene, total carotenoids, total antioxidant capacity, total oxidant status, protease, alpha-amylase and total flavonoid content. Whereas the hybrids Surkhail F1, NBH-204, NBH-229, NBH-151, NBH-196, NBH-152, NBH-261, NBH-228, NIAB-Jauhar, NBH-256 and NBH-255, the lines 21354, AVTO1315, Newcherry, LA4097, AVTO1311 and UAF-1 together with the parents Naqeeb, NCEBR-5, M-82 and LBR-10 exhibited significant contribution to the traits such as total soluble sugars, reducing sugars, malondialdehyde, ascorbic acid, esterase, peroxidase and superoxide dismutase. Moreover, the semi-determinate and determinate tomato genotypes together with the categories parent and line with positive factor scores of 3.184, 0.015, 0.325 and 0.186 in PC- I, exhibited better performance for the trait such as total chlorophylls, lycopene, total carotenoids, total oxidant status, protease, alpha-amylase, total antioxidant capacity, esterase and total flavonoid content. Whereas again the semi-determinate and indeterminate tomato genotypes along with the category hybrid with positive factor scores of 2.619, 0.252 and 0.114 in PC- II, exhibited better performance for the traits such as total soluble sugars, reducing sugars, chlorophyll b, malondialdehyde content, ascorbic acid, superoxide dismutase and peroxidase. Hybrid vigor was observed in the hybrids for investigated traits. The aforementioned tomato genotypes showing outstanding performance in the respective traits can be exploited in the breeding programs to improve nutritional quality of tomato that can further improve human health.
Collapse
|
18
|
Zafar S, You H, Zhang F, Zhu SB, Chen K, Shen C, Wu H, Zhu F, Zhang C, Xu J. Genetic dissection of grain traits and their corresponding heterosis in an elite hybrid. FRONTIERS IN PLANT SCIENCE 2022; 13:977349. [PMID: 36275576 PMCID: PMC9581170 DOI: 10.3389/fpls.2022.977349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Rice productivity has considerably improved due to the effective employment of heterosis, but the genetic basis of heterosis for grain shape and weight remains uncertain. For studying the genetic dissection of heterosis for grain shape/weight and their relationship with grain yield in rice, quantitative trait locus (QTL) mapping was performed on 1,061 recombinant inbred lines (RILs), which was developed by crossing xian/indica rice Quan9311B (Q9311B) and Wu-shan-si-miao (WSSM). Whereas, BC1F1 (a backcross F1) was developed by crossing RILs with Quan9311A (Q9311A) combined with phenotyping in Hefei (HF) and Nanning (NN) environments. Overall, 114 (main-effect, mQTL) and 359 (epistatic QTL, eQTL) were identified in all populations (RIL, BC1F1, and mid-parent heterosis, HMPs) for 1000-grain weight (TGW), grain yield per plant (GYP) and grain shape traits including grain length (GL), grain width (GW), and grain length to width ratio (GLWR). Differential QTL detection revealed that all additive loci in RILs population do not show heterotic effects, and few of them affect the performance of BC1F1. However, 25 mQTL not only contributed to BC1F1's performance but also contributed to heterosis. A total of seven QTL regions was identified, which simultaneously affected multiple grain traits (grain yield, weight, shape) in the same environment, including five regions with opposite directions and two regions with same directions of favorable allele effects, indicating that partial genetic overlaps are existed between different grain traits. This study suggested different approaches for obtaining good grain quality with high yield by pyramiding or introgressing favorable alleles (FA) with the same direction of gene effect at the QTL regions affecting grain shape/weight and grain yield distributing on different chromosomes, or introgressing or pyramiding FA in the parents instead of fixing additive effects in hybrid as well as pyramiding the polymorphic overdominant/dominant loci between the parents and eliminating underdominant loci from the parents. These outcomes offer valuable information and strategy to develop hybrid rice with suitable grain type and weight.
Collapse
Affiliation(s)
- Sundus Zafar
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hui You
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuang Bin Zhu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Kai Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Congcong Shen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hezhou Wu
- Hunan Tao-Hua-Yuan Agricultural Technologies Co., LTD., Hunan, China
| | - Fangjin Zhu
- Hunan Tao-Hua-Yuan Agricultural Technologies Co., LTD., Hunan, China
| | | | - Jianlong Xu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Hainan Yazhou Bay Seed Lab/National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
19
|
Zhang F, Zhang C, Zhao X, Zhu S, Chen K, Zhou G, Wu Z, Li M, Zheng T, Wang W, Yan Z, Fei Q, Li Z, Chen J, Xu J. Genomic Architecture of Yield Performance of an Elite Rice Hybrid Revealed by its Derived Recombinant Inbred Line and Their Backcross Hybrid Populations. RICE (NEW YORK, N.Y.) 2022; 15:49. [PMID: 36181551 PMCID: PMC9526777 DOI: 10.1186/s12284-022-00595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Since its development and wide adoption in China, hybrid rice has reached the yield plateau for more than three decades. To understand the genetic basis of heterosis in rice and accelerate hybrid rice breeding, the yield performances of the elite rice hybrid, Quan-you-si-miao (QYSM) were genetically dissected by whole-genome sequencing, large-scale phenotyping of 1061 recombined inbred lines (RILs) and 1061 backcross F1 (BCF1) hybrids derived from QYSM's parents across three environments and gene-based analyses. RESULTS Genome-wide scanning of 13,847 segregating genes between the parents and linkage mapping based on 855 bins across the rice genome and phenotyping experiments across three environments resulted in identification of large numbers of genes, 639 main-effect QTLs (M-QTLs) and 2736 epistatic QTLs with significant additive or heterotic effects on the trait performances of the combined population consisting of RILs and BCF1 hybrids, most of which were environment-specific. The 324 M-QTLs affecting yield components included 32.7% additive QTLs, 38.0% over-dominant or dominant ones with strong and positive effects and 29.3% under-dominant or incomplete recessive ones with significant negative heterotic effects. 63.6% of 1403 genes with allelic introgression from subspecies japonica/Geng in the parents of QYSM may have contributed significantly to the enhanced yield performance of QYSM. CONCLUSIONS The parents of QYSM and related rice hybrids in China carry disproportionally more additive and under-dominant genes/QTLs affecting yield traits. Further focus in indica/Xian rice breeding should shift back to improving inbred varieties, while breaking yield ceiling of Xian hybrids can be achieved by one or combinations of the three strategies: (1) by pyramiding favorable alleles of additive genes, (2) by eliminating or minimizing under-dominant loci, and (3) by pyramiding overdominant/dominant genes polymorphic, particularly those underlying inter-subspecific heterosis.
Collapse
Affiliation(s)
- Fan Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Conghe Zhang
- Winall Hi-Tech Seed Co., Ltd., Hefei, 230088, Anhui, China
| | - Xiuqin Zhao
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuangbing Zhu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou, 518120, China
| | - Kai Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou, 518120, China
| | - Guixiang Zhou
- Winall Hi-Tech Seed Co., Ltd., Hefei, 230088, Anhui, China
| | - Zhichao Wu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Min Li
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Tianqing Zheng
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wensheng Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Zhi Yan
- Winall Hi-Tech Seed Co., Ltd., Hefei, 230088, Anhui, China
| | - Qinyong Fei
- Winall Hi-Tech Seed Co., Ltd., Hefei, 230088, Anhui, China
| | - Zhikang Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou, 518120, China.
| | - Jinjie Chen
- Winall Hi-Tech Seed Co., Ltd., Hefei, 230088, Anhui, China.
| | - Jianlong Xu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou, 518120, China.
| |
Collapse
|
20
|
Wang L, Liu J. Analysis of hybrid combining ability for growth and multiple stress tolerance traits in the Pacific white shrimp, Litopenaeus vannamei. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.948251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To identify optimal mating combinations for Litopenaeus vannamei, a linear mixed model was used to estimate the general combining ability (GCA) and specific combining ability (SCA) for growth and multiple stress tolerance [high salt (35‰), low pH (6 ± 0.1), and high ammonia nitrogen (70 mg/L) co-stress] traits in 47 combinations of L. vannamei. The results showed that the SCA in the parents played a dominant role in the offspring traits. The highest GCAs were observed for females of strain O and males of strain B (0.602 and 8.889, respectively), indicating that the dams of strain O and sires of strain B could be used as maternal and paternal lines to increase multiple stress resistance in the next generation. The growth traits of the hybrid combination strain G♂ × strain H♀ exhibited the highest degree of heterosis (9.838%–46.518%) and a generally high SCA (0.643–8.596) among all mating combinations. The SCA was the highest for the strain N♂ × strain O♀ multiple stress tolerance (30.131), while the heterosis for that combination strain was the third-highest. The combinations of strain G♂ × strain H♀ and strain N♂ × strain O♀ can be used as candidate combinations for rapid growth and multiple stress tolerance, respectively.
Collapse
|
21
|
Baldauf JA, Liu M, Vedder L, Yu P, Piepho HP, Schoof H, Nettleton D, Hochholdinger F. Single-parent expression complementation contributes to phenotypic heterosis in maize hybrids. PLANT PHYSIOLOGY 2022; 189:1625-1638. [PMID: 35522211 PMCID: PMC9237695 DOI: 10.1093/plphys/kiac180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
The dominance model of heterosis explains the superior performance of F1-hybrids via the complementation of deleterious alleles by beneficial alleles in many genes. Genes active in one parent but inactive in the second lead to single-parent expression (SPE) complementation in maize (Zea mays L.) hybrids. In this study, SPE complementation resulted in approximately 700 additionally active genes in different tissues of genetically diverse maize hybrids on average. We established that the number of SPE genes is significantly associated with mid-parent heterosis (MPH) for all surveyed phenotypic traits. In addition, we highlighted that maternally (SPE_B) and paternally (SPE_X) active SPE genes enriched in gene co-expression modules are highly correlated within each SPE type but separated between these two SPE types. While SPE_B-enriched co-expression modules are positively correlated with phenotypic traits, SPE_X-enriched modules displayed a negative correlation. Gene ontology term enrichment analyses indicated that SPE_B patterns are associated with growth and development, whereas SPE_X patterns are enriched in defense and stress response. In summary, these results link the degree of phenotypic MPH to the prevalence of gene expression complementation observed by SPE, supporting the notion that hybrids benefit from SPE complementation via its role in coordinating maize development in fluctuating environments.
Collapse
Affiliation(s)
- Jutta A Baldauf
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113 Bonn, Germany
| | | | - Lucia Vedder
- Institute of Crop Science and Resource Conservation, Crop Bioinformatics, University of Bonn, 53115 Bonn, Germany
| | - Peng Yu
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation, University of Bonn, 53113 Bonn, Germany
| | - Hans-Peter Piepho
- Institute of Crop Science, Biostatistics Unit, University of Hohenheim, 70599 Stuttgart, Germany
| | - Heiko Schoof
- Institute of Crop Science and Resource Conservation, Crop Bioinformatics, University of Bonn, 53115 Bonn, Germany
| | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, Iowa 50011-1210, USA
| | | |
Collapse
|
22
|
Wan J, Wang Q, Zhao J, Zhang X, Guo Z, Hu D, Meng S, Lin Y, Qiu X, Mu L, Ding D, Tang J. Gene expression variation explains maize seed germination heterosis. BMC PLANT BIOLOGY 2022; 22:301. [PMID: 35718761 PMCID: PMC9208091 DOI: 10.1186/s12870-022-03690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Heterosis has been extensively utilized in plant breeding, however, the underlying molecular mechanism remains largely elusive. Maize (Zea mays), which exhibits strong heterosis, is an ideal material for studying heterosis. RESULTS In this study, there is faster imbibition and development in reciprocal crossing Zhengdan958 hybrids than in their parent lines during seed germination. To investigate the mechanism of heterosis of maize germination, comparative transcriptomic analyses were conducted. The gene expression patterns showed that 1324 (47.27%) and 1592 (66.44%) of the differential expression genes between hybrids and either parental line display parental dominance up or higher levels in the reciprocal cross of Zhengdan958, respectively. Notably, these genes were mainly enriched in metabolic pathways, including carbon metabolism, glycolysis/gluconeogenesis, protein processing in endoplasmic reticulum, etc. CONCLUSION: Our results provide evidence for the higher expression level genes in hybrid involved in metabolic pathways acting as main contributors to maize seed germinating heterosis. These findings provide new insights into the gene expression variation of maize embryos and improve the understanding of maize seed germination heterosis.
Collapse
Affiliation(s)
- Jiong Wan
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qiyue Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jiawen Zhao
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xuehai Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhanyong Guo
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Desheng Hu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shujun Meng
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yuan Lin
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaoqian Qiu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Liqin Mu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dong Ding
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
- The Shennong Laboratory, Zhengzhou, 450002, China.
| |
Collapse
|
23
|
Genetic variability, combining ability and molecular diversity-based parental line selection for heterosis breeding in field corn (Zea mays L.). Mol Biol Rep 2022; 49:4517-4524. [PMID: 35474052 PMCID: PMC9262758 DOI: 10.1007/s11033-022-07295-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/23/2022] [Indexed: 11/04/2022]
Abstract
Background The demand of maize crop is increasing day by day, hence to reduce the production and demand gap, there is a need to extract the high yielding parental lines to improve per se yield of the hybrids, which could help to enhance the productivity in maize crops. Methods and results The present investigation was carried out to select the best medium maturing inbred lines, among a set of 118 inbred lines. Based on the Duncan multiple range test, out of 118 lines, 16 inbred lines were selected on the basis of its high yield per se and flowering time. The molecular diversity was carried out using SSR markers linked to heterotic QTL and up on diversity analysis it classified selected genotypes in to three distinct groups. Among the selected inbred lines, a wider genetic variability and molecular diversity were observed. A total of 39 test crosses were generated after classifying 16 inbred lines in to three testers and thirteen lines (based on per se grain yield and molecular diversity) and crossing them in line × tester manner. Conclusion Combining ability analysis of these parental lines showed that female parents, PML 109, PML 110, PML 111, PML 114 and PML 116 showed additive effect for KRN and grain yield, whereas male parents, PML 46, and PML 93 showed epistatic effect for KRN and PML 102 showed epistatic effect for grain yield. The generated information in the present investigation may be exploited for heterosis breeding in filed corn. Key messages To tackle the balanced dietary requirement of Indian population; we focused to enhance the productivity of maize hybrids using genetically broad based, elite, diverse inbred lines. Combination of selection criterion, not only augment the productivity but also improves the quality of hybrid/s. Supplementary Information The online version contains supplementary material available at 10.1007/s11033-022-07295-3.
Collapse
|
24
|
Ben-Naim Y, Weitman M. Joint Action of Pb1 and Pb2 Provides Dominant Complementary Resistance Against New Races of Peronospora belbahrii (Basil Downy Mildew). PHYTOPATHOLOGY 2022; 112:595-607. [PMID: 34213959 DOI: 10.1094/phyto-02-21-0065-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sweet basil (Ocimum basilicum, 2n = 4x = 48) is susceptible to downy mildew caused by Peronospora belbahrii. The Pb1 gene exhibits complete resistance to the disease. However, Pb1 became prone to disease because of occurrence of new virulent races. Here, we show that Zambian accession PI 500950 (Ocimum americanum var. pilosum) is highly resistant to the new races. From an interspecies backcross between PI 500950 and the susceptible 'Sweet basil' we obtained, by embryo rescue, a population of 131 BC1F1 plants. This population segregated 73 resistant (58) and susceptible (1:1; P = 0.22) plants, suggesting that resistance is controlled by one incompletely dominant gene called Pb2. To determine whether allelic relationship exists between Pb1 and Pb2, we used two differential races: race 0, which is avirulent to both PI 500945 (Pb1) and PI 500950 (Pb2), and race 1, which is virulent to PI 500945 but avirulent to PI 500950. F1 plants obtained from '12-4-6' (BC6F3 derived from PI 500945) and '56' (BC3F3 derived from PI 500950) showed resistant superiority to both races through dominant complementary interaction. F2 plants segregated to race 0 as follows: 12:3:1 (immune/incomplete resistant/susceptible) as opposed to 9:3:4 to race 1, indicating that Pb1 and Pb2 are not alleles. Because joint action is contributed in F1 plants and in advanced [BC3F3(56) × BC6F3(12-4-6) F4] populations that carry both genes, it can be assumed that both accessions carry two unlinked genes but share a common signal transduction pathway, which leads to dominant complementation superiority of the resistance against different races of basil downy mildew.
Collapse
Affiliation(s)
- Yariv Ben-Naim
- Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Michal Weitman
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
25
|
Wang Y, Yuan J, Sun Y, Li Y, Wang P, Shi L, Ni A, Zong Y, Zhao J, Bian S, Ma H, Chen J. Genetic Basis of Sexual Maturation Heterosis: Insights From Ovary lncRNA and mRNA Repertoire in Chicken. Front Endocrinol (Lausanne) 2022; 13:951534. [PMID: 35966096 PMCID: PMC9363637 DOI: 10.3389/fendo.2022.951534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/13/2022] [Indexed: 01/02/2023] Open
Abstract
Sexual maturation is fundamental to the reproduction and production performance, heterosis of which has been widely used in animal crossbreeding. However, the underlying mechanism have long remained elusive, despite its profound biological and agricultural significance. In the current study, the reciprocal crossing between White Leghorns and Beijing You chickens were performed to measure the sexual maturation heterosis, and the ovary lncRNAs and mRNAs of purebreds and crossbreeds were profiled to illustrate molecular mechanism of heterosis. Heterosis larger than 20% was found for pubic space and oviduct length, whereas age at first egg showed negative heterosis in both crossbreeds. We identified 1170 known lncRNAs and 1994 putative lncRNAs in chicken ovary using a stringent pipeline. Gene expression pattern showed that nonadditivity was predominant, and the proportion of nonadditive lncRNAs and genes was similar between two crossbreeds, ranging from 44.24% to 49.15%. A total of 200 lncRNAs and 682 genes were shared by two crossbreeds, respectively. GO and KEGG analysis showed that the common genes were significantly enriched in the cell cycle, animal organ development, gonad development, ECM-receptor interaction, calcium signaling pathway and GnRH signaling pathway. Weighted gene co-expression network analysis (WGCNA) identified that 7 out of 20 co-expressed lncRNA-mRNA modules significantly correlated with oviduct length and pubic space. Interestingly, genes harbored in seven modules were also enriched in the similar biological process and pathways, in which nonadditive lncRNAs, such as MSTRG.17017.1 and MSTRG.6475.20, were strongly associated with nonadditive genes, such as CACNA1C and TGFB1 to affect gonad development and GnRH signaling pathway, respectively. Moreover, the results of real-time quantitative PCR (RT-qPCR) correlated well with the transcriptome data. Integrated with positive heterosis of serum GnRH and melatonin content detected in crossbreeds, we speculated that nonadditive genes involved in the GnRH signaling pathway elevated the gonad development, leading to the sexual maturation heterosis. We characterized a systematic landscape of ovary lncRNAs and mRNAs related to sexual maturation heterosis in chicken. The quantitative exploration of hybrid transcriptome changes lays foundation for genetic improvement of sexual maturation traits and provides insights into endocrine control of sexual maturation.
Collapse
|
26
|
Escoto-Sandoval C, Ochoa-Alejo N, Martínez O. Inheritance of gene expression throughout fruit development in chili pepper. Sci Rep 2021; 11:22647. [PMID: 34811443 PMCID: PMC8609037 DOI: 10.1038/s41598-021-02151-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/10/2021] [Indexed: 12/13/2022] Open
Abstract
Gene expression is the primary molecular phenotype and can be estimated in specific organs or tissues at particular times. Here we analyzed genome-wide inheritance of gene expression in fruits of chili pepper (Capsicum annuum L.) in reciprocal crosses between a domesticated and a wild accession, estimating this parameter during fruit development. We defined a general hierarchical schema to classify gene expression inheritance which can be employed for any quantitative trait. We found that inheritance of gene expression is affected by both, the time of fruit development as well as the direction of the cross, and propose that such variations could be common in many developmental processes. We conclude that classification of inheritance patterns is important to have a better understanding of the mechanisms underlying gene expression regulation, and demonstrate that sets of genes with specific inheritance pattern at particular times of fruit development are enriched in different biological processes, molecular functions and cell components. All curated data and functions for analysis and visualization are publicly available as an R package.
Collapse
Affiliation(s)
- Christian Escoto-Sandoval
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Unidad de Genómica Avanzada (Langebio), Irapuato Guanajuato, 36824, México
| | - Neftalí Ochoa-Alejo
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Departamento de Ingeniería Genética, Unidad Irapuato, Irapuato Guanajuato, 36824, México
| | - Octavio Martínez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Unidad de Genómica Avanzada (Langebio), Irapuato Guanajuato, 36824, México.
| |
Collapse
|
27
|
Wang Q, Yan T, Long Z, Huang LY, Zhu Y, Xu Y, Chen X, Pak H, Li J, Wu D, Xu Y, Hua S, Jiang L. Prediction of heterosis in the recent rapeseed (Brassica napus) polyploid by pairing parental nucleotide sequences. PLoS Genet 2021; 17:e1009879. [PMID: 34735437 PMCID: PMC8608326 DOI: 10.1371/journal.pgen.1009879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/22/2021] [Accepted: 10/15/2021] [Indexed: 11/19/2022] Open
Abstract
The utilization of heterosis is a successful strategy in increasing yield for many crops. However, it consumes tremendous manpower to test the combining ability of the parents in fields. Here, we applied the genomic-selection (GS) strategy and developed models that significantly increase the predictability of heterosis by introducing the concept of a regional parental genetic-similarity index (PGSI) and reducing dimension in the calculation matrix in a machine-learning approach. Overall, PGSI negatively affected grain yield and several other traits but positively influenced the thousand-seed weight of the hybrids. It was found that the C subgenome of rapeseed had a greater impact on heterosis than the A subgenome. We drew maps with overviews of quantitative-trait loci that were responsible for the heterosis (h-QTLs) of various agronomic traits. Identifications and annotations of genes underlying high impacting h-QTLs were provided. Using models that we elaborated, combining abilities between an Ogu-CMS-pool member and a potential restorer can be simulated in silico, sidestepping laborious work, such as testing crosses in fields. The achievements here provide a case of heterosis prediction in polyploid genomes with relatively large genome sizes. Oilseed rape (Brassica napus) is of significant economic interest worldwide, providing high-quality oil with excellent health-promoting properties. It represents an excellent model of a successful recent polyploid that rapidly became an important crop worldwide. The utilization of hybridization, leading to hybrid vigor, or heterosis, is a successful strategy in increasing yield and vigor for many field crops including rapeseed (Brassica napus). However, the procedure of using classical breeding methods remains slow and laborious, illustrating the need for predictive and innovative methods. Here, we have achieved a significant breakthrough by using genome selection and significantly advanced models to predict the heterosis by pairing genome-wide nucleotides of parents. We provided maps with overviews of quantitative trait loci that were responsible for the heterosis of various agronomic traits. The research used deep resequencing (>30x) data of the entire polyploidy rapeseed genome, providing a successful case for the prediction of heterosis in polyploid genomes with relatively large genome sizes. Moreover, we provided the genetic information (SNPs) of 1007 core accessions of this species in the public domain for testing combinations with high heterosis using our predicting model for rapeseed breeders all over the world.
Collapse
Affiliation(s)
- Qian Wang
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Tao Yan
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Zhengbiao Long
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Luna Yue Huang
- Department of Agricultural and Resource Economics, University of California, Berkeley, California, United States of America
| | - Yang Zhu
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Ying Xu
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Xiaoyang Chen
- Institute of Crop Science, Jinhua Academy of Agricultural Sciences, Jinhua, China
| | - Haksong Pak
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Jiqiang Li
- Institute of Crop Science, Zhangye Academy of Agricultural Sciences, Zhangye, China
| | - Dezhi Wu
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Yang Xu
- Agricultural College, Yangzhou University, Yangzhou, China
- * E-mail: (YX); (SH); (LJ)
| | - Shuijin Hua
- Institute of Crop and Nuclear Agricultural Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- * E-mail: (YX); (SH); (LJ)
| | - Lixi Jiang
- Institute of Crop Science, Zhejiang University, Hangzhou, China
- * E-mail: (YX); (SH); (LJ)
| |
Collapse
|
28
|
Rehman AU, Dang T, Qamar S, Ilyas A, Fatema R, Kafle M, Hussain Z, Masood S, Iqbal S, Shahzad K. Revisiting Plant Heterosis-From Field Scale to Molecules. Genes (Basel) 2021; 12:genes12111688. [PMID: 34828294 PMCID: PMC8619659 DOI: 10.3390/genes12111688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/21/2022] Open
Abstract
Heterosis refers to the increase in biomass, stature, fertility, and other characters that impart superior performance to the F1 progeny over genetically diverged parents. The manifestation of heterosis brought an economic revolution to the agricultural production and seed sector in the last few decades. Initially, the idea was exploited in cross-pollinated plants, but eventually acquired serious attention in self-pollinated crops as well. Regardless of harvesting the benefits of heterosis, a century-long discussion is continued to understand the underlying basis of this phenomenon. The massive increase in knowledge of various fields of science such as genetics, epigenetics, genomics, proteomics, and metabolomics persistently provide new insights to understand the reasons for the expression of hybrid vigor. In this review, we have gathered information ranging from classical genetic studies, field experiments to various high-throughput omics and computational modelling studies in order to understand the underlying basis of heterosis. The modern-day science has worked significantly to pull off our understanding of heterosis yet leaving open questions that requires further research and experimentation. Answering these questions would possibly equip today’s plant breeders with efficient tools and accurate choices to breed crops for a sustainable future.
Collapse
Affiliation(s)
- Attiq ur Rehman
- Horticulture Technologies, Production Systems Unit, Natural Resources Institute (Luke), Toivonlinnantie 518, 21500 Piikkiö, Finland;
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, The University of Helsinki, 00790 Helsinki, Finland;
| | - Trang Dang
- Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
- Correspondence:
| | - Shanzay Qamar
- Department of Agricultural Biotechnology, National Institute of Biotechnology and Genetic Engineering, Pakistan Institute of Engineering and Applied Science, Faisalabad 38000, Pakistan;
| | - Amina Ilyas
- Department of Botany, Government College University, Lahore 54000, Pakistan;
| | - Reemana Fatema
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), SE-230 53 Alnarp, Sweden;
- Department of Seed Science and Technology, Ege University, Bornova, Izmir 35100, Turkey
| | - Madan Kafle
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, The University of Helsinki, 00790 Helsinki, Finland;
| | - Zawar Hussain
- Environmental and Plant Biology Department, Ohio University, Athens, OH 45701, USA;
| | - Sara Masood
- University Institute of Diet and Nutritional Sciences (UIDNS), Faculty of Allied Health Sciences, University of Lahore, Lahore 54000, Pakistan;
| | - Shehyar Iqbal
- IMPLANTEUS Graduate School, Avignon Université, 84000 Avignon, France;
| | - Khurram Shahzad
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur 22620, Pakistan;
| |
Collapse
|
29
|
Hu Z, Chen X, Huangfu L, Shao S, Tao X, Song L, Tong W, Yi CD. Comparative analysis morphology, anatomical structure and transcriptional regulatory network of chlorophyll biosynthesis in Oryza longistaminata, O. sativa and their F 1 generation. PeerJ 2021; 9:e12099. [PMID: 34567844 PMCID: PMC8428261 DOI: 10.7717/peerj.12099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/10/2021] [Indexed: 02/01/2023] Open
Abstract
Oryza longistaminata, a perennial wild species, is widely distributed in the African continent. It has strong tolerance to biotic and abiotic stresses, and high biomass production on poor soils. Chlorophyll biosynthesis is important for photosynthesis in rice. However, the chlorophyll biosynthesis and related gene profiles of O. longistaminata and its descendants remained unclear. Here, the F1 generation of O. sativa and O. longistaminata were obtained. Then, the comparative analysis morphology, anatomical structure, and transcriptional regulatory networks of chlorophyll biosynthesis were detected and analyzed. Results showed that the F1 generation has obvious long awn, similar with that of the male parent. The purple color of the long awn is different from that of the male parent. Microstructural results showed that the flag leaves of F1 have large mesophyll cell gaps in the upper- and lower-positions, small mesophyll cell gaps in the middle position, and more chloroplasts. Increased chlorophyll content was also observed in the F1 generation. In the lower-position flag leaves, the total chlorophyll contents of F1 were 1.55 and 1.5 times those of O. sativa and O. longistaminata, respectively. POR, MgCH and HEMA1 showed higher expression levels than the other related genes selected in the chlorophyll biosynthesis pathway. The HEMA1 expression level in the middle-position flag leaves of O. longistaminata was the highest, and it was 2.83 and 2.51 times that of O. sativa and F1, respectively. The expression level of DVR gene in lower-position flag leaves of F1 were 93.16% and 95.06% lower than those of O. sativa and O. longistaminata, respectively. This study provided a potential reference for studying the photosynthesis and heterosis utilization of O. longistaminata.
Collapse
Affiliation(s)
- Zhihang Hu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Xinyu Chen
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Liexiang Huangfu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Shaobo Shao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Xiang Tao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Lishuang Song
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Wenzhi Tong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Chuan-Deng Yi
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
30
|
Wu X, Liu Y, Zhang Y, Gu R. Advances in Research on the Mechanism of Heterosis in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:745726. [PMID: 34646291 PMCID: PMC8502865 DOI: 10.3389/fpls.2021.745726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/06/2021] [Indexed: 05/13/2023]
Abstract
Heterosis is a common biological phenomenon in nature. It substantially contributes to the biomass yield and grain yield of plants. Moreover, this phenomenon results in high economic returns in agricultural production. However, the utilization of heterosis far exceeds the level of theoretical research on this phenomenon. In this review, the recent progress in research on heterosis in plants was reviewed from the aspects of classical genetics, parental genetic distance, quantitative trait loci, transcriptomes, proteomes, epigenetics (DNA methylation, histone modification, and small RNA), and hormone regulation. A regulatory network of various heterosis-related genes under the action of different regulatory factors was summarized. This review lays a foundation for the in-depth study of the molecular and physiological aspects of this phenomenon to promote its effects on increasing the yield of agricultural production.
Collapse
Affiliation(s)
- Xilin Wu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Yan Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Yaowei Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Ran Gu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
31
|
Xiao Q, Huang Z, Shen Y, Gan Y, Wang Y, Gong S, Lu Y, Luo X, You W, Ke C. Transcriptome analysis reveals the molecular mechanisms of heterosis on thermal resistance in hybrid abalone. BMC Genomics 2021; 22:650. [PMID: 34496767 PMCID: PMC8428104 DOI: 10.1186/s12864-021-07954-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Heterosis has been exploited for decades in different animals and crops due to it resulting in dramatic increases in yield and adaptability. Hybridization is a classical breeding method that can effectively improve the genetic characteristics of organisms through heterosis. Abalone has become an increasingly economically important aquaculture resource with high commercial value. However, due to changing climate, abalone is now facing serious threats of high temperature in summer. Interspecific hybrid abalone (Haliotis gigantea ♀ × H. discus hannai ♂, SD) has been cultured at large scale in southern China and has been shown high survival rates under heat stress in summer. Therefore, SD has become a good model material for heterosis research, but the molecular basis of heterosis remains elusive. RESULTS Heterosis in thermal tolerance of SD was verified through Arrhenius break temperatures (ABT) of cardiac performance in this study. Then RNA-Sequencing was conducted to obtain gene expression patterns and alternative splicing events at control temperature (20 °C) and heat stress temperature (30 °C). A total of 356 (317 genes), 476 (435genes), and 876 (726 genes) significantly diverged alternative splicing events were identified in H. discus hannai (DD), H. gigantea (SS), and SD in response to heat stress, respectively. In the heat stress groups, 93.37% (20,512 of 21,969) of the expressed genes showed non-additive expression patterns, and over-dominance expression patterns of genes account for the highest proportion (40.15%). KEGG pathway enrichment analysis showed that the overlapping genes among common DEGs and NAGs were significantly enriched in protein processing in the endoplasmic reticulum, mitophagy, and NF-κB signaling pathway. In addition, we found that among these overlap genes, 39 genes had undergone alternative splicing events in SD. These pathways and genes may play an important role in the thermal resistance of hybrid abalone. CONCLUSION More alternative splicing events and non-additive expressed genes were detected in hybrid under heat stress and this may contribute to its thermal heterosis. These results might provide clues as to how hybrid abalone has a better physiological regulation ability than its parents under heat stress, to increase our understanding of heterosis in abalone.
Collapse
Affiliation(s)
- Qizhen Xiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Zekun Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Yawei Shen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Yang Gan
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Yi Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Shihai Gong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Yisha Lu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Xuan Luo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, People's Republic of China.
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102, People's Republic of China.
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, People's Republic of China.
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102, People's Republic of China.
| |
Collapse
|
32
|
Wang Z, Hao R, Li X. The differences in the nitrogen isotope composition between a maize hybrid and its parents. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2021; 57:271-280. [PMID: 33730941 DOI: 10.1080/10256016.2021.1900172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Understanding of nitrogen stable isotope variation in maize hybrids might help obtaining information on nitrogen absorption and distribution in different maize hybrids. In this study, we examined the nitrogen isotopic composition of different parts of maize hybrids under a laboratory culture experiment. The results showed that the δ15N values of different parts of the maize hybrid and its parents were ordered as follows: δ15Nstem>δ15Nleaf>δ15Nroot. The variation pattern of δ15N between the roots and leaves(Δδ15Nroot-leaf) of the maize hybrid was the same as that of δ15N between the roots and stems (Δδ15Nroot-stem). Therefore, the order of Δδ15Nroot-leaf as well as Δδ15Nroot-stem was as follows: Δδ15Nroot-leaf of the maize hybrid>Δδ15Nroot-leaf of the female parent (T4)>Δδ15Nroot-leaf of the male parent (803) and Δδ15Nroot-stem of the maize hybrid>Δδ15Nroot-stem of the female parent (T4)>Δδ15Nroot-stem of the male parent (803). This order is consistent with heterosis, indicating that differences in δ15N reflect the phenomenon of heterosis. The present study provides data in support of using the isotope technique to determine nitrogen distributions inside a plant and guide crossbreeding.
Collapse
Affiliation(s)
- Zhoufeng Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an, China
| | - Ruijuan Hao
- School of Biological and Environmental Engineering, Xi'an University, Xi'an, People's Republic of China
| | - Xiangzhong Li
- Yunnan Key Laboratory of Earth System Science, Yunnan University, Kunming, People's Republic of China
| |
Collapse
|
33
|
Mai C, Wen C, Xu Z, Xu G, Chen S, Zheng J, Sun C, Yang N. Genetic basis of negative heterosis for growth traits in chickens revealed by genome-wide gene expression pattern analysis. J Anim Sci Biotechnol 2021; 12:52. [PMID: 33865443 PMCID: PMC8053289 DOI: 10.1186/s40104-021-00574-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/21/2021] [Indexed: 11/18/2022] Open
Abstract
Background Heterosis is an important biological phenomenon that has been extensively utilized in agricultural breeding. However, negative heterosis is also pervasively observed in nature, which can cause unfavorable impacts on production performance. Compared with systematic studies of positive heterosis, the phenomenon of negative heterosis has been largely ignored in genetic studies and breeding programs, and the genetic mechanism of this phenomenon has not been thoroughly elucidated to date. Here, we used chickens, the most common agricultural animals worldwide, to determine the genetic and molecular mechanisms of negative heterosis. Results We performed reciprocal crossing experiments with two distinct chicken lines and found that the body weight presented widely negative heterosis in the early growth of chickens. Negative heterosis of carcass traits was more common than positive heterosis, especially breast muscle mass, which was over − 40% in reciprocal progenies. Genome-wide gene expression pattern analyses of breast muscle tissues revealed that nonadditivity, including dominance and overdominace, was the major gene inheritance pattern. Nonadditive genes, including a substantial number of genes encoding ATPase and NADH dehydrogenase, accounted for more than 68% of differentially expressed genes in reciprocal crosses (4257 of 5587 and 3617 of 5243, respectively). Moreover, nonadditive genes were significantly associated with the biological process of oxidative phosphorylation, which is the major metabolic pathway for energy release and animal growth and development. The detection of ATP content and ATPase activity for purebred and crossbred progenies further confirmed that chickens with lower muscle yield had lower ATP concentrations but higher hydrolysis activity, which supported the important role of oxidative phosphorylation in negative heterosis for growth traits in chickens. Conclusions These findings revealed that nonadditive genes and their related oxidative phosphorylation were the major genetic and molecular factors in the negative heterosis of growth in chickens, which would be beneficial to future breeding strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00574-2.
Collapse
Affiliation(s)
- Chunning Mai
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Chaoliang Wen
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Zhiyuan Xu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Guiyun Xu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Sirui Chen
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Jiangxia Zheng
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China.
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
34
|
Biological pathway expression complementation contributes to biomass heterosis in Arabidopsis. Proc Natl Acad Sci U S A 2021; 118:2023278118. [PMID: 33846256 DOI: 10.1073/pnas.2023278118] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The mechanisms underlying heterosis have long remained a matter of debate, despite its agricultural importance. How changes in transcriptional networks during plant development are relevant to the continuous manifestation of growth vigor in hybrids is intriguing and unexplored. Here, we present an integrated high-resolution analysis of the daily dynamic growth phenotypes and transcriptome atlases of young Arabidopsis seedlings (parental ecotypes [Col-0 and Per-1] and their F1 hybrid). Weighted gene coexpression network analysis uncovered divergent expression patterns between parents of the network hub genes, in which genes related to the cell cycle were more highly expressed in one parent (Col-0), whereas those involved in photosynthesis were more highly expressed in the other parent (Per-1). Notably, the hybrid exhibited spatiotemporal high-parent-dominant expression complementation of network hub genes in the two pathways during seedling growth. This suggests that the integrated capacities of cell division and photosynthesis contribute to hybrid growth vigor, which could be enhanced by temporal advances in the progression of leaf development in the hybrid relative to its parents. Altogether, this study provides evidence of expression complementation between fundamental biological pathways in hybrids and highlights the contribution of expression dominance in heterosis.
Collapse
|
35
|
Song L, Shi JY, Duan SF, Han DY, Li K, Zhang RP, He PY, Han PJ, Wang QM, Bai FY. Improved redox homeostasis owing to the up-regulation of one-carbon metabolism and related pathways is crucial for yeast heterosis at high temperature. Genome Res 2021; 31:622-634. [PMID: 33722936 PMCID: PMC8015850 DOI: 10.1101/gr.262055.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 02/12/2021] [Indexed: 11/25/2022]
Abstract
Heterosis or hybrid vigor is a common phenomenon in plants and animals; however, the molecular mechanisms underlying heterosis remain elusive, despite extensive studies on the phenomenon for more than a century. Here we constructed a large collection of F1 hybrids of Saccharomyces cerevisiae by spore-to-spore mating between homozygous wild strains of the species with different genetic distances and compared growth performance of the F1 hybrids with their parents. We found that heterosis was prevalent in the F1 hybrids at 40°C. A hump-shaped relationship between heterosis and parental genetic distance was observed. We then analyzed transcriptomes of selected heterotic and depressed F1 hybrids and their parents growing at 40°C and found that genes associated with one-carbon metabolism and related pathways were generally up-regulated in the heterotic F1 hybrids, leading to improved cellular redox homeostasis at high temperature. Consistently, genes related with DNA repair, stress responses, and ion homeostasis were generally down-regulated in the heterotic F1 hybrids. Furthermore, genes associated with protein quality control systems were also generally down-regulated in the heterotic F1 hybrids, suggesting a lower level of protein turnover and thus higher energy use efficiency in these strains. In contrast, the depressed F1 hybrids, which were limited in number and mostly shared a common aneuploid parental strain, showed a largely opposite gene expression pattern to the heterotic F1 hybrids. We provide new insights into molecular mechanisms underlying heterosis and thermotolerance of yeast and new clues for a better understanding of the molecular basis of heterosis in plants and animals.
Collapse
Affiliation(s)
- Liang Song
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun-Yan Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shou-Fu Duan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Da-Yong Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuan Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ri-Peng Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng-Yu He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pei-Jie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi-Ming Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
36
|
Li P, Su T, Zhang D, Wang W, Xin X, Yu Y, Zhao X, Yu S, Zhang F. Genome-wide analysis of changes in miRNA and target gene expression reveals key roles in heterosis for Chinese cabbage biomass. HORTICULTURE RESEARCH 2021; 8:39. [PMID: 33642594 PMCID: PMC7917107 DOI: 10.1038/s41438-021-00474-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 12/05/2020] [Accepted: 12/12/2020] [Indexed: 05/12/2023]
Abstract
Heterosis is a complex phenomenon in which hybrids show better phenotypic characteristics than their parents do. Chinese cabbage (Brassica rapa L. spp. pekinensis) is a popular leafy crop species, hybrids of which are widely used in commercial production; however, the molecular basis of heterosis for biomass of Chinese cabbage is poorly understood. We characterized heterosis in a Chinese cabbage F1 hybrid cultivar and its parental lines from the seedling stage to the heading stage; marked heterosis of leaf weight and biomass yield were observed. Small RNA sequencing revealed 63 and 50 differentially expressed microRNAs (DEMs) at the seedling and early-heading stages, respectively. The expression levels of the majority of miRNA clusters in the F1 hybrid were lower than the mid-parent values (MPVs). Using degradome sequencing, we identified 1,819 miRNA target genes. Gene ontology (GO) analyses demonstrated that the target genes of the MPV-DEMs and low parental expression level dominance (ELD) miRNAs were significantly enriched in leaf morphogenesis, leaf development, and leaf shaping. Transcriptome analysis revealed that the expression levels of photosynthesis and chlorophyll synthesis-related MPV-DEGs (differentially expressed genes) were significantly different in the F1 hybrid compared to the parental lines, resulting in increased photosynthesis capacity and chlorophyll content in the former. Furthermore, expression of genes known to regulate leaf development was also observed at the seedling stage. Arabidopsis plants overexpressing BrGRF4.2 and bra-miR396 presented increased and decreased leaf sizes, respectively. These results provide new insight into the regulation of target genes and miRNA expression patterns in leaf size and heterosis for biomass of B. rapa.
Collapse
Affiliation(s)
- Peirong Li
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Tongbing Su
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Deshuang Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Weihong Wang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Xiaoyun Xin
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Yangjun Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Xiuyun Zhao
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Shuancang Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China.
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China.
| | - Fenglan Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China.
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China.
| |
Collapse
|
37
|
Labroo MR, Studer AJ, Rutkoski JE. Heterosis and Hybrid Crop Breeding: A Multidisciplinary Review. Front Genet 2021; 12:643761. [PMID: 33719351 PMCID: PMC7943638 DOI: 10.3389/fgene.2021.643761] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/08/2021] [Indexed: 11/24/2022] Open
Abstract
Although hybrid crop varieties are among the most popular agricultural innovations, the rationale for hybrid crop breeding is sometimes misunderstood. Hybrid breeding is slower and more resource-intensive than inbred breeding, but it allows systematic improvement of a population by recurrent selection and exploitation of heterosis simultaneously. Inbred parental lines can identically reproduce both themselves and their F1 progeny indefinitely, whereas outbred lines cannot, so uniform outbred lines must be bred indirectly through their inbred parents to harness heterosis. Heterosis is an expected consequence of whole-genome non-additive effects at the population level over evolutionary time. Understanding heterosis from the perspective of molecular genetic mechanisms alone may be elusive, because heterosis is likely an emergent property of populations. Hybrid breeding is a process of recurrent population improvement to maximize hybrid performance. Hybrid breeding is not maximization of heterosis per se, nor testing random combinations of individuals to find an exceptional hybrid, nor using heterosis in place of population improvement. Though there are methods to harness heterosis other than hybrid breeding, such as use of open-pollinated varieties or clonal propagation, they are not currently suitable for all crops or production environments. The use of genomic selection can decrease cycle time and costs in hybrid breeding, particularly by rapidly establishing heterotic pools, reducing testcrossing, and limiting the loss of genetic variance. Open questions in optimal use of genomic selection in hybrid crop breeding programs remain, such as how to choose founders of heterotic pools, the importance of dominance effects in genomic prediction, the necessary frequency of updating the training set with phenotypic information, and how to maintain genetic variance and prevent fixation of deleterious alleles.
Collapse
Affiliation(s)
| | | | - Jessica E. Rutkoski
- Department of Crop Sciences, University of Illinois at Urbana–Champaign, Urbana, IL, United States
| |
Collapse
|
38
|
Calvo-Baltanás V, Wang J, Chae E. Hybrid Incompatibility of the Plant Immune System: An Opposite Force to Heterosis Equilibrating Hybrid Performances. FRONTIERS IN PLANT SCIENCE 2021; 11:576796. [PMID: 33717206 PMCID: PMC7953517 DOI: 10.3389/fpls.2020.576796] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Hybridization is a core element in modern rice breeding as beneficial combinations of two parental genomes often result in the expression of heterosis. On the contrary, genetic incompatibility between parents can manifest as hybrid necrosis, which leads to tissue necrosis accompanied by compromised growth and/or reduced reproductive success. Genetic and molecular studies of hybrid necrosis in numerous plant species revealed that such self-destructing symptoms in most cases are attributed to autoimmunity: plant immune responses are inadvertently activated in the absence of pathogenic invasion. Autoimmunity in hybrids predominantly occurs due to a conflict involving a member of the major plant immune receptor family, the nucleotide-binding domain and leucine-rich repeat containing protein (NLR; formerly known as NBS-LRR). NLR genes are associated with disease resistance traits, and recent population datasets reveal tremendous diversity in this class of immune receptors. Cases of hybrid necrosis involving highly polymorphic NLRs as major causes suggest that diversified R gene repertoires found in different lineages would require a compatible immune match for hybridization, which is a prerequisite to ensure increased fitness in the resulting hybrids. In this review, we overview recent genetic and molecular findings on hybrid necrosis in multiple plant species to provide an insight on how the trade-off between growth and immunity is equilibrated to affect hybrid performances. We also revisit the cases of hybrid weakness in which immune system components are found or implicated to play a causative role. Based on our understanding on the trade-off, we propose that the immune system incompatibility in plants might play an opposite force to restrict the expression of heterosis in hybrids. The antagonism is illustrated under the plant fitness equilibrium, in which the two extremes lead to either hybrid necrosis or heterosis. Practical proposition from the equilibrium model is that breeding efforts for combining enhanced disease resistance and high yield shall be achieved by balancing the two forces. Reverse breeding toward utilizing genomic data centered on immune components is proposed as a strategy to generate elite hybrids with balanced immunity and growth.
Collapse
|
39
|
Comparative Transcriptomic Analysis of Gene Expression Inheritance Patterns Associated with Cabbage Head Heterosis. PLANTS 2021; 10:plants10020275. [PMID: 33572601 PMCID: PMC7912167 DOI: 10.3390/plants10020275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022]
Abstract
The molecular mechanism of heterosis or hybrid vigor, where F1 hybrids of genetically diverse parents show superior traits compared to their parents, is not well understood. Here, we studied the molecular regulation of heterosis in four F1 cabbage hybrids that showed heterosis for several horticultural traits, including head size and weight. To examine the molecular mechanisms, we performed a global transcriptome profiling in the hybrids and their parents by RNA sequencing. The proportion of genetic variations detected as single nucleotide polymorphisms and small insertion–deletions as well as the numbers of differentially expressed genes indicated a larger role of the female parent than the male parent in the genetic divergence of the hybrids. More than 86% of hybrid gene expressions were non-additive. More than 81% of the genes showing divergent expressions showed dominant inheritance, and more than 56% of these exhibited maternal expression dominance. Gene expression regulation by cis-regulatory mechanisms appears to mediate most of the gene expression divergence in the hybrids; however, trans-regulatory factors appear to have a higher effect compared to cis-regulatory factors on parental expression divergence. These observations bring new insights into the molecular mechanisms of heterosis during the cabbage head development.
Collapse
|
40
|
Li S, Zhou Y, Yang C, Fan S, Huang L, Zhou T, Wang Q, Zhao R, Tang C, Tao M, Liu S. Comparative analyses of hypothalamus transcriptomes reveal fertility-, growth-, and immune-related genes and signal pathways in different ploidy cyprinid fish. Genomics 2021; 113:595-605. [PMID: 33485949 DOI: 10.1016/j.ygeno.2021.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/23/2022]
Abstract
Triploid crucian carp (TCC) is obtained by hybridization of female diploid red crucian carp (Carassius auratus red var., RCC) and male allotetraploid hybrids. In this study, high-throughput sequencing was used to conduct the transcriptome analysis of the female hypothalamus of diploid RCC, diploid common carp (Cyprinus carpio L., CC) and TCC. The key functional expression genes of the hypothalamus were obtained through functional gene annotation and differential gene expression screening. A total of 71.56 G data and 47,572 genes were obtained through sequencing and genome mapping, respectively. The Fuzzy Analysis Clustering assigned the differentially expressed genes (DEGs) into eight groups, two of which, overdominance expression (6005, 12.62%) and underdominance expression (3849, 8.09%) in TCC were further studied. KEGG enrichment analysis showed that the DEGs in overdominance were mainly enriched in four pathways. The expression of several fertility-related genes was lower levels in TCC, whereas the expression of several growth-related genes and immune-related genes was higher levels in TCC. Besides, 15 DEGs were verified by quantitative real-time PCR (qPCR). The present study can provide a reference for breeding sterility, fast-growth, and disease-resistant varieties by distant hybridization.
Collapse
Affiliation(s)
- Shengnan Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Yi Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Conghui Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Siyu Fan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Lu Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Tian Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Qiubei Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Rurong Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Chenchen Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha 410081, Hunan, PR China.
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha 410081, Hunan, PR China.
| |
Collapse
|
41
|
Fagorzi C, Bacci G, Huang R, Cangioli L, Checcucci A, Fini M, Perrin E, Natali C, diCenzo GC, Mengoni A. Nonadditive Transcriptomic Signatures of Genotype-by-Genotype Interactions during the Initiation of Plant-Rhizobium Symbiosis. mSystems 2021. [PMID: 33436514 DOI: 10.1101/2020.06.15.152710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
Rhizobia are ecologically important, facultative plant-symbiotic microbes. In nature, there is a large variability in the association of rhizobial strains and host plants of the same species. Here, we evaluated whether plant and rhizobial genotypes influence the initial transcriptional response of rhizobium following perception of a host plant. RNA sequencing of the model rhizobium Sinorhizobium meliloti exposed to root exudates or luteolin (an inducer of nod genes, involved in the early steps of symbiotic interaction) was performed on a combination of three S. meliloti strains and three alfalfa varieties as host plants. The response to root exudates involved hundreds of changes in the rhizobium transcriptome. Of the differentially expressed genes, 35% were influenced by the strain genotype, 16% were influenced by the plant genotype, and 29% were influenced by strain-by-host plant genotype interactions. We also examined the response of a hybrid S. meliloti strain in which the symbiotic megaplasmid (∼20% of the genome) was mobilized between two of the above-mentioned strains. Dozens of genes were upregulated in the hybrid strain, indicative of nonadditive variation in the transcriptome. In conclusion, this study demonstrated that transcriptional responses of rhizobia upon perception of legumes are influenced by the genotypes of both symbiotic partners and their interaction, suggesting a wide spectrum of genetic determinants involved in the phenotypic variation of plant-rhizobium symbiosis.IMPORTANCE A sustainable way for meeting the need of an increased global food demand should be based on a holobiont perspective, viewing crop plants as intimately associated with their microbiome, which helps improve plant nutrition, tolerance to pests, and adverse climate conditions. However, the genetic repertoire needed for efficient association with plants by the microbial symbionts is still poorly understood. The rhizobia are an exemplary model of facultative plant symbiotic microbes. Here, we evaluated whether genotype-by-genotype interactions could be identified in the initial transcriptional response of rhizobium perception of a host plant. We performed an RNA sequencing study to analyze the transcriptomes of different rhizobial strains elicited by root exudates of three alfalfa varieties as a proxy of an early step of the symbiotic interaction. The results indicated strain- and plant variety-dependent variability in the observed transcriptional changes, providing fundamentally novel insights into the genetic basis of rhizobium-plant interactions. Our results provide genetic insights and perspective to aid in the exploitation of natural rhizobium variation for improvement of legume growth in agricultural ecosystems.
Collapse
Affiliation(s)
- Camilla Fagorzi
- Department of Biology, University of Florence, Florence, Italy
| | - Giovanni Bacci
- Department of Biology, University of Florence, Florence, Italy
| | - Rui Huang
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Lisa Cangioli
- Department of Biology, University of Florence, Florence, Italy
| | - Alice Checcucci
- Department of Biology, University of Florence, Florence, Italy
| | - Margherita Fini
- Department of Biology, University of Florence, Florence, Italy
| | - Elena Perrin
- Department of Biology, University of Florence, Florence, Italy
| | - Chiara Natali
- Department of Biology, University of Florence, Florence, Italy
| | | | - Alessio Mengoni
- Department of Biology, University of Florence, Florence, Italy
| |
Collapse
|
42
|
Nonadditive Transcriptomic Signatures of Genotype-by-Genotype Interactions during the Initiation of Plant-Rhizobium Symbiosis. mSystems 2021; 6:6/1/e00974-20. [PMID: 33436514 PMCID: PMC7901481 DOI: 10.1128/msystems.00974-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Rhizobia are ecologically important, facultative plant-symbiotic microbes. In nature, there is a large variability in the association of rhizobial strains and host plants of the same species. Here, we evaluated whether plant and rhizobial genotypes influence the initial transcriptional response of rhizobium following perception of a host plant. RNA sequencing of the model rhizobium Sinorhizobium meliloti exposed to root exudates or luteolin (an inducer of nod genes, involved in the early steps of symbiotic interaction) was performed on a combination of three S. meliloti strains and three alfalfa varieties as host plants. The response to root exudates involved hundreds of changes in the rhizobium transcriptome. Of the differentially expressed genes, 35% were influenced by the strain genotype, 16% were influenced by the plant genotype, and 29% were influenced by strain-by-host plant genotype interactions. We also examined the response of a hybrid S. meliloti strain in which the symbiotic megaplasmid (∼20% of the genome) was mobilized between two of the above-mentioned strains. Dozens of genes were upregulated in the hybrid strain, indicative of nonadditive variation in the transcriptome. In conclusion, this study demonstrated that transcriptional responses of rhizobia upon perception of legumes are influenced by the genotypes of both symbiotic partners and their interaction, suggesting a wide spectrum of genetic determinants involved in the phenotypic variation of plant-rhizobium symbiosis.IMPORTANCE A sustainable way for meeting the need of an increased global food demand should be based on a holobiont perspective, viewing crop plants as intimately associated with their microbiome, which helps improve plant nutrition, tolerance to pests, and adverse climate conditions. However, the genetic repertoire needed for efficient association with plants by the microbial symbionts is still poorly understood. The rhizobia are an exemplary model of facultative plant symbiotic microbes. Here, we evaluated whether genotype-by-genotype interactions could be identified in the initial transcriptional response of rhizobium perception of a host plant. We performed an RNA sequencing study to analyze the transcriptomes of different rhizobial strains elicited by root exudates of three alfalfa varieties as a proxy of an early step of the symbiotic interaction. The results indicated strain- and plant variety-dependent variability in the observed transcriptional changes, providing fundamentally novel insights into the genetic basis of rhizobium-plant interactions. Our results provide genetic insights and perspective to aid in the exploitation of natural rhizobium variation for improvement of legume growth in agricultural ecosystems.
Collapse
|
43
|
Xu Z, Shi X, Bao M, Song X, Zhang Y, Wang H, Xie H, Mao F, Wang S, Jin H, Dong S, Zhang F, Wu Z, Wu Y. Transcriptome-Wide Analysis of RNA m 6A Methylation and Gene Expression Changes Among Two Arabidopsis Ecotypes and Their Reciprocal Hybrids. FRONTIERS IN PLANT SCIENCE 2021; 12:685189. [PMID: 34178005 PMCID: PMC8222996 DOI: 10.3389/fpls.2021.685189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/14/2021] [Indexed: 05/10/2023]
Abstract
The remodeling of transcriptome, epigenome, proteome, and metabolome in hybrids plays an important role in heterosis. N(6)-methyladenosine (m6A) methylation is the most abundant type of post-transcriptional modification for mRNAs, but the pattern of inheritance from parents to hybrids and potential impact on heterosis are largely unknown. We constructed transcriptome-wide mRNA m6A methylation maps of Arabidopsis thaliana Col-0 and Landsberg erecta (Ler) and their reciprocal F1 hybrids. Generally, the transcriptome-wide pattern of m6A methylation tends to be conserved between accessions. Approximately 74% of m6A methylation peaks are consistent between the parents and hybrids, indicating that a majority of the m6A methylation is maintained after hybridization. We found a significant association between differential expression and differential m6A modification, and between non-additive expression and non-additive methylation on the same gene. The overall RNA m6A level between Col-0 and Ler is clearly different but tended to disappear at the allelic sites in the hybrids. Interestingly, many enriched biological functions of genes with differential m6A modification between parents and hybrids are also conserved, including many heterosis-related genes involved in biosynthetic processes of starch. Collectively, our study revealed the overall pattern of inheritance of mRNA m6A modifications from parents to hybrids and a potential new layer of regulatory mechanisms related to heterosis formation.
Collapse
Affiliation(s)
- Zhihui Xu
- College of Life Science, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Key Laboratory for Information Agriculture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Xiaobo Shi
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Key Laboratory for Information Agriculture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Mengmei Bao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Key Laboratory for Information Agriculture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Xiaoqian Song
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Key Laboratory for Information Agriculture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Yuxia Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Key Laboratory for Information Agriculture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Haiyan Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Key Laboratory for Information Agriculture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Hairong Xie
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Key Laboratory for Information Agriculture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Fei Mao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Key Laboratory for Information Agriculture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Shuai Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Key Laboratory for Information Agriculture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Hongmei Jin
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Suomeng Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Feng Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhe Wu
- Department of Biology, SUSTech-PKU Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, China
| | - Yufeng Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Key Laboratory for Information Agriculture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Yufeng Wu
| |
Collapse
|
44
|
Hou G, Dong Y, Zhu F, Zhao Q, Li T, Dou D, Ma X, Wu L, Ku L, Chen Y. MicroRNA transcriptomic analysis of the sixth leaf of maize (Zea mays L.) revealed a regulatory mechanism of jointing stage heterosis. BMC PLANT BIOLOGY 2020; 20:541. [PMID: 33256592 PMCID: PMC7708177 DOI: 10.1186/s12870-020-02751-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/22/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Zhengdan 958 (Zheng 58 × Chang 7-2), a commercial hybrid that is produced in a large area in China, is the result of the successful use of the heterotic pattern of Reid × Tang-SPT. The jointing stage of maize is the key period from vegetative to reproductive growth, which determines development at later stages and heterosis to a certain degree. MicroRNAs (miRNAs) play vital roles in the regulation of plant development, but how they function in the sixth leaf at the six-leaf (V6) stage to influence jointing stage heterosis is still unclear. RESULT Our objective was to study miRNAs in four hybrid combinations developed in accordance with the Reid × Tang-SPT pattern, Zhengdan 958, Anyu 5 (Ye 478 × Chang 7-2), Ye 478 × Huangzaosi, Zheng 58 × Huangzaosi, and their parental inbred lines to explore the mechanism related to heterosis. A total of 234 miRNAs were identified in the sixth leaf at the V6 stage, and 85 miRNAs were differentially expressed between the hybrid combinations and their parental inbred lines. Most of the differentially expressed miRNAs were non-additively expressed, which indicates that miRNAs may participate in heterosis at the jointing stage. miR164, miR1432 and miR528 families were repressed in the four hybrid combinations, and some miRNAs, such as miR156, miR399, and miR395 families, exhibited different expression trends in different hybrid combinations, which may result in varying effects on the heterosis regulatory mechanism. CONCLUSIONS The potential targets of the identified miRNAs are related to photosynthesis, the response to plant hormones, and nutrient use. Different hybrid combinations employ different mature miRNAs of the same miRNA family and exhibit different expression trends that may result in enhanced or repressed gene expression to regulate heterosis. Taken together, our results reveal a miRNA-mediated network that plays a key role in jointing stage heterosis via posttranscriptional regulation.
Collapse
Affiliation(s)
- Gege Hou
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China
| | - Yahui Dong
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China
| | - Fangfang Zhu
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China
| | - Qiannan Zhao
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China
| | - Tianyi Li
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China
| | - Dandan Dou
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China
| | - Xingli Ma
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China
| | - Liancheng Wu
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China
| | - Lixia Ku
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China
| | - Yanhui Chen
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China.
| |
Collapse
|
45
|
Mugal CF, Wang M, Backström N, Wheatcroft D, Ålund M, Sémon M, McFarlane SE, Dutoit L, Qvarnström A, Ellegren H. Tissue-specific patterns of regulatory changes underlying gene expression differences among Ficedula flycatchers and their naturally occurring F 1 hybrids. Genome Res 2020; 30:1727-1739. [PMID: 33144405 PMCID: PMC7706733 DOI: 10.1101/gr.254508.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/28/2020] [Indexed: 12/27/2022]
Abstract
Changes in interacting cis- and trans-regulatory elements are important candidates for Dobzhansky-Muller hybrid incompatibilities and may contribute to hybrid dysfunction by giving rise to misexpression in hybrids. To gain insight into the molecular mechanisms and determinants of gene expression evolution in natural populations, we analyzed the transcriptome from multiple tissues of two recently diverged Ficedula flycatcher species and their naturally occurring F1 hybrids. Differential gene expression analysis revealed that the extent of differentiation between species and the set of differentially expressed genes varied across tissues. Common to all tissues, a higher proportion of Z-linked genes than autosomal genes showed differential expression, providing evidence for a fast-Z effect. We further found clear signatures of hybrid misexpression in brain, heart, kidney, and liver. However, while testis showed the highest divergence of gene expression among tissues, it showed no clear signature of misexpression in F1 hybrids, even though these hybrids were found to be sterile. It is therefore unlikely that incompatibilities between cis-trans regulatory changes explain the observed sterility. Instead, we found evidence that cis-regulatory changes play a significant role in the evolution of gene expression in testis, which illustrates the tissue-specific nature of cis-regulatory evolution bypassing constraints associated with pleiotropic effects of genes.
Collapse
Affiliation(s)
- Carina F Mugal
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| | - Mi Wang
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| | - Niclas Backström
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| | - David Wheatcroft
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden.,Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - Murielle Ålund
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden.,Department of Integrative Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Marie Sémon
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden.,ENS de Lyon, Laboratory of Biology and Modelling of the Cell, Lyon University, 69364 Lyon Cedex 07, France
| | - S Eryn McFarlane
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden.,Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Ludovic Dutoit
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden.,Department of Zoology, University of Otago, Dunedin 9016, New Zealand
| | - Anna Qvarnström
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| | - Hans Ellegren
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| |
Collapse
|
46
|
Batte M, Nyine M, Uwimana B, Swennen R, Akech V, Brown A, Hovmalm HP, Geleta M, Ortiz R. Significant progressive heterobeltiosis in banana crossbreeding. BMC PLANT BIOLOGY 2020; 20:489. [PMID: 33109087 PMCID: PMC7590486 DOI: 10.1186/s12870-020-02667-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/23/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND Heterobeltiosis is the phenomenon when the hybrid's performance is superior to its best performing parent. Banana (Musa spp. AAA) breeding is a tedious, time-consuming process, taking up to two decades to develop a consumer acceptable hybrid. Exploiting heterobeltiosis in banana breeding will help to select breeding material with high complementarity, thus increasing banana breeding efficiency. The aim of this study was therefore to determine and document the level of heterobeltiosis of bunch weight and plant stature in the East African highland bananas, in order to identify potential parents that can be used to produce offspring with desired bunch weight and stature after a few crosses. RESULTS This research found significant progressive heterobeltiosis in cross-bred 'Matooke' (highland cooking) banana hybrids, also known as NARITAs, when grown together across years with their parents and grandparents in Uganda. Most (all except 4) NARITAs exhibited positive heterobeltiosis for bunch weight, whereas slightly more than half of them had negative heterobeltiosis for stature. The secondary triploid NARITA 17 had the highest heterobeltiosis for bunch weight: 249% versus its 'Matooke' grandparent and 136% against its primary tetraploid parent. Broad sense heritability (across three cropping cycles) for yield potential and bunch weight were high (0.84 and 0.76 respectively), while that of plant stature was very low (0.0035). There was a positive significant correlation (P < 0.05) between grandparent heterobeltiosis for bunch weight and genetic distance between parents (r = 0.39, P = 0.036), bunch weight (r = 0.7, P < 0.001), plant stature (r = 0.38, P = 0.033) and yield potential (r = 0.59, P < 0.001). Grandparent heterobeltiosis for plant stature was significantly, but negatively, correlated to the genetic distance between parents (r = - 0.6, P < 0.001). CONCLUSIONS Such significant heterobeltiosis exhibited for bunch weight is to our knowledge the largest among main food crops. Since bananas are vegetatively propagated, the effect of heterobeltiosis is easily fixed in the hybrids and will not be lost over time after the release and further commercialization of these hybrids.
Collapse
Affiliation(s)
- Michael Batte
- International Institute of Tropical Agriculture (IITA), P.O. Box 7878, Kampala, Uganda.
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), P.O. Box 101, 23053, Alnarp, SE, Sweden.
| | - Moses Nyine
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Brigitte Uwimana
- International Institute of Tropical Agriculture (IITA), P.O. Box 7878, Kampala, Uganda
| | - Rony Swennen
- International Institute of Tropical Agriculture (IITA), C/o The Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Arusha, Tanzania
- Laboratory of Tropical Crop Improvement, Katholieke Universiteite Leuven (KUL), Willem De Croylaan 42, 3001, Leuven, Belgium
- Bioversity International, Willem De Croylaan 42, 3001, Heverlee, Belgium
| | - Violet Akech
- International Institute of Tropical Agriculture (IITA), P.O. Box 7878, Kampala, Uganda
| | - Allan Brown
- International Institute of Tropical Agriculture (IITA), C/o The Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Arusha, Tanzania
| | - Helena Persson Hovmalm
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), P.O. Box 101, 23053, Alnarp, SE, Sweden
| | - Mulatu Geleta
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), P.O. Box 101, 23053, Alnarp, SE, Sweden
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), P.O. Box 101, 23053, Alnarp, SE, Sweden
| |
Collapse
|
47
|
Gao S, Nanaei HA, Wei B, Wang Y, Wang X, Li Z, Dai X, Wang Z, Jiang Y, Shao J. Comparative Transcriptome Profiling Analysis Uncovers Novel Heterosis-Related Candidate Genes Associated with Muscular Endurance in Mules. Animals (Basel) 2020; 10:ani10060980. [PMID: 32512843 PMCID: PMC7341310 DOI: 10.3390/ani10060980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/24/2020] [Accepted: 06/02/2020] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Mules have better and greater muscle endurance than hinnies and their parents. However, the molecular mechanisms underlying heterosis in their muscles are still much less understood. In this study, we conducted comparative transcriptome and alternative splicing analysis on the heterosis mechanism of muscular endurance in mules. Our results showed that 8 genes were significantly enriched in the “muscle contraction” pathway. In addition, 68% of the genes with alternative splicing events from the mule muscle tissue were validated by the long transcript reads generated from PacBio sequencing platform. Our findings provide a research foundation for studying the genetic basis of heterosis in mules. Abstract Heterosis has been widely exploited in animal and plant breeding programs to enhance the productive traits of hybrid progeny from two breeds or species. However, its underlying genetic mechanisms remain enigmatic. Transcriptome profiling analysis can be used as a method for exploring the mechanism of heterosis. Here, we performed genome-wide gene expression and alternative splicing (AS) analyses in different tissues (muscle, brain, and skin) from crosses between donkeys and horses. Our results indicated that 86.1% of the differentially expressed genes (DEGs) and 87.2% of the differential alternative splicing (DAS) genes showed over-dominance and dominance in muscle. Further analysis showed that the “muscle contraction” pathway was significantly enriched for both the DEGs and DAS genes in mule muscle tissue. Taken together, these DEGs and DAS genes could provide an index for future studies of the genetic and molecular mechanism of heterosis in the hybrids of donkey and horse.
Collapse
|
48
|
Herkenhoff ME, Ribeiro AO, Costa JM, Oliveira AC, Dias MAD, Reis Neto RV, Hilsdorf AWS, Pinhal D. Expression profiles of growth-related genes in two Nile tilapia strains and their crossbred provide insights into introgressive breeding effects. Anim Genet 2020; 51:611-616. [PMID: 32378756 DOI: 10.1111/age.12944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2020] [Indexed: 11/28/2022]
Abstract
The Nile tilapia (Oreochromis niloticus) is a prominent farmed fish in aquaculture worldwide. Crossbreeding has recently been carried out between the Red-Stirling and the wt Chitralada strains of Nile tilapia, producing a heterotic hybrid (7/8 Chitralada and 1/8 Red-Stirling) that combines the superior growth performance of the Chitralada with the reddish coloration of the Red-Stirling strain. While classical selective breeding and crossbreeding strategies are well known, the molecular mechanisms underlying the phenotypic expression of economically advantageous traits in tilapia remain largely unknown. Molecular investigations have shown that variable expression of growth hormone (gh), insulin-like growth factors (igf1 and 2) and somatolactin (smtla) - components of the growth hormone/insulin-like growth factor (GH/IGF) axis - and myostatin (mstn) genes can affect traits of economic relevance in farmed animals. The aim of this study was to assess and compare the gene expression signature among Chitralada, Red-Stirling and their backcross hybrid in order to gain insights into the effects of introgressive breeding in modulation of the GH/IGF axis. Gene expression analyses in distinct tissues showed that most genes of the GH/IGF axis were up-regulated and mstn was down-regulated in backcross animals in comparison with Red-Stirling and Chitralada animals. These gene expression profiles revealed that backcross animals displayed a distinctive expression signature, which attests to the effectiveness of the introgressive breeding technique. Our findings also suggest that the GH/IGF axis and mstn genes might be candidate markers for fish performance and prove useful within genetic improvement programs aimed at the production of superior-quality tilapia strains using introgressive breeding.
Collapse
Affiliation(s)
- M E Herkenhoff
- Department of Genetics, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - A O Ribeiro
- Department of Genetics, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - J M Costa
- Department of Genetics, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - A C Oliveira
- Department of Genetics, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - M A D Dias
- Unit of Biotechnology, University of Mogi das Cruzes, Mogi das Cruzes, SP, 08780-911, Brazil.,Department of Animal Sciences, Federal University of Lavras, Lavras, MG, 37200-000, Brazil
| | - R V Reis Neto
- São Paulo State University (UNESP), Registro, SP, 11900-000, Brazil
| | - A W S Hilsdorf
- Unit of Biotechnology, University of Mogi das Cruzes, Mogi das Cruzes, SP, 08780-911, Brazil.,Department of Animal Sciences, Federal University of Lavras, Lavras, MG, 37200-000, Brazil
| | - D Pinhal
- Department of Genetics, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| |
Collapse
|
49
|
Zhu J, Lou Y, Shi QS, Zhang S, Zhou WT, Yang J, Zhang C, Yao XZ, Xu T, Liu JL, Zhou L, Hou JQ, Wang JQ, Wang S, Huang XH, Yang ZN. Slowing development restores the fertility of thermo-sensitive male-sterile plant lines. NATURE PLANTS 2020; 6:360-367. [PMID: 32231254 DOI: 10.1038/s41477-020-0622-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 02/19/2020] [Indexed: 05/27/2023]
Abstract
Temperature-sensitive genic male sterility (TGMS) lines are widely used in the breeding of hybrid crops1,2, but by what means temperature as a general environmental factor reverses the fertility of different TGMS lines remains unknown. Here, we identified an Arabidopsis TGMS line named reversible male sterile (rvms) that is fertile at low temperature (17 °C) and encodes a GDSL lipase. Cytological observations and statistical analysis showed that low temperature slows pollen development. Further screening of restorers of rvms, as well as crossing with a slow-growth line at normal temperature (24 °C), demonstrate that slowing of development overcomes the defects of rvms microspores and allows them to develop into functional pollen. Several other Arabidopsis TGMS lines were identified, and their fertility was also restored by slowing of development. Given that male reproductive development is conserved3, we propose that slowing of development is a general mechanism applicable to the sterility-fertility conversion of TGMS lines from different plant species.
Collapse
Affiliation(s)
- Jun Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yue Lou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Qiang-Sheng Shi
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Sen Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Wen-Tao Zhou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jun Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Cheng Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xiao-Zhen Yao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Te Xu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jia-Li Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Lei Zhou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jian-Qiao Hou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jia-Qi Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Shui Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xue-Hui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China.
| |
Collapse
|
50
|
Wang B, Tseng E, Baybayan P, Eng K, Regulski M, Jiao Y, Wang L, Olson A, Chougule K, Buren PV, Ware D. Variant phasing and haplotypic expression from long-read sequencing in maize. Commun Biol 2020; 3:78. [PMID: 32071408 PMCID: PMC7028979 DOI: 10.1038/s42003-020-0805-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 01/30/2020] [Indexed: 11/09/2022] Open
Abstract
Haplotype phasing maize genetic variants is important for genome interpretation, population genetic analysis and functional analysis of allelic activity. We performed an isoform-level phasing study using two maize inbred lines and their reciprocal crosses, based on single-molecule, full-length cDNA sequencing. To phase and analyze transcripts between hybrids and parents, we developed IsoPhase. Using this tool, we validated the majority of SNPs called against matching short-read data from embryo, endosperm and root tissues, and identified allele-specific, gene-level and isoform-level differential expression between the inbred parental lines and hybrid offspring. After phasing 6907 genes in the reciprocal hybrids, we annotated the SNPs and identified large-effect genes. In addition, we identified parent-of-origin isoforms, distinct novel isoforms in maize parent and hybrid lines, and imprinted genes from different tissues. Finally, we characterized variation in cis- and trans-regulatory effects. Our study provides measures of haplotypic expression that could increase accuracy in studies of allelic expression.
Collapse
Affiliation(s)
- Bo Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Elizabeth Tseng
- Pacific Biosciences, 1380 Willow Road, Menlo Park, CA, 94025, USA
| | - Primo Baybayan
- Pacific Biosciences, 1380 Willow Road, Menlo Park, CA, 94025, USA
| | - Kevin Eng
- Pacific Biosciences, 1380 Willow Road, Menlo Park, CA, 94025, USA
| | - Michael Regulski
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Yinping Jiao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Liya Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Andrew Olson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Kapeel Chougule
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Peter Van Buren
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA. .,USDA ARS NEA Robert W. Holley Center for Agriculture and Health Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|