1
|
Haider A, Iqbal SZ, Bhatti IA, Alim MB, Waseem M, Iqbal M, Mousavi Khaneghah A. Food authentication, current issues, analytical techniques, and future challenges: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13360. [PMID: 38741454 DOI: 10.1111/1541-4337.13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/29/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024]
Abstract
Food authentication and contamination are significant concerns, especially for consumers with unique nutritional, cultural, lifestyle, and religious needs. Food authenticity involves identifying food contamination for many purposes, such as adherence to religious beliefs, safeguarding health, and consuming sanitary and organic food products. This review article examines the issues related to food authentication and food fraud in recent periods. Furthermore, the development and innovations in analytical techniques employed to authenticate various food products are comprehensively focused. Food products derived from animals are susceptible to deceptive practices, which can undermine customer confidence and pose potential health hazards due to the transmission of diseases from animals to humans. Therefore, it is necessary to employ suitable and robust analytical techniques for complex and high-risk animal-derived goods, in which molecular biomarker-based (genomics, proteomics, and metabolomics) techniques are covered. Various analytical methods have been employed to ascertain the geographical provenance of food items that exhibit rapid response times, low cost, nondestructiveness, and condensability.
Collapse
Affiliation(s)
- Ali Haider
- Food Safety and Toxicology Lab, Department of Applied Chemistry, Government College University, Faisalabad, Punjab, Pakistan
| | - Shahzad Zafar Iqbal
- Food Safety and Toxicology Lab, Department of Applied Chemistry, Government College University, Faisalabad, Punjab, Pakistan
| | - Ijaz Ahmad Bhatti
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | | | - Muhammad Waseem
- Food Safety and Toxicology Lab, Department of Applied Chemistry, Government College University, Faisalabad, Punjab, Pakistan
| | - Munawar Iqbal
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | | |
Collapse
|
2
|
Zhang J, Wei L, Miao J, Yu Y, Yu N, Hu Q, Chen H, Chen Y. Authenticity identification of animal species in characteristic milk by integration of shotgun proteomics and scheduled multiple reaction monitoring (MRM) based on tandem mass spectrometry. Food Chem 2024; 436:137736. [PMID: 37863000 DOI: 10.1016/j.foodchem.2023.137736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
Milk is one of the oldest natural dairies with high value, which has different species including cow, camel, donkey, goat, sheep, buffalo, yak and et al. However, economically motivated adulteration of non-cow milk with cheaper cow milk occurs frequently. To develop a high-throughput approach for milk species authentication, integration of shotgun proteomics and scheduled multiple reaction monitoring (MRM) was developed. In total, 37 specific peptides were screened as unique to different species. Specific peptides processing stability was investigated under different treatment (heat, pressure, fermentation). Subsequently, four quantitative ion pairs of peptides from cow milk and six quantitative ion pairs of peptides from six non-cow milks were selected for the adulteration quantitative analysis. The method is capable of detection adulteration in the range of 1%-100%, and the quantitative recoveries ranged from 91.07% to 111.75%. The results suggested that combination of shotgun proteomics and MRM had potential for the milk species authentication.
Collapse
Affiliation(s)
- Jiukai Zhang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, PR China
| | - Liyang Wei
- Chinese Academy of Inspection and Quarantine, Beijing 100176, PR China
| | - Jinliang Miao
- Chinese Academy of Inspection and Quarantine, Beijing 100176, PR China
| | - Yue Yu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, PR China; School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Ning Yu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, PR China
| | - Qian Hu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, PR China
| | - He Chen
- Institute of Quality Standard & Testing Technology for Agro-products, Xinjiang Academy of Agricultural Sciences, 830091, PR China
| | - Ying Chen
- Chinese Academy of Inspection and Quarantine, Beijing 100176, PR China.
| |
Collapse
|
3
|
Chien HJ, Zheng YF, Wang WC, Kuo CY, Hsu YM, Lai CC. Determination of adulteration, geographical origins, and species of food by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:2273-2323. [PMID: 35652168 DOI: 10.1002/mas.21780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Food adulteration, mislabeling, and fraud, are rising global issues. Therefore, a number of precise and reliable analytical instruments and approaches have been proposed to ensure the authenticity and accurate labeling of food and food products by confirming that the constituents of foodstuffs are of the kind and quality claimed by the seller and manufacturer. Traditional techniques (e.g., genomics-based methods) are still in use; however, emerging approaches like mass spectrometry (MS)-based technologies are being actively developed to supplement or supersede current methods for authentication of a variety of food commodities and products. This review provides a critical assessment of recent advances in food authentication, including MS-based metabolomics, proteomics and other approaches.
Collapse
Affiliation(s)
- Han-Ju Chien
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Feng Zheng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Chen Wang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Yu Kuo
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Ming Hsu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center For Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
4
|
Dierickx K, Presslee S, Harvey VL. Rapid collagen peptide mass fingerprinting as a tool to authenticate Pleuronectiformes in the food industry. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
5
|
Agregán R, Pateiro M, Kumar M, Franco D, Capanoglu E, Dhama K, Lorenzo JM. The potential of proteomics in the study of processed meat products. J Proteomics 2023; 270:104744. [PMID: 36220542 DOI: 10.1016/j.jprot.2022.104744] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Proteomics is a field that has grown rapidly since its emergence in the mid-1990s, reaching many disciplines such as food technology. The application of proteomic techniques in the study of complex biological samples such as foods, specifically meat products, allows scientists to decipher the underlying cellular mechanisms behind different quality traits. Lately, much emphasis has been placed on the discovery of biomarkers that facilitate the prediction of biochemical transformations of the product and provide key information on parameters associated with traceability and food safety. This review study focuses on the contribution of proteomics in the improvement of processed meat products. Different techniques and strategies have recently been successfully carried out in the study of the proteome of these products that can help the development of foods with a higher sensory quality, while ensuring consumer safety through early detection of microbiological contamination and fraud. SIGNIFICANCE: The food industry and the academic world work together with the aim of responding to market demands, always seeking excellence. In particular, the meat industry has to face a series of challenges such as, achieving sensory attributes in accordance with the standards required by the consumer and maintaining a high level of safety and transparency, avoiding deliver adulterated and/or contaminated products. This review work exposes how the aforementioned challenges are attempted to be solved through proteomic technology, discussing the latest and most outstanding research in this regard, which undoubtedly contribute to improving the quality, in all the extension of the word, of meat products, providing relevant knowledge in the field of proteomic research.
Collapse
Affiliation(s)
- Rubén Agregán
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Daniel Franco
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Department of Chemical Engineering, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain.
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Universidade de Vigo, Área de Tecnoloxía dos Alimentos, Facultade de Ciencias de Ourense, 32004 Ourense, Spain.
| |
Collapse
|
6
|
Rodríguez-Vázquez R, Mouzo D, Zapata C. Phosphoproteome Analysis Using Two-Dimensional Electrophoresis Coupled with Chemical Dephosphorylation. Foods 2022; 11:3119. [PMID: 36230195 PMCID: PMC9562008 DOI: 10.3390/foods11193119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/22/2022] Open
Abstract
Protein phosphorylation is a reversible post-translational modification (PTM) with major regulatory roles in many cellular processes. However, the analysis of phosphoproteins remains the most challenging barrier in the prevailing proteome research. Recent technological advances in two-dimensional electrophoresis (2-DE) coupled to mass spectrometry (MS) have enabled the identification, characterization, and quantification of protein phosphorylation on a global scale. Most research on phosphoproteins with 2-DE has been conducted using phosphostains. Nevertheless, low-abundant and low-phosphorylated phosphoproteins are not necessarily detected using phosphostains and/or MS. In this study, we report a comparative analysis of 2-DE phosphoproteome profiles using Pro-Q Diamond phosphoprotein stain (Pro-Q DPS) and chemical dephosphorylation of proteins with HF-P from longissimus thoracis (LT) muscle samples of the Rubia Gallega cattle breed. We found statistically significant differences in the number of identified phosphoproteins between methods. More specifically, we found a three-fold increase in phosphoprotein detection with the HF-P method. Unlike Pro-Q DPS, phosphoprotein spots with low volume and phosphorylation rate were identified by HF-P technique. This is the first approach to assess meat phosphoproteome maps using HF-P at a global scale. The results open a new window for 2-DE gel-based phosphoproteome analysis.
Collapse
Affiliation(s)
- Raquel Rodríguez-Vázquez
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain
| | | | | |
Collapse
|
7
|
Afzaal M, Saeed F, Hussain M, Shahid F, Siddeeg A, Al‐Farga A. Proteomics as a promising biomarker in food authentication, quality and safety: A review. Food Sci Nutr 2022; 10:2333-2346. [PMID: 35844910 PMCID: PMC9281926 DOI: 10.1002/fsn3.2842] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/07/2022] [Accepted: 03/12/2022] [Indexed: 12/18/2022] Open
Abstract
Adulteration and mislabeling have become a very common global malpractice in food industry. Especially foods of animal origin are prepared from plant sources and intentionally mislabeled. This type of mislabeling is an important concern in food safety as the replaced ingredients may cause a food allergy or toxicity to vulnerable consumers. Moreover, foodborne pathogens also pose a major threat to food safety. There is a dire need to develop strong analytical tools to deal with related issues. In this context, proteomics stands out as a promising tool used to report the aforementioned issues. The development in the field of omics has inimitable advantages in enabling the understanding of various biological fields especially in the discipline of food science. In this review, current applications and the role of proteomics in food authenticity, safety, and quality and food traceability are highlighted comprehensively. Additionally, the other components of proteomics have also been comprehensively described. Furthermore, this review will be helpful in the provision of new intuition into the use of proteomics in food analysis. Moreover, the pathogens in food can also be identified based on differences in their protein profiling. Conclusively, proteomics, an indicator of food properties, its origin, the processes applied to food, and its composition are also the limelight of this article.
Collapse
Affiliation(s)
- Muhammad Afzaal
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Farhan Saeed
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muzzamal Hussain
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Farheen Shahid
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Azhari Siddeeg
- Department of Food Engineering and TechnologyFaculty of Engineering and TechnologyUniversity of GeziraWad MedaniSudan
| | - Ammar Al‐Farga
- Department of BiochemistryCollege of SciencesUniversity of JeddahJeddahSaudi Arabia
| |
Collapse
|
8
|
Dou X, Zhang L, Yang R, Wang X, Yu L, Yue X, Ma F, Mao J, Wang X, Zhang W, Li P. Mass spectrometry in food authentication and origin traceability. MASS SPECTROMETRY REVIEWS 2022:e21779. [PMID: 35532212 DOI: 10.1002/mas.21779] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/10/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Food authentication and origin traceability are popular research topics, especially as concerns about food quality continue to increase. Mass spectrometry (MS) plays an indispensable role in food authentication and origin traceability. In this review, the applications of MS in food authentication and origin traceability by analyzing the main components and chemical fingerprints or profiles are summarized. In addition, the characteristic markers for food authentication are also reviewed, and the advantages and disadvantages of MS-based techniques for food authentication, as well as the current trends and challenges, are discussed. The fingerprinting and profiling methods, in combination with multivariate statistical analysis, are more suitable for the authentication of high-value foods, while characteristic marker-based methods are more suitable for adulteration detection. Several new techniques have been introduced to the field, such as proton transfer reaction mass spectrometry, ambient ionization mass spectrometry (AIMS), and ion mobility mass spectrometry, for the determination of food adulteration due to their fast and convenient analysis. As an important trend, the miniaturization of MS offers advantages, such as small and portable instrumentation and fast and nondestructive analysis. Moreover, many applications in food authentication are using AIMS, which can help food authentication in food inspection/field analysis. This review provides a reference and guide for food authentication and traceability based on MS.
Collapse
Affiliation(s)
- Xinjing Dou
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Liangxiao Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Ruinan Yang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiao Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Li Yu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xiaofeng Yue
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Fei Ma
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, China
- Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Jin Mao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xiupin Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Wen Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, China
- Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, China
| |
Collapse
|
9
|
Stryiński R, Mateos J, Carrera M, Jastrzębski JP, Bogacka I, Łopieńska-Biernat E. Tandem Mass Tagging (TMT) Reveals Tissue-Specific Proteome of L4 Larvae of Anisakis simplex s. s.: Enzymes of Energy and/or Carbohydrate Metabolism as Potential Drug Targets in Anisakiasis. Int J Mol Sci 2022; 23:ijms23084336. [PMID: 35457153 PMCID: PMC9027741 DOI: 10.3390/ijms23084336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Anisakis simplex s. s. is a parasitic nematode of marine mammals and causative agent of anisakiasis in humans. The cuticle and intestine of the larvae are the tissues most responsible for direct and indirect contact, respectively, of the parasite with the host. At the L4 larval stage, tissues, such as the cuticle and intestine, are fully developed and functional, in contrast to the L3 stage. As such, this work provides for the first time the tissue-specific proteome of A. simplex s. s. larvae in the L4 stage. Statistical analysis (FC ≥ 2; p-value ≤ 0.01) showed that 107 proteins were differentially regulated (DRPs) between the cuticle and the rest of the larval body. In the comparison between the intestine and the rest of the larval body at the L4 stage, 123 proteins were identified as DRPs. Comparison of the individual tissues examined revealed a total of 272 DRPs, with 133 proteins more abundant in the cuticle and 139 proteins more abundant in the intestine. Detailed functional analysis of the identified proteins was performed using bioinformatics tools. Glycolysis and the tricarboxylic acid cycle were the most enriched metabolic pathways by cuticular and intestinal proteins, respectively, in the L4 stage of A. simplex s. s. The presence of two proteins, folliculin (FLCN) and oxoglutarate dehydrogenase (OGDH), was confirmed by Western blot, and their tertiary structure was predicted and compared with other species. In addition, host–pathogen interactions were identified, and potential new allergens were predicted. The result of this manuscript shows the largest number of protein identifications to our knowledge using proteomics tools for different tissues of L4 larvae of A. simplex s. s. The identified tissue-specific proteins could serve as targets for new drugs against anisakiasis.
Collapse
Affiliation(s)
- Robert Stryiński
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
- Correspondence: (R.S.); (M.C.); (E.Ł.-B.)
| | - Jesús Mateos
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15-706 A Coruña, Spain;
| | - Mónica Carrera
- Department of Food Technology, Marine Research Institute (IIM), Spanish National Research Council (CSIC), 36-208 Vigo, Spain
- Correspondence: (R.S.); (M.C.); (E.Ł.-B.)
| | - Jan Paweł Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Iwona Bogacka
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
- Correspondence: (R.S.); (M.C.); (E.Ł.-B.)
| |
Collapse
|
10
|
Mierzejewski K, Stryiński R, Łopieńska-Biernat E, Mateos J, Bogacka I, Carrera M. A Complex Proteomic Response of the Parasitic Nematode Anisakis simplex s.s. to Escherichia coliLipopolysaccharide. Mol Cell Proteomics 2021; 20:100166. [PMID: 34673282 PMCID: PMC8605257 DOI: 10.1016/j.mcpro.2021.100166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/06/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022] Open
Abstract
Helminths are masters at manipulating host's immune response. Especially, parasitic nematodes have evolved strategies that allow them to evade, suppress, or modulate host's immune response to persist and spread in the host's organism. While the immunomodulatory effects of nematodes on their hosts are studied with a great commitment, very little is known about nematodes' own immune system, immune response to their pathogens, and interactions between parasites and bacteria in the host's organism. To illustrate the response of the parasitic nematode Anisakis simplex s.s. during simulated interaction with Escherichia coli, different concentrations of lipopolysaccharide (LPS) were used, and the proteomic analysis with isobaric mass tags for relative and absolute quantification (tandem mass tag-based LC-MS/MS) was performed. In addition, gene expression and biochemical analyses of selected markers of oxidative stress were determined. The results revealed 1148 proteins in a group of which 115 were identified as differentially regulated proteins, for example, peroxiredoxin, thioredoxin, and macrophage migration inhibitory factor. Gene Ontology annotation and Reactome pathway analysis indicated that metabolic pathways related to catalytic activity, oxidation-reduction processes, antioxidant activity, response to stress, and innate immune system were the most common, in which differentially regulated proteins were involved. Further biochemical analyses let us confirm that the LPS induced the oxidative stress response, which plays a key role in the innate immunity of parasitic nematodes. Our findings, to our knowledge, indicate for the first time, the complexity of the interaction of parasitic nematode, A. simplex s.s. with bacterial LPS, which mimics the coexistence of helminth and gut bacteria in the host. The simulation of this crosstalk led us to conclude that the obtained results could be hugely valuable in the integrated systems biology approach to describe a relationship between parasite, host, and its commensal bacteria.
Collapse
Affiliation(s)
- Karol Mierzejewski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
| | - Robert Stryiński
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | | | - Iwona Bogacka
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Mónica Carrera
- Department of Food Technology, Marine Research Institute (IIM), Spanish National Research Council (CSIC), Vigo, Spain.
| |
Collapse
|
11
|
Diving Deep into the Data: A Review of Deep Learning Approaches and Potential Applications in Foodomics. Foods 2021; 10:foods10081803. [PMID: 34441579 PMCID: PMC8392494 DOI: 10.3390/foods10081803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 01/18/2023] Open
Abstract
Deep learning is a trending field in bioinformatics; so far, mostly known for image processing and speech recognition, but it also shows promising possibilities for data processing in food analysis, especially, foodomics. Thus, more and more deep learning approaches are used. This review presents an introduction into deep learning in the context of metabolomics and proteomics, focusing on the prediction of shelf-life, food authenticity, and food quality. Apart from the direct food-related applications, this review summarizes deep learning for peptide sequencing and its context to food analysis. The review’s focus further lays on MS (mass spectrometry)-based approaches. As a result of the constant development and improvement of analytical devices, as well as more complex holistic research questions, especially with the diverse and complex matrix food, there is a need for more effective methods for data processing. Deep learning might offer meeting this need and gives prospect to deal with the vast amount and complexity of data.
Collapse
|
12
|
Erban T, Shcherbachenko E, Talacko P, Harant K. A single honey proteome dataset for identifying adulteration by foreign amylases and mining various protein markers natural to honey. J Proteomics 2021; 239:104157. [PMID: 33631366 DOI: 10.1016/j.jprot.2021.104157] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 11/18/2022]
Abstract
Honey adulteration is a common practice that deceives consumers and devalues the unique curative and food properties of honey. For marketing, each honey must satisfy an internationally valid Codex standard. One of the quality parameters is diastase/amylase activity, which, if lowered, may be compensated for by the addition of foreign amylases. However, the estimation of enzyme activity does not enable identification of artificially added amylases. 45 honey samples were analyzed using label-free nanoLC-MS/MS proteomics. Four honeys were found to contain the foreign amylases from Aspergillus niger, Bacillus amyloliquefaciens and/or Bacillus licheniformis. This result was confirmed via proof of specificity at multiple levels. Furthermore, we identified a series of plant-related protein groups. Despite plant-related proteins constituting a significant portion of honey proteins, they were minor components compared to the major honey bee-derived proteins. Bioinformatic analysis also provided evidence for aphid and catalase proteins in honey, but the limited specificity of the MS/MS identified peptides must be considered. Overall, we demonstrate a proteomics approach employing LC-MS/MS that is useful for proving adulteration and assessing honey quality. As an resource useful for reference, we provide curated sequence databases. In addition, we provide many markers that are naturally found in honey for future studies. SIGNIFICANCE: Honey is unique natural product used since ancient times as a food and natural medicine. Humans strive to understand honey components because they can characterize different types of honey and be used for authentication and origin assessment. One of the important honey components are proteins. The proteins present in honey can naturally occur in honey, but some of them can be used to mask deficiencies in some honey quality properties. Diastases/amylases are such proteins, and their activity, a measure of honey freshness, can decrease in time or due to processing. To our knowledge, we for the first time specifically identify foreign amylases in honey. However, this study provided new information on other non-honey bee proteins in honey. Thus, this study is also of importance due to its identification of plant and aphid proteins and catalase-related proteins. This study provides a clue explaining the controversial presence of catalase in honey, since catalases can be identified and their origin determined via proteomics.
Collapse
Affiliation(s)
- Tomas Erban
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Drnovska 507/73, Prague, CZ-16106, Czechia.
| | - Elena Shcherbachenko
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Drnovska 507/73, Prague, CZ-16106, Czechia
| | - Pavel Talacko
- Proteomics Core Facility, Faculty of Science, Charles University, BIOCEV, Prumyslova 595, Vestec CZ-25242, Czechia
| | - Karel Harant
- Proteomics Core Facility, Faculty of Science, Charles University, BIOCEV, Prumyslova 595, Vestec CZ-25242, Czechia
| |
Collapse
|
13
|
Kotsanopoulos KV, Exadactylos A, Gkafas GA, Martsikalis PV, Parlapani FF, Boziaris IS, Arvanitoyannis IS. The use of molecular markers in the verification of fish and seafood authenticity and the detection of adulteration. Compr Rev Food Sci Food Saf 2021; 20:1584-1654. [PMID: 33586855 DOI: 10.1111/1541-4337.12719] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/17/2020] [Accepted: 01/10/2021] [Indexed: 12/11/2022]
Abstract
The verification of authenticity and detection of food mislabeling are elements that have been of high importance for centuries. During the last few decades there has been an increasing consumer demand for the verification of food identity and the implementation of stricter controls around these matters. Fish and seafood are among the most easily adulterated foodstuffs mainly due to the significant alterations of the species' morphological characteristics that occur during the different types of processing, which render the visual identification of the animals impossible. Even simple processes, such as filleting remove very important morphological elements and suffice to prevent the visual identification of species in marketed products. Novel techniques have therefore been developed that allow identification of species, the differentiation between species and also the differentiation of individuals that belong to the same species but grow in different populations and regions. Molecular markers have been used during the last few decades to fulfill this purpose and several improvements have been implemented rendering their use applicable to a commercial scale. The reliability, accuracy, reproducibility, and time-and cost-effectiveness of these techniques allowed them to be established as routine methods in the industry and research institutes. This review article aims at presenting the most important molecular markers used for the authentication of fish and seafood. The most important techniques are described, and the results of numerous studies are outlined and discussed, allowing interested parties to easily access and compare information about several techniques and fish/seafood species.
Collapse
Affiliation(s)
- Konstantinos V Kotsanopoulos
- Department of Ichthyology & Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Athanasios Exadactylos
- Department of Ichthyology & Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - George A Gkafas
- Department of Ichthyology & Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Petros V Martsikalis
- Department of Ichthyology & Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Foteini F Parlapani
- Department of Ichthyology & Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Ioannis S Boziaris
- Department of Ichthyology & Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Ioannis S Arvanitoyannis
- Department of Ichthyology & Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| |
Collapse
|
14
|
Calvano CD, Bianco M, Losito I, Cataldi TRI. Proteomic Analysisof Food Allergens by MALDI TOF/TOF Mass Spectrometry. Methods Mol Biol 2021; 2178:357-376. [PMID: 33128761 DOI: 10.1007/978-1-0716-0775-6_24] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is largely recognized as an important tool in the analysis of many biomolecules such as proteins and peptides. The MS analysis of digested peptides to identify a protein or some of its modifications is a key step in proteomics. MALDI-MS is well suited for the peptide mass fingerprinting (PMF) technique, as well as selected fragmentation of various precursors using collisional-induced dissociation (CID) or post-source decay (PSD).In the last few years, MALDI-MS has played a significant role in food chemistry, especially in the detection of food adulterations, characterization of food allergens, and investigation of protein structural modifications induced by various industrial processes that could be an issue in terms of food quality and safety.Here, we present simple extraction protocols of allergenic proteins in food commodities such as milk, egg, hazelnut , and lupin seeds. Classic bottom-up approaches based on Sodium Dodecyl Sulphate (SDS) gel electrophoresis separation followed by in-gel digestion or direct in-solution digestion of whole samples are described. MALDI-MS and MS /MS analyses are discussed along with a comparison of data obtained by using the most widespread matrices for proteomic studies, namely, α-cyano-4-hydroxy-cinnamic acid (CHCA) and α-cyano-4-chloro-cinnamic acid (CClCA). The choice of the most suitable MALDI matrix is fundamental for high-throughput screening of putative food allergens.
Collapse
Affiliation(s)
- Cosima D Calvano
- Centro Interdipartimentale di Ricerca SMART, Università degli Studi di Bari "Aldo Moro", Bari, Italy. .,Dipartimento di Farmacia- Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, Italy.
| | - Mariachiara Bianco
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Ilario Losito
- Centro Interdipartimentale di Ricerca SMART, Università degli Studi di Bari "Aldo Moro", Bari, Italy.,Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Tommaso R I Cataldi
- Centro Interdipartimentale di Ricerca SMART, Università degli Studi di Bari "Aldo Moro", Bari, Italy.,Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
15
|
Sinha K, Sharma P, Som Chaudhury S, Das Mukhopadhyay C, Ruidas B. Species detection using probe technology. FOOD TOXICOLOGY AND FORENSICS 2021:313-346. [DOI: 10.1016/b978-0-12-822360-4.00012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
16
|
Stryiński R, Łopieńska-Biernat E, Carrera M. Proteomic Insights into the Biology of the Most Important Foodborne Parasites in Europe. Foods 2020; 9:E1403. [PMID: 33022912 PMCID: PMC7601233 DOI: 10.3390/foods9101403] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
Foodborne parasitoses compared with bacterial and viral-caused diseases seem to be neglected, and their unrecognition is a serious issue. Parasitic diseases transmitted by food are currently becoming more common. Constantly changing eating habits, new culinary trends, and easier access to food make foodborne parasites' transmission effortless, and the increase in the diagnosis of foodborne parasitic diseases in noted worldwide. This work presents the applications of numerous proteomic methods into the studies on foodborne parasites and their possible use in targeted diagnostics. Potential directions for the future are also provided.
Collapse
Affiliation(s)
- Robert Stryiński
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Mónica Carrera
- Department of Food Technology, Marine Research Institute (IIM), Spanish National Research Council (CSIC), 36-208 Vigo, Spain
| |
Collapse
|
17
|
Kehinde BA, Sharma P, Kaur S. Recent nano-, micro- and macrotechnological applications of ultrasonication in food-based systems. Crit Rev Food Sci Nutr 2020; 61:599-621. [PMID: 32208850 DOI: 10.1080/10408398.2020.1740646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
There is a neoteric and rising demand for nutritional and functional foods which behooves food processors to adopt processing techniques with optimal conservation of bioactive components in foods and with minimal pernicious impacts on the environment. Ultrasonication, a mechanochemical technique has proven to be an efficacious panacea to these concerns. In this review, an analytic exploration of recent researches and designs regarding ultrasound methodology and equipment on diverse food systems, technological scales, procedural parameters and outcomes of such experimentations optimally scrutinized. The relative effects of ultrasonication on food formulations, components and attributes such as nanoemulsions, nanocapsules, proteins, micronutrients, sensory and mechanical characteristics are evaluatively delineated. In food systems where ultrasonication was employed, it was found to have a remarkable effect on one or more quality parameters. This review is a supplementation to the pedagogical awareness to scholars on the suitability of ultrasonication for research procedures, and a call to industrial food brands on the adoption of this technique for the development of foods with optimally sustained nutrient profiles.
Collapse
Affiliation(s)
- Bababode Adesegun Kehinde
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, Kentucky, USA
| | - Poorva Sharma
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
18
|
Sousa JB, Ramos-Jesus J, Silva LC, Pereira C, de-Los-Santos-Álvarez N, Fonseca RAS, Miranda-Castro R, Delerue-Matos C, Santos Júnior JR, Barroso MF. Fe 3O 4@Au nanoparticles-based magnetoplatform for the HMGA maize endogenous gene electrochemical genosensing. Talanta 2019; 206:120220. [PMID: 31514891 DOI: 10.1016/j.talanta.2019.120220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/29/2019] [Accepted: 08/02/2019] [Indexed: 11/25/2022]
Abstract
This work addresses a technological advance applied to the construction of a magnetogenoassay with electrochemical transduction for the maize taxon-specific (HMGA gene) detection using gold-coated magnetic nanoparticles as nanosized platform. Superparamagnetic core-shell Fe3O4@Au nanoparticles (10.4 ± 1.7 nm) were used to assemble the genoassay through the covalent immobilization of HMGA DNA probes onto carboxylated self-assembled monolayers at the nanoparticles surface. A hybridization reaction using sandwich format was selected to prevent inefficient hybridization connected with stable secondary DNA structures using also fluorescein isothiocyanate as DNA signaling tag. The labelling of the hybridization reaction with enzymes allowed the chronoamperometric measurement of the peroxidase activity linked to the nanoplatform located on gold surface. Using this electrochemical magnetogenoassay a linear concentration range from 0.5 to 5 nM and a LOD of 90 pM with a RSD <1.2% was calculated. Certified maize was evaluated without further purification after PCR amplification. This work highlights the efficacy of the electrochemical magnetogenoassay for the HMGA detection, showing its potential as alternative procedure for the verification of the compliance of the legislation.
Collapse
Affiliation(s)
- Juliana Beatriz Sousa
- Programa de Pós-graduação em Biotecnologia - RENORBIO, Pró-reitoria de pesquisa e pós-graduação, Universidade Federal do Piauí - UFPI, Teresina, Brasil; REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Joilson Ramos-Jesus
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, UFPI, Parnaíba, Brazil
| | - L C Silva
- Instituto de Ciências Biológicas - ICB/UPE, Recife, Brazil
| | - C Pereira
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | | | | | - R Miranda-Castro
- Dpto. Química Física y Analítica, Universidad de Oviedo, Oviedo, Spain
| | - C Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - J Ribeiro Santos Júnior
- Programa de Pós-graduação em Biotecnologia - RENORBIO, Pró-reitoria de pesquisa e pós-graduação, Universidade Federal do Piauí - UFPI, Teresina, Brasil
| | - M Fátima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal.
| |
Collapse
|
19
|
Geographical origin traceability and species identification of three scallops (Patinopecten yessoensis, Chlamys farreri, and Argopecten irradians) using stable isotope analysis. Food Chem 2019; 299:125107. [PMID: 31302428 DOI: 10.1016/j.foodchem.2019.125107] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/24/2019] [Accepted: 06/30/2019] [Indexed: 11/20/2022]
Abstract
Traceability and authenticity is crucial to the food safety of scallop. The present study investigated the possibility of using stable isotope analysis to identify the origins and species of scallops (Patinopecten yessoensis, Chlamys farreri, and Argopecten irradians) in the coastal areas of China. The δ13C and δ15N values of a total of 575 samples from seven sites around China were determined and additional 150 samples were tested by fisher linear discrimination analysis (LDA) to estimate the accuracy of origin identification and species prediction. The results show that the stable C and N isotope composition differed significantly depending on the origin, season and species of scallops. Meanwhile, the LDA shows that 92% of the samples were correctly classified for origin prediction, and an accuracy of 98.3% was obtained for species prediction. This study reveals that stable isotope ratio is an effective technique to trace the geographical origin and identify the species of scallops.
Collapse
|
20
|
Characterization and discrimination of selected China's domestic pork using an LC-MS-based lipidomics approach. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.02.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Mi S, Li X, Zhang CH, Liu JQ, Huang DQ. Characterization and discrimination of Tibetan and Duroc × (Landrace × Yorkshire) pork using label-free quantitative proteomics analysis. Food Res Int 2019; 119:426-435. [DOI: 10.1016/j.foodres.2019.02.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 01/04/2023]
|
22
|
Stryiński R, Mateos J, Pascual S, González ÁF, Gallardo JM, Łopieńska-Biernat E, Medina I, Carrera M. Proteome profiling of L3 and L4 Anisakis simplex development stages by TMT-based quantitative proteomics. J Proteomics 2019; 201:1-11. [PMID: 30978463 DOI: 10.1016/j.jprot.2019.04.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/25/2019] [Accepted: 04/07/2019] [Indexed: 11/24/2022]
Abstract
Anisakis simplex is a parasitic nematode that can cause anisakiosis and/or allergic reactions in humans. The presence of invasive third-stage larvae (L3) in many different consumed fish species and the fourth-stage larvae (L4) in marine mammals, where L3 can accidentally affect to humans and develop as far as stage L4. World Health Organization and food safety authorities aim to control and prevent this emerging health problem. In the present work, using Tandem Mass Tag (TMT)-based quantitative proteomics we analyzed for the first time the global proteome of two A. simplex development stages, L3 and L4. The strategy was divided into four steps: (a) protein extraction of L3 and L4 development stages, (b) high intensity focused ultrasound (HIFU)-assisted trypsin digestion, (c) TMT-isobaric mass tag labeling following by high-pH reversed-phase fractionation, and (d) LC-MS/MS analysis in a LTQ-Orbitrap Elite mass spectrometer. A total of 2443 different proteins of A. simplex were identified. Analysis of the modulated proteins provided the specific proteomic signature of L3 (i.e. pseudocoelomic globin, endochitinase 1, paramyosin) and L4 (i.e. neprilysin-2, glutamate dehydrogenase, aminopeptidase N). To our knowledge, this is the most comprehensive dataset of proteins of A. simplex for two development stages (L3 and L4) identified to date. SIGNIFICANCE: A. simplex is a fish-borne parasite responsible for the human anisakiosis and allergic reactions around the world. The work describes for the first-time the comparison of the proteome of two A. simplex stages (L3 and L4). The strategy is based on four steps: (i) protein extraction, (ii) ultra-fast trypsin digestion under High-Intensity Focused Ultrasound (HIFU), (iii) TMT-isobaric mass tag labeling followed by high-pH reversed-phase fractionation and (iv) peptide analysis using a LTQ-Orbitrap Elite mass spectrometer. The workflow allows to select the most modulated proteins as proteomic signature of those specific development stages (L3 and L4) of A. simplex. Obtained stage-specific proteins, could be used as targets to control/eliminate this parasite and in future eradicate the anisakiosis disease.
Collapse
Affiliation(s)
- Robert Stryiński
- University of Warmia and Mazury, Faculty of Biology and Biotechnology, Department of Biochemistry, Olsztyn, Poland.
| | - Jesús Mateos
- Spanish National Research Council (CSIC), Marine Research Institute (IIM), Department of Food Technology, Vigo, Pontevedra, Spain
| | - Santiago Pascual
- Spanish National Research Council (CSIC), Marine Research Institute (IIM), Department of Food Technology, Vigo, Pontevedra, Spain
| | - Ángel F González
- Spanish National Research Council (CSIC), Marine Research Institute (IIM), Department of Food Technology, Vigo, Pontevedra, Spain
| | - José M Gallardo
- Spanish National Research Council (CSIC), Marine Research Institute (IIM), Department of Food Technology, Vigo, Pontevedra, Spain
| | - Elżbieta Łopieńska-Biernat
- University of Warmia and Mazury, Faculty of Biology and Biotechnology, Department of Biochemistry, Olsztyn, Poland
| | - Isabel Medina
- Spanish National Research Council (CSIC), Marine Research Institute (IIM), Department of Food Technology, Vigo, Pontevedra, Spain
| | - Mónica Carrera
- Spanish National Research Council (CSIC), Marine Research Institute (IIM), Department of Food Technology, Vigo, Pontevedra, Spain.
| |
Collapse
|
23
|
|
24
|
Böhme K, Calo-Mata P, Barros-Velázquez J, Ortea I. Recent applications of omics-based technologies to main topics in food authentication. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Evaluation of the Use of TRIzol-Based Protein Extraction Approach for Gel-Based Proteomic Analysis of Dried Seafood Products and Chinese Tonic Foods. Int J Mol Sci 2018; 19:ijms19071998. [PMID: 29987231 PMCID: PMC6073523 DOI: 10.3390/ijms19071998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/30/2018] [Accepted: 07/06/2018] [Indexed: 12/15/2022] Open
Abstract
Although the emergence of gel-free approaches has greatly enhanced proteomic studies, two-dimensional gel electrophoresis (2-DE) remains one of the most widely used proteomic techniques for its high resolving power, relatively low cost, robustness, and high resolution. Preparation of high-quality protein samples remains the key in high-quality 2-DE for proteomic analysis. Samples with high endogenous levels of interfering molecules, such as salts, nucleic acids, lipids, and polysaccharides, would yield a low-quality 2-DE gel and hinder the analysis. Recently, a TRIzol-based protein extraction method has gained prominence and has attracted attention due to its promising performance in high-quality 2-DE. The authors evaluate the use of this approach for four valuable dried food products, namely two dried seafood products (abalone slices and whelk slices) and two traditional Chinese tonic foods (ganoderma and caterpillar fungus). The results indicate that 2-DE gels obtained through the TRIzol-based method are of high-quality and are comparable to those obtained through the trichloroacetic acid⁻acetone method in terms of spot number, spot intensity, and resolution. The TRIzol-based method is generally applicable to dried food samples and is simple and fast, which greatly streamlines the protein extraction procedure. Additionally, it enables the concurrent extraction and analysis of RNA, DNA, and protein from the same sample.
Collapse
|
26
|
Li Y, Zhang Y, Li H, Zhao W, Guo W, Wang S. Simultaneous determination of heat stable peptides for eight animal and plant species in meat products using UPLC-MS/MS method. Food Chem 2018; 245:125-131. [PMID: 29287350 DOI: 10.1016/j.foodchem.2017.09.066] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 11/24/2022]
Abstract
Food adulteration and fraud is driven by economic interests; it is thus necessary to establish a high-through method that allows quantitative identification of familiar animal and plant proteins for global use. In this study, a sensitive mass spectrometric approach for the detection of eight species, including pork, beef, lamb, chicken, duck, soy, peanut, and pea, is presented and the heat stability and specificity of screened peptides are verified. To improve screening efficiency of specific peptides, several key data searching parameters, including peptides, sequence lengths, sequence coverage, and unique peptides, are investigated. Using this approach, it is possible to detect a 0.5% contamination of any of the eight species. The method is proven to have high sensitivity, specificity, repeatability, and a low quantitative detection limit with respect to adulteration of diverse types of meat products.
Collapse
Affiliation(s)
- Yingying Li
- China Meat Research Center, 100068 Beijing, China
| | | | - Huichen Li
- China Meat Research Center, 100068 Beijing, China
| | - Wentao Zhao
- China Meat Research Center, 100068 Beijing, China
| | - Wenping Guo
- China Meat Research Center, 100068 Beijing, China
| | - Shouwei Wang
- China Meat Research Center, 100068 Beijing, China.
| |
Collapse
|
27
|
Carrera M, Böhme K, Gallardo JM, Barros-Velázquez J, Cañas B, Calo-Mata P. Characterization of Foodborne Strains of Staphylococcus aureus by Shotgun Proteomics: Functional Networks, Virulence Factors and Species-Specific Peptide Biomarkers. Front Microbiol 2017; 8:2458. [PMID: 29312172 PMCID: PMC5732212 DOI: 10.3389/fmicb.2017.02458] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/27/2017] [Indexed: 11/13/2022] Open
Abstract
In the present work, we applied a shotgun proteomics approach for the fast and easy characterization of 20 different foodborne strains of Staphylococcus aureus (S. aureus), one of the most recognized foodborne pathogenic bacteria. A total of 644 non-redundant proteins were identified and analyzed via an easy and rapid protein sample preparation procedure. The results allowed the differentiation of several proteome datasets from the different strains (common, accessory, and unique datasets), which were used to determine relevant functional pathways and differentiate the strains into different Euclidean hierarchical clusters. Moreover, a predicted protein-protein interaction network of the foodborne S. aureus strains was created. The whole confidence network contains 77 nodes and 769 interactions. Most of the identified proteins were surface-associated proteins that were related to pathways and networks of energy, lipid metabolism and virulence. Twenty-seven virulence factors were identified, and most of them corresponded to autolysins, N-acetylmuramoyl-L-alanine amidases, phenol-soluble modulins, extracellular fibrinogen-binding proteins and virulence factor EsxA. Potential species-specific peptide biomarkers were screened. Twenty-one species-specific peptide biomarkers, belonging to eight different proteins (nickel-ABC transporter, N-acetylmuramoyl-L-alanine amidase, autolysin, clumping factor A, gram-positive signal peptide YSIRK, cysteine protease/staphopain, transcriptional regulator MarR, and transcriptional regulator Sar-A), were proposed to identify S. aureus. These results constitute the first major dataset of peptides and proteins of foodborne S. aureus strains. This repository may be useful for further studies, for the development of new therapeutic treatments for S. aureus food intoxications and for microbial source-tracking in foodstuffs.
Collapse
Affiliation(s)
- Mónica Carrera
- Department of Food Technology, Spanish National Research Council, Marine Research Institute, Vigo, Spain
| | - Karola Böhme
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, Lugo, Spain
| | - José M. Gallardo
- Department of Food Technology, Spanish National Research Council, Marine Research Institute, Vigo, Spain
| | - Jorge Barros-Velázquez
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, Lugo, Spain
| | - Benito Cañas
- Department of Analytical Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Pilar Calo-Mata
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, Lugo, Spain
| |
Collapse
|
28
|
|
29
|
Carrera M, Gallardo JM. Determination of the Geographical Origin of All Commercial Hake Species by Stable Isotope Ratio (SIR) Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1070-1077. [PMID: 28088859 DOI: 10.1021/acs.jafc.6b04972] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The determination of the geographical origin of food products is relevant to comply with the legal regulations of traceability, to avoid food fraud, and to guarantee food quality and safety to the consumers. For these reasons, stable isotope ratio (SIR) analysis using an isotope ratio mass spectrometry (IRMS) instrument is one of the most useful techniques for evaluating food traceability and authenticity. The present study was aimed to determine, for the first time, the geographical origin for all commercial fish species belonging to the Merlucciidae family using SIR analysis of carbon (δ13C) and nitrogen (δ15N). The specific results enabled their clear classification according to the FAO (Food and Agriculture Organization of the United Nations) fishing areas, latitude, and geographical origin in the following six different clusters: European, North African, South African, North American, South American, and Australian hake species.
Collapse
Affiliation(s)
- Mónica Carrera
- Marine Research Institute (IIM) , Spanish National Research Council (CSIC), Vigo, Pontevedra, Spain
| | - José M Gallardo
- Marine Research Institute (IIM) , Spanish National Research Council (CSIC), Vigo, Pontevedra, Spain
| |
Collapse
|
30
|
Josić D, Peršurić Ž, Rešetar D, Martinović T, Saftić L, Kraljević Pavelić S. Use of Foodomics for Control of Food Processing and Assessing of Food Safety. ADVANCES IN FOOD AND NUTRITION RESEARCH 2017; 81:187-229. [PMID: 28317605 DOI: 10.1016/bs.afnr.2016.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Food chain, food safety, and food-processing sectors face new challenges due to globalization of food chain and changes in the modern consumer preferences. In addition, gradually increasing microbial resistance, changes in climate, and human errors in food handling remain a pending barrier for the efficient global food safety management. Consequently, a need for development, validation, and implementation of rapid, sensitive, and accurate methods for assessment of food safety often termed as foodomics methods is required. Even though, the growing role of these high-throughput foodomic methods based on genomic, transcriptomic, proteomic, and metabolomic techniques has yet to be completely acknowledged by the regulatory agencies and bodies. The sensitivity and accuracy of these methods are superior to previously used standard analytical procedures and new methods are suitable to address a number of novel requirements posed by the food production sector and global food market.
Collapse
Affiliation(s)
- D Josić
- University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejčić 2, Rijeka, Croatia.
| | - Ž Peršurić
- University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejčić 2, Rijeka, Croatia
| | - D Rešetar
- University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejčić 2, Rijeka, Croatia
| | - T Martinović
- University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejčić 2, Rijeka, Croatia
| | - L Saftić
- University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejčić 2, Rijeka, Croatia
| | - S Kraljević Pavelić
- University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejčić 2, Rijeka, Croatia
| |
Collapse
|
31
|
|
32
|
Sohier D, Riou A, Postollec F. A typical day working in a laboratory in 2050: are microbiologists becoming chemists and serene workers? Curr Opin Food Sci 2016. [DOI: 10.1016/j.cofs.2016.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Garrido BC, Souza GHMF, Lourenço DC, Fasciotti M. Proteomics in quality control: Whey protein-based supplements. J Proteomics 2016; 147:48-55. [PMID: 27072112 DOI: 10.1016/j.jprot.2016.03.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/14/2016] [Accepted: 03/29/2016] [Indexed: 11/17/2022]
Abstract
UNLABELLED The growing consumption of nutritional supplements might represent a problem, given the concern about the quality of these supplements. One of the most used supplements is whey protein (WP); because of its popularity, it has been a target of adulteration with substitute products, such as cheaper proteins with lower biological value. To investigate this type of adulteration, this study used shotgun proteomics analyses by MS(E) (multiplexed, low- and high-collision energy, data-independent acquisition) of WP-based supplements. Seventeen WP-based supplement samples were evaluated. Chicken, maize, rice, potato, soybean, and wheat proteins were considered as probable sources of bovine whey adulteration. Collectively, 523 proteins were identified across all 16 samples and replicates, with 94% of peptides inside a normal distribution within 10ppm of maximum error. In 10 of the 16 samples analyzed, only proteins from bovine whey could be detected, while in the other samples several other protein sources were detected in high concentrations, especially soybean, wheat, and rice. These results point out a probable adulteration and/or sample contamination during manufacturing that could only be detected using this proteomic approach. SIGNIFICANCE The present work shows how shotgun proteomics can be used to provide reliable answers in quality control matters, especially focusing on Whey Protein nutritional supplements which are a very popular subject in food and nutrition. In order to achieve an appropriate methodology, careful evaluation was performed applying extremely rigorous quality criteria, established for the proteomic analysis. These criteria and the methodological approach used in this work might serve as a guide for other authors seeking to use proteomics in quality control.
Collapse
Affiliation(s)
- Bruno Carius Garrido
- Divisão de Metrologia Química, Instituto Nacional de Metrologia, Qualidade e Tecnologia - INMETRO, Duque de Caxias, RJ, Brazil.
| | - Gustavo H M F Souza
- MS Applications Research and Development Laboratory, Waters Corporation, São Paulo, SP, Brazil
| | - Daniela C Lourenço
- Laboratório de Macromoléculas, Diretoria de Metrologia Ligada às Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia - INMETRO, Duque de Caxias, RJ, Brazil
| | - Maíra Fasciotti
- Divisão de Metrologia Química, Instituto Nacional de Metrologia, Qualidade e Tecnologia - INMETRO, Duque de Caxias, RJ, Brazil.
| |
Collapse
|
34
|
Mazzeo MF, Siciliano RA. Proteomics for the authentication of fish species. J Proteomics 2016; 147:119-124. [PMID: 26947551 DOI: 10.1016/j.jprot.2016.03.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/15/2016] [Accepted: 03/01/2016] [Indexed: 11/28/2022]
Abstract
UNLABELLED Assessment of seafood authenticity and origin, mainly in the case of processed products (fillets, sticks, baby food) represents the crucial point to prevent fraudulent deceptions thus guaranteeing market transparency and consumers health. The most dangerous practice that jeopardies fish safety is intentional or unintentional mislabeling, originating from the substitution of valuable fish species with inferior ones. Conventional analytical methods for fish authentication are becoming inadequate to comply with the strict regulations issued by the European Union and with the increase of mislabeling due to the introduction on the market of new fish species and market globalization. This evidence prompts the development of high-throughput approaches suitable to identify unambiguous biomarkers of authenticity and screen a large number of samples with minimal time consumption. Proteomics provides suitable and powerful tools to investigate main aspects of food quality and safety and has given an important contribution in the field of biomarkers discovery applied to food authentication. This report describes the most relevant methods developed to assess fish identity and offers a perspective on their potential in the evaluation of fish quality and safety thus depicting the key role of proteomics in the authentication of fish species and processed products. BIOLOGICAL SIGNIFICANCE The assessment of fishery products authenticity is a main issue in the control quality process as deceptive practices could imply severe health risks. Proteomics based methods could significantly contribute to detect falsification and frauds, thus becoming a reliable operative first-line testing resource in food authentication.
Collapse
Affiliation(s)
- Maria Fiorella Mazzeo
- Centro di Spettrometria di Massa Proteomica e Biomolecolare, Istituto di Scienze dell'Alimentazione, CNR, via Roma 64, 83100 Avellino, Italy.
| | - Rosa Anna Siciliano
- Centro di Spettrometria di Massa Proteomica e Biomolecolare, Istituto di Scienze dell'Alimentazione, CNR, via Roma 64, 83100 Avellino, Italy.
| |
Collapse
|
35
|
Rubert J, Zachariasova M, Hajslova J. Advances in high-resolution mass spectrometry based on metabolomics studies for food – a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32:1685-708. [DOI: 10.1080/19440049.2015.1084539] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Compositional Signatures of Conventional, Free Range, and Organic Pork Meat Using Fingerprint Techniques. Foods 2015; 4:359-375. [PMID: 28231211 PMCID: PMC5224536 DOI: 10.3390/foods4030359] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 07/30/2015] [Accepted: 08/17/2015] [Indexed: 01/01/2023] Open
Abstract
Consumers’ interest in the way meat is produced is increasing in Europe. The resulting free range and organic meat products retail at a higher price, but are difficult to differentiate from their counterparts. To ascertain authenticity and prevent fraud, relevant markers need to be identified and new analytical methodology developed. The objective of this pilot study was to characterize pork belly meats of different animal welfare classes by their fatty acid (Fatty Acid Methyl Ester—FAME), non-volatile compound (electrospray ionization-tandem mass spectrometry—ESI-MS/MS), and volatile compound (proton-transfer-reaction mass spectrometry—PTR-MS) fingerprints. Well-defined pork belly meat samples (13 conventional, 15 free range, and 13 organic) originating from the Netherlands were subjected to analysis. Fingerprints appeared to be specific for the three categories, and resulted in 100%, 95.3%, and 95.3% correct identity predictions of training set samples for FAME, ESI-MS/MS, and PTR-MS respectively and slightly lower scores for the validation set. Organic meat was also well discriminated from the other two categories with 100% success rates for the training set for all three analytical approaches. Ten out of 25 FAs showed significant differences in abundance between organic meat and the other categories, free range meat differed significantly for 6 out of the 25 FAs. Overall, FAME fingerprinting presented highest discrimination power.
Collapse
|
37
|
Samperi R, Capriotti AL, Cavaliere C, Colapicchioni V, Chiozzi RZ, Laganà A. Food Proteins and Peptides. ADVANCED MASS SPECTROMETRY FOR FOOD SAFETY AND QUALITY 2015. [DOI: 10.1016/b978-0-444-63340-8.00006-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
38
|
|
39
|
Cunsolo V, Muccilli V, Saletti R, Foti S. Mass spectrometry in food proteomics: a tutorial. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:768-784. [PMID: 25230173 DOI: 10.1002/jms.3374] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 06/03/2023]
Abstract
In the last decades, the continuous and rapid evolution of proteomic approaches has provided an efficient platform for the characterization of food-derived proteins. Particularly, the impressive increasing in performance and versatility of the MS instrumentation has contributed to the development of new analytical strategies for proteins, evidencing how MS arguably represents an indispensable tool in food proteomics. Investigation of protein composition in foodstuffs is helpful for understanding the relationship between the protein content and the nutritional and technological properties of foods, the production of methods for food traceability, the assessment of food quality and safety, including the detection of allergens and microbial contaminants in foods, or even the characterization of genetically modified products. Given the high variety of the food-derived proteins and considering their differences in chemical and physical properties, a single proteomic strategy for all purposes does not exist. Rather, proteomic approaches need to be adapted to each analytical problem, and development of new strategies is necessary in order to obtain always the best results. In this tutorial, the most relevant aspects of MS-based methodologies in food proteomics will be examined, and their advantages and drawbacks will be discussed.
Collapse
Affiliation(s)
- Vincenzo Cunsolo
- Department of Chemical Sciences, University of Catania, Viale A. Doria, 6, I-95125, Catania, Italy
| | | | | | | |
Collapse
|
40
|
Darewicz M, Borawska J, Vegarud GE, Minkiewicz P, Iwaniak A. Angiotensin I-converting enzyme (ACE) inhibitory activity and ACE inhibitory peptides of salmon (Salmo salar) protein hydrolysates obtained by human and porcine gastrointestinal enzymes. Int J Mol Sci 2014; 15:14077-101. [PMID: 25123137 PMCID: PMC4159840 DOI: 10.3390/ijms150814077] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/24/2014] [Accepted: 07/16/2014] [Indexed: 01/21/2023] Open
Abstract
The objectives of the present study were two-fold: first, to detect whether salmon protein fractions possess angiotensin I-converting enzyme (ACE) inhibitory properties and whether salmon proteins can release ACE inhibitory peptides during a sequential in vitro hydrolysis (with commercial porcine enzymes) and ex vivo digestion (with human gastrointestinal enzymes). Secondly, to evaluate the ACE inhibitory activity of generated hydrolysates. A two-step ex vivo and in vitro model digestion was performed to simulate the human digestion process. Salmon proteins were degraded more efficiently by porcine enzymes than by human gastrointestinal juices and sarcoplasmic proteins were digested/hydrolyzed more easily than myofibrillar proteins. The ex vivo digested myofibrillar and sarcoplasmic duodenal samples showed IC50 values (concentration required to decrease the ACE activity by 50%) of 1.06 and 2.16 mg/mL, respectively. The in vitro hydrolyzed myofibrillar and sarcoplasmic samples showed IC50 values of 0.91 and 1.04 mg/mL, respectively. Based on the results of in silico studies, it was possible to identify 9 peptides of the ex vivo hydrolysates and 7 peptides of the in vitro hydrolysates of salmon proteins of 11 selected peptides. In both types of salmon hydrolysates, ACE-inhibitory peptides IW, IY, TVY and VW were identified. In the in vitro salmon protein hydrolysates an ACE-inhibitory peptides VPW and VY were also detected, while ACE-inhibitory peptides ALPHA, IVY and IWHHT were identified in the hydrolysates generated with ex vivo digestion. In our studies, we documented ACE inhibitory in vitro effects of salmon protein hydrolysates obtained by human and as well as porcine gastrointestinal enzymes.
Collapse
Affiliation(s)
- Małgorzata Darewicz
- Department of Food Biochemistry, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Olsztyn 10-726, Poland.
| | - Justyna Borawska
- Department of Food Biochemistry, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Olsztyn 10-726, Poland.
| | - Gerd E Vegarud
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås NO-1432, Norway.
| | - Piotr Minkiewicz
- Department of Food Biochemistry, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Olsztyn 10-726, Poland.
| | - Anna Iwaniak
- Department of Food Biochemistry, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Olsztyn 10-726, Poland.
| |
Collapse
|