1
|
Rafiei N, Ronceret A. The plant early recombinosome: a high security complex to break DNA during meiosis. PLANT REPRODUCTION 2024; 37:421-440. [PMID: 39331138 PMCID: PMC11511760 DOI: 10.1007/s00497-024-00509-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024]
Abstract
KEY MESSAGE The formacion of numerous unpredictable DNA Double Strand Breaks (DSBs) on chromosomes iniciates meiotic recombination. In this perspective, we propose a 'multi-key lock' model to secure the risky but necesary breaks as well as a 'one per pair of cromatids' model for the topoisomerase-like early recombinosome. During meiosis, homologous chromosomes recombine at few sites of crossing-overs (COs) to ensure correct segregation. The initiation of meiotic recombination involves the formation of DNA double strand breaks (DSBs) during prophase I. Too many DSBs are dangerous for genome integrity: if these DSBs are not properly repaired, it could potentially lead to chromosomal fragmentation. Too few DSBs are also problematic: if the obligate CO cannot form between bivalents, catastrophic unequal segregation of univalents lead to the formation of sterile aneuploid spores. Research on the regulation of the formation of these necessary but risky DSBs has recently advanced in yeast, mammals and plants. DNA DSBs are created by the enzymatic activity of the early recombinosome, a topoisomerase-like complex containing SPO11. This opinion paper reviews recent insights on the regulation of the SPO11 cofactors necessary for the introduction of temporally and spatially controlled DSBs. We propose that a 'multi-key-lock' model for each subunit of the early recombinosome complex is required to secure the formation of DSBs. We also discuss the hypothetical implications that the established topoisomerase-like nature of the SPO11 core-complex can have in creating DSB in only one of the two replicated chromatids of early prophase I meiotic chromosomes. This hypothetical 'one per pair of chromatids' DSB formation model could optimize the faithful repair of the self-inflicted DSBs. Each DSB could use three potential intact homologous DNA sequences as repair template: one from the sister chromatid and the two others from the homologous chromosomes.
Collapse
Affiliation(s)
- Nahid Rafiei
- Department of Plant Molecular Biology, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Arnaud Ronceret
- Department of Plant Molecular Biology, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México.
| |
Collapse
|
2
|
Kumar S, Singh A, Bist CMS, Sharma M. Advancements in genetic techniques and functional genomics for enhancing crop traits and agricultural sustainability. Brief Funct Genomics 2024; 23:607-623. [PMID: 38679487 DOI: 10.1093/bfgp/elae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
Genetic variability is essential for the development of new crop varieties with economically beneficial traits. The traits can be inherited from wild relatives or induced through mutagenesis. Novel genetic elements can then be identified and new gene functions can be predicted. In this study, forward and reverse genetics approaches were described, in addition to their applications in modern crop improvement programs and functional genomics. By using heritable phenotypes and linked genetic markers, forward genetics searches for genes by using traditional genetic mapping and allele frequency estimation. Despite recent advances in sequencing technology, omics and computation, genetic redundancy remains a major challenge in forward genetics. By analyzing close-related genes, we will be able to dissect their functional redundancy and predict possible traits and gene activity patterns. In addition to these predictions, sophisticated reverse gene editing tools can be used to verify them, including TILLING, targeted insertional mutagenesis, gene silencing, gene targeting and genome editing. By using gene knock-down, knock-up and knock-out strategies, these tools are able to detect genetic changes in cells. In addition, epigenome analysis and editing enable the development of novel traits in existing crop cultivars without affecting their genetic makeup by increasing epiallelic variants. Our understanding of gene functions and molecular dynamics of various biological phenomena has been revised by all of these findings. The study also identifies novel genetic targets in crop species to improve yields and stress tolerances through conventional and non-conventional methods. In this article, genetic techniques and functional genomics are specifically discussed and assessed for their potential in crop improvement.
Collapse
Affiliation(s)
- Surender Kumar
- Department of Biotechnology, College of Horticulture, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan-173230, Himachal Pradesh, India
| | - Anupama Singh
- Department of Biotechnology, College of Horticulture, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan-173230, Himachal Pradesh, India
| | - Chander Mohan Singh Bist
- Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Shimla-171001, Himachal Pradesh, India
| | - Munish Sharma
- Department of Plant Sciences, Central University of Himachal Pradesh, Dharamshala-176215, Himachal Pradesh, India
| |
Collapse
|
3
|
Capilla-Pérez L, Solier V, Gilbault E, Lian Q, Goel M, Huettel B, Keurentjes JJB, Loudet O, Mercier R. Enhanced recombination empowers the detection and mapping of Quantitative Trait Loci. Commun Biol 2024; 7:829. [PMID: 38977904 PMCID: PMC11231358 DOI: 10.1038/s42003-024-06530-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
Modern plant breeding, such as genomic selection and gene editing, is based on the knowledge of the genetic architecture of desired traits. Quantitative trait loci (QTL) analysis, which combines high throughput phenotyping and genotyping of segregating populations, is a powerful tool to identify these genetic determinants and to decipher the underlying mechanisms. However, meiotic recombination, which shuffles genetic information between generations, is limited: Typically only one to two exchange points, called crossovers, occur between a pair of homologous chromosomes. Here we test the effect on QTL analysis of boosting recombination, by mutating the anti-crossover factors RECQ4 and FIGL1 in Arabidopsis thaliana full hybrids and lines in which a single chromosome is hybrid. We show that increasing recombination ~6-fold empowers the detection and resolution of QTLs, reaching the gene scale with only a few hundred plants. Further, enhanced recombination unmasks some secondary QTLs undetected under normal recombination. These results show the benefits of enhanced recombination to decipher the genetic bases of traits.
Collapse
Affiliation(s)
- Laia Capilla-Pérez
- Max Planck Institute for Plant Breeding Research, MPIPZ, Department of Chromosome Biology, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Victor Solier
- Max Planck Institute for Plant Breeding Research, MPIPZ, Department of Chromosome Biology, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Elodie Gilbault
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Qichao Lian
- Max Planck Institute for Plant Breeding Research, MPIPZ, Department of Chromosome Biology, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Manish Goel
- Max Planck Institute for Plant Breeding Research, MPIPZ, Department of Chromosome Biology, Carl-von-Linné Weg 10, 50829, Cologne, Germany
- Ludwig-Maximilians-Universität München, Fakultät für Biologie, Biozentrum Martinsried, 82152, Planegg-Martinsried, Germany
| | - Bruno Huettel
- Max Planck Institute for Plant Breeding Research, MPIPZ, Genome Center, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Joost J B Keurentjes
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Olivier Loudet
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France.
| | - Raphael Mercier
- Max Planck Institute for Plant Breeding Research, MPIPZ, Department of Chromosome Biology, Carl-von-Linné Weg 10, 50829, Cologne, Germany.
| |
Collapse
|
4
|
Peñuela M, Finke J, Rocha C. Methylomes as key features for predicting recombination in some plant species. PLANT MOLECULAR BIOLOGY 2024; 114:25. [PMID: 38457042 PMCID: PMC10924001 DOI: 10.1007/s11103-023-01396-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/27/2023] [Indexed: 03/09/2024]
Abstract
Knowing how chromosome recombination works is essential for plant breeding. It enables the design of crosses between different varieties to combine desirable traits and create new ones. This is because the meiotic crossovers between homologous chromatids are not purely random, and various strategies have been developed to describe and predict such exchange events. Recent studies have used methylation data to predict chromosomal recombination in rice using machine learning models. This approach proved successful due to the presence of a positive correlation between the CHH context cytosine methylation and recombination rates in rice chromosomes. This paper assesses the question if methylation can be used to predict recombination in four plant species: Arabidopsis, maize, sorghum, and tomato. The results indicate a positive association between CHH context methylation and recombination rates in certain plant species, with varying degrees of strength in their relationships. The CG and CHG methylation contexts show negative correlation with recombination. Methylation data was key effectively in predicting recombination in sorghum and tomato, with a mean determination coefficient of 0.65 ± 0.11 and 0.76 ± 0.05, respectively. In addition, the mean correlation values between predicted and experimental recombination rates were 0.83 ± 0.06 for sorghum and 0.90 ± 0.05 for tomato, confirming the significance of methylomes in both monocotyledonous and dicotyledonous species. The predictions for Arabidopsis and maize were not as accurate, likely due to the comparatively weaker relationships between methylation contexts and recombination, in contrast to sorghum and tomato, where stronger associations were observed. To enhance the accuracy of predictions, further evaluations using data sets closely related to each other might prove beneficial. In general, this methylome-based method holds great potential as a reliable strategy for predicting recombination rates in various plant species, offering valuable insights to breeders in their quest to develop novel and improved varieties.
Collapse
Affiliation(s)
- Mauricio Peñuela
- iÓMICAS, Facultad de Ingeniería y Ciencias, Pontificia Universidad Javeriana, 760031, Cali, Colombia.
| | - Jorge Finke
- iÓMICAS, Facultad de Ingeniería y Ciencias, Pontificia Universidad Javeriana, 760031, Cali, Colombia
| | - Camilo Rocha
- iÓMICAS, Facultad de Ingeniería y Ciencias, Pontificia Universidad Javeriana, 760031, Cali, Colombia
| |
Collapse
|
5
|
Abstract
The raison d'être of meiosis is shuffling of genetic information via Mendelian segregation and, within individual chromosomes, by DNA crossing-over. These outcomes are enabled by a complex cellular program in which interactions between homologous chromosomes play a central role. We first provide a background regarding the basic principles of this program. We then summarize the current understanding of the DNA events of recombination and of three processes that involve whole chromosomes: homolog pairing, crossover interference, and chiasma maturation. All of these processes are implemented by direct physical interaction of recombination complexes with underlying chromosome structures. Finally, we present convergent lines of evidence that the meiotic program may have evolved by coupling of this interaction to late-stage mitotic chromosome morphogenesis.
Collapse
Affiliation(s)
- Denise Zickler
- Institute for Integrative Biology of the Cell (I2BC), Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA;
| |
Collapse
|
6
|
Partap M, Verma V, Thakur M, Bhargava B. Designing of future ornamental crops: a biotechnological driven perspective. HORTICULTURE RESEARCH 2023; 10:uhad192. [PMID: 38023473 PMCID: PMC10681008 DOI: 10.1093/hr/uhad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/14/2023] [Indexed: 12/01/2023]
Abstract
With a basis in human appreciation of beauty and aesthetic values, the new era of ornamental crops is based on implementing innovative technologies and transforming symbols into tangible assets. Recent advances in plant biotechnology have attracted considerable scientific and industrial interest, particularly in terms of modifying desired plant traits and developing future ornamental crops. By utilizing omics approaches, genomic data, genetic engineering, and gene editing tools, scientists have successively explored the underlying molecular mechanism and potential gene(s) behind trait regulation such as floral induction, plant architecture, stress resistance, plasticity, adaptation, and phytoremediation in ornamental crop species. These signs of progress lay a theoretical and practical foundation for designing and enhancing the efficiency of ornamental plants for a wide range of applications. In this review, we briefly summarized the existing literature and advances in biotechnological approaches for the improvement of vital traits in ornamental plants. The future ornamental plants, such as light-emitting plants, biotic/abiotic stress detectors, and pollution abatement, and the introduction of new ornamental varieties via domestication of wild species are also discussed.
Collapse
Affiliation(s)
- Mahinder Partap
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR), Institute of Himalayan Bioresource Technology (IHBT), Post Box No. 6, 176 061 (HP) Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Vipasha Verma
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR), Institute of Himalayan Bioresource Technology (IHBT), Post Box No. 6, 176 061 (HP) Palampur, India
| | - Meenakshi Thakur
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR), Institute of Himalayan Bioresource Technology (IHBT), Post Box No. 6, 176 061 (HP) Palampur, India
| | - Bhavya Bhargava
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR), Institute of Himalayan Bioresource Technology (IHBT), Post Box No. 6, 176 061 (HP) Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
7
|
Samach A, Mafessoni F, Gross O, Melamed-Bessudo C, Filler-Hayut S, Dahan-Meir T, Amsellem Z, Pawlowski WP, Levy AA. CRISPR/Cas9-induced DNA breaks trigger crossover, chromosomal loss, and chromothripsis-like rearrangements. THE PLANT CELL 2023; 35:3957-3972. [PMID: 37497643 PMCID: PMC10615209 DOI: 10.1093/plcell/koad209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023]
Abstract
DNA double-stranded breaks (DSBs) generated by the Cas9 nuclease are commonly repaired via nonhomologous end-joining (NHEJ) or homologous recombination (HR). However, little is known about unrepaired DSBs and the type of damage they trigger in plants. We designed an assay that detects loss of heterozygosity (LOH) in somatic cells, enabling the study of a broad range of DSB-induced genomic events. The system relies on a mapped phenotypic marker which produces a light purple color (betalain pigment) in all plant tissues. Plants with sectors lacking the Betalain marker upon DSB induction between the marker and the centromere were tested for LOH events. Using this assay, we detected a tomato (Solanum lycopersicum) flower with a twin yellow and dark purple sector, corresponding to a germinally transmitted somatic crossover event. We also identified instances of small deletions of genomic regions spanning the T-DNA and whole chromosome loss. In addition, we show that major chromosomal rearrangements including loss of large fragments, inversions, and translocations were clearly associated with the CRISPR-induced DSB. Detailed characterization of complex rearrangements by whole-genome sequencing and molecular and cytological analyses supports a model in which a breakage-fusion-bridge cycle followed by chromothripsis-like rearrangements had been induced. Our LOH assay provides a tool for precise breeding via targeted crossover detection. It also uncovers CRISPR-mediated chromothripsis-like events in plants.
Collapse
Affiliation(s)
- Aviva Samach
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot 7610001,Israel
| | - Fabrizio Mafessoni
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot 7610001,Israel
| | - Or Gross
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot 7610001,Israel
| | - Cathy Melamed-Bessudo
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot 7610001,Israel
| | - Shdema Filler-Hayut
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot 7610001,Israel
| | - Tal Dahan-Meir
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot 7610001,Israel
| | - Ziva Amsellem
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot 7610001,Israel
| | | | - Avraham A Levy
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot 7610001,Israel
| |
Collapse
|
8
|
Gao L, Kantar MB, Moxley D, Ortiz-Barrientos D, Rieseberg LH. Crop adaptation to climate change: An evolutionary perspective. MOLECULAR PLANT 2023; 16:1518-1546. [PMID: 37515323 DOI: 10.1016/j.molp.2023.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023]
Abstract
The disciplines of evolutionary biology and plant and animal breeding have been intertwined throughout their development, with responses to artificial selection yielding insights into the action of natural selection and evolutionary biology providing statistical and conceptual guidance for modern breeding. Here we offer an evolutionary perspective on a grand challenge of the 21st century: feeding humanity in the face of climate change. We first highlight promising strategies currently under way to adapt crops to current and future climate change. These include methods to match crop varieties with current and predicted environments and to optimize breeding goals, management practices, and crop microbiomes to enhance yield and sustainable production. We also describe the promise of crop wild relatives and recent technological innovations such as speed breeding, genomic selection, and genome editing for improving environmental resilience of existing crop varieties or for developing new crops. Next, we discuss how methods and theory from evolutionary biology can enhance these existing strategies and suggest novel approaches. We focus initially on methods for reconstructing the evolutionary history of crops and their pests and symbionts, because such historical information provides an overall framework for crop-improvement efforts. We then describe how evolutionary approaches can be used to detect and mitigate the accumulation of deleterious mutations in crop genomes, identify alleles and mutations that underlie adaptation (and maladaptation) to agricultural environments, mitigate evolutionary trade-offs, and improve critical proteins. Continuing feedback between the evolution and crop biology communities will ensure optimal design of strategies for adapting crops to climate change.
Collapse
Affiliation(s)
- Lexuan Gao
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Michael B Kantar
- Department of Tropical Plant & Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Dylan Moxley
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences and Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, QLD, Australia
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
9
|
Draeger TN, Rey MD, Hayta S, Smedley M, Martin AC, Moore G. DMC1 stabilizes crossovers at high and low temperatures during wheat meiosis. FRONTIERS IN PLANT SCIENCE 2023; 14:1208285. [PMID: 37615022 PMCID: PMC10442654 DOI: 10.3389/fpls.2023.1208285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/17/2023] [Indexed: 08/25/2023]
Abstract
Effective chromosome synapsis and crossover formation during meiosis are essential for fertility, especially in grain crops such as wheat. These processes function most efficiently in wheat at temperatures between 17-23 °C, although the genetic mechanisms for such temperature dependence are unknown. In a previously identified mutant of the hexaploid wheat reference variety 'Chinese Spring' lacking the long arm of chromosome 5D, exposure to low temperatures during meiosis resulted in asynapsis and crossover failure. In a second mutant (ttmei1), containing a 4 Mb deletion in chromosome 5DL, exposure to 13 °C led to similarly high levels of asynapsis and univalence. Moreover, exposure to 30 °C led to a significant, but less extreme effect on crossovers. Previously, we proposed that, of 41 genes deleted in this 4 Mb region, the major meiotic gene TaDMC1-D1 was the most likely candidate for preservation of synapsis and crossovers at low (and possibly high) temperatures. In the current study, using RNA-guided Cas9, we developed a new Chinese Spring CRISPR mutant, containing a 39 bp deletion in the 5D copy of DMC1, representing the first reported CRISPR-Cas9 targeted mutagenesis in Chinese Spring, and the first CRISPR mutant for DMC1 in wheat. In controlled environment experiments, wild-type Chinese Spring, CRISPR dmc1-D1 and backcrossed ttmei1 mutants were exposed to either high or low temperatures during the temperature-sensitive period from premeiotic interphase to early meiosis I. After 6-7 days at 13 °C, crossovers decreased by over 95% in the dmc1-D1 mutants, when compared with wild-type plants grown under the same conditions. After 24 hours at 30 °C, dmc1-D1 mutants exhibited a reduced number of crossovers and increased univalence, although these differences were less marked than at 13 °C. Similar results were obtained for ttmei1 mutants, although their scores were more variable, possibly reflecting higher levels of background mutation. These experiments confirm our previous hypothesis that DMC1-D1 is responsible for preservation of normal crossover formation at low and, to a certain extent, high temperatures. Given that reductions in crossovers have significant effects on grain yield, these results have important implications for wheat breeding, particularly in the face of climate change.
Collapse
Affiliation(s)
| | - María-Dolores Rey
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | - Sadiye Hayta
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Mark Smedley
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Azahara C. Martin
- Department of Plant Genetic Improvement, Institute for Sustainable Agriculture, Spanish National Research Council (CSIC), Córdoba, Spain
| | - Graham Moore
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
10
|
Deb SK, Edger PP, Pires JC, McKain MR. Patterns, mechanisms, and consequences of homoeologous exchange in allopolyploid angiosperms: a genomic and epigenomic perspective. THE NEW PHYTOLOGIST 2023; 238:2284-2304. [PMID: 37010081 DOI: 10.1111/nph.18927] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/16/2023] [Indexed: 05/19/2023]
Abstract
Allopolyploids result from hybridization between different evolutionary lineages coupled with genome doubling. Homoeologous chromosomes (chromosomes with common shared ancestry) may undergo recombination immediately after allopolyploid formation and continue over successive generations. The outcome of this meiotic pairing behavior is dynamic and complex. Homoeologous exchanges (HEs) may lead to the formation of unbalanced gametes, reduced fertility, and selective disadvantage. By contrast, HEs could act as sources of novel evolutionary substrates, shifting the relative dosage of parental gene copies, generating novel phenotypic diversity, and helping the establishment of neo-allopolyploids. However, HE patterns vary among lineages, across generations, and even within individual genomes and chromosomes. The causes and consequences of this variation are not fully understood, though interest in this evolutionary phenomenon has increased in the last decade. Recent technological advances show promise in uncovering the mechanistic basis of HEs. Here, we describe recent observations of the common patterns among allopolyploid angiosperm lineages, underlying genomic and epigenomic features, and consequences of HEs. We identify critical research gaps and discuss future directions with far-reaching implications in understanding allopolyploid evolution and applying them to the development of important phenotypic traits of polyploid crops.
Collapse
Affiliation(s)
- Sontosh K Deb
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
- Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, 48823, USA
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, MI, 48823, USA
| | - J Chris Pires
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Michael R McKain
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| |
Collapse
|
11
|
Strelnikova SR, Komakhin RA. Control of meiotic crossing over in plant breeding. Vavilovskii Zhurnal Genet Selektsii 2023; 27:99-110. [PMID: 37063511 PMCID: PMC10090103 DOI: 10.18699/vjgb-23-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/11/2022] [Accepted: 09/26/2022] [Indexed: 04/18/2023] Open
Abstract
Meiotic crossing over is the main mechanism for constructing a new allelic composition of individual chromosomes and is necessary for the proper distribution of homologous chromosomes between gametes. The parameters of meiotic crossing over that have developed in the course of evolution are determined by natural selection and do not fully suit the tasks of selective breeding research. This review summarizes the results of experimental studies aimed at increasing the frequency of crossovers and redistributing their positions along chromosomes using genetic manipulations at different stages of meiotic recombination. The consequences of inactivation and/or overexpression of the SPO11 genes, the products of which generate meiotic double-strand breaks in DNA, for the redistribution of crossover positions in the genome of various organisms are discussed. The results of studies concerning the effect of inactivation or overexpression of genes encoding RecA-like recombinases on meiotic crossing over, including those in cultivated tomato (Solanum lycopersicum L.) and its interspecific hybrids, are summarized. The consequences of inactivation of key genes of the mismatch repair system are discussed. Their suppression made it possible to significantly increase the frequency of meiotic recombination between homeologues in the interspecific hybrid yeast Saccharomyces cerevisiae × S. paradoxus and between homologues in arabidopsis plants (Arabidopsis thaliana L.). Also discussed are attempts to extrapolate these results to other plant species, in which a decrease in reproductive properties and microsatellite instability in the genome have been noted. The most significant results on the meiotic recombination frequency increase upon inactivation of the FANCM, TOP3α, RECQ4, FIGL1 crossover repressor genes and upon overexpression of the HEI10 crossover enhancer gene are separately described. In some experiments, the increase of meiotic recombination frequency by almost an order of magnitude and partial redistribution of the crossover positions along chromosomes were achieved in arabidopsis while fully preserving fecundity. Similar results have been obtained for some crops.
Collapse
Affiliation(s)
- S R Strelnikova
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - R A Komakhin
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| |
Collapse
|
12
|
Female meiosis in plants, and differential recombination in the two sexes: a perspective. THE NUCLEUS 2023. [DOI: 10.1007/s13237-023-00417-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
13
|
Emmenecker C, Mézard C, Kumar R. Repair of DNA double-strand breaks in plant meiosis: role of eukaryotic RecA recombinases and their modulators. PLANT REPRODUCTION 2023; 36:17-41. [PMID: 35641832 DOI: 10.1007/s00497-022-00443-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Homologous recombination during meiosis is crucial for the DNA double-strand breaks (DSBs) repair that promotes the balanced segregation of homologous chromosomes and enhances genetic variation. In most eukaryotes, two recombinases RAD51 and DMC1 form nucleoprotein filaments on single-stranded DNA generated at DSB sites and play a central role in the meiotic DSB repair and genome stability. These nucleoprotein filaments perform homology search and DNA strand exchange to initiate repair using homologous template-directed sequences located elsewhere in the genome. Multiple factors can regulate the assembly, stability, and disassembly of RAD51 and DMC1 nucleoprotein filaments. In this review, we summarize the current understanding of the meiotic functions of RAD51 and DMC1 and the role of their positive and negative modulators. We discuss the current models and regulators of homology searches and strand exchange conserved during plant meiosis. Manipulation of these repair factors during plant meiosis also holds a great potential to accelerate plant breeding for crop improvements and productivity.
Collapse
Affiliation(s)
- Côme Emmenecker
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
- University of Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
| | - Christine Mézard
- Institut Jean-Pierre Bourgin (IJPB), CNRS, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| | - Rajeev Kumar
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| |
Collapse
|
14
|
Healey AL, Piatkowski B, Lovell JT, Sreedasyam A, Carey SB, Mamidi S, Shu S, Plott C, Jenkins J, Lawrence T, Aguero B, Carrell AA, Nieto-Lugilde M, Talag J, Duffy A, Jawdy S, Carter KR, Boston LB, Jones T, Jaramillo-Chico J, Harkess A, Barry K, Keymanesh K, Bauer D, Grimwood J, Gunter L, Schmutz J, Weston DJ, Shaw AJ. Newly identified sex chromosomes in the Sphagnum (peat moss) genome alter carbon sequestration and ecosystem dynamics. NATURE PLANTS 2023; 9:238-254. [PMID: 36747050 PMCID: PMC9946827 DOI: 10.1038/s41477-022-01333-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
Peatlands are crucial sinks for atmospheric carbon but are critically threatened due to warming climates. Sphagnum (peat moss) species are keystone members of peatland communities where they actively engineer hyperacidic conditions, which improves their competitive advantage and accelerates ecosystem-level carbon sequestration. To dissect the molecular and physiological sources of this unique biology, we generated chromosome-scale genomes of two Sphagnum species: S. divinum and S. angustifolium. Sphagnum genomes show no gene colinearity with any other reference genome to date, demonstrating that Sphagnum represents an unsampled lineage of land plant evolution. The genomes also revealed an average recombination rate an order of magnitude higher than vascular land plants and short putative U/V sex chromosomes. These newly described sex chromosomes interact with autosomal loci that significantly impact growth across diverse pH conditions. This discovery demonstrates that the ability of Sphagnum to sequester carbon in acidic peat bogs is mediated by interactions between sex, autosomes and environment.
Collapse
Affiliation(s)
- Adam L Healey
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
| | - Bryan Piatkowski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - John T Lovell
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Avinash Sreedasyam
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Sarah B Carey
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, USA
| | - Sujan Mamidi
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Shengqiang Shu
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chris Plott
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Jerry Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Travis Lawrence
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Blanka Aguero
- Department of Biology, Duke University, Durham, NC, USA
| | - Alyssa A Carrell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Jayson Talag
- Arizona Genomics Institute, University of Arizona, Tucson, AZ, USA
| | - Aaron Duffy
- Department of Biology, Duke University, Durham, NC, USA
| | - Sara Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Kelsey R Carter
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Lori-Beth Boston
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Teresa Jones
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | - Alex Harkess
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, USA
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Keykhosrow Keymanesh
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Diane Bauer
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Lee Gunter
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David J Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | | |
Collapse
|
15
|
Tian M, Cai X, Liu Y, Liucong M, Howard-Till R. A practical reference for studying meiosis in the model ciliate Tetrahymena thermophila. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:595-608. [PMID: 37078080 PMCID: PMC10077211 DOI: 10.1007/s42995-022-00149-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 09/28/2022] [Indexed: 05/03/2023]
Abstract
Meiosis is a critical cell division program that produces haploid gametes for sexual reproduction. Abnormalities in meiosis are often causes of infertility and birth defects (e.g., Down syndrome). Most organisms use a highly specialized zipper-like protein complex, the synaptonemal complex (SC), to guide and stabilize pairing of homologous chromosomes in meiosis. Although the SC is critical for meiosis in many eukaryotes, there are organisms that perform meiosis without a functional SC. However, such SC-less meiosis is poorly characterized. To understand the features of SC-less meiosis and its adaptive significance, the ciliated protozoan Tetrahymena was selected as a model. Meiosis research in Tetrahymena has revealed intriguing aspects of the regulatory programs utilized in its SC-less meiosis, yet additional efforts are needed for obtaining an in-depth comprehension of mechanisms that are associated with the absence of SC. Here, aiming at promoting a wider application of Tetrahymena for meiosis research, we introduce basic concepts and core techniques for studying meiosis in Tetrahymena and then suggest future directions for expanding the current Tetrahymena meiosis research toolbox. These methodologies could be adopted for dissecting meiosis in poorly characterized ciliates that might reveal novel features. Such data will hopefully provide insights into the function of the SC and the evolution of meiosis from a unique perspective. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00149-8.
Collapse
Affiliation(s)
- Miao Tian
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
- Institute of Human Genetics, CNRS, University of Montpellier, 34090 Montpellier, France
| | - Xia Cai
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Yujie Liu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Mingmei Liucong
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Rachel Howard-Till
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA USA
| |
Collapse
|
16
|
Karmakar S, Das P, Panda D, Xie K, Baig MJ, Molla KA. A detailed landscape of CRISPR-Cas-mediated plant disease and pest management. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111376. [PMID: 35835393 DOI: 10.1016/j.plantsci.2022.111376] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Genome editing technology has rapidly evolved to knock-out genes, create targeted genetic variation, install precise insertion/deletion and single nucleotide changes, and perform large-scale alteration. The flexible and multipurpose editing technologies have started playing a substantial role in the field of plant disease management. CRISPR-Cas has reduced many limitations of earlier technologies and emerged as a versatile toolbox for genome manipulation. This review summarizes the phenomenal progress of the use of the CRISPR toolkit in the field of plant pathology. CRISPR-Cas toolbox aids in the basic studies on host-pathogen interaction, in identifying virulence genes in pathogens, deciphering resistance and susceptibility factors in host plants, and engineering host genome for developing resistance. We extensively reviewed the successful genome editing applications for host plant resistance against a wide range of biotic factors, including viruses, fungi, oomycetes, bacteria, nematodes, insect pests, and parasitic plants. Recent use of CRISPR-Cas gene drive to suppress the population of pathogens and pests has also been discussed. Furthermore, we highlight exciting new uses of the CRISPR-Cas system as diagnostic tools, which rapidly detect pathogenic microorganism. This comprehensive yet concise review discusses innumerable strategies to reduce the burden of crop protection.
Collapse
Affiliation(s)
| | - Priya Das
- ICAR-National Rice Research Institute, Cuttack 753006, India
| | - Debasmita Panda
- ICAR-National Rice Research Institute, Cuttack 753006, India
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mirza J Baig
- ICAR-National Rice Research Institute, Cuttack 753006, India.
| | | |
Collapse
|
17
|
Chen Y, Schreiber M, Bayer MM, Dawson IK, Hedley PE, Lei L, Akhunova A, Liu C, Smith KP, Fay JC, Muehlbauer GJ, Steffenson BJ, Morrell PL, Waugh R, Russell JR. The evolutionary patterns of barley pericentromeric chromosome regions, as shaped by linkage disequilibrium and domestication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1580-1594. [PMID: 35834607 PMCID: PMC9546296 DOI: 10.1111/tpj.15908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 05/17/2023]
Abstract
The distribution of recombination events along large cereal chromosomes is uneven and is generally restricted to gene-rich telomeric ends. To understand how the lack of recombination affects diversity in the large pericentromeric regions, we analysed deep exome capture data from a final panel of 815 Hordeum vulgare (barley) cultivars, landraces and wild barleys, sampled from across their eco-geographical ranges. We defined and compared variant data across the pericentromeric and non-pericentromeric regions, observing a clear partitioning of diversity both within and between chromosomes and germplasm groups. Dramatically reduced diversity was found in the pericentromeres of both cultivars and landraces when compared with wild barley. We observed a mixture of completely and partially differentiated single-nucleotide polymorphisms (SNPs) between domesticated and wild gene pools, suggesting that domesticated gene pools were derived from multiple wild ancestors. Patterns of genome-wide linkage disequilibrium, haplotype block size and number, and variant frequency within blocks showed clear contrasts among individual chromosomes and between cultivars and wild barleys. Although most cultivar chromosomes shared a single major pericentromeric haplotype, chromosome 7H clearly differentiated the two-row and six-row types associated with different geographical origins. Within the pericentromeric regions we identified 22 387 non-synonymous SNPs, 92 of which were fixed for alternative alleles in cultivar versus wild accessions. Surprisingly, only 29 SNPs found exclusively in the cultivars were predicted to be 'highly deleterious'. Overall, our data reveal an unconventional pericentromeric genetic landscape among distinct barley gene pools, with different evolutionary processes driving domestication and diversification.
Collapse
Affiliation(s)
- Yun‐Yu Chen
- The James Hutton Institute, InvergowrieDundeeDD2 5DAUK
- Fios GenomicsBioQuarter, 13 Little France RdEdinburghEH16 4UXUK
| | - Miriam Schreiber
- The James Hutton Institute, InvergowrieDundeeDD2 5DAUK
- Division of Plant Sciences, School of Life SciencesUniversity of DundeeDow StreetDundeeDD1 5EHUK
| | | | - Ian K. Dawson
- The James Hutton Institute, InvergowrieDundeeDD2 5DAUK
- Scotland's Rural College, Kings BuildingsWest Mains RdEdinburghEH9 3JGUK
| | | | - Li Lei
- Department of Agronomy & Plant GeneticsUniversity of Minnesota411 Borlaug Hall, 1991 Buford CircleSt PaulMN55108USA
| | - Alina Akhunova
- Department of Agronomy & Plant GeneticsUniversity of Minnesota411 Borlaug Hall, 1991 Buford CircleSt PaulMN55108USA
- Department of Plant PathologyKansas State UniversityThrockmorton HallManhattanKS66506USA
| | - Chaochih Liu
- Department of Agronomy & Plant GeneticsUniversity of Minnesota411 Borlaug Hall, 1991 Buford CircleSt PaulMN55108USA
| | - Kevin P. Smith
- Department of Agronomy & Plant GeneticsUniversity of Minnesota411 Borlaug Hall, 1991 Buford CircleSt PaulMN55108USA
| | - Justin C. Fay
- Department of BiologyUniversity of Rochester319 HutchisonRochesterNY14627USA
| | - Gary J. Muehlbauer
- Department of Agronomy & Plant GeneticsUniversity of Minnesota411 Borlaug Hall, 1991 Buford CircleSt PaulMN55108USA
| | - Brian J. Steffenson
- Department of Plant PathologyUniversity of Minnesota495 Borlaug Hall, 1991 Buford CircleSt PaulMN55108USA
| | - Peter L. Morrell
- Department of Agronomy & Plant GeneticsUniversity of Minnesota411 Borlaug Hall, 1991 Buford CircleSt PaulMN55108USA
| | - Robbie Waugh
- The James Hutton Institute, InvergowrieDundeeDD2 5DAUK
- Division of Plant Sciences, School of Life SciencesUniversity of DundeeDow StreetDundeeDD1 5EHUK
| | | |
Collapse
|
18
|
Yelina NE, Holland D, Gonzalez-Jorge S, Hirsz D, Yang Z, Henderson IR. Coexpression of MEIOTIC-TOPOISOMERASE VIB-dCas9 with guide RNAs specific to a recombination hotspot is insufficient to increase crossover frequency in Arabidopsis. G3 (BETHESDA, MD.) 2022; 12:jkac105. [PMID: 35485960 PMCID: PMC9258527 DOI: 10.1093/g3journal/jkac105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/18/2022] [Indexed: 11/14/2022]
Abstract
During meiosis, homologous chromosomes pair and recombine, which can result in reciprocal crossovers that increase genetic diversity. Crossovers are unevenly distributed along eukaryote chromosomes and show repression in heterochromatin and the centromeres. Within the chromosome arms, crossovers are often concentrated in hotspots, which are typically in the kilobase range. The uneven distribution of crossovers along chromosomes, together with their low number per meiosis, creates a limitation during crop breeding, where recombination can be beneficial. Therefore, targeting crossovers to specific genome locations has the potential to accelerate crop improvement. In plants, meiotic crossovers are initiated by DNA double-strand breaks that are catalyzed by SPO11 complexes, which consist of 2 catalytic (SPO11-1 and SPO11-2) and 2 noncatalytic subunits (MTOPVIB). We used the model plant Arabidopsis thaliana to coexpress an MTOPVIB-dCas9 fusion protein with guide RNAs specific to the 3a crossover hotspot. We observed that this was insufficient to significantly change meiotic crossover frequency or pattern within 3a. We discuss the implications of our findings for targeting meiotic recombination within plant genomes.
Collapse
Affiliation(s)
- Nataliya E Yelina
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
- Department of Plant Sciences, Crop Science Centre, University of Cambridge, Cambridge CB3 0LE, UK
| | - Daniel Holland
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | | | - Dominique Hirsz
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Ziyi Yang
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| |
Collapse
|
19
|
Villagómez-Aranda AL, Feregrino-Pérez AA, García-Ortega LF, González-Chavira MM, Torres-Pacheco I, Guevara-González RG. Activating stress memory: eustressors as potential tools for plant breeding. PLANT CELL REPORTS 2022; 41:1481-1498. [PMID: 35305133 PMCID: PMC8933762 DOI: 10.1007/s00299-022-02858-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/26/2022] [Indexed: 05/08/2023]
Abstract
Plants are continuously exposed to stress conditions, such that they have developed sophisticated and elegant survival strategies, which are reflected in their phenotypic plasticity, priming capacity, and memory acquisition. Epigenetic mechanisms play a critical role in modulating gene expression and stress responses, allowing malleability, reversibility, stability, and heritability of favourable phenotypes to enhance plant performance. Considering the urgency to improve our agricultural system because of going impacting climate change, potential and sustainable strategies rely on the controlled use of eustressors, enhancing desired characteristics and yield and shaping stress tolerance in crops. However, for plant breeding purposes is necessary to focus on the use of eustressors capable of establishing stable epigenetic marks to generate a transgenerational memory to stimulate a priming state in plants to face the changing environment.
Collapse
Affiliation(s)
- A L Villagómez-Aranda
- Biosystems Engineering Group. Engineering Faculty, Amazcala Campus, Autonomous University of Querétaro, Highway Chichimequillas s/n Km 1, Amazcala, El Marques, Querétaro, Mexico
| | - A A Feregrino-Pérez
- Biosystems Engineering Group. Engineering Faculty, Amazcala Campus, Autonomous University of Querétaro, Highway Chichimequillas s/n Km 1, Amazcala, El Marques, Querétaro, Mexico
| | - L F García-Ortega
- Laboratory of Learning and Research in Biological Computing, Centre for Research and Advanced Studies, National Polytechnic Institute (CINVESTAV), Irapuato, Guanajuato, Mexico
| | - M M González-Chavira
- Molecular Markers Laboratory, Bajío Experimental Field, National Institute for Forestry, Agriculture and Livestock Research (INIFAP), Celaya-San Miguel de Allende, Celaya, Guanajuato, Mexico
| | - I Torres-Pacheco
- Biosystems Engineering Group. Engineering Faculty, Amazcala Campus, Autonomous University of Querétaro, Highway Chichimequillas s/n Km 1, Amazcala, El Marques, Querétaro, Mexico
| | - R G Guevara-González
- Biosystems Engineering Group. Engineering Faculty, Amazcala Campus, Autonomous University of Querétaro, Highway Chichimequillas s/n Km 1, Amazcala, El Marques, Querétaro, Mexico.
| |
Collapse
|
20
|
Schneider M, Casale F, Stich B. Accurate recombination estimation from pooled genotyping and sequencing: a case study on barley. BMC Genomics 2022; 23:468. [PMID: 35752769 PMCID: PMC9233355 DOI: 10.1186/s12864-022-08701-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/15/2022] [Indexed: 11/15/2022] Open
Abstract
Sexual reproduction involves meiotic recombination and the creation of crossing over between homologous chromosomes, which leads to new allele combinations. We present a new approach that uses the allele frequency differences and the physical distance of neighboring polymorphisms to estimate the recombination rate from pool genotyping or sequencing. This allows a considerable cost reduction compared to conventional mapping based on genotyping or sequencing data of single individuals. We evaluated the approach based on computer simulations at various genotyping depths and population sizes as well as applied it to experimental data of 45 barley populations, comprising 4182 RIL. High correlations between the recombination rates from this new pool genetic mapping approach and conventional mapping in simulated and experimental barley populations were observed. The proposed method therefore provides a reliable genetic map position and recombination rate estimation in defined genomic windows.
Collapse
Affiliation(s)
- Michael Schneider
- Institute of Quantitative Genetics and Genomics of Plants, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Federico Casale
- Institute of Quantitative Genetics and Genomics of Plants, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Benjamin Stich
- Institute of Quantitative Genetics and Genomics of Plants, Heinrich Heine University, 40225, Düsseldorf, Germany. .,Max Planck Institute for Plant Breeding Research, 50829, Köln, Germany. .,Cluster of Excellence on Plant Sciences, From Complex Traits Towards Synthetic Modules, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
21
|
Kim H, Choi K. Fast and Precise: How to Measure Meiotic Crossovers in Arabidopsis. Mol Cells 2022; 45:273-283. [PMID: 35444069 PMCID: PMC9095510 DOI: 10.14348/molcells.2022.2054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/21/2022] [Accepted: 03/04/2022] [Indexed: 11/27/2022] Open
Abstract
During meiosis, homologous chromosomes (homologs) pair and undergo genetic recombination via assembly and disassembly of the synaptonemal complex. Meiotic recombination is initiated by excess formation of DNA double-strand breaks (DSBs), among which a subset are repaired by reciprocal genetic exchange, called crossovers (COs). COs generate genetic variations across generations, profoundly affecting genetic diversity and breeding. At least one CO between homologs is essential for the first meiotic chromosome segregation, but generally only one and fewer than three inter-homolog COs occur in plants. CO frequency and distribution are biased along chromosomes, suppressed in centromeres, and controlled by pro-CO, anti-CO, and epigenetic factors. Accurate and high-throughput detection of COs is important for our understanding of CO formation and chromosome behavior. Here, we review advanced approaches that enable precise measurement of the location, frequency, and genomic landscapes of COs in plants, with a focus on Arabidopsis thaliana.
Collapse
Affiliation(s)
- Heejin Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Kyuha Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
22
|
Casale F, Van Inghelandt D, Weisweiler M, Li J, Stich B. Genomic prediction of the recombination rate variation in barley - A route to highly recombinogenic genotypes. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:676-690. [PMID: 34783155 PMCID: PMC8989500 DOI: 10.1111/pbi.13746] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/06/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Meiotic recombination is not only fundamental to the adaptation of sexually reproducing eukaryotes in nature but increased recombination rates facilitate the combination of favourable alleles into a single haplotype in breeding programmes. The main objectives of this study were to (i) assess the extent and distribution of the recombination rate variation in cultivated barley (Hordeum vulgare L.), (ii) quantify the importance of the general and specific recombination effects, and (iii) evaluate a genomic selection approach's ability to predict the recombination rate variation. Genetic maps were created for the 45 segregating populations that were derived from crosses among 23 spring barley inbreds with origins across the world. The genome-wide recombination rate among populations ranged from 0.31 to 0.73 cM/Mbp. The crossing design used in this study allowed to separate the general recombination effects (GRE) of individual parental inbreds from the specific recombination effects (SRE) caused by the combinations of parental inbreds. The variance of the genome-wide GRE was found to be about eight times the variance of the SRE. This finding indicated that parental inbreds differ in the efficiency of their recombination machinery. The ability to predict the chromosome or genome-wide recombination rate of an inbred ranged from 0.80 to 0.85. These results suggest that a reliable screening of large genetic materials for their potential to cause a high extent of genetic recombination in their progeny is possible, allowing to systematically manipulate the recombination rate using natural variation.
Collapse
Affiliation(s)
- Federico Casale
- Institute of Quantitative Genetics and Genomics of PlantsHeinrich Heine UniversityDüsseldorfGermany
| | - Delphine Van Inghelandt
- Institute of Quantitative Genetics and Genomics of PlantsHeinrich Heine UniversityDüsseldorfGermany
| | - Marius Weisweiler
- Institute of Quantitative Genetics and Genomics of PlantsHeinrich Heine UniversityDüsseldorfGermany
| | - Jinquan Li
- Max Planck Institute for Plant Breeding ResearchKölnGermany
- Strube D&S GmbHSöllingenGermany
| | - Benjamin Stich
- Institute of Quantitative Genetics and Genomics of PlantsHeinrich Heine UniversityDüsseldorfGermany
- Max Planck Institute for Plant Breeding ResearchKölnGermany
- Cluster of Excellence on Plant SciencesFrom Complex Traits Towards Synthetic ModulesDüsseldorfGermany
| |
Collapse
|
23
|
Curtin S, Qi Y, Peres LEP, Fernie AR, Zsögön A. Pathways to de novo domestication of crop wild relatives. PLANT PHYSIOLOGY 2022; 188:1746-1756. [PMID: 34850221 PMCID: PMC8968405 DOI: 10.1093/plphys/kiab554] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/03/2021] [Indexed: 05/24/2023]
Abstract
Growing knowledge about crop domestication, combined with increasingly powerful gene-editing toolkits, sets the stage for the continual domestication of crop wild relatives and other lesser-known plant species.
Collapse
Affiliation(s)
- Shaun Curtin
- United States Department of Agriculture, Plant Science Research Unit, St. Paul, Minnesota 55108, USA
- Center for Plant Precision Genomics, University of Minnesota, St. Paul, Minnesota 55108, USA
- Center for Genome Engineering, University of Minnesota, St. Paul, Minnesota 55108, USA
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Lázaro E P Peres
- Laboratory of Hormonal Control of Plant Development. Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, CP 09, 13418-900, Piracicaba, São Paulo, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | | |
Collapse
|
24
|
Fayos I, Frouin J, Meynard D, Vernet A, Herbert L, Guiderdoni E. Manipulation of Meiotic Recombination to Hasten Crop Improvement. BIOLOGY 2022; 11:369. [PMID: 35336743 PMCID: PMC8945028 DOI: 10.3390/biology11030369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/15/2023]
Abstract
Reciprocal (cross-overs = COs) and non-reciprocal (gene conversion) DNA exchanges between the parental chromosomes (the homologs) during meiotic recombination are, together with mutation, the drivers for the evolution and adaptation of species. In plant breeding, recombination combines alleles from genetically diverse accessions to generate new haplotypes on which selection can act. In recent years, a spectacular progress has been accomplished in the understanding of the mechanisms underlying meiotic recombination in both model and crop plants as well as in the modulation of meiotic recombination using different strategies. The latter includes the stimulation and redistribution of COs by either modifying environmental conditions (e.g., T°), harnessing particular genomic situations (e.g., triploidy in Brassicaceae), or inactivating/over-expressing meiotic genes, notably some involved in the DNA double-strand break (DSB) repair pathways. These tools could be particularly useful for shuffling diversity in pre-breeding generations. Furthermore, thanks to the site-specific properties of genome editing technologies the targeting of meiotic recombination at specific chromosomal regions nowadays appears an attainable goal. Directing COs at desired chromosomal positions would allow breaking linkage situations existing between favorable and unfavorable alleles, the so-called linkage drag, and accelerate genetic gain. This review surveys the recent achievements in the manipulation of meiotic recombination in plants that could be integrated into breeding schemes to meet the challenges of deploying crops that are more resilient to climate instability, resistant to pathogens and pests, and sparing in their input requirements.
Collapse
Affiliation(s)
- Ian Fayos
- Meiogenix, 38 rue Sevran, 75011 Paris, France; (I.F.); (L.H.)
| | - Julien Frouin
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France; (J.F.); (D.M.); (A.V.)
- UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Donaldo Meynard
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France; (J.F.); (D.M.); (A.V.)
- UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Aurore Vernet
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France; (J.F.); (D.M.); (A.V.)
- UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Léo Herbert
- Meiogenix, 38 rue Sevran, 75011 Paris, France; (I.F.); (L.H.)
| | - Emmanuel Guiderdoni
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France; (J.F.); (D.M.); (A.V.)
- UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| |
Collapse
|
25
|
Kuo P, Henderson IR, Lambing C. CTAB DNA Extraction and Genotyping-by-Sequencing to Map Meiotic Crossovers in Plants. Methods Mol Biol 2022; 2484:43-53. [PMID: 35461443 DOI: 10.1007/978-1-0716-2253-7_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Reciprocal DNA crossovers between chromosomes form new allelic combinations and contribute to the formation of novel genetic diversity. Crossovers are formed during meiosis of germ cells and these recombination events have influenced plant genome evolution and are used during breeding to create improved plant varieties. Meiotic crossovers are not uniformly formed across the genome but instead occur in regions with low nucleosome density. The recombination landscape differs between the model plant organism Arabidopsis thaliana and crops such as rice and maize. Genotyping-by-sequencing is a technique that can detect crossover location and provide information on the recombination landscape genome-wide. This technique can be used to compare crossover position between ecotypes, species, and mutant lines to gain information on factors controlling meiotic recombination. In this protocol, we describe the steps to purify DNA from plant tissue, prepare 96 DNA libraries in parallel and perform quality control before next-generation sequencing.
Collapse
Affiliation(s)
- Pallas Kuo
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
26
|
Saradadevi GP, Das D, Mangrauthia SK, Mohapatra S, Chikkaputtaiah C, Roorkiwal M, Solanki M, Sundaram RM, Chirravuri NN, Sakhare AS, Kota S, Varshney RK, Mohannath G. Genetic, Epigenetic, Genomic and Microbial Approaches to Enhance Salt Tolerance of Plants: A Comprehensive Review. BIOLOGY 2021; 10:biology10121255. [PMID: 34943170 PMCID: PMC8698797 DOI: 10.3390/biology10121255] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022]
Abstract
Simple Summary Globally, soil salinity, which refers to salt-affected soils, is increasing due to various environmental factors and human activities. Soil salinity poses one of the most serious challenges in the field of agriculture as it significantly reduces the growth and yield of crop plants, both quantitatively and qualitatively. Over the last few decades, several studies have been carried out to understand plant biology in response to soil salinity stress with a major emphasis on genetic and other hereditary components. Based on the outcome of these studies, several approaches are being followed to enhance plants’ ability to tolerate salt stress while still maintaining reasonable levels of crop yields. In this manuscript, we comprehensively list and discuss various biological approaches being followed and, based on the recent advances in the field of molecular biology, we propose some new approaches to improve salinity tolerance of crop plants. The global scientific community can make use of this information for the betterment of crop plants. This review also highlights the importance of maintaining global soil health to prevent several crop plant losses. Abstract Globally, soil salinity has been on the rise owing to various factors that are both human and environmental. The abiotic stress caused by soil salinity has become one of the most damaging abiotic stresses faced by crop plants, resulting in significant yield losses. Salt stress induces physiological and morphological modifications in plants as a result of significant changes in gene expression patterns and signal transduction cascades. In this comprehensive review, with a major focus on recent advances in the field of plant molecular biology, we discuss several approaches to enhance salinity tolerance in plants comprising various classical and advanced genetic and genetic engineering approaches, genomics and genome editing technologies, and plant growth-promoting rhizobacteria (PGPR)-based approaches. Furthermore, based on recent advances in the field of epigenetics, we propose novel approaches to create and exploit heritable genome-wide epigenetic variation in crop plants to enhance salinity tolerance. Specifically, we describe the concepts and the underlying principles of epigenetic recombinant inbred lines (epiRILs) and other epigenetic variants and methods to generate them. The proposed epigenetic approaches also have the potential to create additional genetic variation by modulating meiotic crossover frequency.
Collapse
Affiliation(s)
- Gargi Prasad Saradadevi
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India; (G.P.S.); (S.M.)
| | - Debajit Das
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, India; (D.D.); (C.C.)
| | - Satendra K. Mangrauthia
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Sridev Mohapatra
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India; (G.P.S.); (S.M.)
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, India; (D.D.); (C.C.)
| | - Manish Roorkiwal
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India;
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Manish Solanki
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Raman Meenakshi Sundaram
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Neeraja N. Chirravuri
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Akshay S. Sakhare
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Suneetha Kota
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
- Correspondence: (S.K.); (R.K.V.); (G.M.); Tel.: +91-40-245-91268 (S.K.); +91-84-556-83305 (R.K.V.); +91-40-66303697 (G.M.)
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India;
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
- Correspondence: (S.K.); (R.K.V.); (G.M.); Tel.: +91-40-245-91268 (S.K.); +91-84-556-83305 (R.K.V.); +91-40-66303697 (G.M.)
| | - Gireesha Mohannath
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India; (G.P.S.); (S.M.)
- Correspondence: (S.K.); (R.K.V.); (G.M.); Tel.: +91-40-245-91268 (S.K.); +91-84-556-83305 (R.K.V.); +91-40-66303697 (G.M.)
| |
Collapse
|
27
|
Burban E, Tenaillon MI, Le Rouzic A. Gene network simulations provide testable predictions for the molecular domestication syndrome. Genetics 2021; 220:6440055. [PMID: 34849852 DOI: 10.1093/genetics/iyab214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/15/2021] [Indexed: 11/14/2022] Open
Abstract
The domestication of plant species lead to repeatable morphological evolution, often referred to as the phenotypic domestication syndrome. Domestication is also associated with important genomic changes, such as the loss of genetic diversity compared to adequately large wild populations, and modifications of gene expression patterns. Here, we explored theoretically the effect of a domestication-like scenario on the evolution of gene regulatory networks. We ran population genetics simulations in which individuals were featured by their genotype (an interaction matrix encoding a gene regulatory network) and their gene expressions, representing the phenotypic level. Our domestication scenario included a population bottleneck and a selection switch mimicking human-mediated directional and canalizing selection, i.e., change in the optimal gene expression level and selection towards more stable expression across environments. We showed that domestication profoundly alters genetic architectures. Based on four examples of plant domestication scenarios, our simulations predict (i) a drop in neutral allelic diversity, (ii) a change in gene expression variance that depends upon the domestication scenario, (iii) transient maladaptive plasticity, (iv) a deep rewiring of the gene regulatory networks, with a trend towards gain of regulatory interactions, and (v) a global increase in the genetic correlations among gene expressions, with a loss of modularity in the resulting coexpression patterns and in the underlying networks. We provide empirically testable predictions on the differences of genetic architectures between wild and domesticated forms. The characterization of such systematic evolutionary changes in the genetic architecture of traits contributes to define a molecular domestication syndrome.
Collapse
Affiliation(s)
- Ewen Burban
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France.,CNRS, Univ. Rennes, ECOBIO-UMR 6553, F-35000 Rennes, France
| | - Maud I Tenaillon
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, 91190, Gif-sur-Yvette, France
| | - Arnaud Le Rouzic
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| |
Collapse
|
28
|
Kawall K. The Generic Risks and the Potential of SDN-1 Applications in Crop Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:2259. [PMID: 34834620 PMCID: PMC8622673 DOI: 10.3390/plants10112259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022]
Abstract
The use of site-directed nucleases (SDNs) in crop plants to alter market-oriented traits is expanding rapidly. At the same time, there is an on-going debate around the safety and regulation of crops altered with the site-directed nuclease 1 (SDN-1) technology. SDN-1 applications can be used to induce a variety of genetic alterations ranging from fairly 'simple' genetic alterations to complex changes in plant genomes using, for example, multiplexing approaches. The resulting plants can contain modified alleles and associated traits, which are either known or unknown in conventionally bred plants. The European Commission recently published a study on new genomic techniques suggesting an adaption of the current GMO legislation by emphasizing that targeted mutagenesis techniques can produce genomic alterations that can also be obtained by natural mutations or conventional breeding techniques. This review highlights the need for a case-specific risk assessment of crop plants derived from SDN-1 applications considering both the characteristics of the product and the process to ensure a high level of protection of human and animal health and the environment. The published literature on so-called market-oriented traits in crop plants altered with SDN-1 applications is analyzed here to determine the types of SDN-1 application in plants, and to reflect upon the complexity and the naturalness of such products. Furthermore, it demonstrates the potential of SDN-1 applications to induce complex alterations in plant genomes that are relevant to generic SDN-associated risks. In summary, it was found that nearly half of plants with so-called market-oriented traits contain complex genomic alterations induced by SDN-1 applications, which may also pose new types of risks. It further underscores the need for data on both the process and the end-product for a case-by-case risk assessment of plants derived from SDN-1 applications.
Collapse
Affiliation(s)
- Katharina Kawall
- Fachstelle Gentechnik und Umwelt, Frohschammerstr. 14, 80807 Munich, Germany
| |
Collapse
|
29
|
Fuentes RR, de Ridder D, van Dijk ADJ, Peters SA. Domestication shapes recombination patterns in tomato. Mol Biol Evol 2021; 39:6379725. [PMID: 34597400 PMCID: PMC8763028 DOI: 10.1093/molbev/msab287] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Meiotic recombination is a biological process of key importance in breeding, to generate genetic diversity and develop novel or agronomically relevant haplotypes. In crop tomato, recombination is curtailed as manifested by linkage disequilibrium decay over a longer distance and reduced diversity compared with wild relatives. Here, we compared domesticated and wild populations of tomato and found an overall conserved recombination landscape, with local changes in effective recombination rate in specific genomic regions. We also studied the dynamics of recombination hotspots resulting from domestication and found that loss of such hotspots is associated with selective sweeps, most notably in the pericentromeric heterochromatin. We detected footprints of genetic changes and structural variants, among them associated with transposable elements, linked with hotspot divergence during domestication, likely causing fine-scale alterations to recombination patterns and resulting in linkage drag.
Collapse
Affiliation(s)
- Roven Rommel Fuentes
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB The Netherlands
| | - Aalt D J van Dijk
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB The Netherlands
| | - Sander A Peters
- Applied Bioinformatics, Wageningen Plant Research, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| |
Collapse
|
30
|
Liu C, Cao Y, Hua Y, Du G, Liu Q, Wei X, Sun T, Lin J, Wu M, Cheng Z, Wang K. Concurrent Disruption of Genetic Interference and Increase of Genetic Recombination Frequency in Hybrid Rice Using CRISPR/Cas9. FRONTIERS IN PLANT SCIENCE 2021; 12:757152. [PMID: 34675957 PMCID: PMC8523357 DOI: 10.3389/fpls.2021.757152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 05/24/2023]
Abstract
Manipulation of the distribution and frequency of meiotic recombination events to increase genetic diversity and disrupting genetic interference are long-standing goals in crop breeding. However, attenuation of genetic interference is usually accompanied by a reduction in recombination frequency and subsequent loss of plant fertility. In the present study, we generated null mutants of the ZEP1 gene, which encodes the central component of the meiotic synaptonemal complex (SC), in a hybrid rice using CRISPR/Cas9. The null mutants exhibited absolute male sterility but maintained nearly unaffected female fertility. By pollinating the zep1 null mutants with pollen from indica rice variety 93-11, we successfully conducted genetic analysis and found that genetic recombination frequency was greatly increased and genetic interference was completely eliminated in the absence of ZEP1. The findings provided direct evidence to support the controversial hypothesis that SC is involved in mediating interference. Additionally, the remained female fertility of the null mutants makes it possible to break linkage drag. Our study provides a potential approach to increase genetic diversity and fully eliminate genetic interference in rice breeding.
Collapse
Affiliation(s)
- Chaolei Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yiwei Cao
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yufeng Hua
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Guijie Du
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qing Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Xin Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Tingting Sun
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Jianrong Lin
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Mingguo Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Kejian Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
31
|
Agrawal N, Gupta M, Atri C, Akhatar J, Kumar S, Heslop-Harrison PJS, Banga SS. Anchoring alien chromosome segment substitutions bearing gene(s) for resistance to mustard aphid in Brassica juncea-B. fruticulosa introgression lines and their possible disruption through gamma irradiation. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3209-3224. [PMID: 34160642 DOI: 10.1007/s00122-021-03886-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 06/08/2021] [Indexed: 05/18/2023]
Abstract
KEY MESSAGE Heavy doses of gamma irradiation can reduce linkage drag by disrupting large sized alien translocations and promoting exchanges between crop and wild genomes. Resistance to mustard aphid (Lipaphis erysimi) infestation was significantly improved in Brassica juncea through B. juncea-B. fruticulosa introgression. However, linkage drag caused by introgressed chromatin fragments has so far prevented the deployment of this resistance source in commercial cultivars. We investigated the patterns of donor chromatin segment substitutions in the introgression lines (ILs) through genomic in situ hybridization (GISH) coupled with B. juncea chromosome-specific oligonucleotide probes. These allowed identification of large chromosome translocations from B. fruticulosa in the terminal regions of chromosomes A05, B02, B03 and B04 in three founder ILs (AD-64, 101 and 104). Only AD-101 carried an additional translocation at the sub-terminal to intercalary position in both homologues of chromosome A01. We validated these translocations with a reciprocal blast hit analysis using shotgun sequencing of three ILs and species-specific contigs/scaffolds (kb sized) from a de novo assembly of B. fruticulosa. Alien segment substitution on chromosome A05 could not be validated. Current studies also endeavoured to break linkage drag by exposing seeds to a heavy dose (200kR) of gamma radiation. Reduction in the size of introgressed chromatin fragments was observed in many M3 plants. There was a complete loss of the alien chromosome fragment in one instance. A few M3 plants with novel patterns of chromosome segment substitutions displayed improved agronomic performance coupled with resistance to mustard aphid. SNPs in such genomic spaces should aid the development of markers to track introgressed DNA and allow application in plant breeding.
Collapse
Affiliation(s)
- Neha Agrawal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Mehak Gupta
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Chhaya Atri
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Javed Akhatar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Sarwan Kumar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | | | - Surinder S Banga
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
| |
Collapse
|
32
|
Barakate A, Arrieta M, Macaulay M, Vivera S, Davidson D, Stephens J, Orr J, Schreiber M, Ramsay L, Halpin C, Waugh R. Downregulation of Barley Regulator of Telomere Elongation Helicase 1 Alters the Distribution of Meiotic Crossovers. FRONTIERS IN PLANT SCIENCE 2021; 12:745070. [PMID: 34659314 PMCID: PMC8515186 DOI: 10.3389/fpls.2021.745070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Programmed meiotic DNA double-strand breaks (DSBs), necessary for proper chromosomal segregation and viable gamete formation, are repaired by homologous recombination (HR) as crossovers (COs) or non-crossovers (NCOs). The mechanisms regulating the number and distribution of COs are still poorly understood. The regulator of telomere elongation helicase 1 (RTEL1) DNA helicase was previously shown to enforce the number of meiotic COs in Caenorhabditis elegans but its function in plants has been studied only in the vegetative phase. Here, we characterised barley RTEL1 gene structure and expression using RNA-seq data previously obtained from vegetative and reproductive organs and tissues. Using RNAi, we downregulated RTEL1 expression specifically in reproductive tissues and analysed its impact on recombination using a barley 50k iSelect SNP Array. Unlike in C. elegans, in a population segregating for RTEL1 downregulated by RNAi, high resolution genome-wide genetic analysis revealed a significant increase of COs at distal chromosomal regions of barley without a change in their total number. Our data reveal the important role of RTEL1 helicase in plant meiosis and control of recombination.
Collapse
Affiliation(s)
- Abdellah Barakate
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mikel Arrieta
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Malcolm Macaulay
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Sebastian Vivera
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Diane Davidson
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Jennifer Stephens
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Jamie Orr
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Miriam Schreiber
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Luke Ramsay
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Claire Halpin
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
- School of Agriculture and Wine, University of Adelaide, Waite Campus, Adelaide, SA, Australia
| |
Collapse
|
33
|
Venezia M, Creasey Krainer KM. Current Advancements and Limitations of Gene Editing in Orphan Crops. FRONTIERS IN PLANT SCIENCE 2021; 12:742932. [PMID: 34630494 PMCID: PMC8493294 DOI: 10.3389/fpls.2021.742932] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/20/2021] [Indexed: 05/23/2023]
Abstract
Gene editing provides precise, heritable genome mutagenesis without permanent transgenesis, and has been widely demonstrated and applied in planta. In the past decade, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) has revolutionized the application of gene editing in crops, with mechanistic advances expanding its potential, including prime editing and base editing. To date, CRISPR/Cas has been utilized in over a dozen orphan crops with diverse genetic backgrounds, leading to novel alleles and beneficial phenotypes for breeders, growers, and consumers. In conjunction with the adoption of science-based regulatory practices, there is potential for CRISPR/Cas-mediated gene editing in orphan crop improvement programs to solve a plethora of agricultural problems, especially impacting developing countries. Genome sequencing has progressed, becoming more affordable and applicable to orphan crops. Open-access resources allow for target gene identification and guide RNA (gRNA) design and evaluation, with modular cloning systems and enzyme screening methods providing experimental feasibility. While the genomic and mechanistic limitations are being overcome, crop transformation and regeneration continue to be the bottleneck for gene editing applications. International collaboration between all stakeholders involved in crop improvement is vital to provide equitable access and bridge the scientific gap between the world's most economically important crops and the most under-researched crops. This review describes the mechanisms and workflow of CRISPR/Cas in planta and addresses the challenges, current applications, and future prospects in orphan crops.
Collapse
|
34
|
Gutiérrez Pinzón Y, González Kise JK, Rueda P, Ronceret A. The Formation of Bivalents and the Control of Plant Meiotic Recombination. FRONTIERS IN PLANT SCIENCE 2021; 12:717423. [PMID: 34557215 PMCID: PMC8453087 DOI: 10.3389/fpls.2021.717423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/13/2021] [Indexed: 06/06/2023]
Abstract
During the first meiotic division, the segregation of homologous chromosomes depends on the physical association of the recombined homologous DNA molecules. The physical tension due to the sites of crossing-overs (COs) is essential for the meiotic spindle to segregate the connected homologous chromosomes to the opposite poles of the cell. This equilibrated partition of homologous chromosomes allows the first meiotic reductional division. Thus, the segregation of homologous chromosomes is dependent on their recombination. In this review, we will detail the recent advances in the knowledge of the mechanisms of recombination and bivalent formation in plants. In plants, the absence of meiotic checkpoints allows observation of subsequent meiotic events in absence of meiotic recombination or defective meiotic chromosomal axis formation such as univalent formation instead of bivalents. Recent discoveries, mainly made in Arabidopsis, rice, and maize, have highlighted the link between the machinery of double-strand break (DSB) formation and elements of the chromosomal axis. We will also discuss the implications of what we know about the mechanisms regulating the number and spacing of COs (obligate CO, CO homeostasis, and interference) in model and crop plants.
Collapse
|
35
|
Tock AJ, Holland DM, Jiang W, Osman K, Sanchez-Moran E, Higgins JD, Edwards KJ, Uauy C, Franklin FCH, Henderson IR. Crossover-active regions of the wheat genome are distinguished by DMC1, the chromosome axis, H3K27me3, and signatures of adaptation. Genome Res 2021; 31:1614-1628. [PMID: 34426514 PMCID: PMC8415368 DOI: 10.1101/gr.273672.120] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 07/20/2021] [Indexed: 12/18/2022]
Abstract
The hexaploid bread wheat genome comprises over 16 gigabases of sequence across 21 chromosomes. Meiotic crossovers are highly polarized along the chromosomes, with elevation in the gene-dense distal regions and suppression in the Gypsy retrotransposon-dense centromere-proximal regions. We profiled the genomic landscapes of the meiotic recombinase DMC1 and the chromosome axis protein ASY1 in wheat and investigated their relationships with crossovers, chromatin state, and genetic diversity. DMC1 and ASY1 chromatin immunoprecipitation followed by sequencing (ChIP-seq) revealed strong co-enrichment in the distal, crossover-active regions of the wheat chromosomes. Distal ChIP-seq enrichment is consistent with spatiotemporally biased cytological immunolocalization of DMC1 and ASY1 close to the telomeres during meiotic prophase I. DMC1 and ASY1 ChIP-seq peaks show significant overlap with genes and transposable elements in the Mariner and Mutator superfamilies. However, DMC1 and ASY1 ChIP-seq peaks were detected along the length of each chromosome, including in low-crossover regions. At the fine scale, crossover elevation at DMC1 and ASY1 peaks and genes correlates with enrichment of the Polycomb histone modification H3K27me3. This indicates a role for facultative heterochromatin, coincident with high DMC1 and ASY1, in promoting crossovers in wheat and is reflected in distalized H3K27me3 enrichment observed via ChIP-seq and immunocytology. Genes with elevated crossover rates and high DMC1 and ASY1 ChIP-seq signals are overrepresented for defense-response and immunity annotations, have higher sequence polymorphism, and exhibit signatures of selection. Our findings are consistent with meiotic recombination promoting genetic diversity, shaping host–pathogen co-evolution, and accelerating adaptation by increasing the efficiency of selection.
Collapse
Affiliation(s)
- Andrew J Tock
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Daniel M Holland
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Wei Jiang
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Kim Osman
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | - James D Higgins
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Keith J Edwards
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | | | - F Chris H Franklin
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
36
|
Sonnenberg ASM, Sedaghat-Telgerd N, Lavrijssen B, Hendrickx PM, Scholtmeijer K, Baars JJP, Visser RGF, van Peer A. Mapping Recombination Landscape and Basidial Spore Number in the Button Mushroom Agaricus bisporus. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:711330. [PMID: 37744108 PMCID: PMC10512247 DOI: 10.3389/ffunb.2021.711330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/30/2021] [Indexed: 09/26/2023]
Abstract
The button mushroom Agaricus bisporus is represented mainly by two varieties, a secondarily homothallic variety with predominantly two heterokaryotic spores per basidia and a heterothallic variety with predominantly four homokaryotic spored basidium. Both varieties also differ in their recombination landscape with the former showing crossovers (CO) predominantly at chromosome ends whereas the latter has a more evenly distribution of CO over the chromosomes. The two varieties are compatible, and this has been used to study segregation of the basidial spore number (BSN) and the genomic positions of recombination, i.e., the CO landscape, in order to find the underlying genetic determinants. Knowledge on genes controlling CO positions might facilitate either the conservation of favorable allele combinations or the disruption of unwanted allele combinations to reduce linkage drag. For BSN, in total seven QTL were found with the major QTL on chromosome 1 explaining ca. 55% of the phenotypic variation. It appeared, however, difficult to map the recombination landscape. This phenotype can only be assessed in the meiotic offspring of an intervarietal hybrid which is a laborious and difficult task. Nevertheless, this was done, and we were able to map three QTLs for this trait, two on chromosome 1 and one on chromosome 2 not overlapping with the QTL for BSN. The hurdles encountered are discussed and a new strategy is proposed that can solves these. We propose to use two genetically unrelated mapping populations both offspring of a cross between a var. bisporus and a var. burnettii homokaryon and thus segregating both for CO and BSN. Homokaryotic offspring of both populations can be intercrossed without limitation of mating incompatibility and marker homozygosity and the hybrid mushrooms directly used to map BSN. Homokaryotic offspring of these hybrid mushrooms can be genotypes to assess CO positions using next generation sequencing technologies that will solve marker problems encountered, especially for genotyping chromosome ends. This new approach can be a useful strategy for a more efficient breeding strategy for mushrooms in general.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Arend van Peer
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
37
|
Kakoulidou I, Avramidou EV, Baránek M, Brunel-Muguet S, Farrona S, Johannes F, Kaiserli E, Lieberman-Lazarovich M, Martinelli F, Mladenov V, Testillano PS, Vassileva V, Maury S. Epigenetics for Crop Improvement in Times of Global Change. BIOLOGY 2021; 10:766. [PMID: 34439998 PMCID: PMC8389687 DOI: 10.3390/biology10080766] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022]
Abstract
Epigenetics has emerged as an important research field for crop improvement under the on-going climatic changes. Heritable epigenetic changes can arise independently of DNA sequence alterations and have been associated with altered gene expression and transmitted phenotypic variation. By modulating plant development and physiological responses to environmental conditions, epigenetic diversity-naturally, genetically, chemically, or environmentally induced-can help optimise crop traits in an era challenged by global climate change. Beyond DNA sequence variation, the epigenetic modifications may contribute to breeding by providing useful markers and allowing the use of epigenome diversity to predict plant performance and increase final crop production. Given the difficulties in transferring the knowledge of the epigenetic mechanisms from model plants to crops, various strategies have emerged. Among those strategies are modelling frameworks dedicated to predicting epigenetically controlled-adaptive traits, the use of epigenetics for in vitro regeneration to accelerate crop breeding, and changes of specific epigenetic marks that modulate gene expression of traits of interest. The key challenge that agriculture faces in the 21st century is to increase crop production by speeding up the breeding of resilient crop species. Therefore, epigenetics provides fundamental molecular information with potential direct applications in crop enhancement, tolerance, and adaptation within the context of climate change.
Collapse
Affiliation(s)
- Ioanna Kakoulidou
- Department of Molecular Life Sciences, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354 Freising, Germany; (I.K.); (F.J.)
| | - Evangelia V. Avramidou
- Laboratory of Forest Genetics and Biotechnology, Institute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organization-Dimitra (ELGO-DIMITRA), 11528 Athens, Greece;
| | - Miroslav Baránek
- Faculty of Horticulture, Mendeleum—Institute of Genetics, Mendel University in Brno, Valtická 334, 69144 Lednice, Czech Republic;
| | - Sophie Brunel-Muguet
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, UNICAEN, INRAE, Normandie Université, CEDEX, F-14032 Caen, France;
| | - Sara Farrona
- Plant and AgriBiosciences Centre, Ryan Institute, National University of Ireland (NUI) Galway, H91 TK33 Galway, Ireland;
| | - Frank Johannes
- Department of Molecular Life Sciences, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354 Freising, Germany; (I.K.); (F.J.)
- Institute for Advanced Study, Technical University of Munich, Lichtenberg Str. 2a, 85748 Garching, Germany
| | - Eirini Kaiserli
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Michal Lieberman-Lazarovich
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | - Federico Martinelli
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy;
| | - Velimir Mladenov
- Faculty of Agriculture, University of Novi Sad, Sq. Dositeja Obradovića 8, 21000 Novi Sad, Serbia;
| | - Pilar S. Testillano
- Pollen Biotechnology of Crop Plants Group, Centro de Investigaciones Biológicas Margarita Salas-(CIB-CSIC), Ramiro Maeztu 9, 28040 Madrid, Spain;
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria;
| | - Stéphane Maury
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE, EA1207 USC1328, Université d’Orléans, F-45067 Orléans, France
| |
Collapse
|
38
|
Kuo P, Da Ines O, Lambing C. Rewiring Meiosis for Crop Improvement. FRONTIERS IN PLANT SCIENCE 2021; 12:708948. [PMID: 34349775 PMCID: PMC8328115 DOI: 10.3389/fpls.2021.708948] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/17/2021] [Indexed: 05/10/2023]
Abstract
Meiosis is a specialized cell division that contributes to halve the genome content and reshuffle allelic combinations between generations in sexually reproducing eukaryotes. During meiosis, a large number of programmed DNA double-strand breaks (DSBs) are formed throughout the genome. Repair of meiotic DSBs facilitates the pairing of homologs and forms crossovers which are the reciprocal exchange of genetic information between chromosomes. Meiotic recombination also influences centromere organization and is essential for proper chromosome segregation. Accordingly, meiotic recombination drives genome evolution and is a powerful tool for breeders to create new varieties important to food security. Modifying meiotic recombination has the potential to accelerate plant breeding but it can also have detrimental effects on plant performance by breaking beneficial genetic linkages. Therefore, it is essential to gain a better understanding of these processes in order to develop novel strategies to facilitate plant breeding. Recent progress in targeted recombination technologies, chromosome engineering, and an increasing knowledge in the control of meiotic chromosome segregation has significantly increased our ability to manipulate meiosis. In this review, we summarize the latest findings and technologies on meiosis in plants. We also highlight recent attempts and future directions to manipulate crossover events and control the meiotic division process in a breeding perspective.
Collapse
Affiliation(s)
- Pallas Kuo
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Olivier Da Ines
- Institut Génétique Reproduction et Développement (iGReD), Université Clermont Auvergne, UMR 6293 CNRS, U1103 INSERM, Clermont-Ferrand, France
| | - Christophe Lambing
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
39
|
Oz MT, Altpeter A, Karan R, Merotto A, Altpeter F. CRISPR/Cas9-Mediated Multi-Allelic Gene Targeting in Sugarcane Confers Herbicide Tolerance. Front Genome Ed 2021; 3:673566. [PMID: 34713261 PMCID: PMC8525412 DOI: 10.3389/fgeed.2021.673566] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/28/2021] [Indexed: 12/27/2022] Open
Abstract
Sugarcane is the source of 80% of the sugar and 26% of the bioethanol produced globally. However, its complex, highly polyploid genome (2n = 100 - 120) impedes crop improvement. Here, we report efficient and reproducible gene targeting (GT) in sugarcane, enabling precise co-editing of multiple alleles via template-mediated and homology-directed repair (HDR) of DNA double strand breaks induced by the programmable nuclease CRISPR/Cas9. The evaluation of 146 independently transformed plants from five independent experiments revealed a targeted nucleotide replacement that resulted in both targeted amino acid substitutions W574L and S653I in the acetolactate synthase (ALS) in 11 lines in addition to single, targeted amino acid substitutions W574L or S653I in 25 or 18 lines, respectively. Co-editing of up to three ALS copies/alleles that confer herbicide tolerance was confirmed by Sanger sequencing of cloned long polymerase chain reaction (PCR) amplicons. This work will enable crop improvement by conversion of inferior alleles to superior alleles through targeted nucleotide substitutions.
Collapse
Affiliation(s)
- Mehmet Tufan Oz
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
| | - Angelika Altpeter
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, United States
| | - Ratna Karan
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, United States
| | - Aldo Merotto
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, United States
| | - Fredy Altpeter
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
| |
Collapse
|
40
|
Varshney RK, Bohra A, Yu J, Graner A, Zhang Q, Sorrells ME. Designing Future Crops: Genomics-Assisted Breeding Comes of Age. TRENDS IN PLANT SCIENCE 2021; 26:631-649. [PMID: 33893045 DOI: 10.1016/j.tplants.2021.03.010] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 05/18/2023]
Abstract
Over the past decade, genomics-assisted breeding (GAB) has been instrumental in harnessing the potential of modern genome resources and characterizing and exploiting allelic variation for germplasm enhancement and cultivar development. Sustaining GAB in the future (GAB 2.0) will rely upon a suite of new approaches that fast-track targeted manipulation of allelic variation for creating novel diversity and facilitate their rapid and efficient incorporation in crop improvement programs. Genomic breeding strategies that optimize crop genomes with accumulation of beneficial alleles and purging of deleterious alleles will be indispensable for designing future crops. In coming decades, GAB 2.0 is expected to play a crucial role in breeding more climate-smart crop cultivars with higher nutritional value in a cost-effective and timely manner.
Collapse
Affiliation(s)
- Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India; State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.
| | - Abhishek Bohra
- Crop Improvement Division, ICAR- Indian Institute of Pulses Research (ICAR- IIPR), Kanpur, India
| | - Jianming Yu
- Department of Agronomy, Iowa State University, Ames, IA, USA
| | - Andreas Graner
- Leibniz Institute of Plant Genetics and Crops Plant Research (IPK), Gatersleben, Germany
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Mark E Sorrells
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
41
|
Reynolds M, Atkin OK, Bennett M, Cooper M, Dodd IC, Foulkes MJ, Frohberg C, Hammer G, Henderson IR, Huang B, Korzun V, McCouch SR, Messina CD, Pogson BJ, Slafer GA, Taylor NL, Wittich PE. Addressing Research Bottlenecks to Crop Productivity. TRENDS IN PLANT SCIENCE 2021; 26:607-630. [PMID: 33893046 DOI: 10.1016/j.tplants.2021.03.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 05/22/2023]
Abstract
Asymmetry of investment in crop research leads to knowledge gaps and lost opportunities to accelerate genetic gain through identifying new sources and combinations of traits and alleles. On the basis of consultation with scientists from most major seed companies, we identified several research areas with three common features: (i) relatively underrepresented in the literature; (ii) high probability of boosting productivity in a wide range of crops and environments; and (iii) could be researched in 'precompetitive' space, leveraging previous knowledge, and thereby improving models that guide crop breeding and management decisions. Areas identified included research into hormones, recombination, respiration, roots, and source-sink, which, along with new opportunities in phenomics, genomics, and bioinformatics, make it more feasible to explore crop genetic resources and improve breeding strategies.
Collapse
Affiliation(s)
- Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera Mexico, El Batan, Texcoco, Mexico.
| | - Owen K Atkin
- Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University Canberra, Acton, ACT 2601, Australia.
| | - Malcolm Bennett
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK.
| | - Mark Cooper
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ian C Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - M John Foulkes
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK
| | - Claus Frohberg
- BASF BBC-Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052 Gent, Belgium
| | - Graeme Hammer
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | | | - Susan R McCouch
- Plant Breeding & Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14850, USA.
| | - Carlos D Messina
- Corteva Agriscience, 7250 NW 62nd Avenue, Johnston, IA 50310, USA.
| | - Barry J Pogson
- Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University Canberra, Acton, ACT 2601, Australia
| | - Gustavo A Slafer
- Department of Crop and Forest Sciences, University of Lleida, AGROTECNIO, CERCA Center, Av. R. Roure 191, 25198 Lleida, Spain; ICREA, Catalonian Institution for Research and Advanced Studies, Barcelona, Spain.
| | - Nicolas L Taylor
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences and Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Peter E Wittich
- Syngenta Seeds B.V., Westeinde 62, 1601 BK, Enkhuizen, The Netherlands.
| |
Collapse
|
42
|
Rönspies M, Dorn A, Schindele P, Puchta H. CRISPR-Cas-mediated chromosome engineering for crop improvement and synthetic biology. NATURE PLANTS 2021; 7:566-573. [PMID: 33958776 DOI: 10.1038/s41477-021-00910-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/31/2021] [Indexed: 05/20/2023]
Abstract
Plant breeding relies on the presence of genetic variation, as well as on the ability to break or stabilize genetic linkages between traits. The development of the genome-editing tool clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) has allowed breeders to induce genetic variability in a controlled and site-specific manner, and to improve traits with high efficiency. However, the presence of genetic linkages is a major obstacle to the transfer of desirable traits from wild species to their cultivated relatives. One way to address this issue is to create mutants with deficiencies in the meiotic recombination machinery, thereby enhancing global crossover frequencies between homologous parental chromosomes. Although this seemed to be a promising approach at first, thus far, no crossover frequencies could be enhanced in recombination-cold regions of the genome. Additionally, this approach can lead to unintended genomic instabilities due to DNA repair defects. Therefore, efforts have been undertaken to obtain predefined crossovers between homologues by inducing site-specific double-strand breaks (DSBs) in meiotic, as well as in somatic plant cells using CRISPR-Cas tools. However, this strategy has not been able to produce a substantial number of heritable homologous recombination-based crossovers. Most recently, heritable chromosomal rearrangements, such as inversions and translocations, have been obtained in a controlled way using CRISPR-Cas in plants. This approach unlocks a completely new way of manipulating genetic linkages, one in which the DSBs are induced in somatic cells, enabling the formation of chromosomal rearrangements in the megabase range, by DSB repair via non-homologous end-joining. This technology might also enable the restructuring of genomes more globally, resulting in not only the obtainment of synthetic plant chromosome, but also of novel plant species.
Collapse
Affiliation(s)
- Michelle Rönspies
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Annika Dorn
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Patrick Schindele
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
43
|
Bolaños-Villegas P. The Role of Structural Maintenance of Chromosomes Complexes in Meiosis and Genome Maintenance: Translating Biomedical and Model Plant Research Into Crop Breeding Opportunities. FRONTIERS IN PLANT SCIENCE 2021; 12:659558. [PMID: 33868354 PMCID: PMC8044525 DOI: 10.3389/fpls.2021.659558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/15/2021] [Indexed: 06/06/2023]
Abstract
Cohesin is a multi-unit protein complex from the structural maintenance of chromosomes (SMC) family, required for holding sister chromatids together during mitosis and meiosis. In yeast, the cohesin complex entraps sister DNAs within tripartite rings created by pairwise interactions between the central ring units SMC1 and SMC3 and subunits such as the α-kleisin SCC1 (REC8/SYN1 in meiosis). The complex is an indispensable regulator of meiotic recombination in eukaryotes. In Arabidopsis and maize, the SMC1/SMC3 heterodimer is a key determinant of meiosis. In Arabidopsis, several kleisin proteins are also essential: SYN1/REC8 is meiosis-specific and is essential for double-strand break repair, whereas AtSCC2 is a subunit of the cohesin SCC2/SCC4 loading complex that is important for synapsis and segregation. Other important meiotic subunits are the cohesin EXTRA SPINDLE POLES (AESP1) separase, the acetylase ESTABLISHMENT OF COHESION 1/CHROMOSOME TRANSMISSION FIDELITY 7 (ECO1/CTF7), the cohesion release factor WINGS APART-LIKE PROTEIN 1 (WAPL) in Arabidopsis (AtWAPL1/AtWAPL2), and the WAPL antagonist AtSWITCH1/DYAD (AtSWI1). Other important complexes are the SMC5/SMC6 complex, which is required for homologous DNA recombination during the S-phase and for proper meiotic synapsis, and the condensin complexes, featuring SMC2/SMC4 that regulate proper clustering of rDNA arrays during interphase. Meiotic recombination is the key to enrich desirable traits in commercial plant breeding. In this review, I highlight critical advances in understanding plant chromatid cohesion in the model plant Arabidopsis and crop plants and suggest how manipulation of crossover formation during meiosis, somatic DNA repair and chromosome folding may facilitate transmission of desirable alleles, tolerance to radiation, and enhanced transcription of alleles that regulate sexual development. I hope that these findings highlight opportunities for crop breeding.
Collapse
Affiliation(s)
- Pablo Bolaños-Villegas
- Fabio Baudrit Agricultural Research Station, University of Costa Rica, Alajuela, Costa Rica
- Lankester Botanical Garden, University of Costa Rica, Cartago, Costa Rica
| |
Collapse
|
44
|
Strable J. Developmental genetics of maize vegetative shoot architecture. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:19. [PMID: 37309417 PMCID: PMC10236122 DOI: 10.1007/s11032-021-01208-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/25/2021] [Indexed: 06/13/2023]
Abstract
More than 1.1 billion tonnes of maize grain were harvested across 197 million hectares in 2019 (FAOSTAT 2020). The vast global productivity of maize is largely driven by denser planting practices, higher yield potential per area of land, and increased yield potential per plant. Shoot architecture, the three-dimensional structural arrangement of the above-ground plant body, is critical to maize grain yield and biomass. Structure of the shoot is integral to all aspects of modern agronomic practices. Here, the developmental genetics of the maize vegetative shoot is reviewed. Plant architecture is ultimately determined by meristem activity, developmental patterning, and growth. The following topics are discussed: shoot apical meristem, leaf architecture, axillary meristem and shoot branching, and intercalary meristem and stem activity. Where possible, classical and current studies in maize developmental genetics, as well as recent advances leveraged by "-omics" analyses, are highlighted within these sections. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01208-1.
Collapse
Affiliation(s)
- Josh Strable
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
- Present Address: Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
45
|
Osman K, Algopishi U, Higgins JD, Henderson IR, Edwards KJ, Franklin FCH, Sanchez-Moran E. Distal Bias of Meiotic Crossovers in Hexaploid Bread Wheat Reflects Spatio-Temporal Asymmetry of the Meiotic Program. FRONTIERS IN PLANT SCIENCE 2021; 12:631323. [PMID: 33679846 DOI: 10.33892/ffpls.2021.631323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/18/2021] [Indexed: 05/25/2023]
Abstract
Meiotic recombination generates genetic variation and provides physical links between homologous chromosomes (crossovers) essential for accurate segregation. In cereals the distribution of crossovers, cytologically evident as chiasmata, is biased toward the distal regions of chromosomes. This creates a bottleneck for plant breeders in the development of varieties with improved agronomic traits, as genes situated in the interstitial and centromere proximal regions of chromosomes rarely recombine. Recent advances in wheat genomics and genome engineering combined with well-developed wheat cytogenetics offer new opportunities to manipulate recombination and unlock genetic variation. As a basis for these investigations we have carried out a detailed analysis of meiotic progression in hexaploid wheat (Triticum aestivum) using immunolocalization of chromosome axis, synaptonemal complex and recombination proteins. 5-Bromo-2'-deoxyuridine (BrdU) labeling was used to determine the chronology of key events in relation to DNA replication. Axis morphogenesis, synapsis and recombination initiation were found to be spatio-temporally coordinated, beginning in the gene-dense distal chromosomal regions and later occurring in the interstitial/proximal regions. Moreover, meiotic progression in the distal regions was coordinated with the conserved chromatin cycles that are a feature of meiosis. This mirroring of the chiasma bias was also evident in the distribution of the gene-associated histone marks, H3K4me3 and H3K27me3; the repeat-associated mark, H3K27me1; and H3K9me3. We believe that this study provides a cytogenetic framework for functional studies and ongoing initiatives to manipulate recombination in the wheat genome.
Collapse
Affiliation(s)
- Kim Osman
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Uthman Algopishi
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - James D Higgins
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Keith J Edwards
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - F Chris H Franklin
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
46
|
Rönspies M, Schindele P, Puchta H. CRISPR/Cas-mediated chromosome engineering: opening up a new avenue for plant breeding. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:177-183. [PMID: 33258473 DOI: 10.1093/jxb/eraa463] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/03/2020] [Indexed: 05/21/2023]
Abstract
The advent of powerful site-specific nucleases, particularly the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system, which enables precise genome manipulation, has revolutionized plant breeding. Until recently, the main focus of researchers has been to simply knock-in or knock-out single genes, or to induce single base changes, but constant improvements of this technology have enabled more ambitious applications that aim to improve plant productivity or other desirable traits. One long-standing aim has been the induction of targeted chromosomal rearrangements (crossovers, inversions, or translocations). The feasibility of this technique has the potential to transform plant breeding, because natural rearrangements, like inversions, for example, typically present obstacles to the breeding process. In this way, genetic linkages between traits could be altered to combine or separate favorable and deleterious genes, respectively. In this review, we discuss recent breakthroughs in the field of chromosome engineering in plants and their potential applications in the field of plant breeding. In the future, these approaches might be applicable in shaping plant chromosomes in a directed manner, based on plant breeding needs.
Collapse
Affiliation(s)
- Michelle Rönspies
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg, Karlsruhe, Germany
| | - Patrick Schindele
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg, Karlsruhe, Germany
| |
Collapse
|
47
|
Hofstatter PG, Thangavel G, Castellani M, Marques A. Meiosis Progression and Recombination in Holocentric Plants: What Is Known? FRONTIERS IN PLANT SCIENCE 2021; 12:658296. [PMID: 33968114 PMCID: PMC8100227 DOI: 10.3389/fpls.2021.658296] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/22/2021] [Indexed: 05/02/2023]
Abstract
Differently from the common monocentric organization of eukaryotic chromosomes, the so-called holocentric chromosomes present many centromeric regions along their length. This chromosomal organization can be found in animal and plant lineages, whose distribution suggests that it has evolved independently several times. Holocentric chromosomes present an advantage: even broken chromosome parts can be correctly segregated upon cell division. However, the evolution of holocentricity brought about consequences to nuclear processes and several adaptations are necessary to cope with this new organization. Centromeres of monocentric chromosomes are involved in a two-step cohesion release during meiosis. To deal with that holocentric lineages developed different adaptations, like the chromosome remodeling strategy in Caenorhabditis elegans or the inverted meiosis in plants. Furthermore, the frequency of recombination at or around centromeres is normally very low and the presence of centromeric regions throughout the entire length of the chromosomes could potentially pose a problem for recombination in holocentric organisms. However, meiotic recombination happens, with exceptions, in those lineages in spite of their holocentric organization suggesting that the role of centromere as recombination suppressor might be altered in these lineages. Most of the available information about adaptations to meiosis in holocentric organisms is derived from the animal model C. elegans. As holocentricity evolved independently in different lineages, adaptations observed in C. elegans probably do not apply to other lineages and very limited research is available for holocentric plants. Currently, we still lack a holocentric model for plants, but good candidates may be found among Cyperaceae, a large angiosperm family. Besides holocentricity, chiasmatic and achiasmatic inverted meiosis are found in the family. Here, we introduce the main concepts of meiotic constraints and adaptations with special focus in meiosis progression and recombination in holocentric plants. Finally, we present the main challenges and perspectives for future research in the field of chromosome biology and meiosis in holocentric plants.
Collapse
|
48
|
Osman K, Algopishi U, Higgins JD, Henderson IR, Edwards KJ, Franklin FCH, Sanchez-Moran E. Distal Bias of Meiotic Crossovers in Hexaploid Bread Wheat Reflects Spatio-Temporal Asymmetry of the Meiotic Program. FRONTIERS IN PLANT SCIENCE 2021; 12:631323. [PMID: 33679846 PMCID: PMC7928317 DOI: 10.3389/fpls.2021.631323] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/18/2021] [Indexed: 05/09/2023]
Abstract
Meiotic recombination generates genetic variation and provides physical links between homologous chromosomes (crossovers) essential for accurate segregation. In cereals the distribution of crossovers, cytologically evident as chiasmata, is biased toward the distal regions of chromosomes. This creates a bottleneck for plant breeders in the development of varieties with improved agronomic traits, as genes situated in the interstitial and centromere proximal regions of chromosomes rarely recombine. Recent advances in wheat genomics and genome engineering combined with well-developed wheat cytogenetics offer new opportunities to manipulate recombination and unlock genetic variation. As a basis for these investigations we have carried out a detailed analysis of meiotic progression in hexaploid wheat (Triticum aestivum) using immunolocalization of chromosome axis, synaptonemal complex and recombination proteins. 5-Bromo-2'-deoxyuridine (BrdU) labeling was used to determine the chronology of key events in relation to DNA replication. Axis morphogenesis, synapsis and recombination initiation were found to be spatio-temporally coordinated, beginning in the gene-dense distal chromosomal regions and later occurring in the interstitial/proximal regions. Moreover, meiotic progression in the distal regions was coordinated with the conserved chromatin cycles that are a feature of meiosis. This mirroring of the chiasma bias was also evident in the distribution of the gene-associated histone marks, H3K4me3 and H3K27me3; the repeat-associated mark, H3K27me1; and H3K9me3. We believe that this study provides a cytogenetic framework for functional studies and ongoing initiatives to manipulate recombination in the wheat genome.
Collapse
Affiliation(s)
- Kim Osman
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Kim Osman
| | - Uthman Algopishi
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - James D. Higgins
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Ian R. Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Keith J. Edwards
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | | | - Eugenio Sanchez-Moran
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- Eugenio Sanchez-Moran
| |
Collapse
|
49
|
Vigneaud J, Maury S. [Developmental plasticity in plants: an interaction between hormones and epigenetics at the meristem level]. Biol Aujourdhui 2020; 214:125-135. [PMID: 33357371 DOI: 10.1051/jbio/2020011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 12/25/2022]
Abstract
Plants are fixed organisms with continuous development throughout their life and great sensitivity to environmental variations. They react in this way by exhibiting large developmental phenotypic plasticity. This plasticity is partly controlled by (phyto)hormones, but recent studies also suggest the involvement of epigenetic mechanisms. It seems that these two factors may interact in a complex way and especially in the stem cells grouped together in meristems. The objective of this review is to present the current arguments about this interaction which would promote developmental plasticity. Three major points are thus addressed to justify this interaction between hormonal control and epigenetics (control at the chromatin level) for the developmental plasticity of plants: the arguments in favor of an effect of hormones on chromatin and vice versa, the arguments in favor of their roles on developmental plasticity and finally the arguments in favor of the central place of these interactions, the meristems. Various perspectives and applications are discussed.
Collapse
Affiliation(s)
- Julien Vigneaud
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAe, Université d'Orléans, EA1207 USC1328, 45067 Orléans, France
| | - Stéphane Maury
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAe, Université d'Orléans, EA1207 USC1328, 45067 Orléans, France
| |
Collapse
|
50
|
Abstract
The importance of tree genetic variability in the ability of forests to respond and adapt to environmental changes is crucial in forest management and conservation. Along with genetics, recent advances have highlighted “epigenetics” as an emerging and promising field of research for the understanding of tree phenotypic plasticity and adaptive responses. In this paper, we review recent advances in this emerging field and their potential applications for tree researchers and breeders, as well as for forest managers. First, we present the basics of epigenetics in plants before discussing its potential for trees. We then propose a bibliometric and overview of the literature on epigenetics in trees, including recent advances on tree priming. Lastly, we outline the promises of epigenetics for forest research and management, along with current gaps and future challenges. Research in epigenetics could use highly diverse paths to help forests adapt to global change by eliciting different innovative silvicultural approaches for natural- and artificial-based forest management.
Collapse
|