1
|
Carrillo‐Carrasco VP, Hernandez‐Garcia J, Mutte SK, Weijers D. The birth of a giant: evolutionary insights into the origin of auxin responses in plants. EMBO J 2023; 42:e113018. [PMID: 36786017 PMCID: PMC10015382 DOI: 10.15252/embj.2022113018] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
The plant signaling molecule auxin is present in multiple kingdoms of life. Since its discovery, a century of research has been focused on its action as a phytohormone. In land plants, auxin regulates growth and development through transcriptional and non-transcriptional programs. Some of the molecular mechanisms underlying these responses are well understood, mainly in Arabidopsis. Recently, the availability of genomic and transcriptomic data of green lineages, together with phylogenetic inference, has provided the basis to reconstruct the evolutionary history of some components involved in auxin biology. In this review, we follow the evolutionary trajectory that allowed auxin to become the "giant" of plant biology by focusing on bryophytes and streptophyte algae. We consider auxin biosynthesis, transport, physiological, and molecular responses, as well as evidence supporting the role of auxin as a chemical messenger for communication within ecosystems. Finally, we emphasize that functional validation of predicted orthologs will shed light on the conserved properties of auxin biology among streptophytes.
Collapse
Affiliation(s)
| | | | - Sumanth K Mutte
- Laboratory of BiochemistryWageningen UniversityWageningenthe Netherlands
| | - Dolf Weijers
- Laboratory of BiochemistryWageningen UniversityWageningenthe Netherlands
| |
Collapse
|
2
|
Rieseberg TP, Dadras A, Fürst-Jansen JMR, Dhabalia Ashok A, Darienko T, de Vries S, Irisarri I, de Vries J. Crossroads in the evolution of plant specialized metabolism. Semin Cell Dev Biol 2023; 134:37-58. [PMID: 35292191 DOI: 10.1016/j.semcdb.2022.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/17/2022] [Accepted: 03/04/2022] [Indexed: 12/25/2022]
Abstract
The monophyletic group of embryophytes (land plants) stands out among photosynthetic eukaryotes: they are the sole constituents of the macroscopic flora on land. In their entirety, embryophytes account for the majority of the biomass on land and constitute an astounding biodiversity. What allowed for the massive radiation of this particular lineage? One of the defining features of all land plants is the production of an array of specialized metabolites. The compounds that the specialized metabolic pathways of embryophytes produce have diverse functions, ranging from superabundant structural polymers and compounds that ward off abiotic and biotic challenges, to signaling molecules whose abundance is measured at the nanomolar scale. These specialized metabolites govern the growth, development, and physiology of land plants-including their response to the environment. Hence, specialized metabolites define the biology of land plants as we know it. And they were likely a foundation for their success. It is thus intriguing to find that the closest algal relatives of land plants, freshwater organisms from the grade of streptophyte algae, possess homologs for key enzymes of specialized metabolic pathways known from land plants. Indeed, some studies suggest that signature metabolites emerging from these pathways can be found in streptophyte algae. Here we synthesize the current understanding of which routes of the specialized metabolism of embryophytes can be traced to a time before plants had conquered land.
Collapse
Affiliation(s)
- Tim P Rieseberg
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Armin Dadras
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Janine M R Fürst-Jansen
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Amra Dhabalia Ashok
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Tatyana Darienko
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Sophie de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Iker Irisarri
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany
| | - Jan de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany; University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, Goldschmidtsr. 1, 37077 Goettingen, Germany.
| |
Collapse
|
3
|
Cheng X, Liu X, He J, Tang M, Li H, Li M. The genome wide analysis of Tryptophan Aminotransferase Related gene family, and their relationship with related agronomic traits in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:1098820. [PMID: 36618649 PMCID: PMC9811149 DOI: 10.3389/fpls.2022.1098820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Tryptophan Aminotransferase of Arabidopsis1/Tryptophan Aminotransferase-Related (TAA1/TAR) proteins are the enzymes that involved in auxin biosynthesis pathway. The TAA1/TAR gene family has been systematically characterized in several plants but has not been well reported in Brassica napus. In the present study, a total of 102 BnTAR genes with different number of introns were identified. It was revealed that these genes are distributed unevenly and occurred as clusters on different chromosomes except for A4, A5, A10 and C4 in B. napus. Most of the these BnTAR genes are conserved despite of existing of gene loss and gene gain. In addition, the segmental replication and whole-genome replication events were both play an important role in the BnTAR gene family formation. Expression profiles analysis indicated that the expression of BnTAR gene showed two patterns, part of them were mainly expressed in roots, stems and leaves of vegetative organs, and the others were mainly expressed in flowers and seeds of reproductive organs. Further analysis showed that many of BnTAR genes were located in QTL intervals of oil content or seed weight, for example BnAMI10 was located in cqOC-C5-4 and cqSW-A2-2, it indicated that some of the BnTAR genes might have relationship with these two characteristics. This study provides a multidimensional analysis of the TAA1/TAR gene family and a new insight into its biological function in B. napus.
Collapse
Affiliation(s)
- Xin Cheng
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xinmin Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jianjie He
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mi Tang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Huaixin Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Maoteng Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics, the Ministry of Education of China, Wuhan, China
| |
Collapse
|
4
|
Duong TT, Nguyen TTL, Dinh THV, Hoang TQ, Vu TN, Doan TO, Dang TMA, Le TPQ, Tran DT, Le VN, Nguyen QT, Le PT, Nguyen TK, Pham TD, Bui HM. Auxin production of the filamentous cyanobacterial Planktothricoides strain isolated from a polluted river in Vietnam. CHEMOSPHERE 2021; 284:131242. [PMID: 34225111 DOI: 10.1016/j.chemosphere.2021.131242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/21/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacteria are photosynthetic microorganisms with widespread diversity and extensive global distribution. They produce a wide variety of bioactive substances (e.g., lipopeptides, fatty acids, toxins, carotenoids, vitamins and plant growth regulators) that are released into culture media. In this study, the capability of a cyanobacterial strain of Planktothricoides raciborskii to produce intra- and extracellular auxins was investigated. The filamentous cyanobacterial P. raciborskii strain was isolated from a river in Vietnam, and it was cultivated in the laboratory under the optimum conditions of the BG11 culture medium and a pH of 7.0. The auxins were identified and quantified by the Salkowski colorimetric method and high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS). Colorimetric analysis revealed that P. raciborskii produces extracellular indole-3-acetic acid (IAA) in the absence and presence of l-tryptophan. The maximum extracellular IAA concentration of the culture reached 118 ± 2 μg mL-1, which was supplemented with 900 μg mL-1 of l-tryptophan. HPLC-MS analysis revealed that the isolated cyanobacteria accumulate other plant-growth-promoting hormones besides IAA, such as indole-3-carboxylic acid (ICA), indole-3 butyric acid (IBA) and indole propionic acid (IPA). This is the first report on the production of auxins in an isolated strain of cyanobacteria Planktothricoides from a polluted river. The capability of producing auxins makes the P. raciborskii strain an appropriate candidate for the formulation of a biofertilizer.
Collapse
Affiliation(s)
- Thi Thuy Duong
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam.
| | - Thi Thu Lien Nguyen
- Institute of Biotechnology, Hue University, Provincial Road 10, Phu Thuong Commune, Phu Vang District, Thua Thien Hue province, Viet Nam
| | - Thi Hai Van Dinh
- Faculty of Environment, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi, Viet Nam
| | - Thi Quynh Hoang
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Thi Nguyet Vu
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Thi Oanh Doan
- Faculty of Environment, Ha Noi University of Natural Resources and Environment, No 41A, Phu Dien Street, Bac Tu Liem, Ha Noi, Viet Nam
| | - Thi Mai Anh Dang
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Thi Phuong Quynh Le
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Dang Thuan Tran
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Van Nhan Le
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Quang Trung Nguyen
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Phuong Thu Le
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Trung Kien Nguyen
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Thi Dau Pham
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai, Hanoi, Viet Nam
| | - Ha Manh Bui
- Department of Environmental Sciences, Saigon University, 273 An Duong Vuong Street, District 5, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
5
|
Bowman JL, Flores Sandoval E, Kato H. On the Evolutionary Origins of Land Plant Auxin Biology. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a040048. [PMID: 33558368 DOI: 10.1101/cshperspect.a040048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Indole-3-acetic acid, that is, auxin, is a molecule found in a broad phylogenetic distribution of organisms, from bacteria to eukaryotes. In the ancestral land plant auxin was co-opted to be the paramount phytohormone mediating tropic responses and acting as a facilitator of developmental decisions throughout the life cycle. The evolutionary origins of land plant auxin biology genes can now be traced with reasonable clarity. Genes encoding the two enzymes of the land plant auxin biosynthetic pathway arose in the ancestral land plant by a combination of horizontal gene transfer from bacteria and possible neofunctionalization following gene duplication. Components of the auxin transcriptional signaling network have their origins in ancestral alga genes, with gene duplication and neofunctionalization of key domains allowing integration of a portion of the preexisting transcriptional network with auxin. Knowledge of the roles of orthologous genes in extant charophycean algae is lacking, but could illuminate the ancestral functions of both auxin and the co-opted transcriptional network.
Collapse
Affiliation(s)
- John L Bowman
- School of Biological Science, Monash University, Melbourne, Victoria 3800, Australia
| | | | - Hirotaka Kato
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
6
|
Chen R, Huangfu L, Lu Y, Fang H, Xu Y, Li P, Zhou Y, Xu C, Huang J, Yang Z. Adaptive innovation of green plants by horizontal gene transfer. Biotechnol Adv 2020; 46:107671. [PMID: 33242576 DOI: 10.1016/j.biotechadv.2020.107671] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022]
Abstract
Horizontal gene transfer (HGT) refers to the movement of genetic material between distinct species by means other than sexual reproduction. HGT has contributed tremendously to the genome plasticity and adaptive evolution of prokaryotes and certain unicellular eukaryotes. The evolution of green plants from chlorophyte algae to angiosperms and from water to land represents a process of adaptation to diverse environments, which has been facilitated by acquisition of genetic material from other organisms. In this article, we review the occurrence of HGT in major lineages of green plants, including chlorophyte and charophyte green algae, bryophytes, lycophytes, ferns, and seed plants. In addition, we discuss the significance of horizontally acquired genes in the adaptive innovations of green plants and their potential applications to crop breeding and improvement.
Collapse
Affiliation(s)
- Rujia Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Liexiang Huangfu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yue Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Huimin Fang
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yang Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Pengcheng Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Chenwu Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| | - Jinling Huang
- Department of Biology, East Carolina University, Greenville, NC 28590, USA; State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Zefeng Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
7
|
Turnaev II, Gunbin KV, Suslov VV, Akberdin IR, Kolchanov NA, Afonnikov DA. The Phylogeny of Class B Flavoprotein Monooxygenases and the Origin of the YUCCA Protein Family. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1092. [PMID: 32854417 PMCID: PMC7570161 DOI: 10.3390/plants9091092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023]
Abstract
YUCCA (YUCCA flavin-dependent monooxygenase) is one of the two enzymes of the main auxin biosynthesis pathway (tryptophan aminotransferase enzyme (TAA)/YUCCA) in land plants. The evolutionary origin of the YUCCA family is currently controversial: YUCCAs are assumed to have emerged via a horizontal gene transfer (HGT) from bacteria to the most recent common ancestor (MRCA) of land plants or to have inherited it from their ancestor, the charophyte algae. To refine YUCCA origin, we performed a phylogenetic analysis of the class B flavoprotein monooxygenases and comparative analysis of the sequences belonging to different families of this protein class. We distinguished a new protein family, named type IIb flavin-containing monooxygenases (FMOs), which comprises homologs of YUCCA from Rhodophyta, Chlorophyta, and Charophyta, land plant proteins, and FMO-E, -F, and -G of the bacterium Rhodococcus jostii RHA1. The type IIb FMOs differ considerably in the sites and domain composition from the other families of class B flavoprotein monooxygenases, YUCCAs included. The phylogenetic analysis also demonstrated that the type IIb FMO clade is not a sibling clade of YUCCAs. We have also identified the bacterial protein group named YUC-like FMOs as the closest to YUCCA homologs. Our results support the hypothesis of the emergence of YUCCA via HGT from bacteria to MRCA of land plants.
Collapse
Affiliation(s)
- Igor I. Turnaev
- Institute of Cytology and Genetics, SB RAS, 630090 Novosibirsk, Russia; (I.I.T.); (K.V.G.); (V.V.S.); (I.R.A.); (N.A.K.)
| | - Konstantin V. Gunbin
- Institute of Cytology and Genetics, SB RAS, 630090 Novosibirsk, Russia; (I.I.T.); (K.V.G.); (V.V.S.); (I.R.A.); (N.A.K.)
| | - Valentin V. Suslov
- Institute of Cytology and Genetics, SB RAS, 630090 Novosibirsk, Russia; (I.I.T.); (K.V.G.); (V.V.S.); (I.R.A.); (N.A.K.)
| | - Ilya R. Akberdin
- Institute of Cytology and Genetics, SB RAS, 630090 Novosibirsk, Russia; (I.I.T.); (K.V.G.); (V.V.S.); (I.R.A.); (N.A.K.)
- Biosoft.ru, 630058 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Nikolay A. Kolchanov
- Institute of Cytology and Genetics, SB RAS, 630090 Novosibirsk, Russia; (I.I.T.); (K.V.G.); (V.V.S.); (I.R.A.); (N.A.K.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, SB RAS, 630090 Novosibirsk, Russia
| | - Dmitry A. Afonnikov
- Institute of Cytology and Genetics, SB RAS, 630090 Novosibirsk, Russia; (I.I.T.); (K.V.G.); (V.V.S.); (I.R.A.); (N.A.K.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
8
|
Guo T, Chen K, Dong NQ, Ye WW, Shan JX, Lin HX. Tillering and small grain 1 dominates the tryptophan aminotransferase family required for local auxin biosynthesis in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:581-600. [PMID: 31081210 DOI: 10.1111/jipb.12820] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/26/2019] [Indexed: 05/23/2023]
Abstract
Auxin is a crucial phytohormone, controlling multiple aspects of plant growth and responses to the changing environment. However, the role of local auxin biosynthesis in specific developmental programs remains unknown in crops. This study characterized the rice tillering and small grain 1 (tsg1) mutant, which has more tillers but a smaller panicle and grain size resulting from a reduction in endogenous auxin. TSG1 encodes a tryptophan aminotransferase that is allelic to the FISH BONE (FIB) gene. The tsg1 mutant showed hypersensitivity to indole-3-acetic acid and the competitive inhibitor of aminotransferase, L-kynurenine. TSG1 knockout resulted in an increased tiller number but reduction in grain number and size, and decrease in height. Meanwhile, deletion of the TSG1 homologs OsTAR1, OsTARL1, and OsTARL2 caused no obvious changes, although the phenotype of the TSG1/OsTAR1 double mutant was intensified and infertile, suggesting gene redundancy in the rice tryptophan aminotransferase family. Interestingly, TSG1 and OsTAR1, but not OsTARL1 and OsTARL2, displayed marked aminotransferase activity. Meanwhile, subcellular localization was identified as the endoplasmic reticulum, while phylogenetic analysis revealed functional divergence of TSG1 and OsTAR1 from OsTARL1 and OsTARL2. These findings suggest that TSG1 dominates the tryptophan aminotransferase family, playing a prominent role in local auxin biosynthesis in rice.
Collapse
Affiliation(s)
- Tao Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology & Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ke Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology & Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Nai-Qian Dong
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology & Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wang-Wei Ye
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology & Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jun-Xiang Shan
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology & Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology & Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
9
|
The Roles of Auxin Biosynthesis YUCCA Gene Family in Plants. Int J Mol Sci 2019; 20:ijms20246343. [PMID: 31888214 PMCID: PMC6941117 DOI: 10.3390/ijms20246343] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/16/2022] Open
Abstract
Auxin plays essential roles in plant normal growth and development. The auxin signaling pathway relies on the auxin gradient within tissues and cells, which is facilitated by both local auxin biosynthesis and polar auxin transport (PAT). The TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA)/YUCCA (YUC) pathway is the most important and well-characterized pathway that plants deploy to produce auxin. YUCs function as flavin-containing monooxygenases (FMO) catalyzing the rate-limiting irreversible oxidative decarboxylation of indole-3-pyruvate acid (IPyA) to form indole-3-acetic acid (IAA). The spatiotemporal dynamic expression of different YUC gene members finely tunes the local auxin biosynthesis in plants, which contributes to plant development as well as environmental responses. In this review, the recent advances in the identification, evolution, molecular structures, and functions in plant development and stress response regarding the YUC gene family are addressed.
Collapse
|
10
|
Han GZ. Evolution of jasmonate biosynthesis and signaling mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1323-1331. [PMID: 28007954 DOI: 10.1093/jxb/erw470] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Jasmonates are phytohormones that modulate a wide spectrum of plant physiological processes, especially defense against herbivores and necrotrophs. The molecular mechanisms of jasmonate biosynthesis and signaling have been well characterized in model plants. In this review, we provide an in-depth analysis and overview of the origin and evolution of the jasmonate biosynthesis and signaling pathways. Furthermore, we discuss the striking parallels between jasmonate and auxin signaling mechanisms, which reveals a common ancestry of these signaling mechanisms. Finally, we highlight the importance of studying jasmonate biosynthesis and signaling in lower plants.
Collapse
Affiliation(s)
- Guan-Zhu Han
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210046, China
| |
Collapse
|
11
|
Romani F. Origin of TAA Genes in Charophytes: New Insights into the Controversy over the Origin of Auxin Biosynthesis. FRONTIERS IN PLANT SCIENCE 2017; 8:1616. [PMID: 28979280 PMCID: PMC5611494 DOI: 10.3389/fpls.2017.01616] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/04/2017] [Indexed: 05/03/2023]
|
12
|
Beilby MJ. Multi-Scale Characean Experimental System: From Electrophysiology of Membrane Transporters to Cell-to-Cell Connectivity, Cytoplasmic Streaming and Auxin Metabolism. FRONTIERS IN PLANT SCIENCE 2016; 7:1052. [PMID: 27504112 PMCID: PMC4958633 DOI: 10.3389/fpls.2016.01052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/05/2016] [Indexed: 05/29/2023]
Abstract
The morphology of characean algae could be mistaken for a higher plant: stem-like axes with leaf-like branchlets anchored in the soil by root-like rhizoids. However, all of these structures are made up of giant multinucleate cells separated by multicellular nodal complexes. The excised internodal cells survive long enough for the nodes to give rise to new thallus. The size of the internodes and their thick cytoplasmic layer minimize impalement injury and allow specific micro-electrode placement. The cell structure can be manipulated by centrifugation, perfusion of cell contents or creation of cytoplasmic droplets, allowing access to both vacuolar and cytoplasmic compartments and both sides of the cell membranes. Thousands of electrical measurements on intact or altered cells and cytoplasmic droplets laid down basis to modern plant electrophysiology. Furthermore, the giant internodal cells and whole thalli facilitate research into many other plant properties. As nutrients have to be transported from rhizoids to growing parts of the thallus and hormonal signals need to pass from cell to cell, Characeae possess very fast cytoplasmic streaming. The mechanism was resolved in the characean model. Plasmodesmata between the internodal cells and nodal complexes facilitate transport of ions, nutrients and photosynthates across the nodes. The internal structure was found to be similar to those of higher plants. Recent experiments suggest a strong circadian influence on metabolic pathways producing indole-3-acetic acid (IAA) and serotonin/melatonin. The review will discuss the impact of the characean models arising from fragments of cells, single cells, cell-to-cell transport or whole thalli on understanding of plant evolution and physiology.
Collapse
Affiliation(s)
- Mary J. Beilby
- School of Physics, The University of New South Wales, SydneyNSW, Australia
| |
Collapse
|
13
|
Labeeuw L, Khey J, Bramucci AR, Atwal H, de la Mata AP, Harynuk J, Case RJ. Indole-3-Acetic Acid Is Produced by Emiliania huxleyi Coccolith-Bearing Cells and Triggers a Physiological Response in Bald Cells. Front Microbiol 2016; 7:828. [PMID: 27375567 PMCID: PMC4896954 DOI: 10.3389/fmicb.2016.00828] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/17/2016] [Indexed: 01/05/2023] Open
Abstract
Indole-3-acetic acid (IAA) is an auxin produced by terrestrial plants which influences development through a variety of cellular mechanisms, such as altering cell orientation, organ development, fertility, and cell elongation. IAA is also produced by bacterial pathogens and symbionts of plants and algae, allowing them to manipulate growth and development of their host. They do so by either producing excess exogenous IAA or hijacking the IAA biosynthesis pathway of their host. The endogenous production of IAA by algae remains contentious. Using Emiliania huxleyi, a globally abundant marine haptophyte, we investigated the presence and potential role of IAA in algae. Homologs of genes involved in several tryptophan-dependent IAA biosynthesis pathways were identified in E. huxleyi. This suggests that this haptophyte can synthesize IAA using various precursors derived from tryptophan. Addition of L-tryptophan to E. huxleyi stimulated IAA production, which could be detected using Salkowski's reagent and GC × GC-TOFMS in the C cell type (coccolith bearing), but not in the N cell type (bald). Various concentrations of IAA were exogenously added to these two cell types to identify a physiological response in E. huxleyi. The N cell type, which did not produce IAA, was more sensitive to it, showing an increased variation in cell size, membrane permeability, and a corresponding increase in the photosynthetic potential quantum yield of Photosystem II (PSII). A roseobacter (bacteria commonly associated with E. huxleyi) Ruegeria sp. R11, previously shown to produce IAA, was co-cultured with E. huxleyi C and N cells. IAA could not be detected from these co-cultures, and even when stimulated by addition of L-tryptophan, they produced less IAA than axenic C type culture similarly induced. This suggests that IAA plays a novel role signaling between different E. huxleyi cell types, rather than between a bacteria and its algal host.
Collapse
Affiliation(s)
- Leen Labeeuw
- Department of Biological Sciences, University of Alberta Edmonton, AB, Canada
| | - Joleen Khey
- Department of Biological Sciences, University of Alberta Edmonton, AB, Canada
| | - Anna R Bramucci
- Department of Biological Sciences, University of Alberta Edmonton, AB, Canada
| | - Harjot Atwal
- Department of Biological Sciences, University of Alberta Edmonton, AB, Canada
| | | | - James Harynuk
- Department of Chemistry, University of Alberta Edmonton, AB, Canada
| | - Rebecca J Case
- Department of Biological Sciences, University of Alberta Edmonton, AB, Canada
| |
Collapse
|
14
|
Wang C, Li SS, Han GZ. Commentary: Plant Auxin Biosynthesis Did Not Originate in Charophytes. FRONTIERS IN PLANT SCIENCE 2016; 7:158. [PMID: 26909097 PMCID: PMC4754409 DOI: 10.3389/fpls.2016.00158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/30/2016] [Indexed: 05/04/2023]
Affiliation(s)
- Chunyang Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTai'an, China
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal UniversityNanjing, China
| | - Si-Shen Li
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTai'an, China
- *Correspondence: Guan-Zhu Han
| | - Guan-Zhu Han
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal UniversityNanjing, China
- Si-Shen Li
| |
Collapse
|
15
|
Domozych DS, Popper ZA, Sørensen I. Charophytes: Evolutionary Giants and Emerging Model Organisms. FRONTIERS IN PLANT SCIENCE 2016; 7:1470. [PMID: 27777578 PMCID: PMC5056234 DOI: 10.3389/fpls.2016.01470] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/15/2016] [Indexed: 05/20/2023]
Abstract
Charophytes are the group of green algae whose ancestral lineage gave rise to land plants in what resulted in a profoundly transformative event in the natural history of the planet. Extant charophytes exhibit many features that are similar to those found in land plants and their relatively simple phenotypes make them efficacious organisms for the study of many fundamental biological phenomena. Several taxa including Micrasterias, Penium, Chara, and Coleochaete are valuable model organisms for the study of cell biology, development, physiology and ecology of plants. New and rapidly expanding molecular studies are increasing the use of charophytes that in turn, will dramatically enhance our understanding of the evolution of plants and the adaptations that allowed for survival on land. The Frontiers in Plant Science series on "Charophytes" provides an assortment of new research reports and reviews on charophytes and their emerging significance as model plants.
Collapse
Affiliation(s)
- David S. Domozych
- Department of Biology, Skidmore College, Saratoga SpringsNY, USA
- *Correspondence: David S. Domozych,
| | - Zoë A. Popper
- Botany and Plant Science, School of Natural Science, National University of IrelandGalway, Ireland
| | - Iben Sørensen
- Plant Biology Section, School of Integrative Plant Science, Cornell University, IthacaNY, USA
| |
Collapse
|
16
|
Turnaev II, Gunbin KV, Afonnikov DA. Plant auxin biosynthesis did not originate in charophytes. TRENDS IN PLANT SCIENCE 2015; 20:463-5. [PMID: 26186977 DOI: 10.1016/j.tplants.2015.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/09/2015] [Accepted: 06/16/2015] [Indexed: 05/12/2023]
Affiliation(s)
- Igor I Turnaev
- Systems Biology Department, Federal State Research Center Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Konstantin V Gunbin
- Systems Biology Department, Federal State Research Center Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Dmitry A Afonnikov
- Systems Biology Department, Federal State Research Center Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia; Chair of Informational Biology, Novosibirsk State University, Novosibirsk, 630090, Russia.
| |
Collapse
|
17
|
Wang C, Liu Y, Li SS, Han GZ. Insights into the origin and evolution of the plant hormone signaling machinery. PLANT PHYSIOLOGY 2015; 167:872-86. [PMID: 25560880 PMCID: PMC4348752 DOI: 10.1104/pp.114.247403] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Plant hormones modulate plant growth, development, and defense. However, many aspects of the origin and evolution of plant hormone signaling pathways remain obscure. Here, we use a comparative genomic and phylogenetic approach to investigate the origin and evolution of nine major plant hormone (abscisic acid, auxin, brassinosteroid, cytokinin, ethylene, gibberellin, jasmonate, salicylic acid, and strigolactone) signaling pathways. Our multispecies genome-wide analysis reveals that: (1) auxin, cytokinin, and strigolactone signaling pathways originated in charophyte lineages; (2) abscisic acid, jasmonate, and salicylic acid signaling pathways arose in the last common ancestor of land plants; (3) gibberellin signaling evolved after the divergence of bryophytes from land plants; (4) the canonical brassinosteroid signaling originated before the emergence of angiosperms but likely after the split of gymnosperms and angiosperms; and (5) the origin of the canonical ethylene signaling pathway postdates shortly the emergence of angiosperms. Our findings might have important implications in understanding the molecular mechanisms underlying the emergence of land plants.
Collapse
Affiliation(s)
- Chunyang Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China (C.W., G.-Z.H.);State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China (C.W., Y.L., S.-S.L.); andDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721 (G.-Z.H.)
| | - Yang Liu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China (C.W., G.-Z.H.);State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China (C.W., Y.L., S.-S.L.); andDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721 (G.-Z.H.)
| | - Si-Shen Li
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China (C.W., G.-Z.H.);State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China (C.W., Y.L., S.-S.L.); andDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721 (G.-Z.H.)
| | - Guan-Zhu Han
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China (C.W., G.-Z.H.);State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China (C.W., Y.L., S.-S.L.); andDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721 (G.-Z.H.)
| |
Collapse
|
18
|
Fu SF, Wei JY, Chen HW, Liu YY, Lu HY, Chou JY. Indole-3-acetic acid: A widespread physiological code in interactions of fungi with other organisms. PLANT SIGNALING & BEHAVIOR 2015; 10:e1048052. [PMID: 26179718 PMCID: PMC4623019 DOI: 10.1080/15592324.2015.1048052] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 04/30/2015] [Accepted: 04/30/2015] [Indexed: 05/20/2023]
Abstract
Plants as well as microorganisms, including bacteria and fungi, produce indole-3-acetic acid (IAA). IAA is the most common plant hormone of the auxin class and it regulates various aspects of plant growth and development. Thus, research is underway globally to exploit the potential for developing IAA-producing fungi for promoting plant growth and protection for sustainable agriculture. Phylogenetic evidence suggests that IAA biosynthesis evolved independently in bacteria, microalgae, fungi, and plants. Present studies show that IAA regulates the physiological response and gene expression in these microorganisms. The convergent evolution of IAA production leads to the hypothesis that natural selection might have favored IAA as a widespread physiological code in these microorganisms and their interactions. We summarize recent studies of IAA biosynthetic pathways and discuss the role of IAA in fungal ecology.
Collapse
Affiliation(s)
- Shih-Feng Fu
- Department of Biology; National Changhua University of Education; Taiwan, R.O.C
| | - Jyuan-Yu Wei
- Department of Biology; National Changhua University of Education; Taiwan, R.O.C
| | - Hung-Wei Chen
- Department of Biology; National Changhua University of Education; Taiwan, R.O.C
| | - Yen-Yu Liu
- Department of Biology; National Changhua University of Education; Taiwan, R.O.C
| | - Hsueh-Yu Lu
- Department of Biology; National Changhua University of Education; Taiwan, R.O.C
| | - Jui-Yu Chou
- Department of Biology; National Changhua University of Education; Taiwan, R.O.C
- Correspondence to: Jui-Yu Chou;
| |
Collapse
|
19
|
Ke M, Zheng Y, Zhu Z. Rethinking the Origin of Auxin Biosynthesis in Plants. FRONTIERS IN PLANT SCIENCE 2015; 6:1093. [PMID: 26697046 PMCID: PMC4667067 DOI: 10.3389/fpls.2015.01093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/20/2015] [Indexed: 05/10/2023]
Affiliation(s)
- Meng Ke
- School of Life Sciences, Tsinghua UniversityBeijing, China
| | - Yuyu Zheng
- College of Life Sciences, Nanjing Normal UniversityNanjing, China
| | - Ziqiang Zhu
- College of Life Sciences, Nanjing Normal UniversityNanjing, China
- *Correspondence: Ziqiang Zhu
| |
Collapse
|
20
|
Huang J, Yue J, Hu X. Origin of plant auxin biosynthesis in charophyte algae: a reply to Wang et al. TRENDS IN PLANT SCIENCE 2014; 19:743. [PMID: 25458847 DOI: 10.1016/j.tplants.2014.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 10/14/2014] [Indexed: 05/05/2023]
Affiliation(s)
- Jinling Huang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| | - Jipei Yue
- Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
| | - Xiangyang Hu
- Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
| |
Collapse
|