1
|
Ma Y, Zhou X, Shen Y, Ma H, Xue Q. Metabolic crosstalk between roots and rhizosphere drives alfalfa decline under continuous cropping. FRONTIERS IN PLANT SCIENCE 2024; 15:1496691. [PMID: 39726426 PMCID: PMC11670254 DOI: 10.3389/fpls.2024.1496691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
Considerable biological decline of continuously cropped alfalfa may be tightly linked to rhizosphere metabolism. However, plant-soil feedbacks and age-related metabolic changes in alfalfa stands remain unexplored. The aim of this study was to identify the linkages of rhizosphere and root metabolites, particularly autotoxins and prebiotics, to alfalfa decline under continuous cropping. We performed liquid chromatography-mass spectrometry for non-targeted metabolomic profiling of rhizosphere soils and alfalfa roots in 2- and 6-year-old stands. Differentially abundant metabolites that responded to stand age and associated metabolic pathways were identified. Compared with bulk soils, rhizosphere soils were enriched with more triterpenoid saponins (e.g., medicagenic acid glycosides), which showed inhibitory effects on seed germination and seedling growth. These autotoxic metabolites were accumulated in the old stand age, and their relative abundances were negatively correlated with plant growth, yield, and quality traits, as well as soil total nitrogen and alkali-hydrolyzable nitrogen concentrations. In contrast, prebiotic metabolites, represented by glycerolipids (e.g., glycerophosphocholine) and fatty acyls (e.g., colnelenic acid), were depleted in rhizosphere soils in the old stand. The relative abundances of glycerolipids and fatty acyls were positively correlated with plant traits and soil available phosphorus and alkali-hydrolyzable nitrogen concentrations. Age-induced changes in the rhizosphere metabolome mirrored the reprogramming patterns of root metabolome. The pathways of terpenoid backbone biosynthesis and plant hormone signal transduction, as well as metabolism of galactose, glycerophospholipid, and ɑ-linolenic acid in alfalfa roots were affected by stand age. The upregulation of terpenoid backbone biosynthesis in alfalfa roots of old plants, which stimulated triterpenoid saponin biosynthesis and exudation. Rhizosphere accumulation of autotoxins was accompanied by depletion of prebiotics, leading to soil degradation and exacerbating alfalfa decline. This research aids in the development of prebiotics to prevent and manage continuous cropping obstacles in alfalfa.
Collapse
Affiliation(s)
- Yuanyuan Ma
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Rural Science and Technology Development Center, Yinchuan, Ningxia, China
| | - Xiaoping Zhou
- Ningxia Rural Science and Technology Development Center, Yinchuan, Ningxia, China
| | - Yan Shen
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
| | - Hongbin Ma
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
| | - Quanhong Xue
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Kafka A, Lipok J, Żyszka-Haberecht B, Wieczorek D. Effect of Different Colours of Light on Chosen Aspects of Metabolism of Radish Sprouts with Phosphoromic Approach. Molecules 2024; 29:5528. [PMID: 39683687 DOI: 10.3390/molecules29235528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Among various environmental factors, light is a crucial parameter necessary for the germination of some seeds. Seed germination is an important phase in the plant life cycle, when metabolic activity is resumed and reserves are mobilized to support initial plant development. Although all nutrients are extremely important for proper physiological and biochemical development of plants, phosphorus (P) seems to play a special role, as it is an essential component of all important structural and functional substances which compose the cells of plants. We believe that transformations of the forms of phosphorus accompanying metabolic activity of germinating seeds determine the efficiency of this process, and thus the seedling's metabolic status. Therefore, we decided to study the changes in the major phosphorus-containing substances in radish sprouts during the first phase of growth. The effect of different colours of light on the quality parameters in radish, as a model plant, during germination, was evaluated. Contents of Pi, adenylates, antioxidants, pigments, phytase activity, and 31P NMR phosphorus profile were investigated. Based on the results of our study, we may propose the phosphoromic approach as an important metabolic parameter determining the physiological status of the plant.
Collapse
Affiliation(s)
- Anna Kafka
- Department of Pharmacy and Ecological Chemistry, Institute of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
| | - Jacek Lipok
- Department of Pharmacy and Ecological Chemistry, Institute of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
| | - Beata Żyszka-Haberecht
- Department of Pharmacy and Ecological Chemistry, Institute of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
| | - Dorota Wieczorek
- Department of Pharmacy and Ecological Chemistry, Institute of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
| |
Collapse
|
3
|
Zhao K, Gao Z, Nizamani MM, Hu M, Li M, Li X, Wang J. Mechanisms of Litchi Response to Postharvest Energy Deficiency via Energy and Sugar Metabolisms. Foods 2024; 13:2288. [PMID: 39063372 PMCID: PMC11275267 DOI: 10.3390/foods13142288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
In the post-harvest phase, fruit is inexorably subjected to extrinsic stressors that expedite energy expenditure and truncate the storage lifespan. The present study endeavors to elucidate the response strategies of litchi to the alterations of energy state caused by 2,4-Dinitrophenol (DNP) treatment through energy metabolism and sugar metabolism. It was observed that the DNP treatment reduced the energy state of the fruit, exacerbated membrane damage and triggered rapid browning in the pericarp after 24 h of storage. Furthermore, the expression of genes germane to energy metabolism (LcAtpB, LcAOX1, LcUCP1, LcAAC1, and, LcSnRK2) reached their peak within the initial 24 h of storage, accompanied by an elevation in the respiratory rate, which effectively suppressed the rise in browning index of litchi pericarp. The study also posits that, to cope with the decrease of energy levels and membrane damage, litchi may augment the concentrations of fructose, glucose, inositol, galactose, and sorbose, thus safeguarding the canonical metabolic functions of the fruit. Collectively, these findings suggest that litchi can modulate energy and sugar metabolism to cope with fruit senescence under conditions of energy deficiency. This study significantly advances the understanding of the physiological responses exhibited by litchi fruit to post-harvest external stressors.
Collapse
Affiliation(s)
- Kunkun Zhao
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (K.Z.); (Z.G.)
| | - Zhaoyin Gao
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (K.Z.); (Z.G.)
| | - Mir Muhammad Nizamani
- Department of Plant Pathology, Agricultural College, Guizhou University, Guiyang 550025, China;
| | - Meijiao Hu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (M.H.); (M.L.)
| | - Min Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (M.H.); (M.L.)
| | - Xiaohui Li
- Hainan Inspection and Detection Center for Modern Agriculture, Haikou 570100, China
| | - Jiabao Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (K.Z.); (Z.G.)
| |
Collapse
|
4
|
Farooq A, Khan I, Shehzad J, Hasan M, Mustafa G. Proteomic insights to decipher nanoparticle uptake, translocation, and intercellular mechanisms in plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18313-18339. [PMID: 38347361 DOI: 10.1007/s11356-024-32121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 01/17/2024] [Indexed: 03/09/2024]
Abstract
Advent of proteomic techniques has made it possible to identify a broad spectrum of proteins in living systems. Studying the impact of nanoparticle (NP)-mediated plant protein responses is an emerging field. NPs are continuously being released into the environment and directly or indirectly affect plant's biochemistry. Exposure of plants to NPs, especially crops, poses a significant risk to the food chain, leading to changes in underlying metabolic processes. Once absorbed by plants, NPs interact with cellular proteins, thereby inducing changes in plant protein patterns. Based on the reactivity, properties, and translocation of nanoparticles, NPs can interfere with proteins involved in various cellular processes in plants such as energy regulation, redox metabolism, and cytotoxicity. Such interactions of NPs at the subcellular level enhance ROS scavenging activity, especially under stress conditions. Although higher concentrations of NPs induce ROS production and hinder oxidative mechanisms under stress conditions, NPs also mediate metabolic changes from fermentation to normal cellular processes. Although there has been lots of work conducted to understand the different effects of NPs on plants, the knowledge of proteomic responses of plants toward NPs is still very limited. This review has focused on the multi-omic analysis of NP interaction mechanisms with crop plants mainly centering on the proteomic perspective in response to both stress and non-stressed conditions. Furthermore, NP-specific interaction mechanisms with the biological pathways are discussed in detail.
Collapse
Affiliation(s)
- Atikah Farooq
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Ilham Khan
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Junaid Shehzad
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Murtaza Hasan
- Department of Biotechnology, The Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Punjab, 63100, Pakistan
- Faculty of Medicine, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Ghazala Mustafa
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui, 323000, China.
- State Agricultural Ministry Laboratory of Horticultural Crop Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Neri-Silva R, Monteiro-Batista RDC, Fonseca-Pereira PD, Nunes MD, Viana-Silva AL, Palhares Ribeiro T, Pérez-Díaz JL, Medeiros DB, Araújo WL, Fernie AR, Nunes-Nesi A. On the Significance of the ADNT1 Carrier in Arabidopsis thaliana under Waterlogging Conditions. Biomolecules 2023; 13:biom13050731. [PMID: 37238601 DOI: 10.3390/biom13050731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Among the adenylate carriers identified in Arabidopsis thaliana, only the AMP/ATP transporter ADNT1 shows increased expression in roots under waterlogging stress conditions. Here, we investigated the impact of a reduced expression of ADNT1 in A. thaliana plants submitted to waterlogging conditions. For this purpose, an adnt1 T-DNA mutant and two ADNT1 antisense lines were evaluated. Following waterlogging, ADNT1 deficiency resulted in a reduced maximum quantum yield of PSII electron transport (significantly for adnt1 and antisense Line 10), indicating a higher impact caused by the stress in the mutants. In addition, ADNT1 deficient lines showed higher levels of AMP in roots under nonstress condition. This result indicates that the downregulation of ADNT1 impacts the levels of adenylates. ADNT1-deficient plants exhibited a differential expression pattern of hypoxia-related genes with an increase in non-fermenting-related-kinase 1 (SnRK1) expression and upregulation of adenylate kinase (ADK) under stress and non-stress conditions. Together, these results indicated that the lower expression of ADNT1 is associated with an early "hypoxic status" due to the perturbation of the adenylate pool caused by reduced AMP import by mitochondria. This perturbation, which is sensed by SnRK1, results in a metabolic reprogramming associated with early induction of the fermentative pathway in ADNT1 deficient plants.
Collapse
Affiliation(s)
- Roberto Neri-Silva
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Rita de Cássia Monteiro-Batista
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Paula da Fonseca-Pereira
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Mateus Dias Nunes
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Ana Luiza Viana-Silva
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Tamara Palhares Ribeiro
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Jorge L Pérez-Díaz
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - David B Medeiros
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| |
Collapse
|
6
|
Carrillo L, Baroja-Fernández E, Renau-Morata B, Muñoz FJ, Canales J, Ciordia S, Yang L, Sánchez-López ÁM, Nebauer SG, Ceballos MG, Vicente-Carbajosa J, Molina RV, Pozueta-Romero J, Medina J. Ectopic expression of the AtCDF1 transcription factor in potato enhances tuber starch and amino acid contents and yield under open field conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1010669. [PMID: 36937996 PMCID: PMC10014720 DOI: 10.3389/fpls.2023.1010669] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Cycling Dof transcription factors (CDFs) have been involved in different aspects of plant growth and development. In Arabidopsis and tomato, one member of this family (CDF1) has recently been associated with the regulation of primary metabolism and abiotic stress responses, but their roles in crop production under open field conditions remain unknown. METHODS In this study, we compared the growth, and tuber yield and composition of plants ectopically expressing the CDF1 gene from Arabidopsis under the control of the 35S promoter with wild-type (WT) potato plants cultured in growth chamber and open field conditions. RESULTS In growth chambers, the 35S::AtCDF1 plants showed a greater tuber yield than the WT by increasing the biomass partition for tuber development. Under field conditions, the ectopic expression of CDF1 also promoted the sink strength of the tubers, since 35S::AtCDF1 plants exhibited significant increases in tuber size and weight resulting in higher tuber yield. A metabolomic analysis revealed that tubers of 35S::AtCDF1 plants cultured under open field conditions accumulated higher levels of glucose, starch and amino acids than WT tubers. A comparative proteomic analysis of tubers of 35S::AtCDF1 and WT plants cultured under open field conditions revealed that these changes can be accounted for changes in the expression of proteins involved in energy production and different aspects of C and N metabolism. DISCUSSION The results from this study advance our collective understanding of the role of CDFs and are of great interest for the purposes of improving the yield and breeding of crop plants.
Collapse
Affiliation(s)
- Laura Carrillo
- Centro de Biotecnología y Genómica de Plantas (CBGP) UPM-INIA/CSIC, Campus de Montegancedo, Madrid, Spain
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Mutiloabeti, Nafarroa, Spain
| | - Begoña Renau-Morata
- Departamento de Biología Vegetal, Universitat de València. Vicent Andrés Estellés, Burjassot, Spain
| | - Francisco J. Muñoz
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Mutiloabeti, Nafarroa, Spain
| | - Javier Canales
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- ANID–Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Sergio Ciordia
- Unidad Proteomica (CNB), Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, Madrid, Spain
| | - Lu Yang
- Centro de Biotecnología y Genómica de Plantas (CBGP) UPM-INIA/CSIC, Campus de Montegancedo, Madrid, Spain
| | | | - Sergio G. Nebauer
- Departamento de Producción Vegetal, Universitat Politècnica de València., València, Spain
| | - Mar G. Ceballos
- Centro de Biotecnología y Genómica de Plantas (CBGP) UPM-INIA/CSIC, Campus de Montegancedo, Madrid, Spain
| | - Jesús Vicente-Carbajosa
- Centro de Biotecnología y Genómica de Plantas (CBGP) UPM-INIA/CSIC, Campus de Montegancedo, Madrid, Spain
| | - Rosa V. Molina
- Departamento de Producción Vegetal, Universitat Politècnica de València., València, Spain
| | - Javier Pozueta-Romero
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM), CSIC-UMA, Málaga, Spain
| | - Joaquín Medina
- Centro de Biotecnología y Genómica de Plantas (CBGP) UPM-INIA/CSIC, Campus de Montegancedo, Madrid, Spain
| |
Collapse
|
7
|
Altensell J, Wartenberg R, Haferkamp I, Hassler S, Scherer V, Steensma P, Fitzpatrick TB, Sharma A, Sandoval-Ibañez O, Pribil M, Lehmann M, Leister D, Kleine T, Neuhaus HE. Loss of a pyridoxal-phosphate phosphatase rescues Arabidopsis lacking an endoplasmic reticulum ATP carrier. PLANT PHYSIOLOGY 2022; 189:49-65. [PMID: 35139220 PMCID: PMC9070803 DOI: 10.1093/plphys/kiac048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/12/2022] [Indexed: 05/31/2023]
Abstract
The endoplasmic reticulum (ER)-located ATP/ADP-antiporter (ER-ANT1) occurs specifically in vascular plants. Structurally different transporters mediate energy provision to the ER, but the cellular function of ER-ANT1 is still unknown. Arabidopsis (Arabidopsis thaliana) mutants lacking ER-ANT1 (er-ant1 plants) exhibit a photorespiratory phenotype accompanied by high glycine levels and stunted growth, pointing to an inhibition of glycine decarboxylase (GDC). To reveal whether it is possible to suppress this marked phenotype, we exploited the power of a forward genetic screen. Absence of a so far uncharacterized member of the HaloAcid Dehalogenase (HAD)-like hydrolase family strongly suppressed the dwarf phenotype of er-ant1 plants. Localization studies suggested that the corresponding protein locates to chloroplasts, and activity assays showed that the enzyme dephosphorylates, with high substrate affinity, the B6 vitamer pyridoxal 5'-phosphate (PLP). Additional physiological experiments identified imbalances in vitamin B6 homeostasis in er-ant1 mutants. Our data suggest that impaired chloroplast metabolism, but not decreased GDC activity, causes the er-ant1 mutant dwarf phenotype. We present a hypothesis, setting transport of PLP by ER-ANT1 and chloroplastic PLP dephosphorylation in the cellular context. With the identification of this HAD-type PLP phosphatase, we also provide insight into B6 vitamer homeostasis.
Collapse
Affiliation(s)
- Jacqueline Altensell
- Department of Plant Physiology, University of Kaiserslautern, Kaiserslautern 67653, Germany
| | - Ruth Wartenberg
- Department of Plant Physiology, University of Kaiserslautern, Kaiserslautern 67653, Germany
| | - Ilka Haferkamp
- Department of Plant Physiology, University of Kaiserslautern, Kaiserslautern 67653, Germany
| | - Sebastian Hassler
- Department of Plant Physiology, University of Kaiserslautern, Kaiserslautern 67653, Germany
| | - Vanessa Scherer
- Department of Plant Physiology, University of Kaiserslautern, Kaiserslautern 67653, Germany
| | - Priscille Steensma
- Department of Botany and Plant Biology, University of Geneva, Geneva 1211, Switzerland
| | - Teresa B Fitzpatrick
- Department of Botany and Plant Biology, University of Geneva, Geneva 1211, Switzerland
| | - Anurag Sharma
- Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg 1871, Denmark
| | - Omar Sandoval-Ibañez
- Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg 1871, Denmark
| | - Mathias Pribil
- Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg 1871, Denmark
| | - Martin Lehmann
- Department of Biology I, Ludwig-Maximilians University of Munich, Planegg-Martinsried 82152, Germany
| | - Dario Leister
- Department of Biology I, Ludwig-Maximilians University of Munich, Planegg-Martinsried 82152, Germany
| | - Tatjana Kleine
- Department of Biology I, Ludwig-Maximilians University of Munich, Planegg-Martinsried 82152, Germany
| | - H Ekkehard Neuhaus
- Department of Plant Physiology, University of Kaiserslautern, Kaiserslautern 67653, Germany
| |
Collapse
|
8
|
Zhang Y, Krahnert I, Bolze A, Gibon Y, Fernie AR. Adenine Nucleotide and Nicotinamide Adenine Dinucleotide Measurements in Plants. ACTA ACUST UNITED AC 2020; 5:e20115. [PMID: 32841544 DOI: 10.1002/cppb.20115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
As the principal co-factors of many metabolic pathways, the measurement of both adenine nucleotides and nicotinamide adenine dinucleotide provides important information about cellular energy metabolism. However, given their rapid and reversible conversion as well as their relatively low concentration ranges, it is difficult to measure these compounds. Here, we describe a highly sensitive and selective ion-pairing HPLC method with fluorescence detection to quantify adenine nucleotides in plants. In addition, nicotinamide adenine dinucleotide is a crucially important redox-active substrate for multiple catabolic and anabolic reactions with the ratios of NAD+ /NADH and NADP+ /NADPH being suggested as indicators of the general intracellular redox potential and hence metabolic state. Here, we describe highly sensitive enzyme cycling-based colorimetric assays (with a detection limit in the pmol range) performed subsequent to a simple extraction procedure involving acid or base extraction to allow the measurement of the cellular levels of these metabolites. © 2020 The Authors. Basic Protocol 1: Preparation of plant material for the measurement Basic Protocol 2: Measurement of ATP, ADP, and AMP via HPLC Basic Protocol 3: NAD+ /NADP+ measurements Basic Protocol 4: NADH/NADPH measurements Basic Protocol 5: Data analysis and quality control approaches.
Collapse
Affiliation(s)
- Youjun Zhang
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.,Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Ina Krahnert
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Antje Bolze
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Yves Gibon
- Institut National de la Recherche Agronomique (INRAE), University of Bordeaux, Villenave d'Ornon, France
| | - Alisdair R Fernie
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.,Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| |
Collapse
|
9
|
Characterization of In Vivo Function(s) of Members of the Plant Mitochondrial Carrier Family. Biomolecules 2020; 10:biom10091226. [PMID: 32846873 PMCID: PMC7565455 DOI: 10.3390/biom10091226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
Although structurally related, mitochondrial carrier family (MCF) proteins catalyze the specific transport of a range of diverse substrates including nucleotides, amino acids, dicarboxylates, tricarboxylates, cofactors, vitamins, phosphate and H+. Despite their name, they do not, however, always localize to the mitochondria, with plasma membrane, peroxisomal, chloroplast and thylakoid and endoplasmic reticulum localizations also being reported. The existence of plastid-specific MCF proteins is suggestive that the evolution of these proteins occurred after the separation of the green lineage. That said, plant-specific MCF proteins are not all plastid-localized, with members also situated at the endoplasmic reticulum and plasma membrane. While by no means yet comprehensive, the in vivo function of a wide range of these transporters is carried out here, and we discuss the employment of genetic variants of the MCF as a means to provide insight into their in vivo function complementary to that obtained from studies following their reconstitution into liposomes.
Collapse
|
10
|
Tula S, Shahinnia F, Melzer M, Rutten T, Gómez R, Lodeyro AF, von Wirén N, Carrillo N, Hajirezaei MR. Providing an Additional Electron Sink by the Introduction of Cyanobacterial Flavodiirons Enhances Growth of A. thaliana Under Various Light Intensities. FRONTIERS IN PLANT SCIENCE 2020; 11:902. [PMID: 32670327 PMCID: PMC7330091 DOI: 10.3389/fpls.2020.00902] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/02/2020] [Indexed: 05/19/2023]
Abstract
The ability of plants to maintain photosynthesis in a dynamically changing environment is of central importance for their growth. As the photosynthetic machinery is a sensitive and early target of adverse environmental conditions as those typically found in the field, photosynthetic efficiency is not always optimal. Cyanobacteria, algae, mosses, liverworts and gymnosperms produce flavodiiron proteins (Flvs), a class of electron sinks not represented in angiosperms; these proteins act to mitigate the photoinhibition of photosystem I under high or fluctuating light. Here, genes specifying two cyanobacterial Flvs have been expressed in the chloroplasts of Arabidopsis thaliana in an attempt to improve plant growth. Co-expression of Flv1 and Flv3 enhanced the efficiency of light utilization, boosting the plant's capacity to accumulate biomass as the growth light intensity was raised. The Flv1/Flv3 transgenics displayed an increased production of ATP, an acceleration of carbohydrate metabolism and a more pronounced partitioning of sucrose into starch. The results suggest that Flvs are able to establish an efficient electron sink downstream of PSI, thereby ensuring efficient photosynthetic electron transport at moderate to high light intensities. The expression of Flvs thus acts to both protect photosynthesis and to control the ATP/NADPH ratio; together, their presence is beneficial for the plant's growth potential.
Collapse
Affiliation(s)
- Suresh Tula
- Molecular Plant Nutrition, Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Seeland, Germany
| | - Fahimeh Shahinnia
- Molecular Plant Nutrition, Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Seeland, Germany
| | - Michael Melzer
- Molecular Plant Nutrition, Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Seeland, Germany
| | - Twan Rutten
- Molecular Plant Nutrition, Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Seeland, Germany
| | - Rodrigo Gómez
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Anabella F. Lodeyro
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Seeland, Germany
| | - Néstor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Mohammad R. Hajirezaei
- Molecular Plant Nutrition, Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Seeland, Germany
| |
Collapse
|
11
|
da Fonseca-Pereira P, Neri-Silva R, Cavalcanti JHF, Brito DS, Weber APM, Araújo WL, Nunes-Nesi A. Data-Mining Bioinformatics: Connecting Adenylate Transport and Metabolic Responses to Stress. TRENDS IN PLANT SCIENCE 2018; 23:961-974. [PMID: 30287161 DOI: 10.1016/j.tplants.2018.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/30/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Adenine nucleotides are essential in countless processes within the cellular metabolism. In plants, ATP is mainly produced in chloroplasts and mitochondria through photophosphorylation and oxidative phosphorylation, respectively. Thus, efficient adenylate transport systems are required for intracellular energy partitioning between the cell organelles. Adenylate carriers present in different subcellular compartments have been previously identified and biochemically characterized in plants. Here, by using data-mining bioinformatics tools, we propose how, and to what extent, these carriers integrate energy metabolism within a plant cell under different environmental conditions. We demonstrate that the expression pattern of the corresponding genes is variable under different environmental conditions, suggesting that specific adenylate carriers have distinct and nonredundant functions in plants.
Collapse
Affiliation(s)
- Paula da Fonseca-Pereira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil; These authors contributed equally to this work
| | - Roberto Neri-Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil; These authors contributed equally to this work
| | - João Henrique F Cavalcanti
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil; Max-Panck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Danielle S Brito
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-Universität, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil; Max-Panck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
12
|
Aghdam MS, Jannatizadeh A, Luo Z, Paliyath G. Ensuring sufficient intracellular ATP supplying and friendly extracellular ATP signaling attenuates stresses, delays senescence and maintains quality in horticultural crops during postharvest life. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.04.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
13
|
Pu X, Lv X, Tan T, Fu F, Qin G, Lin H. Roles of mitochondrial energy dissipation systems in plant development and acclimation to stress. ANNALS OF BOTANY 2015; 116:583-600. [PMID: 25987710 PMCID: PMC4577992 DOI: 10.1093/aob/mcv063] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/16/2015] [Accepted: 03/27/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plants are sessile organisms that have the ability to integrate external cues into metabolic and developmental signals. The cues initiate specific signal cascades that can enhance the tolerance of plants to stress, and these mechanisms are crucial to the survival and fitness of plants. The adaption of plants to stresses is a complex process that involves decoding stress inputs as energy-deficiency signals. The process functions through vast metabolic and/or transcriptional reprogramming to re-establish the cellular energy balance. Members of the mitochondrial energy dissipation pathway (MEDP), alternative oxidases (AOXs) and uncoupling proteins (UCPs), act as energy mediators and might play crucial roles in the adaption of plants to stresses. However, their roles in plant growth and development have been relatively less explored. SCOPE This review summarizes current knowledge about the role of members of the MEDP in plant development as well as recent advances in identifying molecular components that regulate the expression of AOXs and UCPs. Highlighted in particular is a comparative analysis of the expression, regulation and stress responses between AOXs and UCPs when plants are exposed to stresses, and a possible signal cross-talk that orchestrates the MEDP, reactive oxygen species (ROS), calcium signalling and hormone signalling. CONCLUSIONS The MEDP might act as a cellular energy/metabolic mediator that integrates ROS signalling, energy signalling and hormone signalling with plant development and stress accumulation. However, the regulation of MEDP members is complex and occurs at transcriptional, translational, post-translational and metabolic levels. How this regulation is linked to actual fluxes through the AOX/UCP in vivo remains elusive.
Collapse
Affiliation(s)
- Xiaojun Pu
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Xin Lv
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Tinghong Tan
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Faqiong Fu
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Gongwei Qin
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
14
|
Short-term anaerobic, pure oxygen and refrigerated storage conditions affect the energy status and selective gene expression in litchi fruit. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2014.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Liang C, Zhang Y, Cheng S, Osorio S, Sun Y, Fernie AR, Cheung CYM, Lim BL. Impacts of high ATP supply from chloroplasts and mitochondria on the leaf metabolism of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2015; 6:922. [PMID: 26579168 PMCID: PMC4623399 DOI: 10.3389/fpls.2015.00922] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/12/2015] [Indexed: 05/19/2023]
Abstract
Chloroplasts and mitochondria are the major ATP producing organelles in plant leaves. Arabidopsis thaliana purple acid phosphatase 2 (AtPAP2) is a phosphatase dually targeted to the outer membranes of both organelles and it plays a role in the import of selected nuclear-encoded proteins into these two organelles. Overexpression (OE) of AtPAP2 in A. thaliana accelerates plant growth and promotes flowering, seed yield, and biomass at maturity. Measurement of ADP/ATP/NADP(+)/NADPH contents in the leaves of 20-day-old OE and wild-type (WT) lines at the end of night and at 1 and 8 h following illumination in a 16/8 h photoperiod revealed that the ATP levels and ATP/NADPH ratios were significantly increased in the OE line at all three time points. The AtPAP2 OE line is therefore a good model to investigate the impact of high energy on the global molecular status of Arabidopsis. In this study, transcriptome, proteome, and metabolome profiles of the high ATP transgenic line were examined and compared with those of WT plants. A comparison of OE and WT at the end of the night provide valuable information on the impact of higher ATP output from mitochondria on plant physiology, as mitochondrial respiration is the major source of ATP in the dark in leaves. Similarly, comparison of OE and WT following illumination will provide information on the impact of higher energy output from chloroplasts on plant physiology. OE of AtPAP2 was found to significantly affect the transcript and protein abundances of genes encoded by the two organellar genomes. For example, the protein abundances of many ribosomal proteins encoded by the chloroplast genome were higher in the AtPAP2 OE line under both light and dark conditions, while the protein abundances of multiple components of the photosynthetic complexes were lower. RNA-seq data also showed that the transcription of the mitochondrial genome is greatly affected by the availability of energy. These data reflect that the transcription and translation of organellar genomes are tightly coupled with the energy status. This study thus provides comprehensive information on the impact of high ATP level on plant physiology, from organellar biology to primary and secondary metabolism.
Collapse
Affiliation(s)
- Chao Liang
- School of Biological Sciences, The University of Hong KongPokfulam, Hong Kong
| | - Youjun Zhang
- Max Planck Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
| | - Shifeng Cheng
- School of Biological Sciences, The University of Hong KongPokfulam, Hong Kong
| | - Sonia Osorio
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterranea, Universidad de Málaga-Consejo Superior de Investigaciones CientíficasMálaga, Spain
| | - Yuzhe Sun
- School of Biological Sciences, The University of Hong KongPokfulam, Hong Kong
| | | | - C. Y. M. Cheung
- Department of Chemical and Biomolecular Engineering, National University of SingaporeSingapore, Singapore
| | - Boon L. Lim
- School of Biological Sciences, The University of Hong KongPokfulam, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong KongShatin, Hong Kong
- *Correspondence: Boon L. Lim,
| |
Collapse
|
16
|
Interplay of Mg2+, ADP, and ATP in the cytosol and mitochondria: unravelling the role of Mg2+ in cell respiration. Proc Natl Acad Sci U S A 2014; 111:E4560-7. [PMID: 25313036 DOI: 10.1073/pnas.1406251111] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In animal and plant cells, the ATP/ADP ratio and/or energy charge are generally considered key parameters regulating metabolism and respiration. The major alternative issue of whether the cytosolic and mitochondrial concentrations of ADP and ATP directly mediate cell respiration remains unclear, however. In addition, because only free nucleotides are exchanged by the mitochondrial ADP/ATP carrier, whereas MgADP is the substrate of ATP synthase (EC 3.6.3.14), the cytosolic and mitochondrial Mg(2+) concentrations must be considered as well. Here we developed in vivo/in vitro techniques using (31)P-NMR spectroscopy to simultaneously measure these key components in subcellular compartments. We show that heterotrophic sycamore (Acer pseudoplatanus L.) cells incubated in various nutrient media contain low, stable cytosolic ADP and Mg(2+) concentrations, unlike ATP. ADP is mainly free in the cytosol, but complexed by Mg(2+) in the mitochondrial matrix, where [Mg(2+)] is tenfold higher. In contrast, owing to a much higher affinity for Mg(2+), ATP is mostly complexed by Mg(2+) in both compartments. Mg(2+) starvation used to alter cytosolic and mitochondrial [Mg(2+)] reversibly increases free nucleotide concentration in the cytosol and matrix, enhances ADP at the expense of ATP, decreases coupled respiration, and stops cell growth. We conclude that the cytosolic ADP concentration, and not ATP, ATP/ADP ratio, or energy charge, controls the respiration of plant cells. The Mg(2+) concentration, remarkably constant and low in the cytosol and tenfold higher in the matrix, mediates ADP/ATP exchange between the cytosol and matrix, [MgADP]-dependent mitochondrial ATP synthase activity, and cytosolic free ADP homeostasis.
Collapse
|
17
|
Lim MH, Wu J, Yao J, Gallardo IF, Dugger JW, Webb LJ, Huang J, Salmi ML, Song J, Clark G, Roux SJ. Apyrase suppression raises extracellular ATP levels and induces gene expression and cell wall changes characteristic of stress responses. PLANT PHYSIOLOGY 2014; 164:2054-67. [PMID: 24550243 PMCID: PMC3982762 DOI: 10.1104/pp.113.233429] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/13/2014] [Indexed: 05/20/2023]
Abstract
Plant cells release ATP into their extracellular matrix as they grow, and extracellular ATP (eATP) can modulate the rate of cell growth in diverse tissues. Two closely related apyrases (APYs) in Arabidopsis (Arabidopsis thaliana), APY1 and APY2, function, in part, to control the concentration of eATP. The expression of APY1/APY2 can be inhibited by RNA interference, and this suppression leads to an increase in the concentration of eATP in the extracellular medium and severely reduces growth. To clarify how the suppression of APY1 and APY2 is linked to growth inhibition, the gene expression changes that occur in seedlings when apyrase expression is suppressed were assayed by microarray and quantitative real-time-PCR analyses. The most significant gene expression changes induced by APY suppression were in genes involved in biotic stress responses, which include those genes regulating wall composition and extensibility. These expression changes predicted specific chemical changes in the walls of mutant seedlings, and two of these changes, wall lignification and decreased methyl ester bonds, were verified by direct analyses. Taken together, the results are consistent with the hypothesis that APY1, APY2, and eATP play important roles in the signaling steps that link biotic stresses to plant defense responses and growth changes.
Collapse
|
18
|
|
19
|
Krajnáková J, Bertolini A, Zoratti L, Gömöry D, Häggman H, Vianello A. Changes in ATP, glucose-6-phosphate and NAD(P)H cellular levels during the proliferation and maturation phases of Abies alba Mill. embryogenic cultures. TREE PHYSIOLOGY 2013; 33:1099-110. [PMID: 24200583 DOI: 10.1093/treephys/tpt082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The aim of the present study was to evaluate the adenosine triphospate (ATP), glucose-6-phosphate (glu-6P) and reduced form of nicotinamide adenine dinucleotide phosphate (NAD(P)H) cellular levels during the proliferation and maturation phases of Abies alba Mill. somatic embryos. For a better understanding of the dynamics of these parameters during the proliferation cycle, four embryonic cell lines were tested. During the maturation period, three independent experiments were conducted, focused on the effects of PEG-4000 (5 or 10% (w/v)) and abscisic acid (16, 32 or 64 μM) applied together (Experiments A and B) or with addition of gibberellic acid (Experiment C) on the dynamics of bio-energetic molecules and on the mean number of cotyledonary somatic embryos. Our results demonstrated that the cellular levels of bio-energetic molecules strongly depended on the composition of maturation media. Generally, the higher the number of cotyledonary embryos produced, the higher the level of ATP observed after a 2-week maturation period. The cellular level of ATP, glu-6P and NAD(P)H increased, particularly after the transition from the proliferation to the maturation phase when the differentiation and growth of somatic embryos occurred.
Collapse
Affiliation(s)
- Jana Krajnáková
- Faculty of Forestry and Wood Technology, Mendel University, Zemědělská 3, 613 00 Czech Republic
| | | | | | | | | | | |
Collapse
|
20
|
Wang H, Qian Z, Ma S, Zhou Y, Patrick JW, Duan X, Jiang Y, Qu H. Energy status of ripening and postharvest senescent fruit of litchi (Litchi chinensis Sonn.). BMC PLANT BIOLOGY 2013; 13:55. [PMID: 23547657 PMCID: PMC3636124 DOI: 10.1186/1471-2229-13-55] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/18/2013] [Indexed: 05/06/2023]
Abstract
BACKGROUND Recent studies have demonstrated that cellular energy is a key factor switching on ripening and senescence of fruit. However, the factors that influence fruit energy status remain largely unknown. RESULTS HPLC profiling showed that ATP abundance increased significantly in developing preharvest litchi fruit and was strongly correlated with fruit fresh weight. In contrast, ATP levels declined significantly during postharvest fruit senescence and were correlated with the decrease in the proportion of edible fruit. The five gene transcripts isolated from the litchi fruit pericarp were highly expressed in vegetative tissues and peaked at 70 days after flowering (DAF) consistent with fruit ADP concentrations, except for uncoupling mitochondrial protein 1 (UCP1), which was predominantly expressed in the root, and ATP synthase beta subunit (AtpB), which was up-regulated significantly before harvest and peaked 2 days after storage. These results indicated that the color-breaker stage at 70 DAF and 2 days after storage may be key turning points in fruit energy metabolism. Transcript abundance of alternative oxidase 1 (AOX1) increased after 2 days of storage to significantly higher levels than those of LcAtpB, and was down-regulated significantly by exogenous ATP. ATP supplementation had no significant effect on transcript abundance of ADP/ATP carrier 1 (AAC1) and slowed the changes in sucrose non-fermenting-1-related kinase 2 (SnRK2) expression, but maintained ATP and energy charge levels, which were correlated with delayed senescence. CONCLUSIONS Our results suggest that senescence of litchi fruit is closely related with energy. A surge of LcAtpB expression marked the beginning of fruit senescence. The findings may provide a new strategy to extend fruit shelf life by regulating its energy level.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, P R China
- University of Chinese Academy of Sciences, Beijing, 100049, P R China
| | - Zhengjiang Qian
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, P R China
- University of Chinese Academy of Sciences, Beijing, 100049, P R China
| | - Sanmei Ma
- Department of Biotechnology, Jinan University, Guangzhou, 510632, P R China
| | - Yuchuan Zhou
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane St Lucia, QLD, 4072, Australia
| | - John W Patrick
- School of Environmental & Life Sciences, the University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Xuewu Duan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, P R China
| | - Yueming Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, P R China
| | - Hongxia Qu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, P R China
| |
Collapse
|
21
|
Kornfeld A, Heskel M, Atkin OK, Gough L, Griffin KL, Horton TW, Turnbull MH. Respiratory flexibility and efficiency are affected by simulated global change in Arctic plants. THE NEW PHYTOLOGIST 2013; 197:1161-1172. [PMID: 23278298 DOI: 10.1111/nph.12083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 11/04/2012] [Indexed: 06/01/2023]
Abstract
Laboratory studies indicate that, in response to environmental conditions, plants modulate respiratory electron partitioning between the 'energy-wasteful' alternative pathway (AP) and the 'energy-conserving' cytochrome pathway (CP). Field data, however, are scarce. Here we investigate how 20-yr field manipulations simulating global change affected electron partitioning in Alaskan Arctic tundra species. We sampled leaves from three dominant tundra species - Betula nana, Eriophorum vaginatum and Rubus chamaemorus - that had been strongly affected by manipulations of soil nutrients, light availability, and warming. We measured foliar dark respiration, in-vivo electron partitioning and alternative oxidase/cytochrome c oxidase concentrations in addition to leaf traits and mitochondrial ultrastructure. Changes in leaf traits and ultrastructure were similar across species. Respiration at 20°C (R(20)) was reduced 15% in all three species grown at elevated temperature, suggesting thermal acclimation of respiration. In Betula, the species with the largest growth response to added nutrients, CP activity increased from 9.4 ± 0.8 to 16.6 ± 1.6 nmol O(2) g(-1) DM s(-1) whereas AP activity was unchanged. The ability of Betula to selectively increase CP activity in response to the environment may contribute to its overall ecological success by increasing respiratory energy efficiency, and thus retaining more carbon for growth.
Collapse
Affiliation(s)
- Ari Kornfeld
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Mary Heskel
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, 10027, USA
| | - Owen K Atkin
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 0200, Australia
| | - Laura Gough
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Kevin L Griffin
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, 10027, USA
- Department of Earth and Environmental Sciences, Columbia University, New York, NY, 10027, USA
- Lamont-Doherty Earth Observatory, Columbia University, 61 Rt 9W, Palisades, NY, 10964, USA
| | - Travis W Horton
- Department of Geological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Matthew H Turnbull
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| |
Collapse
|
22
|
Chiu TY, Christiansen K, Moreno I, Lao J, Loqué D, Orellana A, Heazlewood JL, Clark G, Roux SJ. AtAPY1 and AtAPY2 function as Golgi-localized nucleoside diphosphatases in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2012; 53:1913-25. [PMID: 23034877 DOI: 10.1093/pcp/pcs131] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nucleoside triphosphate diphosphohydrolases (NTPDases; apyrases) (EC 3.6.1.5) hydrolyze di- and triphosphate nucleotides, but not monophosphate nucleotides. They are categorized as E-type ATPases, have a broad divalent cation (Mg(2+), Ca(2+)) requirement for activation and are insensitive to inhibitors of F-type, P-type and V-type ATPases. Among the seven NTPDases identified in Arabidopsis, only APYRASE 1 (AtAPY1) and APYRASE 2 (AtAPY2) have been previously characterized. In this work, either AtAPY1 or AtAPY2 tagged with C-terminal green fluorescent protein (GFP) driven by their respective native promoter can rescue the apy1 apy2 double knockout (apy1 apy2 dKO) successfully, and confocal microscopy reveals that these two Arabidopsis apyrases reside in the Golgi apparatus. In Saccharomyces cerevisiae, both AtAPY1 and AtAPY2 can complement the Golgi-localized GDA1 mutant, rescuing its aberrant protein glycosylation phenotype. In Arabidopsis, microsomes of the wild type show higher substrate preferences toward UDP compared with other NDP substrates. Loss-of-function Arabidopsis AtAPY1 mutants exhibit reduced microsomal UDPase activity, and this activity is even more significantly reduced in the loss-of-function AtAPY2 mutant and in the AtAPY1/AtAPY2 RNA interference (RNAi) technology repressor lines. Microsomes from wild-type plants also have detectable GDPase activity, which is significantly reduced in apy2 but not apy1 mutants. The GFP-tagged AtAPY1 or AtAPY2 constructs in the apy1 apy2 dKO plants can restore microsomal UDP/GDPase activity, confirming that they both also have functional competency. The cell walls of apy1, apy2 and the RNAi-silenced lines all have an increased composition of galactose, but the transport efficiency of UDP-galactose across microsomal membranes was not altered. Taken together, these results reveal that AtAPY1 and AtAPY2 are Golgi-localized nucleotide diphosphatases and are likely to have roles in regulating UDP/GDP concentrations in the Golgi lumen.
Collapse
Affiliation(s)
- Tsan-Yu Chiu
- Section of Molecular Cell and Developmental Biology, University of Texas, Austin, TX 78712, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Aliferis KA, Jabaji S. FT-ICR/MS and GC-EI/MS metabolomics networking unravels global potato sprout's responses to Rhizoctonia solani infection. PLoS One 2012; 7:e42576. [PMID: 22880040 PMCID: PMC3411821 DOI: 10.1371/journal.pone.0042576] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/09/2012] [Indexed: 01/15/2023] Open
Abstract
The complexity of plant-pathogen interactions makes their dissection a challenging task for metabolomics studies. Here we are reporting on an integrated metabolomics networking approach combining gas chromatography/mass spectrometry (GC/MS) with Fourier transform ion cyclotron resonance/mass spectrometry (FT-ICR/MS) and bioinformatics analyses for the study of interactions in the potato sprout-Rhizoctonia solani pathosystem and the fluctuations in the global metabolome of sprouts. The developed bioanalytical and bioinformatics protocols provided a snapshot of the sprout's global metabolic network and its perturbations as a result of pathogen invasion. Mevalonic acid and deoxy-xylulose pathways were substantially up-regulated leading to the biosynthesis of sesquiterpene alkaloids such as the phytoalexins phytuberin, rishitin, and solavetivone, and steroidal alkaloids having solasodine and solanidine as their common aglycons. Additionally, the perturbation of the sprout's metabolism was depicted in fluctuations of the content of their amino acids pool and that of carboxylic and fatty acids. Components of the systemic acquired resistance (SAR) and hypersensitive reaction (HR) such as azelaic and oxalic acids were detected in increased levels in infected sprouts and strategies of the pathogen to overcome plant defense were proposed. Our metabolic approach has not only greatly expanded the multitude of metabolites previously reported in potato in response to pathogen invasion, but also enabled the identification of bioactive plant-derived metabolites providing valuable information that could be exploited in biotechnology, biomarker-assisted plant breeding, and crop protection for the development of new crop protection agents.
Collapse
Affiliation(s)
| | - Suha Jabaji
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
24
|
Kossmann J. Grand challenges in plant biotechnology. FRONTIERS IN PLANT SCIENCE 2012; 3:61. [PMID: 22645593 PMCID: PMC3355807 DOI: 10.3389/fpls.2012.00061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 03/13/2012] [Indexed: 06/01/2023]
Affiliation(s)
- Jens Kossmann
- Department of Genetics, Institute of Plant Biotechnology, Stellenbosch UniversityMatieland, South Africa
| |
Collapse
|
25
|
Clark G, Roux SJ. Apyrases, extracellular ATP and the regulation of growth. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:700-6. [PMID: 21855397 DOI: 10.1016/j.pbi.2011.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 07/15/2011] [Accepted: 07/23/2011] [Indexed: 05/07/2023]
Abstract
Although no definitive receptor for extracellular ATP (eATP) has been identified in plants, there is now stronger physiological evidence that the effects of eATP on plant growth are mediated by a receptor, or, as in animals, by multiple receptors. Recent papers clarify how extracellular nucleotides induce changes in [Ca(2+)](cyt), and the production of nitric oxide (NO) and reactive oxygen species. They document links between eATP signaling and the synthesis or transport of hormones, and they reveal that applied nucleotides can regulate the aperture of stomates, which release ATP when stimulated by light and hormones. Ectoapyrases (ecto-nucleoside triphosphate-diphosphohydrolase) help control both the diverse signaling changes and downstream growth changes induced by extracellular nucleotides by limiting their concentration in the extracellular matrix (ECM).
Collapse
Affiliation(s)
- Greg Clark
- Section of Molecular Cell and Developmental Biology, University of Texas, Austin, TX 78712, USA
| | | |
Collapse
|
26
|
Haferkamp I, Fernie AR, Neuhaus HE. Adenine nucleotide transport in plants: much more than a mitochondrial issue. TRENDS IN PLANT SCIENCE 2011; 16:507-15. [PMID: 21622019 DOI: 10.1016/j.tplants.2011.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 04/14/2011] [Accepted: 04/16/2011] [Indexed: 05/03/2023]
Abstract
Adenine nucleotides play a vital role in plant metabolism and physiology, essentially representing the major energy currency of the cell. Heterotrophic cells regenerate most of the ATP in mitochondria, whereas autotrophic cells also possess chloroplasts, representing a second powerhouse for ATP regeneration. Even though the synthesis of these nucleotides is restricted to a few locations, their use is nearly ubiquitous across the cell and thereby highly efficient systems are required to transport these molecules into and out of different compartments. Here, we discuss the location, biochemical characterization and evolution of corresponding transport systems in plants. We include recent scientific findings concerning organellar transporters from plants and algae and also focus on the physiological importance of adenine nucleotide exchange in these cells.
Collapse
Affiliation(s)
- Ilka Haferkamp
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67663 Kaiserslautern, Germany
| | | | | |
Collapse
|
27
|
van Dongen JT, Gupta KJ, Ramírez-Aguilar SJ, Araújo WL, Nunes-Nesi A, Fernie AR. Regulation of respiration in plants: a role for alternative metabolic pathways. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1434-43. [PMID: 21185623 DOI: 10.1016/j.jplph.2010.11.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 11/19/2010] [Accepted: 11/20/2010] [Indexed: 05/20/2023]
Abstract
Respiratory metabolism includes the reactions of glycolysis, the tricarboxylic acid cycle and the mitochondrial electron transport chain, but is also directly linked with many other metabolic pathways such as protein and lipid biosynthesis and photosynthesis via photorespiration. Furthermore, any change in respiratory activity can impact the redox status of the cell and the production of reactive oxygen species. In this review, it is discussed how respiration is regulated and what alternative pathways are known that increase the metabolic flexibility of this vital metabolic process. By looking at the adaptive responses of respiration to hypoxia or changes in the oxygen availability of a cell, the integration of regulatory responses of various pathways is illustrated.
Collapse
Affiliation(s)
- Joost T van Dongen
- Energy Metabolism Research Group, Max Planck Institute of Molecular Plant Physiology, Department Prof. R. Bock, Am Muehlenberg 1, Potsdam, Germany.
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Stress conditions (e.g. anoxia) frequently result in a decrease of [ATP] and in an increase of [ADP] and [AMP], with a concomitant increase of [Mg2+] and other cations, e.g. Ca2+. The elevation of [Mg2+] is linked to the shift in the apparent equilibrium of adenylate kinase. As a result, enzymes that use Mg2+ as a cofactor are activated, Ca2+ activates calcium-dependent signalling pathways, and PPi can serve as an alternative energy source in its active form of MgPPi or Mg2PPi. Under anoxic conditions in plants, an important source of PPi may come as a result of combined reactions of PK (pyruvate kinase) and PPDK (pyruvate, phosphate dikinase). The PPi formed in the PPDK/PK cycle ignites glycolysis in conditions of low [ATP] by involving PPi-dependent reactions. This saves ATP and makes metabolism under stress conditions more energy efficient.
Collapse
|
29
|
Zitka O, Skutkova H, Adam V, Trnkova L, Babula P, Hubalek J, Provaznik I, Kizek R. A New Approach how to Define the Coefficient of Electroactivity of Adenine and Its Twelve Derivatives Using Flow Injection Analysis with Amperometric Detection. ELECTROANAL 2011. [DOI: 10.1002/elan.201100064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
30
|
Rieder B, Neuhaus HE. Identification of an Arabidopsis plasma membrane-located ATP transporter important for anther development. THE PLANT CELL 2011; 23:1932-44. [PMID: 21540435 PMCID: PMC3123944 DOI: 10.1105/tpc.111.084574] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
ATP acts as an extracellular signal molecule in plants. However, the nature of the mechanisms that export this compound into the apoplast are under debate. We identified the protein PM-ANT1 as a candidate transporter able to mediate ATP export. PM-ANT1 joins the mitochondrial carrier family, lacks an N-terminal amino acid extension required for organelle localization, and locates to the plasma membrane. Recombinant PM-ANT1 transports ATP, and the gene is substantially expressed in mature pollen grains. Artificial microRNA (amiRNA) mutants show reduced silique length and less seeds per silique but increased seed weight associated with unchanged pollen viability. Anthers from amiRNA mutants exhibited a normal early development, but stomium breakage is inhibited, leading to impaired anther dehiscence. This results in reduced self-pollination and thus decreased fertilization efficiency. amiRNA pollen grains showed increased intracellular ATP levels but decreased extracellular ATP levels. The latter effects are in line with transport properties of recombinant PM-ANT1, supporting in planta that functional PM-ANT1 resides in the plasma membrane and concur with the PM-ANT1 expression pattern. We assume that PM-ANT1 contributes to ATP export during pollen maturation. ATP export may serve as an extracellular signal required for anther dehiscence and is a novel factor critical for pollination and autogamy.
Collapse
|
31
|
Geigenberger P. Regulation of starch biosynthesis in response to a fluctuating environment. PLANT PHYSIOLOGY 2011; 155:1566-77. [PMID: 21378102 PMCID: PMC3091114 DOI: 10.1104/pp.110.170399] [Citation(s) in RCA: 217] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 02/26/2011] [Indexed: 05/18/2023]
Affiliation(s)
- Peter Geigenberger
- Ludwig-Maximilians-Universität München, Department of Biology I, 82152 Martinsried, Germany.
| |
Collapse
|
32
|
Nunes-Nesi A, Fernie AR, Stitt M. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. MOLECULAR PLANT 2010; 3:973-96. [PMID: 20926550 DOI: 10.1093/mp/ssq049] [Citation(s) in RCA: 423] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In addition to light and water, CO(2) and mineral elements are required for plant growth and development. Among these factors, nitrogen is critical, since it is needed to synthesize amino acids, which are the building elements of protein, nucleotides, chlorophyll, and numerous other metabolites and cellular components. Therefore, nitrogen is required by plants in higher quantities and this investment in nitrogen supports the use of CO(2), water, and inorganic nitrogen to produce sugars, organic acids, and amino acids, the basic building blocks of biomass accumulation. This system is maintained by complex metabolic machinery, which is regulated at different levels according to environmental factors such as light, CO(2), and nutrient availability. Plants integrate these signals via a signaling network, which involves metabolites as well as nutrient-sensing proteins. Due to its importance, much research effort has been expended to understand how carbon and nitrogen metabolism are integrated and regulated according to the rates of photosynthesis, photorespiration, and respiration. Thus, in this article, we both discuss recent advances in carbon/nitrogen metabolisms as well as sensing and signaling systems in illuminated leaves of C3-plants and provide a perspective of the type of experiments that are now required in order to take our understanding to a higher level.
Collapse
Affiliation(s)
- Adriano Nunes-Nesi
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | | | | |
Collapse
|