1
|
Tan H, Wang Z, Fu R, Zhang X, Su Z. Nanomaterials revolutionize biosensing: 0D-3D designs for ultrasensitive detection of microorganisms and viruses. J Mater Chem B 2024; 12:7760-7786. [PMID: 39036967 DOI: 10.1039/d4tb01077a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Various diseases caused by harmful microorganisms and viruses have caused serious harm and huge economic losses to society. Thus, rapid detection of harmful microorganisms and viruses is necessary for disease prevention and treatment. Nanomaterials have unique properties that other materials do not possess, such as a small size effect and quantum size effect. Introducing nanomaterials into biosensors improves the performance of biosensors for faster and more accurate detection of microorganisms and viruses. This review aims to introduce the different kinds of biosensors and the latest advances in the application of nanomaterials in biosensors. In particular, this review focuses on describing the physicochemical properties of zero-, one-, two-, and three-dimensional nanostructures as well as nanoenzymes. Finally, this review discusses the applications of nanobiosensors in the detection of microorganisms and viruses and the future directions of nanobiosensors.
Collapse
Affiliation(s)
- Haokun Tan
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - ZhiChao Wang
- Precision Forestry Key Laboratory of Beijing, Beijing Forestry University, 100083 Beijing, China.
| | - Rao Fu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Xiaoyuan Zhang
- Precision Forestry Key Laboratory of Beijing, Beijing Forestry University, 100083 Beijing, China.
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| |
Collapse
|
2
|
Muhammad N, Haq IU, Jan MS, AlOmar TS, Rauf A, Wadood A, Almasoud N, Shams S. In-vitro and in-vivo assessment of the anti-diabetic, analgesic, and anti-inflammatory potenstials of metal-based carboxylates derivative. Heliyon 2023; 9:e19160. [PMID: 37636438 PMCID: PMC10458700 DOI: 10.1016/j.heliyon.2023.e19160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023] Open
Abstract
In the current research work, an amide based metal carboxylate chemical ([((5-((5-(2-hydroxyethyl)-4-methylthiazol-3-ium-3-yl)methyl)-2-methylpyrimidin-4-yl)amino)bis((4-((4-methoxy-2-nitrophenyl)amino)-4-oxobutanoyl)oxy)zinc]) was identified as anti-diabetic analgesic and anti-inflammatory. The identified chemical(MT-1) was tested for acute toxicity (the MT-1 was fund safe), antidiabetic analgesic, and anti-inflammatory potentials. The in-vitro study was conducted for antidiabetic enzyme inhibition (α-amylase and α-glucosidase) and the in-vivo studies included analgesic (acetic acid-induced writing and hot plate model) and anti-inflammatory (carrageenan etc induced edema) effects. The tested compound showed 88.63% (IC50 = 3.23 μg/ml) and 89.10%(IC50 = 5.10 μg/ml) againstα-amylase and α-glucosidase respectively. A significant (p < 0.001) analgesic effect was noted by MT-1 in acetic acid-induced animal models with a percent effect of 86.00, 60.,06, and 55.29 at the tested doses of 20, 1,0, and 5 mg/kg respectively. In the case of the hot plate model, the MT-1 showed a significant (p < 0.001) effect with maximum percent prolongation in latency observed after 60 min.08, 22.2,9, and 11.61) against 20, 1,0, and 5 mg/kg. The analgesic effect in the hot plate model was significantly (p < 0.01) reversed by the injection of naloxone (0.125 mg/kg). The paw edema induced by carrageenan, histamine, bradykinin, arachidonic acid, and PGE2 was significantly antagonized with percent attenuation of 34.09, 33.57, 34.60, 34.14, and 48.04 respectively. Furthermore, to predict the interactions between the MT-1 compound and COX-2 molecular docking was carried out and the result was compared with the standard compound. The docking score of MT-1 was predicted as -6.30 while that of Diclofenac was predicted as -6.82. Both compounds made several hydrogen bond interactions with the active site of the COX-2 enzyme. The docking study revealed the potent inhibitory potential of the compound MT-1 against the COX-2 receptor.
Collapse
Affiliation(s)
- Naveed Muhammad
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Ihtesham Ul Haq
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Saeed Jan
- Department of Pharmacy, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan, 24420, Pakistan
| | - Taghrid S. AlOmar
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84427, Riyadh 11671, Saudi Arabia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Najla Almasoud
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84427, Riyadh 11671, Saudi Arabia
| | - Sulaiman Shams
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
3
|
Kulikova T, Shamagsumova R, Rogov A, Stoikov I, Padnya P, Shiabiev I, Evtugyn G. Electrochemical DNA-Sensor Based on Macrocyclic Dendrimers with Terminal Amino Groups and Carbon Nanomaterials. SENSORS (BASEL, SWITZERLAND) 2023; 23:4761. [PMID: 37430675 DOI: 10.3390/s23104761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 07/12/2023]
Abstract
The assembling of thiacalix[4]arene-based dendrimers in cone, partial cone, and 1,3-alternate configuration on the surface of a glassy carbon electrode coated with carbon black or multiwalled carbon nanotubes has been characterized using cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy. Native and damaged DNA were electrostatically accumulated on the modifier layer. The influence of the charge of the redox indicator and of the macrocycle/DNA ratio was quantified and the roles of the electrostatic interactions and of the diffusional transfer of the redox indicator to the electrode interface indicator access were established. The developed DNA sensors were tested on discrimination of native, thermally denatured, and chemically damaged DNA and on the determination of doxorubicin as the model intercalator. The limit of detection of doxorubicin established for the biosensor based on multi-walled carbon nanotubes was equal to 1.0 pM with recovery from spiked human serum of 105-120%. After further optimization of the assembling directed towards the stabilization of the signal, the developed DNA sensors can find application in the preliminary screening of antitumor drugs and thermal damage of DNA. They can also be applied for testing potential drug/DNA nanocontainers as future delivery systems.
Collapse
Affiliation(s)
- Tatjana Kulikova
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Rezeda Shamagsumova
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Alexey Rogov
- Interdisciplinary Center of Analytical Microscopy, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Ivan Stoikov
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Pavel Padnya
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Igor Shiabiev
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Gennady Evtugyn
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
- Analytical Chemistry Department, Chemical Technology Institute, Ural Federal University, 19 Mira Street, 620002 Ekaterinburg, Russia
| |
Collapse
|
4
|
Ghorbanizamani F, Moulahoum H, Guler Celik E, Zihnioglu F, Beduk T, Goksel T, Turhan K, Timur S. Design of Polymeric Surfaces as Platforms for Streamlined Cancer Diagnostics in Liquid Biopsies. BIOSENSORS 2023; 13:400. [PMID: 36979612 PMCID: PMC10046689 DOI: 10.3390/bios13030400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Minimally invasive approaches for cancer diagnosis are an integral step in the quest to improve cancer survival. Liquid biopsies such as blood samples are matrices explored to extract valuable information about the tumor and its state through various indicators, such as proteins, peptides, tumor DNA, or circulating tumor cells. Although these markers are scarce, making their isolation and detection in complex matrices challenging, the development in polymer chemistry producing interesting structures, including molecularly imprinted polymers, branched polymers, nanopolymer composites, and hybrids, allowed the development of enhanced platforms with impressive performance for liquid biopsies analysis. This review describes the latest advances and developments in polymer synthesis and their application for minimally invasive cancer diagnosis. The polymer structures improve the operational performances of biosensors through various processes, such as increased affinity for enhanced sensitivity, improved binding, and avoidance of non-specific interactions for enhanced specificity. Furthermore, polymer-based materials can be a tremendous help in signal amplification of usually low-concentrated targets in the sample. The pros and cons of these materials, how the synthesis process affects their performance, and the device applications for liquid biopsies diagnosis will be critically reviewed to show the essentiality of this technology in oncology and clinical biomedicine.
Collapse
Affiliation(s)
- Faezeh Ghorbanizamani
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Türkiye
| | - Hichem Moulahoum
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Türkiye
| | - Emine Guler Celik
- Bioengineering Department, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Türkiye
- EGE SCIENCE PRO Scientific Research Inc., Ege University, IdeEGE Technology Development Zone, Bornova, 35100 Izmir, Türkiye
| | - Figen Zihnioglu
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Türkiye
| | - Tutku Beduk
- Silicon Austria Labs GmbH: Sensor Systems, Europastrasse 12, 9524 Villach, Austria
| | - Tuncay Goksel
- EGE SCIENCE PRO Scientific Research Inc., Ege University, IdeEGE Technology Development Zone, Bornova, 35100 Izmir, Türkiye
- Department of Pulmonary Medicine, Faculty of Medicine, Ege University, Bornova, 35100 Izmir, Türkiye
- EGESAM-Ege University Translational Pulmonary Research Center, Bornova, 35100 Izmir, Türkiye
| | - Kutsal Turhan
- EGE SCIENCE PRO Scientific Research Inc., Ege University, IdeEGE Technology Development Zone, Bornova, 35100 Izmir, Türkiye
- Department of Thoracic Surgery, Faculty of Medicine, Ege University, Bornova, 35100 Izmir, Türkiye
| | - Suna Timur
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Türkiye
- EGE SCIENCE PRO Scientific Research Inc., Ege University, IdeEGE Technology Development Zone, Bornova, 35100 Izmir, Türkiye
- Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, Bornova, 35100 Izmir, Türkiye
| |
Collapse
|
5
|
Urbanowicz M, Sadowska K, Lemieszek B, Paziewska-Nowak A, Sołdatowska A, Dawgul M, Pijanowska DG. Effect of dendrimer-based interlayers for enzyme immobilization on a model electrochemical sensing system for glutamate. Bioelectrochemistry 2023; 152:108407. [PMID: 36917883 DOI: 10.1016/j.bioelechem.2023.108407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/07/2023]
Abstract
In this paper, we discuss dendrimer usage in enzyme-based electrochemical biosensors, particularly with respect to biomolecule loading on the sensing surface. A novel approach to design bioactive layers with immobilized enzymes for electrochemical biosensors using the surface plasmon resonance (SPR) method in combination with electrochemical impedance spectroscopy was presented. The gold surface was modified with linear linkers (various mercaptoalkanoic acids and aminoalkanethiols) and poly(amidoamine) dendrimers from the first- to fifth-generation. The best functionalization procedure was established by detailed SPR studies and transferred onto gold electrodes to electrochemically examine the model enzymatic reaction catalysed by glutamate oxidase. In the case of the chronoamperometric method, the determined sensitivity was 3.36 ± 0.08 μA∙mM-1, and the low limit of detection (LOD) was 1.52 μM. Comparing the sensitivity and LOD obtained for CV measurements, the values of these parameters were 2.5 times higher and 4 times lower, respectively, for the fourth-generation dendrimer-based biosensor and the biosensor with a linear linker. The positive impact of the dendrimer interlayer on the long-term enzyme activity was also confirmed. The research results indicate the possibility of a significant increase in the sensor response using the dendrimer itself without enriching it with electrochemical components.
Collapse
Affiliation(s)
- Marcin Urbanowicz
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Ks. Trojdena 4, 02-109 Warsaw, Poland.
| | - Kamila Sadowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Bartłomiej Lemieszek
- Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Department of Biomedical Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Agnieszka Paziewska-Nowak
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Anna Sołdatowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Marek Dawgul
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Dorota G Pijanowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Ks. Trojdena 4, 02-109 Warsaw, Poland
| |
Collapse
|
6
|
Devadas B, Prokop M, Duraisamy S, Bouzek K. Poly(amidoamine) dendrimer-protected Pt nanoparticles as a catalyst with ultra-low Pt loading for PEM water electrolysis. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Fernandes T, Daniel-da-Silva AL, Trindade T. Metal-dendrimer hybrid nanomaterials for sensing applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Poellmann MJ, Rawding P, Kim D, Bu J, Kim Y, Hong S. Branched, dendritic, and hyperbranched polymers in liquid biopsy device design. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1770. [PMID: 34984833 PMCID: PMC9480505 DOI: 10.1002/wnan.1770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022]
Abstract
The development of minimally invasive tests for cancer diagnosis and prognosis will aid in the research of new treatments and improve survival rates. Liquid biopsies seek to derive actionable information from tumor material found in routine blood samples. The relative scarcity of tumor material in this complex mixture makes isolating and detecting cancerous material such as proteins, circulating tumor DNA, exosomes, and whole circulating tumor cells a challenge for device engineers. This review describes the chemistry and applications of branched and hyperbranched to improve the performance of liquid biopsy devices. These polymers can improve the performance of a liquid biopsy through several mechanisms. For example, polymers designed to increase the affinity of capture enhance device sensitivity. On the other hand, polymers designed to increase binding avidity or repel nonspecific adsorption enhance device specificity. Branched and hyperbranched polymers can also be used to amplify the signal from small amounts of detected material. The further development of hyperbranched polymers in liquid biopsy applications will enhance device capabilities and help these critical technologies reach the oncology clinic where they are sorely needed. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices.
Collapse
Affiliation(s)
- Michael J Poellmann
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
- Capio Biosciences, Madison, Wisconsin, USA
| | - Piper Rawding
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - DaWon Kim
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Jiyoon Bu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - YoungSoo Kim
- Department of Pharmacy, Yonsei University, Incheon, South Korea
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
- Capio Biosciences, Madison, Wisconsin, USA
- Department of Pharmacy, Yonsei University, Incheon, South Korea
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
9
|
A novel electrochemical immunosensor for ultrasensitive detection of tumor necrosis factor α based on polystyrene - PAMAM dendritic polymer blend nanofibers. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
10
|
Karaboğa MNS, Sezgintürk MK. Biosensor approaches on the diagnosis of neurodegenerative diseases: Sensing the past to the future. J Pharm Biomed Anal 2022; 209:114479. [PMID: 34861607 DOI: 10.1016/j.jpba.2021.114479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/05/2021] [Accepted: 11/14/2021] [Indexed: 12/12/2022]
Abstract
Early diagnosis of neurodegeneration-oriented diseases that develop with the aging world is essential for improving the patient's living conditions as well as the treatment of the disease. Alzheimer's and Parkinson's diseases are prominent examples of neurodegeneration characterized by dementia leading to the death of nerve cells. The clinical diagnosis of these diseases only after the symptoms appear, delays the treatment process. Detection of biomarkers, which are distinctive molecules in biological fluids, involved in neurodegeneration processes, has the potential to allow early diagnosis of neurodegenerative diseases. Studies on biosensors, whose main responsibility is to detect the target analyte with high specificity, has gained momentum in recent years with the aim of high detection of potential biomarkers of neurodegeneration process. This study aims to provide an overview of neuro-biosensors developed on the basis of biomarkers identified in biological fluids for the diagnosis of neurodegenerative diseases such as Alzheimer's disease (AD), and Parkinson's disease (PD), and to provide an overview of the urgent needs in this field, emphasizing the importance of early diagnosis in the general lines of the neurodegeneration pathway. In this review, biosensor systems developed for the detection of biomarkers of neurodegenerative diseases, especially in the last 5 years, are discussed.
Collapse
|
11
|
Poly (propylene imine) dendrimer as an emerging polymeric nanocarrier for anticancer drug and gene delivery. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110683] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Oner A, Tufek E, Yezer I, Birol A, Demir M, Er S, Demirkol DO. High generation dendrimer decorated poly-Ɛ-caprolactone/polyacrylic acid electrospun nanofibers for the design of a bioelectrochemical sensing surface. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104853] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Elancheziyan M, Senthilkumar S. Redox-active gold nanoparticle-encapsulated poly(amidoamine) dendrimer for electrochemical sensing of 4-aminophenol. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
14
|
Sousa CFV, Fernandez-Megia E, Borges J, Mano JF. Supramolecular dendrimer-containing layer-by-layer nanoassemblies for bioapplications: current status and future prospects. Polym Chem 2021; 12:5902-5930. [DOI: 10.1039/d1py00988e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
This review provides a comprehensive and critical overview of the supramolecular dendrimer-containing multifunctional layer-by-layer nanoassemblies driven by a multitude of intermolecular interactions for biological and biomedical applications.
Collapse
Affiliation(s)
- Cristiana F. V. Sousa
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Eduardo Fernandez-Megia
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - João Borges
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João F. Mano
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
15
|
Medyantseva EP, Brusnitsyn DV, Gazizullina ER, Varlamova RM, Konovalova OA, Budnikov HC. Hybrid Nanocomposites as Electrode Modifiers in Amperometric Immunosensors for the Determination of Amitriptyline. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820040103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Sadighbayan D, Sadighbayan K, Khosroushahi AY, Hasanzadeh M. Recent advances on the DNA-based electrochemical biosensing of cancer biomarkers: Analytical approach. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Recent advances on the biosensing and bioimaging based on polymer dots as advanced nanomaterial: Analytical approaches. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Bio-assay: The best alternative for conventional methods in detection of epidermal growth factor. Int J Biol Macromol 2019; 133:624-639. [DOI: 10.1016/j.ijbiomac.2019.04.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 01/01/2023]
|
19
|
An K, Lu X, Wang C, Qian J, Chen Q, Hao N, Wang K. Porous Gold Nanocages: High Atom Utilization for Thiolated Aptamer Immobilization to Well Balance the Simplicity, Sensitivity, and Cost of Disposable Aptasensors. Anal Chem 2019; 91:8660-8666. [DOI: 10.1021/acs.analchem.9b02145] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Keqi An
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Xiaoting Lu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Chengquan Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Qiaoshan Chen
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Nan Hao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| |
Collapse
|
20
|
Senel M, Dervisevic M, Kokkokoğlu F. Electrochemical DNA biosensors for label-free breast cancer gene marker detection. Anal Bioanal Chem 2019; 411:2925-2935. [PMID: 30957202 DOI: 10.1007/s00216-019-01739-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 11/30/2022]
Abstract
We present an electrochemical DNA detection strategy based on self-assembled ferrocene-cored poly(amidoamine) dendrimers for the detection of a gene relevant to breast cancer. The chemisorption of three ferrocene-cored poly(amidoamine) generations and hybridization of single-stranded DNA on a Au electrode were studied by cyclic voltammetry and differential pulse voltammetry. The biosensor demonstrated high sensitivity of 0.13 μA/(ng/ml) in the detection of the target DNA with a linear range of 1.3-20 nM and a detection limit of 0.38 nM. The DNA biosensor also has high selectivity for the target DNA, showing a clear signal difference from a noncomplementary sequence and a single-base-mismatch sequence, which was used as a model of BRAC1 gene mutation. The results shown are highly motivating for exploring DNA biosensing technology in the diagnosis of breast cancer caused by mutation of the BRAC1 gene. Graphical abstract.
Collapse
Affiliation(s)
- Mehmet Senel
- SANKARA Brain & Biotechnology Research Center, Nanoyasam Nanobiotechnology Company, Technocity, Avcılar, 34320, Istanbul, Turkey.
| | - Muamer Dervisevic
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | | |
Collapse
|
21
|
Mokwebo KV, Oluwafemi OS, Arotiba OA. An Electrochemical Cholesterol Biosensor Based on A CdTe/CdSe/ZnSe Quantum Dots-Poly (Propylene Imine) Dendrimer Nanocomposite Immobilisation Layer. SENSORS (BASEL, SWITZERLAND) 2018; 18:E3368. [PMID: 30304820 PMCID: PMC6209991 DOI: 10.3390/s18103368] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/24/2018] [Accepted: 10/06/2018] [Indexed: 01/08/2023]
Abstract
We report the preparation of poly (propylene imine) dendrimer (PPI) and CdTe/CdSe/ZnSe quantum dots (QDs) as a suitable platform for the development of an enzyme-based electrochemical cholesterol biosensor with enhanced analytical performance. The mercaptopropionic acid (MPA)-capped CdTe/CdSe/ZnSe QDs was synthesized in an aqueous phase and characterized using photoluminescence (PL) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), X-ray power diffraction (XRD), energy dispersive X-ray (EDX) spectroscopy. The absorption and emission maxima of the QDs red shifted as the reaction time and shell growth increased, indicating the formation of CdTe/CdSe/ZnSe QDs. PPI was electrodeposited on a glassy carbon electrode followed by the deposition (by deep coating) attachment of the QDs onto the PPI dendrimer modified electrode using 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC), and N-hydroxysuccinimide (NHS) as a coupling agent. The biosensor was prepared by incubating the PPI/QDs modified electrode into a solution of cholesterol oxidase (ChOx) for 6 h. The modified electrodes were characterized by voltammetry and impedance spectroscopy. Since efficient electron transfer process between the enzyme cholesterol oxidase (ChOx) and the PPI/QDs-modified electrode was achieved, the cholesterol biosensor (GCE/PPI/QDs/ChOx) was able to detect cholesterol in the range 0.1⁻10 mM with a detection limit (LOD) of 0.075 mM and sensitivity of 111.16 μA mM-1 cm-2. The biosensor was stable for over a month and had greater selectivity towards the cholesterol molecule.
Collapse
Affiliation(s)
- Kefilwe Vanessa Mokwebo
- Department of Applied Chemistry, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa.
| | - Oluwatobi Samuel Oluwafemi
- Department of Applied Chemistry, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa.
- Centre for Nanomaterials Science Research, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa.
| | - Omotayo Ademola Arotiba
- Department of Applied Chemistry, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, South Africa.
- Centre for Nanomaterials Science Research, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa.
| |
Collapse
|
22
|
Soleymani J, Hasanzadeh M, Somi MH, Jouyban A. Nanomaterials based optical biosensing of hepatitis: Recent analytical advancements. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Jayakumar K, Camarada MB, Dharuman V, Rajesh R, Venkatesan R, Ju H, Maniraj M, Rai A, Barman SR, Wen Y. Layer-by-Layer-Assembled AuNPs-Decorated First-Generation Poly(amidoamine) Dendrimer with Reduced Graphene Oxide Core as Highly Sensitive Biosensing Platform with Controllable 3D Nanoarchitecture for Rapid Voltammetric Analysis of Ultratrace DNA Hybridization. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21541-21555. [PMID: 29869501 DOI: 10.1021/acsami.8b03236] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The structure and electrochemical properties of layer-by-layer-assembled gold nanoparticles (AuNPs)-decorated first-generation (G1) poly(amidoamine) dendrimer (PD) with reduced graphene oxide (rGO) core as a highly sensitive and label-free biosensing platform with a controllable three-dimensional (3D) nanoarchitecture for the rapid voltammetric analysis of DNA hybridization at ultratrace levels were characterized. Mercaptopropinoic acid (MPA) was self-assembled onto Au substrate, then GG1PD formed by the covalent functionalization between the amino terminals of G1PD and carboxyl terminals of rGO was covalently linked onto MPA, and finally AuNPs were decorated onto GG1PD by strong physicochemical interaction between AuNPs and -OH of rGO in GG1PD, which was characterized through different techniques and confirmed by computational calculation. This 3D controllable thin-film electrode was optimized and evaluated using [Fe(CN)6]3-/4- as the redox probe and employed to covalently immobilize thiol-functionalized single-stranded DNA as biorecognition element to form the DNA nanobiosensor, which achieved fast, ultrasensitive, and high-selective differential pulse voltammetric analysis of DNA hybridization in a linear range from 1 × 10-6 to 1 × 10-13 g m-1 with a low detection limit of 9.07 × 10-14 g m-1. This work will open a new pathway for the controllable 3D nanoarchitecture of the layer-by-layer-assembled metal nanoparticles-functionalized lower-generation PD with two-dimensional layered nanomaterials as cores that can be employed as ultrasensitive and label-free nanobiodevices for the fast diagnosis of specific genome diseases in the field of biomedicine.
Collapse
Affiliation(s)
- Kumarasamy Jayakumar
- Department of Bioelectronics and Biosensors , Alagappa University , Karaikudi 630003 , India
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry , Nanjing University , Nanjing 210023 , P. R. China
- Institute of Functional Materials and Agricultural Applied Chemistry , Jiangxi Agricultural University , Nanchang 330045 , P. R. China
| | - María Belén Camarada
- Centro de Nanotecnologı́a Aplicada, Facultad de Ciencias , Universidad Mayor , Santiago , Chile
| | - Venkataraman Dharuman
- Department of Bioelectronics and Biosensors , Alagappa University , Karaikudi 630003 , India
| | - Rajendiran Rajesh
- Department of Chemistry , Pondicherry University , Pondicherry 6050114 , India
| | | | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry , Nanjing University , Nanjing 210023 , P. R. China
| | - Mahalingam Maniraj
- UGC-DAE Consortium for Scientific Research , Khandwa Road , Indore 452001 , Madhya Pradesh , India
| | - Abhishek Rai
- UGC-DAE Consortium for Scientific Research , Khandwa Road , Indore 452001 , Madhya Pradesh , India
| | - Sudipta Roy Barman
- UGC-DAE Consortium for Scientific Research , Khandwa Road , Indore 452001 , Madhya Pradesh , India
| | - Yangping Wen
- Institute of Functional Materials and Agricultural Applied Chemistry , Jiangxi Agricultural University , Nanchang 330045 , P. R. China
| |
Collapse
|
24
|
Li X, Kono K. Functional dendrimer-gold nanoparticle hybrids for biomedical applications. POLYM INT 2018. [DOI: 10.1002/pi.5583] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaojie Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education; School of Chemical and Material Engineering, Jiangnan University; Wuxi China
| | - Kenji Kono
- Department of Applied Chemistry, Graduate School of Engineering; Osaka Prefecture University; Osaka Japan
| |
Collapse
|
25
|
Hasanzadeh M, Shadjou N, de la Guardia M. Nanosized hydrophobic gels: Advanced supramolecules for use in electrochemical bio- and immunosensing. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
26
|
Barman SR, Nain A, Jain S, Punjabi N, Mukherji S, Satija J. Dendrimer as a multifunctional capping agent for metal nanoparticles for use in bioimaging, drug delivery and sensor applications. J Mater Chem B 2018; 6:2368-2384. [DOI: 10.1039/c7tb03344c] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Various strategies (single & multi-pot) to synthesize dendrimer-coated metal nanoparticles and their exploration in various biomedical applications.
Collapse
Affiliation(s)
| | - Amit Nain
- School of Biosciences and Technology
- VIT Vellore
- India
| | - Saumey Jain
- School of Biosciences and Technology
- VIT Vellore
- India
| | - Nirmal Punjabi
- Department of Biosciences and Bioengineering
- IIT Bombay
- Mumbai 400076
- India
| | - Soumyo Mukherji
- Department of Biosciences and Bioengineering
- IIT Bombay
- Mumbai 400076
- India
| | | |
Collapse
|
27
|
Ng KL, Khor SM. Graphite-Based Nanocomposite Electrochemical Sensor for Multiplex Detection of Adenine, Guanine, Thymine, and Cytosine: A Biomedical Prospect for Studying DNA Damage. Anal Chem 2017; 89:10004-10012. [PMID: 28845664 DOI: 10.1021/acs.analchem.7b02432] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Guanine (G), adenine (A), thymine (T), and cytosine (C) are the four basic constituents of DNA. Studies on DNA composition have focused especially on DNA damage and genotoxicity. However, the development of a rapid, simple, and multiplex method for the simultaneous measurement of the four DNA bases remains a challenge. In this study, we describe a graphite-based nanocomposite electrode (Au-rGO/MWCNT/graphite) that uses a simple electro-co-deposition approach. We successfully applied the developed sensor for multiplex detection of G, A, T, and C, using square-wave voltammetry. The sensor was tested using real animal and plant DNA samples in which the hydrolysis of T and C could be achieved with 8 mol L-1 of acid. The electrochemical sensor exhibited excellent sensitivity (G = 178.8 nA/μg mL-1, A = 92.9 nA/μg mL-1, T = 1.4 nA/μg mL-1, and C = 15.1 9 nA/μg mL-1), low limit of detection (G, A = 0.5 μg mL-1; T, C = 1.0 μg mL-1), and high selectivity in the presence of common interfering factors from biological matrixes. The reliability of the established method was assessed by method validation and comparison with the ultraperformance liquid chromatography technique, and a correlation of 103.7% was achieved.
Collapse
Affiliation(s)
- Khan Loon Ng
- Department of Chemistry, Faculty of Science, University of Malaya , 50603 Kuala Lumpur, Malaysia.,Wipro Skin Research and Innovation Centre , No. 7 Persiaran Subang Permai, Taman Perindustrian Subang, 47610 Selangor, Malaysia
| | - Sook Mei Khor
- Department of Chemistry, Faculty of Science, University of Malaya , 50603 Kuala Lumpur, Malaysia.,University of Malaya Centre for Ionic Liquids (UMCiL), University of Malaya , 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Martinez CS, Igartúa DE, Calienni MN, Feas DA, Siri M, Montanari J, Chiaramoni NS, Alonso SDV, Prieto MJ. Relation between biophysical properties of nanostructures and their toxicity on zebrafish. Biophys Rev 2017; 9:775-791. [PMID: 28884420 DOI: 10.1007/s12551-017-0294-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/27/2017] [Indexed: 12/25/2022] Open
Abstract
In recent years, the use of commercial nanoparticles in different industry and health fields has increased exponentially. However, the uncontrolled application of nanoparticles might present a potential risk to the environment and health. Toxicity of these nanoparticles is usually evaluated by a fast screening assay in zebrafish (Danio rerio). The use of this vertebrate animal model has grown due to its small size, great adaptability, high fertilization rate and fast external development of transparent embryos. In this review, we describe the toxicity of different micro- and nanoparticles (carbon nanotubes, dendrimers, emulsions, liposomes, metal nanoparticles, and solid lipid nanoparticles) associated to their biophysical properties using this model. The main biophysical properties studied are size, charge and surface potential due to their impact on the environment and health effects. The review also discusses the correlation of the effects of the different nanoparticles on zebrafish. Special focus is made on morphological abnormalities, altered development and abnormal behavior. The last part of the review debates changes that should be made in future directions in order to improve the use of the zebrafish model to assess nanotoxicity.
Collapse
Affiliation(s)
- C S Martinez
- Laboratorio de Biomembranas LBM-GBEyB-IMBICE-CONICET, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | - D E Igartúa
- Laboratorio de Biomembranas LBM-GBEyB-IMBICE-CONICET, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | - M N Calienni
- Laboratorio de Biomembranas LBM-GBEyB-IMBICE-CONICET, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | - D A Feas
- Laboratorio de Biomembranas LBM-GBEyB-IMBICE-CONICET, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | - M Siri
- Laboratorio de Biomembranas LBM-GBEyB-IMBICE-CONICET, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | - J Montanari
- Laboratorio de Biomembranas LBM-GBEyB-IMBICE-CONICET, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | - N S Chiaramoni
- Laboratorio de Biomembranas LBM-GBEyB-IMBICE-CONICET, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | - S Del V Alonso
- Laboratorio de Biomembranas LBM-GBEyB-IMBICE-CONICET, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina.
| | - M J Prieto
- Laboratorio de Biomembranas LBM-GBEyB-IMBICE-CONICET, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina.
| |
Collapse
|
29
|
Malekzad H, Jouyban A, Hasanzadeh M, Shadjou N, de la Guardia M. Ensuring food safety using aptamer based assays: Electroanalytical approach. Trends Analyt Chem 2017; 94:77-94. [PMID: 32287541 PMCID: PMC7112916 DOI: 10.1016/j.trac.2017.07.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Aptamers, are being increasingly employed as favorable receptors for constructing highly sensitive biosensors, for their remarkable affinities towards certain targets including a wide scope of biological or chemical substances, and their superiority over other biologic receptors. The selectivity and affinity of the aptamers have been integrated with the wise design of the assay, applying suitable modifications, such as nanomaterials on the electrode surface, employing oligonucleotide-specific amplification strategies or, their combinations. After successful performance of the electrochemical aptasensors for biomedical applications, the food sector with its direct implication for human health, which demands rapid and sensitive and economic analytical solutions for determination of health threatening contaminants in all stages of production process, is the next field of research for developing efficient electrochemical aptasensors. The aim of this review is to categorize and introduce food hazards and summarize the recent electrochemical aptasensors that have been developed to address these contaminants.
Collapse
Affiliation(s)
- Hedieh Malekzad
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Kimia Idea Pardaz Azarbayjan (KIPA) Science Based Company, Tabriz University of Medical Sciences, Tabriz 51664, Iran
| | - Mohammad Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasrin Shadjou
- Department of Nanochemistry, Nano Technology Research Center, Urmia University, Urmia, Iran
- Department of Nanochemistry, Faculty of Science, Urmia University, Urmia, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, Burjassot 46100, Valencia, Spain
| |
Collapse
|
30
|
A bio-sensing platform utilizing a conjugated polymer, carbon nanotubes and PAMAM combination. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.06.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
Hasanzadeh M, Shadjou N. (Nano)-materials and methods of signal enhancement for genosensing of p53 tumor suppressor protein: Novel research overview. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:1424-1439. [DOI: 10.1016/j.msec.2017.02.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/07/2017] [Accepted: 02/09/2017] [Indexed: 12/22/2022]
|
32
|
da Silva ETSG, Souto DEP, Barragan JTC, de F. Giarola J, de Moraes ACM, Kubota LT. Electrochemical Biosensors in Point-of-Care Devices: Recent Advances and Future Trends. ChemElectroChem 2017. [DOI: 10.1002/celc.201600758] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Everson T. S. G. da Silva
- Department of Analytical Chemistry; Institute of Chemistry -; State University of Campinas - Unicamp; P.O. Box 6154 13084-974 Campinas-SP Brazil
| | - Dênio E. P. Souto
- Department of Analytical Chemistry; Institute of Chemistry -; State University of Campinas - Unicamp; P.O. Box 6154 13084-974 Campinas-SP Brazil
| | - José T. C. Barragan
- Department of Analytical Chemistry; Institute of Chemistry -; State University of Campinas - Unicamp; P.O. Box 6154 13084-974 Campinas-SP Brazil
| | - Juliana de F. Giarola
- Department of Analytical Chemistry; Institute of Chemistry -; State University of Campinas - Unicamp; P.O. Box 6154 13084-974 Campinas-SP Brazil
| | - Ana C. M. de Moraes
- Department of Analytical Chemistry; Institute of Chemistry -; State University of Campinas - Unicamp; P.O. Box 6154 13084-974 Campinas-SP Brazil
| | - Lauro T. Kubota
- Department of Analytical Chemistry; Institute of Chemistry -; State University of Campinas - Unicamp; P.O. Box 6154 13084-974 Campinas-SP Brazil
| |
Collapse
|
33
|
Medyantseva EP, Brusnitsyn DV, Varlamova RM, Medvedeva OI, Kutyreva MP, Ulakhovich NA, Fattakhova AN, Konovalova OA, Budnikov GK. Hyperbranched polyesterpolyols as components of amperometric monoamine oxidase biosensors based on electrodes modified with nanomaterials for determination of antidepressants. RUSS J APPL CHEM+ 2017. [DOI: 10.1134/s1070427217010153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Hasanzadeh M, Shadjou N, Mokhtarzadeh A, Ramezani M. Two dimension (2-D) graphene-based nanomaterials as signal amplification elements in electrochemical microfluidic immune-devices: Recent advances. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:482-493. [DOI: 10.1016/j.msec.2016.06.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/01/2016] [Accepted: 06/07/2016] [Indexed: 12/25/2022]
|
35
|
Rhodium-complexed hyperbranched poly(ethyleneimine) and polyamidoamine and their non-covalent immobilization on magnetic nanoparticles. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.05.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Miao X, Wang W, Kang T, Liu J, Shiu KK, Leung CH, Ma DL. Ultrasensitive electrochemical detection of miRNA-21 by using an iridium(III) complex as catalyst. Biosens Bioelectron 2016; 86:454-458. [PMID: 27424263 DOI: 10.1016/j.bios.2016.07.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/27/2016] [Accepted: 07/01/2016] [Indexed: 11/17/2022]
Abstract
The ultrasensitive electrochemical detection of miRNA-21 was realized by using a novel redox and catalytic "all-in-one" mechanism with an iridium(III) complex as a catalyst. To construct such a sensor, a capture probe (CP) was firstly immobilized onto the gold electrode surface. In the presence of miRNA-21, a sandwiched DNA complex could form between CP and a methylene blue (MB) labeled G-rich detection probe modified onto a gold nanoparticle (AuNP) surface (DP-AuNPs). Upon addition of K(+), the structure of DP changed to a G-quadruplex. Then, the iridium(III) complex could selectively interact with the G-quadruplex, catalyzing the reduction of H2O2, which was accompanied by an electrochemical signal change using MB as an electron mediator. Under optimal conditions, the electrochemical signal of MB reduction peak was proportional to miRNA concentration in the range from 5.0 fM to 1.0 pM, with a detection limit of 1.6 fM. In addition, satisfactory results were obtained for miRNA-21 detection in human serum samples, indicating a potential application of the sensor for bioanalysis.
Collapse
Affiliation(s)
- Xiangmin Miao
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, PR China; Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Tianshu Kang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jinbiao Liu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Kwok-Keung Shiu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
37
|
Hasanzadeh M, Shadjou N. Electrochemical nanobiosensing in whole blood: Recent advances. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.07.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Castaing V, Álvarez-Martos I, Ferapontova EE. Wiring of Glucose Oxidizing Flavin Adenine Dinucleotide-Dependent Enzymes by Methylene Blue-Modified Third Generation Poly(amidoamine) Dendrimers Attached to Spectroscopic Graphite Electrodes. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.01.217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Zhang X, Shen J, Ma H, Jiang Y, Huang C, Han E, Yao B, He Y. Optimized dendrimer-encapsulated gold nanoparticles and enhanced carbon nanotube nanoprobes for amplified electrochemical immunoassay of E. coli in dairy product based on enzymatically induced deposition of polyaniline. Biosens Bioelectron 2016; 80:666-673. [PMID: 26908184 DOI: 10.1016/j.bios.2016.02.043] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/25/2016] [Accepted: 02/01/2016] [Indexed: 01/08/2023]
Abstract
A highly sensitive immunosensor was reported for Escherichia coli assay in dairy product based on electrochemical measurement of polyaniline (PAn) that was catalytically deposited by horseradish peroxidase (HRP) labels. Herein, the immunosensor was developed by using poly(amidoamine) dendrimer-encapsulated gold nanoparticles (PAMAM(Au)) as sensing platform. Importantly, the optimal HAuCl4/PAMAM ratio was investigated to design the efficient PAMAM(Au) nanocomposites. The nanocomposites were proven to not only increase the amount of immobilized capture antibody (cAb), but also accelerate the electron transfer process. Moreover, the {dAb-CNT-HRP} nanoprobes were prepared by exploiting the amplification effect of multiwalled carbon nanotubes (CNTs) for loading detection antibody (dAb) and enormous HRP labels. After a sandwich immunoreaction, the quantitatively captured nanoprobes could catalyze oxidation aniline to produce electroactive PAn for electrochemical measurement. On the basis of signal amplification of the PAMAM(Au)-based immunosensor and the {dAb-CNT-HRP} nanoprobes, the proposed strategy exhibited a linear relationship between the peak current of PAn and the logarithmic value of E. coli concentration ranging from 1.0 × 10(2) to 1.0 × 10(6) cfu mL(-1) with a detection limit of 50 cfu mL(-1) (S/N=3), and the electrochemical detection of E. coli could be achieved in 3h. The electrochemical immunosensor was also used to determine E. coli in dairy product (pure fresh milk, infant milk powder, yogurt in shelf-life and expired yogurt), and the recoveries of standard additions were in the range of 96.8-108.7%. Overall, this method gave a useful protocol for E. coli assay with high sensitivity, acceptable accuracy and satisfying stability, and thus provided a powerful tool to estimate the quality of dairy product.
Collapse
Affiliation(s)
- Xinai Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Jianzhong Shen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yuxiang Jiang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Chenyong Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - En Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Boshui Yao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yunyao He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
40
|
Poly(amidoamine) (PAMAM): An emerging material for electrochemical bio(sensing) applications. Talanta 2016; 148:427-38. [DOI: 10.1016/j.talanta.2015.11.022] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/04/2015] [Accepted: 11/06/2015] [Indexed: 12/16/2022]
|
41
|
Shadjou N, Hasanzadeh M. Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances. J Biomed Mater Res A 2016; 104:1250-75. [DOI: 10.1002/jbm.a.35645] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 01/06/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Nasrin Shadjou
- Department of Nanochemistry; Nano Technology Research Center and Faculty of Chemistry, Urmia University; Urmia Iran
| | - Mohammad Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences; Tabriz 51664 Iran
| |
Collapse
|
42
|
Hasanzadeh M, Shadjou N. Pharmacogenomic study using bio- and nanobioelectrochemistry: Drug-DNA interaction. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 61:1002-17. [PMID: 26838928 DOI: 10.1016/j.msec.2015.12.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/10/2015] [Accepted: 12/10/2015] [Indexed: 01/06/2023]
Abstract
Small molecules that bind genomic DNA have proven that they can be effective anticancer, antibiotic and antiviral therapeutic agents that affect the well-being of millions of people worldwide. Drug-DNA interaction affects DNA replication and division; causes strand breaks, and mutations. Therefore, the investigation of drug-DNA interaction is needed to understand the mechanism of drug action as well as in designing DNA-targeted drugs. On the other hand, the interaction between DNA and drugs can cause chemical and conformational modifications and, thus, variation of the electrochemical properties of nucleobases. For this purpose, electrochemical methods/biosensors can be used toward detection of drug-DNA interactions. The present paper reviews the drug-DNA interactions, their types and applications of electrochemical techniques used to study interactions between DNA and drugs or small ligand molecules that are potentially of pharmaceutical interest. The results are used to determine drug binding sites and sequence preference, as well as conformational changes due to drug-DNA interactions. Also, the intention of this review is to give an overview of the present state of the drug-DNA interaction cognition. The applications of electrochemical techniques for investigation of drug-DNA interaction were reviewed and we have discussed the type of qualitative or quantitative information that can be obtained from the use of each technique.
Collapse
Affiliation(s)
- Mohammad Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51664, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nasrin Shadjou
- Department of Nanochemistry, Nano Technology Research Center and Faculty of Chemistry, Urmia University, Urmia, Iran.
| |
Collapse
|
43
|
Hasanzadeh M, Shadjou N, de la Guardia M. Iron and iron-oxide magnetic nanoparticles as signal-amplification elements in electrochemical biosensing. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.03.016] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
44
|
The development of an electrochemical immunosensor using a thiol aromatic aldehyde and PAMAM-functionalized Fe3O4@Au nanoparticles. Anal Biochem 2015; 485:66-71. [DOI: 10.1016/j.ab.2015.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/07/2015] [Accepted: 06/10/2015] [Indexed: 01/12/2023]
|
45
|
Bhakta SA, Evans E, Benavidez TE, Garcia CD. Protein adsorption onto nanomaterials for the development of biosensors and analytical devices: a review. Anal Chim Acta 2015; 872:7-25. [PMID: 25892065 PMCID: PMC4405630 DOI: 10.1016/j.aca.2014.10.031] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/25/2014] [Accepted: 10/21/2014] [Indexed: 12/11/2022]
Abstract
An important consideration for the development of biosensors is the adsorption of the biorecognition element to the surface of a substrate. As the first step in the immobilization process, adsorption affects most immobilization routes and much attention is given into the research of this process to maximize the overall activity of the biosensor. The use of nanomaterials, specifically nanoparticles and nanostructured films, offers advantageous properties that can be fine-tuned to maximize interactions with specific proteins to maximize activity, minimize structural changes, and enhance the catalytic step. In the biosensor field, protein-nanomaterial interactions are an emerging trend that span across many disciplines. This review addresses recent publications about the proteins most frequently used, their most relevant characteristics, and the conditions required to adsorb them to nanomaterials. When relevant and available, subsequent analytical figures of merits are discussed for selected biosensors. The general trend amongst the research papers allows concluding that the use of nanomaterials has already provided significant improvements in the analytical performance of many biosensors and that this research field will continue to grow.
Collapse
Affiliation(s)
- Samir A Bhakta
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Elizabeth Evans
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Tomás E Benavidez
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Carlos D Garcia
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
| |
Collapse
|
46
|
Zhu C, Yang G, Li H, Du D, Lin Y. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 2015; 87:230-49. [PMID: 25354297 PMCID: PMC4287168 DOI: 10.1021/ac5039863] [Citation(s) in RCA: 824] [Impact Index Per Article: 82.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chengzhou Zhu
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Guohai Yang
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - He Li
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Dan Du
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Yuehe Lin
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
- Pacific
Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
47
|
Sun AL. Sensitive electrochemical immunoassay with signal enhancement based on nanogold-encapsulated poly(amidoamine) dendrimer-stimulated hydrogen evolution reaction. Analyst 2015; 140:7948-54. [DOI: 10.1039/c5an01827g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A new electrochemical immunosensor with signal enhancement was designed for sensitive detection of disease-related protein (human carbohydrate antigen 19-9, CA 19-9 used in this case).
Collapse
Affiliation(s)
- Ai-Li Sun
- Department of Chemistry and Chemical Engineering
- Xinxiang University
- Xinxiang 453000
- P.R. China
| |
Collapse
|
48
|
Aslan S, Anik Ü. Development of TiO2and Au Nanocomposite Electrode as CEA Immunosensor Transducer. ELECTROANAL 2014. [DOI: 10.1002/elan.201400086] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
49
|
Govindhan M, Adhikari BR, Chen A. Nanomaterials-based electrochemical detection of chemical contaminants. RSC Adv 2014. [DOI: 10.1039/c4ra10399h] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent advances in the development of nanomaterials-based electrochemical sensors for environmental monitoring and food safety applications are assessed.
Collapse
Affiliation(s)
| | | | - Aicheng Chen
- Department of Chemistry
- Lakehead University
- Thunder Bay, Canada
| |
Collapse
|