1
|
Aoki J, Isokawa M, Ueda M. Site-Specific Clustering of Bioactive Signaling Molecules Predicted In Situ by Space and Time Coherent Mapping for Imaging Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:72-84. [PMID: 39580810 DOI: 10.1021/jasms.4c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Anatomical representation of site-specific clustering of biomolecules is a powerful way of predicting a potential interaction among signaling cascades and orchestrating molecular functions in cells and organs. The greater the number of molecules visualized simultaneously, the deeper we can understand each molecule's role in cellular metabolism and function. In the present study, we investigated site-specific localization of small biomolecules in the slug using Space and Time Coherent Mapping (STCM), a key technology in matrix-assisted laser desorption ionization time-of-flight imaging mass spectrometry. We acquired mass measurements and mass-based molecular images simultaneously under the microscope-mode instrumentation developed specifically in our laboratory. Mass images were generated in the increment of 0.2 in the mass-to-charge ratio (m/z) with spatial resolution of 2 μm. Resultant images were unique in each mass increment and allowed us to predict anatomical site-specific clustering of bioactive signaling molecules. We suggest that STCM is a useful tool to promote the compilation of comprehensive molecular maps and understand the role of individual molecules and their interactive mechanisms in situ.
Collapse
Affiliation(s)
- Jun Aoki
- Center for Biosystems Dynamics Research, Laboratory for Cell Signaling Dynamics, RIKEN, Saitama 351-0198, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Masako Isokawa
- Forefront Research Center in the Faculty of Science, Osaka University, Osaka 560-0043, Japan
| | - Masahiro Ueda
- Center for Biosystems Dynamics Research, Laboratory for Cell Signaling Dynamics, RIKEN, Saitama 351-0198, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
- Forefront Research Center in the Faculty of Science, Osaka University, Osaka 560-0043, Japan
| |
Collapse
|
2
|
Boye TL, Hammerhøj A, Nielsen OH, Wang Y. Metabolomics for enhanced clinical understanding of inflammatory bowel disease. Life Sci 2024; 359:123238. [PMID: 39537099 DOI: 10.1016/j.lfs.2024.123238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Metabolomics is an emerging field involving the systematic identification and quantification of numerous metabolites in biological samples. Precision medicine applies multiomics systems biology to individual patients for reliable diagnostic classification, disease monitoring, and treatment. Multiomics systems biology encompasses genomics, transcriptomics, proteomics, epigenomics, and metabolomics. Therefore, metabolomic techniques could be highly valuable for future clinical decision-making. This review provides a technical overview of two commonly used techniques for metabolomics measurements: mass spectrometry (MS) and proton nuclear magnetic resonance (1H NMR) spectroscopy. We also discuss recent clinical advances in these techniques. Individuals with inflammatory bowel disease (IBD) exhibit significant variability in prognosis and response to treatment. Since both genetic predisposition and environmental factors contribute to this condition, targeting the metabolome may provide key insights for distinguishing and profiling patients with different clinical needs. Additionally, the considerable overlap in the clinical presentation of various disease subtypes emphasizes the need for enhanced diagnostic methods to improve patient care.
Collapse
Affiliation(s)
- Theresa Louise Boye
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Denmark
| | - Alexander Hammerhøj
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Denmark
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Denmark.
| | - Yulan Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
3
|
Maarouf Mesli N, Chaurand P, Lubell WD. Cholesterol-Supported Liquid-Phase Synthesis of Betaines and Organic Cations without Chromatography. Org Lett 2024; 26:9233-9236. [PMID: 39433281 DOI: 10.1021/acs.orglett.4c03336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Cholesterol was explored as a support for liquid-phase synthesis. Without the need for chromatography, the cholesterol-supported liquid-phase approach gave access to diverse betaines possessing chiral ammonium, phosphonium, and sulfonium ions. The cholesterol-supported method was further demonstrated by the synthesis of cationic amides and hydrazides.
Collapse
Affiliation(s)
- Nassim Maarouf Mesli
- Département de Chimie, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| | - Pierre Chaurand
- Département de Chimie, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| | - William D Lubell
- Département de Chimie, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| |
Collapse
|
4
|
Chen ZQ, Yang RJ, Zhu CW, Li Y, Yan R, Wan JB. Chemical Isotope Labeling and Dual-Filtering Strategy for Comprehensive Profiling of Urinary Glucuronide Conjugates. Anal Chem 2024; 96:13576-13587. [PMID: 39102235 PMCID: PMC11339728 DOI: 10.1021/acs.analchem.4c02339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
Glucuronidation, a crucial process in phase II metabolism, plays a vital role in the detoxification and elimination of endogenous substances and xenobiotics. A comprehensive and confident profiling of glucuronate-conjugated metabolites is imperative to understanding their roles in physiological and pathological processes. In this study, a chemical isotope labeling and dual-filtering strategy was developed for global profiling of glucuronide metabolites in biological samples. N,N-Dimethyl ethylenediamine (DMED-d0) and its deuterated counterpart DMED-d6 were used to label carboxylic acids through an amidation reaction. First, carboxyl-containing compounds were extracted based on a characteristic mass difference (Δm/z, 6.037 Da) observed in MS between light- and heavy-labeled metabolites (filter I). Subsequently, within the pool of carboxyl-containing compounds, glucuronides were identified using two pairs of diagnostic ions (m/z 247.1294/253.1665 and 229.1188/235.1559 for DMED-d0/DMED-d6-labeled glucuronides) originating from the fragmentation of the derivatized glucuronic acid group in MS/MS (filter II). Compared with non-derivatization, DEMD labeling significantly enhanced the detection sensitivity of glucuronides, as evidenced by a 3- to 55-fold decrease in limits of detection for representative standards. The strategy was applied to profiling glucuronide metabolites in urine samples from colorectal cancer (CRC) patients. A total of 685 features were screened as potential glucuronides, among which 181 were annotated, mainly including glucuronides derived from lipids, organic oxygen, and phenylpropanoids. Enzymatic biosynthesis was employed to accurately identify unknown glucuronides without standards, demonstrating the reliability of the dual-filtering strategy. Our strategy exhibits great potential for profiling the glucuronide metabolome with high coverage and confidence to reveal changes in CRC and other diseases.
Collapse
Affiliation(s)
- Zhi-Qiang Chen
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University
of Macau, Taipa Macao SAR, China
| | - Ru-Jie Yang
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University
of Macau, Taipa Macao SAR, China
| | - Chao-Wei Zhu
- Shenzhen
People’s Hospital, Shenzhen, Guangdong 518000, China
| | - Yang Li
- Shenzhen
People’s Hospital, Shenzhen, Guangdong 518000, China
| | - Ru Yan
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University
of Macau, Taipa Macao SAR, China
| | - Jian-Bo Wan
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University
of Macau, Taipa Macao SAR, China
| |
Collapse
|
5
|
Jiang Y, Meyer JG. Rapid Plasma Proteome Profiling via Nanoparticle Protein Corona and Direct Infusion Mass Spectrometry. J Proteome Res 2024; 23:3649-3658. [PMID: 39007500 DOI: 10.1021/acs.jproteome.4c00302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Noninvasive detection of protein biomarkers in plasma is crucial for clinical purposes. Liquid chromatography-mass spectrometry (LC-MS) is the gold standard technique for plasma proteome analysis, but despite recent advances, it remains limited by throughput, cost, and coverage. Here, we introduce a new hybrid method that integrates direct infusion shotgun proteome analysis (DISPA) with nanoparticle (NP) protein corona enrichment for high-throughput and efficient plasma proteomic profiling. We realized over 280 protein identifications in 1.4 min collection time, which enables a potential throughput of approximately 1000 samples daily. The identified proteins are involved in valuable pathways, and 44 of the proteins are FDA-approved biomarkers. The robustness and quantitative accuracy of this method were evaluated across multiple NPs and concentrations with a mean coefficient of variation of 17%. Moreover, different protein corona profiles were observed among various NPs based on their distinct surface modifications, and all NP protein profiles exhibited deeper coverage and better quantification than neat plasma. Our streamlined workflow merges coverage and throughput with precise quantification, leveraging both DISPA and NP protein corona enrichment. This underscores the significant potential of DISPA when paired with NP sample preparation techniques for plasma proteome studies.
Collapse
Affiliation(s)
- Yuming Jiang
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| | - Jesse G Meyer
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| |
Collapse
|
6
|
Li C, Tang C, Zeng X, Zhang Y, He L, Yan Y. Exploration of carbonyl compounds in red-fleshed kiwifruit wine and perceptual interactions among non-volatile organic acids. Food Chem 2024; 448:139118. [PMID: 38552459 DOI: 10.1016/j.foodchem.2024.139118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 04/24/2024]
Abstract
Carbonyl compounds are vital constituents that contribute to the flavor profile of alcoholic beverages. We examined 3-nitrophenylhydrazine as a derivatizing reagent for the measurement of 34 carbonyl compounds using UPLC-MS/MS. Adding formic acid and sodium acetate to the mobile phase significantly enhanced the detection limit of carbonyl compounds. The technique exhibited a notable extraction efficiency, yielding recovery percentages ranging from 83.6% to 117.1%, coupled with exceptional sensitivity, as evidenced by detection limits spanning from 0.07 μg/L to 4.80 μg/L. The relative standard deviation was <6.9%, indicating the precision and reliability of the analytical methodology. The method was verified by analyzing carbonyl compounds from red-fleshed kiwifruit wine. Furthermore, sensory assessment revealed that the amalgamation of tartaric acid, malic acid, and citric acid contributes to sour taste perception at sub-threshold concentrations through an additive interaction with supra-threshold non-volatile organic acids such as lactic acid and acetic acid.
Collapse
Affiliation(s)
- Cen Li
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Cui Tang
- Liupanshui Agricultural and Rural Bureau, Liupanshui 553002, Guizhou Province, China
| | - Xiangyong Zeng
- School of Liquor and Food Engineering, Guizhou University, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guiyang 550025, Guizhou Province, China
| | - Yi Zhang
- Liupanshui liangdu kiwifruit Co. Ltd., Liupanshui 553001, Guizhou Province, China
| | - Laping He
- School of Liquor and Food Engineering, Guizhou University, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guiyang 550025, Guizhou Province, China
| | - Yan Yan
- School of Liquor and Food Engineering, Guizhou University, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guiyang 550025, Guizhou Province, China.
| |
Collapse
|
7
|
Chen X, Wang Y, Ye Y, Yu H, Wu B. The Pre- and Post-Column Derivatization on Monosaccharide Composition Analysis, a Review. Chem Biodivers 2024; 21:e202400749. [PMID: 38856087 DOI: 10.1002/cbdv.202400749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/11/2024]
Abstract
Polysaccharides, as common metabolic products in organisms, play a crucial role in the growth and development of living organisms. For humans, polysaccharides represent a class of compounds with diverse applications, particularly in the medical field. Therefore, the exploration of the monosaccharide composition and structural characteristics of polysaccharides holds significant importance in understanding their biological functions. This review provides a comprehensive overview of extraction methods and hydrolysis strategies for polysaccharides. It systematically analyzes strategies and technologies for determining polysaccharide composition and discusses common derivatization reagents employed in further polysaccharide studies. Derivatization is considered a fundamental strategy for determining monosaccharides, as it not only enhances the detectability of analytes but also increases detection sensitivity, especially in liquid chromatography (LC), capillary electrophoresis (CE), and gas chromatography (GC) techniques. The review meticulously examines pre-column and post-column derivatization techniques for monosaccharide analysis, categorizing them based on diverse detection methodologies. It delves into the principles and distinctive features of various derivatization reagents, offering a comparative analysis of their strengths and limitations. Ultimately, the aim is to provide guidance for selecting the most suitable derivatization approach, taking into account the structural nuances, biological functions, and reaction dynamics of polysaccharides.
Collapse
Affiliation(s)
- Xuexia Chen
- Ocean College, Zhejiang University, Zhoushan, 321000, China
| | - Yinuo Wang
- Ocean College, Zhejiang University, Zhoushan, 321000, China
| | - Yongjun Ye
- Zhejiang Suichang Huikang Pharmaceutical Industry Co., Suichang, 323000, China
| | - Huali Yu
- Lishui Institute for Quality Inspection and Testing, Lishui, 323000, China
| | - Bin Wu
- Ocean College, Zhejiang University, Zhoushan, 321000, China
| |
Collapse
|
8
|
Keyes P, Halimah N, Xiong B. Deciphering polymer degradation chemistry via integrating new database construction into suspect screening analysis. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1184-1197. [PMID: 38804611 DOI: 10.1039/d4em00212a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Water-soluble synthetic polymers and their environmental degradation products are overlooked but important industrial pollutants in wastewater. However, the detection of degradation products is limited to bulk solution chemistry and molecular-level analysis remains unreachable. In this work, we assessed the feasibility of current suspect screening and nontarget workflow using liquid chromatography-high resolution mass spectrometry (LC-HRMS) to elucidate molecular level information about polyacrylamide (PAM) and its degraded products by free radicals. Radical chain scission of PAM (10 kDa) using heat-activated persulfate was conducted to simulate hydraulic fracturing conditions in the deep subsurface. We found that the current workflows in the commercial software generated predicted formulae with low accuracy, due to limited capability of peak picking and formula prediction for high mass and charge features. By modeling literature-reported degradation pathways, we constructed a degradation product database of over 463 000 unique formulae, which improved the accuracy of the predicted formula. For the matched features, the ratio of aldehyde/ketone terminating molecule abundance was found to increase over 24 h degradation time, suggesting increasing content of aldehydes by radical-induced oxidative chain scission of PAM. This is contradictory to previously proposed ratios of carbon-centered radical position on polymer backbone initiated by hydroxyl radicals. Using in silico fragmentation of MS1 features, we identified 11 structures with confidence levels 2b and 3 using their MS2 information. This is the first attempt to resolve complex polymer degradation chemistry using HRMS that can advance our ability to detect water-soluble polymer pollutants and their transformation products in environmental samples.
Collapse
Affiliation(s)
- Phoebe Keyes
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Twin Cities, USA.
| | - Noor Halimah
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Twin Cities, USA.
| | - Boya Xiong
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Twin Cities, USA.
| |
Collapse
|
9
|
Albarri R, Vardara HF, Al S, Önal A. Chromatographic Methods and Sample Pretreatment Techniques for Aldehydes, Biogenic Amine, and Carboxylic Acids in Food Samples. Crit Rev Anal Chem 2024:1-22. [PMID: 38900595 DOI: 10.1080/10408347.2024.2367232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
This review paper critically examines the current state of research concerning the analysis and derivatization of aldehyde, aromatic hydrocarbons and carboxylic acids components in foods and drinks samples, with a specific focus on the application of Chromatographic techniques. These diverse components, as vital contributors to the sensory attributes of food, necessitate accurate and sensitive analytical methods for their identification and quantification, which is crucial for ensuring food safety and compliance with regulatory standards. In this paper, High-Performance Liquid Chromatography (HPLC) and Gas Chromatographic (GC) methods for the separation, identification, and quantification of aldehydes in complex food matrices were reviewed. In addition, the review explores derivatization strategies employed to enhance the detectability and stability of aldehydes during chromatographic analysis. Derivatization methods, when applied judiciously, improve separation efficiency and increase detection sensitivity, thereby ensuring a more accurate and reliable quantification of aldehyde aromatic hydrocarbons and carboxylic acids species in food samples. Furthermore, methodological aspects encompassing sample preparation, chromatographic separation, and derivatization techniques are discussed. Validation was carried out in term of limit of detections are highlighted as crucial elements in achieving accurate quantification of compounds content. The discussion presented by emphasizing the significance of the combined HPLC and GC chromatography methods, along with derivatization strategies, in advancing the analytical capabilities within the realm of food science.
Collapse
Affiliation(s)
- Raneen Albarri
- Faculty of Pharmacy, Department of Analytical Chemistry, Institute of Health Science, Istanbul University, Istanbul, Turkey
| | - Hümeyra Funda Vardara
- Faculty of Pharmacy, Department of Analytical Chemistry, Istanbul University, Istanbul, Turkey
| | - Selen Al
- Faculty of Pharmacy, Department of Analytical Chemistry, Istanbul University, Istanbul, Turkey
| | - Armağan Önal
- Faculty of Pharmacy, Department of Analytical Chemistry, Istanbul University, Istanbul, Turkey
| |
Collapse
|
10
|
Vitale GA, Geibel C, Minda V, Wang M, Aron AT, Petras D. Connecting metabolome and phenotype: recent advances in functional metabolomics tools for the identification of bioactive natural products. Nat Prod Rep 2024; 41:885-904. [PMID: 38351834 PMCID: PMC11186733 DOI: 10.1039/d3np00050h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 06/20/2024]
Abstract
Covering: 1995 to 2023Advances in bioanalytical methods, particularly mass spectrometry, have provided valuable molecular insights into the mechanisms of life. Non-targeted metabolomics aims to detect and (relatively) quantify all observable small molecules present in a biological system. By comparing small molecule abundances between different conditions or timepoints in a biological system, researchers can generate new hypotheses and begin to understand causes of observed phenotypes. Functional metabolomics aims to investigate the functional roles of metabolites at the scale of the metabolome. However, most functional metabolomics studies rely on indirect measurements and correlation analyses, which leads to ambiguity in the precise definition of functional metabolomics. In contrast, the field of natural products has a history of identifying the structures and bioactivities of primary and specialized metabolites. Here, we propose to expand and reframe functional metabolomics by integrating concepts from the fields of natural products and chemical biology. We highlight emerging functional metabolomics approaches that shift the focus from correlation to physical interactions, and we discuss how this allows researchers to uncover causal relationships between molecules and phenotypes.
Collapse
Affiliation(s)
- Giovanni Andrea Vitale
- CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Tuebingen, Tuebingen, Germany
| | - Christian Geibel
- CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Tuebingen, Tuebingen, Germany
| | - Vidit Minda
- Division of Pharmacology and Pharmaceutical Sciences, University of Missouri - Kansas City, Kansas City, USA
- Department of Chemistry and Biochemistry, University of Denver, Denver, USA.
| | - Mingxun Wang
- Department of Computer Science, University of California Riverside, Riverside, USA.
| | - Allegra T Aron
- Department of Chemistry and Biochemistry, University of Denver, Denver, USA.
| | - Daniel Petras
- CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Tuebingen, Tuebingen, Germany
- Department of Biochemistry, University of California Riverside, Riverside, USA.
| |
Collapse
|
11
|
Li L, Wang P, Jiao X, Qin S, Liu Z, Ye Y, Song Y, Hou H. Fatty acid esters of hydroxy fatty acids: A potential treatment for obesity-related diseases. Obes Rev 2024; 25:e13735. [PMID: 38462545 DOI: 10.1111/obr.13735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 12/31/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024]
Abstract
Obesity, a burgeoning worldwide health system challenge, is associated with multiple chronic diseases, including diabetes and chronic inflammation. Fatty acid esters of hydroxy fatty acids (FAHFAs) are newly identified lipids with mitigating and anti-inflammatory effects in diabetes. Increasing work has shown that FAHFAs exert antioxidant activity and enhance autophagy in neuronal cells and cardiomyocytes. We systematically summarized the biological activities of FAHFAs, including their regulatory effects on diabetes and inflammation, antioxidant activity, and autophagy augmentation. Notably, the structure-activity relationships and potential biosynthesis of FAHFAs are thoroughly discussed. FAHFAs also showed potential roles as diagnostic biomarkers. FAHFAs are a class of resources with promising applications in the biomedical field that require in-depth research and hotspot development, as their structure has not been fully resolved and their biological activity has not been fully revealed.
Collapse
Affiliation(s)
- Lili Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Shandong University of Traditional Chinese Medicine, Qingdao Academy of Chinese Medical Sciences, Qingdao, China
| | - Ping Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Shandong University of Traditional Chinese Medicine, Qingdao Academy of Chinese Medical Sciences, Qingdao, China
| | - Xudong Jiao
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Zhengyi Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Yanrui Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | | | - Hu Hou
- Ocean University of China, Qingdao, China
| |
Collapse
|
12
|
Lenhart AE, Booth PPM, Simcox KM, Ramos BA, Kennedy RT. Systematic evaluation of benzoylation for liquid chromatography-mass spectrometry analysis of different analyte classes. J Chromatogr A 2024; 1722:464872. [PMID: 38581975 DOI: 10.1016/j.chroma.2024.464872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
LC-MS is an indispensable tool for small molecule analysis in many fields; however, many small molecules require chemical derivatization to improve retention on commonly used reversed-phase columns and increase ionization. Benzoyl chloride (BzCl) derivatization is commonly used for derivatization of primary and secondary amines and phenolic alcohols, though evidence exists that with proper reaction conditions (i.e., specific bases), other hydroxyl groups may be derivatized too. Previous studies have examined BzCl concentration, reaction times, and reaction temperatures for derivatization of amines and phenols for LC-MS analysis; however, use of different bases, base concentration, and extending to conditions to hydroxyl groups for LC-MS analysis has not been well-studied. To address this understudied area and identify reaction conditions for both amino and hydroxyl groups, we performed a systematic study of reaction conditions on multiple classes of potential targets. For selected derivatization methods, detection limits and performance in a variety of biological matrices were assessed. Results highlight the importance of tailoring derivatization methods for a given application as they varied by molecule and/or molecule class. Compared to the standard BzCl method commonly used, alternative methods were identified to better derivatize challenging analytes (glucosamine, choline, cortisol, uridine, cytidine) with detection limits reaching 1100, 9, 38, 170, and 67 nM compared to undetectable, 170, 86, 1000, and 86 nM respectively. Sub-nanomolar detection limits were achieved for norepinephrine with alternative derivatization approaches. Improved derivatization methods for several classes and molecules including nucleosides, steroids, and molecules containing hydroxyl groups were also identified.
Collapse
Affiliation(s)
- Ashley E Lenhart
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA 48109
| | | | - Kaley M Simcox
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA 48109
| | - Brianna A Ramos
- Department of Neuroscience, University of Michigan, Ann Arbor, MI, USA 48109
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA 48109; Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA 48109.
| |
Collapse
|
13
|
Jankech T, Gerhardtova I, Majerova P, Piestansky J, Jampilek J, Kovac A. Derivatization of carboxylic groups prior to their LC analysis - A review. Anal Chim Acta 2024; 1300:342435. [PMID: 38521569 DOI: 10.1016/j.aca.2024.342435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Carboxylic acids (CAs) represent a large group of important molecules participating in various biologically significant processes. Analytical study of these compounds is typically performed by liquid chromatography (LC) combined with various types of detection. However, their analysis is often accompanied by a wide variety of problems depending on used separation system or detection method. The dominant ones are: i) poor chromatographic behavior of the CAs in reversed-phase LC; ii) absence of a chromophore (or fluorophore); iii) weak ionization in mass spectrometry (MS). To overcome these problems, targeted chemical modification, and derivatization, come into play. Therefore, derivatization still plays an important and, in many cases, irreplaceable role in sample preparation, and new derivatization methods of CAs are constantly being developed. The most commonly used type of reaction for CAs derivatization is amidation. In recent years, an increased interest in the isotopic labeling derivatization method has been observed. In this review, we comprehensively summarize the possibilities and actual trends in the derivatization of CAs that have been published over the past decade.
Collapse
Affiliation(s)
- Timotej Jankech
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovak Republic; Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovak Republic
| | - Ivana Gerhardtova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovak Republic; Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovak Republic
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovak Republic
| | - Juraj Piestansky
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovak Republic; Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojarov 10, 832 32 Bratislava, Slovak Republic
| | - Josef Jampilek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovak Republic; Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovak Republic
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovak Republic.
| |
Collapse
|
14
|
Huang XF, Xue Y, Yong L, Wang TT, Luo P, Qing LS. Chemical derivatization strategies for enhancing the HPLC analytical performance of natural active triterpenoids. J Pharm Anal 2024; 14:295-307. [PMID: 38618252 PMCID: PMC11010456 DOI: 10.1016/j.jpha.2023.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 04/16/2024] Open
Abstract
Triterpenoids widely exist in nature, displaying a variety of pharmacological activities. Determining triterpenoids in different matrices, especially in biological samples holds great significance. High-performance liquid chromatography (HPLC) has become the predominant method for triterpenoids analysis due to its exceptional analytical performance. However, due to the structural similarities among botanical samples, achieving effective separation of each triterpenoid proves challenging, necessitating significant improvements in analytical methods. Additionally, triterpenoids are characterized by a lack of ultraviolet (UV) absorption groups and chromophores, along with low ionization efficiency in mass spectrometry. Consequently, routine HPLC analysis suffers from poor sensitivity. Chemical derivatization emerges as an indispensable technique in HPLC analysis to enhance its performance. Considering the structural characteristics of triterpenoids, various derivatization reagents such as acid chlorides, rhodamines, isocyanates, sulfonic esters, and amines have been employed for the derivatization analysis of triterpenoids. This review comprehensively summarized the research progress made in derivatization strategies for HPLC detection of triterpenoids. Moreover, the limitations and challenges encountered in previous studies are discussed, and future research directions are proposed to develop more effective derivatization methods.
Collapse
Affiliation(s)
- Xiao-Feng Huang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Xue
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- Sichuan Center for Disease Control and Prevention, Chengdu, 610041, China
| | - Li Yong
- Sichuan Center for Disease Control and Prevention, Chengdu, 610041, China
| | - Tian-Tian Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- State Key Laboratory for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao, China
| | - Pei Luo
- State Key Laboratory for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao, China
| | - Lin-Sen Qing
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| |
Collapse
|
15
|
Wang X, Li H, Sheng Y, He B, Liu Z, Li W, Yu S, Wang J, Zhang Y, Chen J, Qin L, Meng X. The function of sphingolipids in different pathogenesis of Alzheimer's disease: A comprehensive review. Biomed Pharmacother 2024; 171:116071. [PMID: 38183741 DOI: 10.1016/j.biopha.2023.116071] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024] Open
Abstract
Sphingolipids (SPLs) represent a highly diverse and structurally complex lipid class. The discussion of SPL metabolism-related issues is of importance in understanding the neuropathological progression of Alzheimer's disease (AD). AD is characterized by the accumulation of extracellular deposits of the amyloid β-peptide (Aβ) and intraneuronal aggregates of the microtubule-associated protein tau. Critical roles of Aβ oligomer deposited and ganglioside GM1 could be formed as "seed" from insoluble GAβ polymer in initiating the pathogenic process, while tau might also mediate SPLs and their toxicity. The interaction between ceramide and α-Synuclein (α-Syn) accelerates the aggregation of ferroptosis and exacerbates the pathogenesis of AD. For instance, reducing the levels of SPLs can mitigate α-Syn accumulation and inhibit AD progression. Meanwhile, loss of SPLs may inhibit the expression of APOE4 and confer protection against AD, while the loss of APOE4 expression also disrupts SPLs homeostasis. Moreover, the heightened activation of sphingomyelinase promotes the ferroptosis signaling pathway, leading to exacerbated AD symptoms. Ferroptosis plays a vital role in the pathological progression of AD by influencing Aβ, tau, APOE, and α-Syn. Conversely, the development of AD also exacerbates the manifestation of ferroptosis and SPLs. We are compiling the emerging techniques (Derivatization and IM-MS) of sphingolipidomics, to overcome the challenges of AD diagnosis and treatment. In this review, we examined the intricate neuro-mechanistic interactions between SPLs and Aβ, tau, α-Syn, APOE, and ferroptosis, mediating the onset of AD. Furthermore, our findings highlight the potential of targeting SPLs as underexplored avenue for devising innovative therapeutic strategies against AD.
Collapse
Affiliation(s)
- Xinyi Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Huaqiang Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Yunjie Sheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Bingqian He
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Zeying Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Wanli Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Shujie Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Jiajing Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Yixin Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Jianyu Chen
- Fujian University of Traditional Chinese Medicine, School of Pharmacy, Fuzhou, Fujian 350122, PR China.
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China.
| | - Xiongyu Meng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China.
| |
Collapse
|
16
|
Lee HHL, Ha SK, Kim Y, Hur J. Simultaneous analysis of advanced glycation end products using dansyl derivatization. Food Chem 2024; 432:137186. [PMID: 37657336 DOI: 10.1016/j.foodchem.2023.137186] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/29/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023]
Abstract
Herein, new pre-column derivatization based on dansylation is present to resolve analytical difficulties, such as chromatographic separation difficulty, in identifying and quantifying advanced glycation end products (AGEs) owing to their high hydrophilicity, wide variety, and structural similarity. The proposed analytical method facilitated the separation of 14 AGEs, including structural isomers. Limits of detection of 1.0-43.3 ng/mL and linear ranges of the double- or triple-digit were achieved. Intra- and inter-day precisions of 1.1-3.0% and 1.3-3.1%, respectively, were achieved for standard solutions, while those for food specimens were 1.4-11.2% and 1.7-15.7%, respectively. The matrix effect was insignificant with regard to the percent recoveries and differences between slopes for both the standard solutions and food specimens. Furthermore, the quantitation results of AGEs in foods (coffee, beer, and sausage) and glycated proteins revealed the potential applicability of the developed method in various fields of food chemistry and biochemistry.
Collapse
Affiliation(s)
- Hyun Hee L Lee
- Agency for Defense Development, Daejeon 34186, Republic of Korea.
| | - Sang Keun Ha
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Division of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Yoonsook Kim
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Jinyoung Hur
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Division of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
17
|
Yu L, Li S, Liu B, Liu S, Sheng J, Ao Y. Determination of hydrogen gas by 1,4-bis(phenylethynyl)benzene hydrogenation coupled with gas chromatography-mass spectrometry. Talanta 2024; 266:125071. [PMID: 37579677 DOI: 10.1016/j.talanta.2023.125071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
Knowing the H2 concentration released from polymer materials is essential to understand the degradation degree of polymer materials. In this study, a novel strategy of 1,4-bis(phenylethynyl)benzene (DEB) hydrogenation in combination with gas chromatography - mass spectrometry (GC-MS) determination of hydrogen gas (H2) was developed. In this strategy, DEB was utilized to react with H2 for establishing the quantitative analysis method of H2. A H2 analysis platform that could accurately control H2 concentration was designed and fabricated to be used to establish the quantitative method of H2. The linear regression curve was established between the H2 standard and the MS signal of the reaction products on GC-MS. Finally, the H2 released from polyethylene under gamma radiation was detected by this method. This method could be a powerful auxiliary tool for studying the content changes of H2.
Collapse
Affiliation(s)
- Lei Yu
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Shuyong Li
- Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Bo Liu
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Shuai Liu
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Junjie Sheng
- Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang, 621900, China.
| | - Yinyong Ao
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621900, China.
| |
Collapse
|
18
|
Zheng J, Yang J, Liang X, Fang M, Wang Y. Dual strategy for 13C-Metabolic flux analysis of central carbon and energy metabolism in Mammalian cells based on LC-isoMRM-MS. Talanta 2024; 266:125074. [PMID: 37651912 DOI: 10.1016/j.talanta.2023.125074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 09/02/2023]
Abstract
Central carbon and energy metabolism are the most concerned metabolic pathways in 13C-Metabolic flux analysis (13C-MFA). However, some α-keto acids, ribonucleoside triphosphate (NTPs) and deoxyribonucleoside triphosphate (dNTPs) involved in central carbon and energy metabolism pathways were unstable or reactive, leading to inaccurate metabolic flux analysis. To achieve accurate 13C-MFA of central carbon and energy metabolism, we proposed a dual strategy for the detection of 101 metabolites in glucose metabolism pathways. N-Methylphenylethylamine (MPEA) was utilized for derivatization of 4 carboxyl (α-keto acids) and 8 phosphate metabolites (NTPs and dNTPs). After derivatization, the MPEA derivatives were investigated to be stable for 4 weeks under 4 °C and detected with high intensity in ∼104 cells. On the other hand, we analyzed an additional 89 metabolites in central carbon and energy metabolic pathways were directly analyzed by liquid chromatography tandem mass spectrometry (LC-MRM-MS). The limit of detection (LODs) of our method were as low as 0.05 ng/mL and the linear range was at least two orders of magnitude with determination coefficient (R2) > 0.9701. The relative standard divisions (RSDs) of intra- and inter-day of 95% metabolites were below 20%. In addition, the isotope list of 82 detected metabolites in central carbon and energy metabolism were generated according to isotopologues and isotopomers for each metabolite resulting from 13C incorporation. Accurate assessment of mass isotopomer distributions (MIDs) of intracellular 13C-labeled metabolites was achieved in [U-13C]-glucose cultured HepG2 cells by our dual strategy. Finally, we performed MID analysis of 101 metabolites in central carbon and energy metabolism. Overall, this dual method is reproducible and robust for application on 13C-MFA and has a great potential for studying clinical isotope labeled samples.
Collapse
Affiliation(s)
- Jie Zheng
- Singapore Phenome Center, Nanyang Technological University, 639798, Singapore
| | - Junjie Yang
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Nanyang Environment & Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Xu Liang
- Singapore Phenome Center, Nanyang Technological University, 639798, Singapore
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China.
| | - Yulan Wang
- Singapore Phenome Center, Nanyang Technological University, 639798, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
19
|
Zhu Z, Xu S, Wang Z, Delafield DG, Rigby MJ, Lu G, Gu TJ, Liu PK, Ma M, Puglielli L, Li L. CHRISTMAS: Chiral Pair Isobaric Labeling Strategy for Multiplexed Absolute Quantitation of Enantiomeric Amino Acids. Anal Chem 2023; 95:18504-18513. [PMID: 38033201 PMCID: PMC10872458 DOI: 10.1021/acs.analchem.3c03847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Amino acids (AAs) in the d-form are involved in multiple pivotal neurological processes, although their l-enantiomers are most commonly found. Mass spectrometry-based analysis of low-abundance d-AAs has been hindered by challenging enantiomeric separation from l-AAs, low sensitivity for detection, and lack of suitable internal standards for accurate quantification. To address these critical gaps, N,N-dimethyl-l-leucine (l-DiLeu) tags are first validated as novel chiral derivatization reagents for chromatographic separation of 20 pairs of d/l-AAs, allowing the construction of a 4-plex isobaric labeling strategy for enantiomer-resolved quantification through single step tagging. Additionally, the creative design of N,N-dimethyl-d-leucine (d-DiLeu) reagents offers an alternative approach to generate analytically equivalent internal references of d-AAs using d-DiLeu-labeled l-AAs. By labeling cost-effective l-AA standards using paired d- and l-DiLeu, this approach not only enables absolute quantitation of both d-AAs and l-AAs from complex biological matrices with enhanced precision but also significantly boosts the combined signal intensities from all isobaric channels, greatly improving the detection and quantitation of low-abundance AAs, particularly d-AAs. We term this quantitative strategy CHRISTMAS, which stands for chiral pair isobaric labeling strategy for multiplexed absolute quantitation. Leveraging the ion mobility collision cross section (CCS) alignment, interferences from coeluting isomers/isobars are effectively filtered out to provide improved quantitative accuracy. From wild-type and Alzheimer's disease (AD) mouse brains, we successfully quantified 20 l-AAs and 5 d-AAs. The significant presence and differential trends of certain d-AAs compared to those of their l-counterparts provide valuable insights into the involvement of d-AAs in aging, AD progression, and neurodegeneration.
Collapse
Affiliation(s)
- Zhijun Zhu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Shuling Xu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zicong Wang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Daniel G. Delafield
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael J. Rigby
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Gaoyuan Lu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ting-Jia Gu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Peng-Kai Liu
- Biophysics Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Min Ma
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI 53705, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
20
|
Németh K, Szatmári I, Tőkési V, Szabó PT. Application of Normal-Phase Silica Column in Hydrophilic Interaction Liquid Chromatography Mode for Simultaneous Determination of Underivatized Amino Acids from Human Serum Samples via Liquid Chromatography-Tandem Mass Spectrometry. Curr Issues Mol Biol 2023; 45:9354-9367. [PMID: 38132432 PMCID: PMC10741747 DOI: 10.3390/cimb45120586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
In neonatal screening, amino acids have a significant diagnostic role. Determination of their values may identify abnormal conditions. Early diagnosis and continuous monitoring of amino acid disorders results in a better disease outcome. An easy and simple LC-MS/MS method was developed for the quantitation of underivatized amino acids. Amino acids were separated using a normal-phase HPLC column having a totally porous silica stationary phase and using classical reversed-phase eluents. Mass spectrometry in multiple reaction monitoring mode was used for the analysis, providing high selectivity and sensitivity. A standard addition calibration model was applied for quantitation using only one isotope-labeled internal standard for all amino acids. Five calibration points were used for quantitation, and the method was successfully validated. The slopes of the calibration curves of the individual amino acids in parallel measurements were found to be similar. Since the measured slopes were reproducible, one serum sample could represent every series of serum samples of a given day. The method was tested on human serum samples and adequate results were obtained. This new method can be easily applied in clinical laboratories.
Collapse
Affiliation(s)
- Krisztina Németh
- MS Metabolomics Research Laboratory, Centre for Structural Science, Research Centre for Natural Sciences, Hungarian Research Network, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary;
- Institute of Chemistry, Eötvös Loránd University, Pázmány Péter u. 1/A, H-1117 Budapest, Hungary
| | - Ildikó Szatmári
- Department of Pediatrics, Semmelweis University, Bókay János u. 54, H-1083 Budapest, Hungary
| | - Viktória Tőkési
- Department of Pediatrics, Semmelweis University, Bókay János u. 54, H-1083 Budapest, Hungary
| | - Pál Tamás Szabó
- MS Metabolomics Research Laboratory, Centre for Structural Science, Research Centre for Natural Sciences, Hungarian Research Network, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary;
| |
Collapse
|
21
|
Zhang QF, Xiao HM, An N, Zhu QF, Feng YQ. Determination of vitamin D metabolites in various biological samples through an improved chemical derivatization assisted liquid chromatography-tandem mass spectrometry approach. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6009-6014. [PMID: 37927098 DOI: 10.1039/d3ay01769a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Vitamin D (VD) metabolites are involved in a variety of important metabolic processes and physiological effects in organisms. Profiling of VD metabolites favors a deep understanding of the physiological role of VD. However, VD metabolites are difficult to detect due to their high chemical structural rigidity, structural similarity, and low sensitivities under liquid chromatography-tandem mass spectrometry (LC-MS). Herein, we present a chemical derivatization assisted LC-MS/MS strategy for the detection of VDs, in which 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) is employed to derivatize the conjugated diene of VD metabolites and provides sensitizing reporters for MS detection. After PTAD derivatization, the sensitivities of seven VD metabolites increased by 24-276 folds, with the limits of detection ranging from 3 to 20 pg mL-1. Using this method, we achieved a sensitive and accurate quantification of 7 VD metabolites (vitamin D2, vitamin D3, 25-hydroxyvitamin D2, 25-hydroxyvitamin D3, 1,25-dihydroxyvitamin D2, 1,25-dihydroxyvitamin D3, and 1,24,25-trihydroxyvitamin D3) of the VD metabolic pathway in different trace biological samples, including human serum, mouse tissues (namely liver, kidney, lung, and spleen), and cells. We believe that the present method can provide a promising tool for an in-depth analysis of VD metabolism.
Collapse
Affiliation(s)
- Qin-Feng Zhang
- Department of Chemistry, Wuhan University, Wuhan 430072, PR China.
- Hubei Geological Research Laboratory, Wuhan 430034, PR China
| | - Hua-Ming Xiao
- Department of Chemistry, Wuhan University, Wuhan 430072, PR China.
| | - Na An
- Department of Chemistry, Wuhan University, Wuhan 430072, PR China.
| | - Quan-Fei Zhu
- School of Public Health, Wuhan University, Wuhan 430071, PR China.
| | - Yu-Qi Feng
- Department of Chemistry, Wuhan University, Wuhan 430072, PR China.
- School of Public Health, Wuhan University, Wuhan 430071, PR China.
| |
Collapse
|
22
|
Vrobel O, Tarkowski P. Can plant hormonomics be built on simple analysis? A review. PLANT METHODS 2023; 19:107. [PMID: 37833752 PMCID: PMC10576392 DOI: 10.1186/s13007-023-01090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
The field of plant hormonomics focuses on the qualitative and quantitative analysis of the hormone complement in plant samples, akin to other omics sciences. Plant hormones, alongside primary and secondary metabolites, govern vital processes throughout a plant's lifecycle. While active hormones have received significant attention, studying all related compounds provides valuable insights into internal processes. Conventional single-class plant hormone analysis employs thorough sample purification, short analysis and triple quadrupole tandem mass spectrometry. Conversely, comprehensive hormonomics analysis necessitates minimal purification, robust and efficient separation and better-performing mass spectrometry instruments. This review summarizes the current status of plant hormone analysis methods, focusing on sample preparation, advances in chromatographic separation and mass spectrometric detection, including a discussion on internal standard selection and the potential of derivatization. Moreover, current approaches for assessing the spatiotemporal distribution are evaluated. The review touches on the legitimacy of the term plant hormonomics by exploring the current status of methods and outlining possible future trends.
Collapse
Affiliation(s)
- Ondřej Vrobel
- Department of Biochemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czech Republic
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czech Republic
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czech Republic.
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czech Republic.
| |
Collapse
|
23
|
Wang D, Xiao H, Lv X, Chen H, Wei F. Mass Spectrometry Based on Chemical Derivatization Has Brought Novel Discoveries to Lipidomics: A Comprehensive Review. Crit Rev Anal Chem 2023; 55:21-52. [PMID: 37782560 DOI: 10.1080/10408347.2023.2261130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Lipids, as one of the most important organic compounds in organisms, are important components of cells and participate in energy storage and signal transduction of living organisms. As a rapidly rising field, lipidomics research involves the identification and quantification of multiple classes of lipid molecules, as well as the structure, function, dynamics, and interactions of lipids in living organisms. Due to its inherent high selectivity and high sensitivity, mass spectrometry (MS) is the "gold standard" analysis technique for small molecules in biological samples. The combination chemical derivatization with MS detection is a unique strategy that could improve MS ionization efficiency, facilitate structure identification and quantitative analysis. Herein, this review discusses derivatization-based MS strategies for lipidomic analysis over the past decade and focuses on all the reported lipid categories, including fatty acids and modified fatty acids, glycerolipids, glycerophospholipids, sterols and saccharolipids. The functional groups of lipids mainly involved in chemical derivatization include the C=C group, carboxyl group, hydroxyl group, amino group, carbonyl group. Furthermore, representative applications of these derivatization-based lipid profiling methods were summarized. Finally, challenges and countermeasures of lipid derivatization are mentioned and highlighted to guide future studies of derivatization-based MS strategy in lipidomics.
Collapse
Affiliation(s)
- Dan Wang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
| | - Huaming Xiao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
| | - Xin Lv
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
| | - Hong Chen
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
| | - Fang Wei
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
- Hubei Hongshan Laboratory, Wuhan, Hubei, PR China
| |
Collapse
|
24
|
Ye L, Zhang HM, Zhou BJ, Tang W, Zhou JL. Advancements in Analyzing Tumor Metabolites through Chemical Derivatization-Based Chromatography. J Chromatogr A 2023; 1706:464236. [PMID: 37506465 DOI: 10.1016/j.chroma.2023.464236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Understanding the metabolic abnormalities of tumors is crucial for early diagnosis, prognosis, and treatment. Accurate identification and quantification of metabolites in biological samples are essential to investigate the relationship between metabolite variations and tumor development. Common techniques like LC-MS and GC-MS face challenges in measuring aberrant metabolites in tumors due to their strong polarity, isomerism, or low ionization efficiency during MS detection. Chemical derivatization of metabolites offers an effective solution to overcome these challenges. This review focuses on the difficulties encountered in analyzing aberrant metabolites in tumors, the principles behind chemical derivatization methods, and the advancements in analyzing tumor metabolites using derivatization-based chromatography. It serves as a comprehensive reference for understanding the analysis and detection of tumor metabolites, particularly those that are highly polar and exhibit low ionization efficiency.
Collapse
Affiliation(s)
- Lu Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Hua-Min Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Bing-Jun Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Weiyang Tang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China.
| | - Jian-Liang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
25
|
Zheng J, Yang J, Zhao F, Peng B, Wang Y, Fang M. CIL-ExPMRM: An Ultrasensitive Chemical Isotope Labeling Assisted Pseudo-MRM Platform to Accelerate Exposomic Suspect Screening. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10962-10973. [PMID: 37469223 DOI: 10.1021/acs.est.3c01830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Exposome is the future of next-generation environmental health to establish the association between environmental exposure and diseases. However, due to low concentrations of exposure chemicals, exposome has been hampered by lacking an effective analytical platform to characterize its composition. In this study, by combining the benefit of chemical isotope labeling and pseudo-multiple reaction monitoring (CIL-pseudo-MRM), we have developed one highly sensitive and high-throughput platform (CIL-ExPMRM) by isotope labeling urinary exposure biomarkers. Dansyl chloride (DnsCl), N-methylphenylethylamine (MPEA), and their isotope-labeled forms were used to derivatize polar hydroxyl and carboxyl compounds, respectively. We have programmed a series of scripts to optimize MRM transition parameters, curate the MRM database (>70,000 compounds), predict accurate retention time (RT), and automize dynamic MRMs. This was followed by an automated MRM peak assignment, peak alignment, and statistical analysis. A computational pipeline was eventually incorporated into a user-friendly website interface, named CIL-ExPMRM (http://www.exposomemrm.com/). The performance of this platform has been validated with a relatively low false positive rate (10.7%) across instrumental platforms. CIL-ExPMRM has systematically overcome key bottlenecks of exposome studies to some extent and outperforms previous methods due to its independence of MS/MS availability, accurate RT prediction, and collision energy optimization, as well as the ultrasensitivity and automated robust intensity-based quantification. Overall, CIL-ExPMRM has great potential to advance the exposomic studies based on urinary biomarkers.
Collapse
Affiliation(s)
- Jie Zheng
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, 639798 Singapore
| | - Junjie Yang
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore
| | - Fanrong Zhao
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore
| | - Bo Peng
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore
| | - Yulan Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, 639798 Singapore
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
26
|
Karatt TK, Muhammed Ajeebsanu M, Karakka Kal AK, Subhahar MB, Sathiq MA, Laya S. Electrospray ionization mass spectrometry adduct formation by mobile phase additives: A case study using nitrile functional groups containing selective androgen receptor modulators. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9530. [PMID: 37125537 DOI: 10.1002/rcm.9530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 06/17/2023]
Abstract
RATIONALE The formation of mass adducts is common during electrospray ionization mass spectrometry (ESI-MS). However, the mechanism that leads to adduct formation is poorly understood and difficult to control. Multiplication of mass adducts at once will adversely impact the sensitivity of mass analysis and cause misinterpretation of the level of detection. Prior studies on selective androgen receptor modulators (SARMs) revealed an immense mass adduct formation in both positive and negative ESI modes. METHODS In this study, additives in the mobile phases are investigated as a potential means of controlling mass adduct formation in various SARMs. RESULTS The first evidence of chloride adduct formation when SARMs are detected via ESI-MS has been reported in this research. A series of mobile phase combinations were tested to achieve the optimal condition for HPLC-MS. A comparison was also made between adduct formation on various grades of water used for preparing the mobile phase. A validation study using equine urine and plasma was also conducted to assess the suitability of the developed method. CONCLUSION The results of this study will allow for a more accurate identification of SARMs, which will make it easier to investigate their illicit use in horse racing.
Collapse
Affiliation(s)
- Tajudheen Kunhamu Karatt
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
- Post Graduate and Research Department of Chemistry, Jamal Mohamed College (Affiliated to Bharathidasan University), Tiruchirappalli, India
| | | | | | | | - Mohamedkhani Anwar Sathiq
- Post Graduate and Research Department of Chemistry, Jamal Mohamed College (Affiliated to Bharathidasan University), Tiruchirappalli, India
| | - Saraswathy Laya
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
27
|
Li S, Chen YY, Ye TT, Zhu QF, Feng YQ. Chemical isotope labeling assisted liquid chromatography-mass spectrometry method for simultaneous analysis of central carbon metabolism intermediates. J Chromatogr A 2023; 1702:464083. [PMID: 37230052 DOI: 10.1016/j.chroma.2023.464083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Central carbon metabolism pathway (CCM) is one of the most important metabolic pathways in all living organisms and play crucial function in aspect of organism life. However, the simultaneous detection of CCM intermediates remains challenging. Here, we developed a chemical isotope labeling combined with LC-MS method for simultaneous determination of CCM intermediates with high coverage and accuracy. By chemical derivatization with 2-(diazo-methyl)-N-methyl-N-phenyl-benzamide (2-DMBA) and d5-2-DMBA, all CCM intermediates obtain better separation and accurate quantification at a single LC-MS run. The obtained limits of detection of CCM intermediates ranged from 5 to 36 pg/mL. Using this method, we achieved simultaneous and accurate quantification of 22 CCM intermediates in different biological samples. Take account of the high detection sensitivity of the developed method, this method was further applied to the quantification of CCM intermediates at single-cell level. Finally, 21 CCM intermediates were detected in 1000 HEK-293T cells and 9 CCM intermediates were detected in mouse kidney glomeruli optical slice samples (10∼100 cells).
Collapse
Affiliation(s)
- Sha Li
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yao-Yu Chen
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Tian-Tian Ye
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Quan-Fei Zhu
- School of Public Health, Wuhan University, Wuhan 430071, China
| | - Yu-Qi Feng
- Department of Chemistry, Wuhan University, Wuhan 430072, China; School of Public Health, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
28
|
Chang R, Wang X, Li Y, Zhang S. Pyridinium and ammonium stable isotope labeling agents and their performance in the analysis of alkylamines in food and food packaging materials. Food Chem 2023; 408:135240. [PMID: 36549157 DOI: 10.1016/j.foodchem.2022.135240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Two pairs of stable isotope labeling (SIL) agents, (4-carboxyphenyl)trimethylammonium iodide (d0-CPTA) and its deuterated counterpart d3-CPTA, 1-methyl-nicotinamide iodide (d0-MNA) and its deuterated counterpart d3-MNA, were designed and synthesized. Their mass spectrometry (MS) sensitivity enhancement effect was studied and compared with commercial dansyl chloride to provide inspiration for labeling agent design. CPTA with quaternary ammonium group showed much higher MS sensitivity enhancement effect and was applied to the SIL analysis of alkylamines in food and food packaging materials. The matrix effect was minimized due to the SIL strategy and the permanent charge of the CPTA. The limits of detection (LODs) were in the range of 2.9-5.1 ng/L, and the limits of quantitation (LOQs) were in the range of 9.6-16.8 ng/L. The recoveries ranged from 91.2 % to 97.1 % with relative standard deviations of less than 6.6 %, and the matrix effect ranged from -1.8 % to -4.9 %.
Collapse
Affiliation(s)
- Rui Chang
- Shandong Province Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, PR China
| | - Xueting Wang
- Shandong Province Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, PR China
| | - Yanxin Li
- Shandong Province Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, PR China
| | - Shijuan Zhang
- Shandong Province Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, PR China.
| |
Collapse
|
29
|
Wittek O, Römpp A. Autofocusing MALDI MS imaging of processed food exemplified by the contaminant acrylamide in German gingerbread. Sci Rep 2023; 13:5400. [PMID: 37012286 PMCID: PMC10070467 DOI: 10.1038/s41598-023-32004-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
Acrylamide is a toxic reaction product occurring in dry-heated food such as bakery products. To meet the requirements laid down in recent international legal norms calling for reduction strategies in food prone to acrylamide formation, efficient chromatography-based quantification methods are available. However, for an efficient mitigation of acrylamide levels, not only the quantity, but also the contaminant's distributions are of interest especially in inhomogeneous food consisting of multiple ingredients. A promising tool to investigate the spatial distribution of analytes in food matrices is mass spectrometry imaging (MS imaging). In this study, an autofocusing MALDI MS imaging method was developed for German gingerbread as an example for highly processed and instable food with uneven surfaces. Next to endogenous food constituents, the process contaminant acrylamide was identified and visualized keeping a constant laser focus throughout the measurement. Statistical analyses based on relative acrylamide intensities suggest a higher contamination of nut fragments compared to the dough. In a proof-of-concept experiment, a newly developed in-situ chemical derivatization protocol is described using thiosalicylic acid for highly selective detection of acrylamide. This study presents autofocusing MS imaging as a suitable complementary method for the investigation of analytes' distributions in complex and highly processed food.
Collapse
Affiliation(s)
- Oliver Wittek
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Universitaetsstrasse 30, 95447, Bayreuth, Germany
| | - Andreas Römpp
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Universitaetsstrasse 30, 95447, Bayreuth, Germany.
| |
Collapse
|
30
|
Lamont L, Hadavi D, Bowman AP, Flinders B, Cooper‐Shepherd D, Palmer M, Jordens J, Mengerink Y, Honing M, Langridge J, Porta Siegel T, Vreeken RJ, Heeren RMA. High-resolution ion mobility spectrometry-mass spectrometry for isomeric separation of prostanoids after Girard's reagent T derivatization. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9439. [PMID: 36415963 PMCID: PMC10078546 DOI: 10.1002/rcm.9439] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE Isomeric separation of prostanoids is often a challenge and requires chromatography and time-consuming sample preparation. Multiple prostanoid isomers have distinct in vivo functions crucial for understanding the inflammation process, including prostaglandins E2 (PGE2 ) and D2 (PGD2 ). High-resolution ion mobility spectrometry (IMS) based on linear ion transport in low-to-moderate electric fields and nonlinear ion transport in strong electric fields emerges as a broad approach for rapid separations prior to mass spectrometry. METHODS Derivatization with Girard's reagent T (GT) was used to overcome inefficient ionization of prostanoids in negative ionization mode due to poor deprotonation of the carboxylic acid group. Three high-resolution IMS techniques, namely linear cyclic IMS, linear trapped IMS, and nonlinear high-field asymmetric waveform IMS, were compared for the isomeric separation and endogenous detection of prostanoids present in intestinal tissue. RESULTS Direct infusion of GT-derivatized prostanoids proved to increase the ionization efficiency in positive ionization mode by a factor of >10, which enabled detection of these molecules in endogenous concentration levels. The high-resolution IMS comparison revealed its potential for rapid isomeric analysis of biologically relevant prostanoids. Strengths and weaknesses of both linear and nonlinear IMS are discussed. Endogenous prostanoid detection in intestinal tissue extracts demonstrated the applicability of our approach in biomedical research. CONCLUSIONS The applied derivatization strategy offers high sensitivity and improved stereoisomeric separation for screening of complex biological systems. The high-resolution IMS comparison indicated that the best sensitivity and resolution are achieved by linear and nonlinear IMS, respectively.
Collapse
Affiliation(s)
- Lieke Lamont
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass SpectrometryMaastricht UniversityMaastrichtThe Netherlands
| | - Darya Hadavi
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass SpectrometryMaastricht UniversityMaastrichtThe Netherlands
| | - Andrew P. Bowman
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass SpectrometryMaastricht UniversityMaastrichtThe Netherlands
| | - Bryn Flinders
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass SpectrometryMaastricht UniversityMaastrichtThe Netherlands
| | | | | | - Jan Jordens
- DSM Materials Science CenterGeleenMDThe Netherlands
| | | | - Maarten Honing
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass SpectrometryMaastricht UniversityMaastrichtThe Netherlands
| | | | - Tiffany Porta Siegel
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass SpectrometryMaastricht UniversityMaastrichtThe Netherlands
| | - Rob J. Vreeken
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass SpectrometryMaastricht UniversityMaastrichtThe Netherlands
- Janssen R&DBeerseBelgium
| | - Ron M. A. Heeren
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass SpectrometryMaastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
31
|
Tao WB, Xie NB, Cheng QY, Feng YQ, Yuan BF. Sensitive determination of inosine RNA modification in single cell by chemical derivatization coupled with mass spectrometry analysis. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
32
|
Comprehensive review of liquid chromatography methods for fumonisin determination, a 2006-2022 update. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
|
33
|
Affiliation(s)
- Hai-Long Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shu-Ting Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
34
|
Starkova Z, Ilyushenkova V, Polovkov N, Voskressenskaya D, Pikovskoi I, Tebenikhin M, Vtorushina E, Kanateva A, Borisov R, Zaikin V. The Use of Polydialkylsiloxanes/Triflic Acid as Derivatization Agents in the Analysis of Sulfur-Containing Aromatics by "Soft"-Ionization Mass Spectrometry. Molecules 2022; 27:molecules27238600. [PMID: 36500695 PMCID: PMC9739198 DOI: 10.3390/molecules27238600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Polycyclic aromatic sulfur-containing compounds are widely distributed in oil, especially in its low-volatile and heavy fractions (resins, asphaltenes), and this dictates the need for their determination when reliable methods for sulfur removing, cleaning and processing oil are developed. In these cases, "soft" ionization mass spectrometry methods, based on electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI), are particularly effective. However, aromatic sulfur-containing compounds have low polarity and cannot be readily ionized by these methods. To overcome the problem, their preliminary conversion into sulfonium salts by the action of alkyl iodides and a silver-containing agent is widely used. In the process of developing more economical derivatization methods, we found a rather unexpected possibility of implementing S-alkylation of organic sulfides with commercial polydialkylsiloxanes (alkyl = CH3 or C2H5) in the presence of triflic acid (CF3SO3H) as a superacid co-alkylating agent. For homologous dibenzothiophenes as a typical model representative of petroleum sulfur-containing aromatic compounds, ESI and MALDI mass spectra exhibited the signals of corresponding S-alkylsulfonium salts with a high signal-to-noise ratio. A rational mechanism for the described chemical transformation is proposed, including the indispensable activation by triflic acid and the cleavage of the Si-C bond. Specific collision-induced dissociation of corresponding S-alkylated sulfonium cations is considered. The applicability of the derivatization approach to the analysis of petroleum products by high-resolution mass spectrometry is demonstrated.
Collapse
Affiliation(s)
- Zhanna Starkova
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninskiy Prosp., 119991 Moscow, Russia
| | - Valentina Ilyushenkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia
| | - Nikolay Polovkov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninskiy Prosp., 119991 Moscow, Russia
| | - Daria Voskressenskaya
- Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia
| | - Ilya Pikovskoi
- Core Facility Center ‘Arktika’, Northern (Arctic) Federal University, 17 nab.Severnoy Dviny, 163002 Arkhangelsk, Russia
| | - Mikhail Tebenikhin
- Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia
| | - Ella Vtorushina
- V.I. Shpilman Research and Analytical Center for the Rational Use of the Subsoil, 2 Studencheskaya Str., 628007 Khanty-Mansiysk, Russia
| | - Anastasiia Kanateva
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninskiy Prosp., 119991 Moscow, Russia
| | - Roman Borisov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninskiy Prosp., 119991 Moscow, Russia
- Core Facility Center ‘Arktika’, Northern (Arctic) Federal University, 17 nab.Severnoy Dviny, 163002 Arkhangelsk, Russia
- Department of Plastics, D. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Pl., 125047 Moscow, Russia
- Organic Chemistry Department, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia
- Correspondence:
| | - Vladimir Zaikin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninskiy Prosp., 119991 Moscow, Russia
| |
Collapse
|
35
|
Kawasue S, Sakaguchi Y, Koga R, Yoshida H, Nohta H. A Pyridinium Derivatization Reagent for Highly Sensitive Detection of Poly(carboxylic acid)s Using Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1492-1498. [PMID: 35763617 DOI: 10.1021/jasms.2c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Short-chain fatty acids are difficult to analyze with high sensitivity using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) owing to the high polarity of their carboxyl groups. Various derivatization methods have been developed; however, most are effective only for monocarboxylic acids and not for those having multiple carboxyl groups. Therefore, we successfully attempted to synthesize a derivatization reagent that could analyze both mono- and poly(carboxylic acid)s with high sensitivity. We optimized our derivatization reagent by modifying the structure of the reaction site, hydrophobicity of the derivatized compound, and linker structure connecting the reaction site to the permanently charged substructure. The reactivity toward carboxyl groups was improved by employing a piperidine moiety as the reaction site, and the ESI efficiency was improved by the highly hydrophobic and permanently charged triphenylpyridinium group. Furthermore, the incorporation of an alkyl linker enabled polylabeling. When the optimized reagent was applied to mono-, di-, tri-, and tetracarboxylic acids, the ESI efficiency increased with polylabeling; thus, our derivatization reagent outperforms existing derivatization methods and enables the analysis of poly(carboxylic acid)s with high sensitivity. Since this derivatization reagent can be applied to most carboxyl-containing compounds, it can be widely used for lipidomics, proteomics, and metabolomics.
Collapse
Affiliation(s)
- Shimba Kawasue
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma Johnan, Fukuoka 814-0180 Japan
| | - Yohei Sakaguchi
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma Johnan, Fukuoka 814-0180 Japan
| | - Reiko Koga
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma Johnan, Fukuoka 814-0180 Japan
| | - Hideyuki Yoshida
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma Johnan, Fukuoka 814-0180 Japan
| | - Hitoshi Nohta
- Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma Johnan, Fukuoka 814-0180 Japan
| |
Collapse
|
36
|
Nanoconfined liquid phase nanoextraction combined with in-fiber derivatization for simultaneous quantification of seventy amino-containing metabolites in plasma by LC-MS/MS: Exploration of lung cancer screening model. Talanta 2022; 245:123452. [DOI: 10.1016/j.talanta.2022.123452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 11/23/2022]
|
37
|
Bùi NKN, Selberg S, Herodes K, Leito I. Coumarin-based derivatization reagent for the LC-MS analysis of amino acids. Talanta 2022; 252:123730. [DOI: 10.1016/j.talanta.2022.123730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 10/16/2022]
|
38
|
Atapattu SN, Rosenfeld JM. Analytical derivatizations in environmental analysis. J Chromatogr A 2022; 1678:463348. [PMID: 35901668 DOI: 10.1016/j.chroma.2022.463348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 10/17/2022]
Abstract
Analytical derivatization is a technique that alters the structure of an analyte and produces a product more suitable for analysis. While this process can be time-consuming and add reagents to the procedure, it can also facilitate the isolation of the analyte(s), enhance analytes' stability, improve separation and sensitivity, and reduce matrix interferences. Since derivatization is a functional group analysis, it improves selectivity by separating reactive from neutral compounds during sample preparation. This technique introduces detector-orientated tags into analytes that lack suitable physicochemical properties for detection at low concentrations. Notably, many regulatory bodies, especially those in the environmental field, require these characteristics in analytical methods. This review focuses on note-worthy analytical derivatization methods employed in environmental analyses with functional groups, phenol, carboxylic acid, aldehyde, ketone, and thiol in aqueous, soil, and atmospheric sample matrices. Both advantages and disadvantages of analytical derivatization techniques are discussed. In addition, we discuss the future directions of analytical derivatization methods in environmental analysis and the potential challenges.
Collapse
Affiliation(s)
| | - Jack M Rosenfeld
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
39
|
Li Q, Liu J, Zhang L, Shi Y, Li G. Click Isotope Mass Probe for Highly Selective Determination of Trace Steroid Hormones in Food Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5748-5755. [PMID: 35499160 DOI: 10.1021/acs.jafc.1c07323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Matrix effects are a great challenge for the quantitative analysis of complex food samples by liquid chromatography-tandem mass spectrometry analysis (LC-MS/MS). Stable isotope labeling (SIL) has been widely used as an effective strategy to eliminate matrix effects. Herein, a copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click-reaction-based SIL method was proposed for a highly sensitive and selective determination of six synthetic steroid hormones in three different food samples (milk, yogurt, and eggs) by high-performance liquid chromatography (HPLC)-MS/MS. A pair of novel SIL agents, N-(2-azidyl ethyl) aniline (d0-AEA) and d5-N-(2-azidyl ethyl) aniline (d5-AEA) were synthesized to label steroid hormones in the samples and standard solution, respectively. The reaction accomplishes in 30 min at 60 °C. The heavy labeled standards were used as internal standards (ISs), which experience the identical ionization processes with light labeled samples to minimize matrix effects. After derivatization, the ionization efficiencies of steroid hormones were greatly improved by 2-54-folds, and the matrix effects ranged from 88.6 to 99.8%. The established method achieved satisfactory detection limits (0.1-2.5 μg L-1) and high recoveries (85-102%). These results demonstrated that the proposed method holds unique advantages for trace steroid hormones analysis in foodstuffs.
Collapse
Affiliation(s)
- Qianyu Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jianghua Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Luyao Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yiheng Shi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
40
|
Li S, Liu FL, Zhang Z, Yin XM, Ye TT, Yuan BF, Feng YQ. Ultrasensitive Determination of Sugar Phosphates in Trace Samples by Stable Isotope Chemical Labeling Combined with RPLC-MS. Anal Chem 2022; 94:4866-4873. [PMID: 35274930 DOI: 10.1021/acs.analchem.2c00346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sugar phosphates are important metabolic intermediates in organisms and play a vital role in energy and central carbon metabolism. Profiling of sugar phosphates is of great significance but full of challenges due to their high structural similarity and low sensitivities in liquid chromatography (LC)-mass spectrometry (MS). In this study, we developed a novel stable isotope chemical labeling combined with the reversed-phase (RP)LC-MS method for ultrasensitive determination of sugar phosphates at the single-cell level. By chemical derivatization with 2-(diazo-methyl)-N-methyl-N-phenyl-benzamide (2-DMBA) and d5-2-DMBA, sugar phosphate isomers can obtain better separation and identification, and the detection sensitivities of sugar phosphates increased by 3.5-147 folds. The obtained limits of detection of sugar phosphates ranged from 5 to 16 pg/mL. Using this method, we achieved ultrasensitive and accurate quantification of 12 sugar phosphates in different trace biological samples. Benefiting from the improved separation and detection sensitivity, we successfully quantified five sugar phosphates (d-glucose 1-phosphate, d-mannose 6-phosphate, d-fructose 6-phosphate, d-glucose 6-phosphate, and seduheptulose 7-phosphate) in a single protoplast of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Sha Li
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Fei-Long Liu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Zheng Zhang
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, China
| | - Xiao-Ming Yin
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Tian-Tian Ye
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bi-Feng Yuan
- Department of Chemistry, Wuhan University, Wuhan 430072, China.,School of Public Health, Wuhan University, Wuhan 430071, China
| | - Yu-Qi Feng
- Department of Chemistry, Wuhan University, Wuhan 430072, China.,School of Public Health, Wuhan University, Wuhan 430071, China
| |
Collapse
|
41
|
Yu C, Zhang Q, Zhang Y, Wang L, Xu H, Bi K, Li D, Li Q. Isotope Labelled in suit Derivatization-Extraction Integrated System for Amine/Phenol Submetabolome Analysis based on Nanoconfinement Effect: Application to Lung Cancer. J Chromatogr A 2022; 1670:462954. [DOI: 10.1016/j.chroma.2022.462954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/22/2022] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
|
42
|
Bauermeister A, Mannochio-Russo H, Costa-Lotufo LV, Jarmusch AK, Dorrestein PC. Mass spectrometry-based metabolomics in microbiome investigations. Nat Rev Microbiol 2022; 20:143-160. [PMID: 34552265 PMCID: PMC9578303 DOI: 10.1038/s41579-021-00621-9] [Citation(s) in RCA: 202] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 02/08/2023]
Abstract
Microbiotas are a malleable part of ecosystems, including the human ecosystem. Microorganisms affect not only the chemistry of their specific niche, such as the human gut, but also the chemistry of distant environments, such as other parts of the body. Mass spectrometry-based metabolomics is one of the key technologies to detect and identify the small molecules produced by the human microbiota, and to understand the functional role of these microbial metabolites. This Review provides a foundational introduction to common forms of untargeted mass spectrometry and the types of data that can be obtained in the context of microbiome analysis. Data analysis remains an obstacle; therefore, the emphasis is placed on data analysis approaches and integrative analysis, including the integration of microbiome sequencing data.
Collapse
Affiliation(s)
- Anelize Bauermeister
- Institute of Biomedical Science, Universidade de São Paulo, São Paulo, SP, Brazil,Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | - Helena Mannochio-Russo
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University, Araraquara, SP, Brazil,Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | | | - Alan K. Jarmusch
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA.,Department of Pediatrics, University of California, San Diego, CA, USA.,Center for Microbiome Innovation, University of California, San Diego, CA, USA
| |
Collapse
|
43
|
Dogra R, Kumar M, Kumar A, Roverso M, Bogialli S, Pastore P, Mandal UK. Derivatization, an Applicable Asset for Conventional HPLC Systems without MS Detection in Food and Miscellaneous Analysis. Crit Rev Anal Chem 2022; 53:1807-1827. [PMID: 35201944 DOI: 10.1080/10408347.2022.2042671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
One of the most valuable practices for analyzing not-so-analytical-friendly analytes in complex, heterogenous matrices is derivatization. Availability of numerous derivatizing reagents (DRs) makes the modification of analyte more exploitable in terms of an analytical perspective. A wide array of derivatization techniques like pre or post-column, in-situ, enzymatic, ultrasound-assisted, microwave-assisted, photochemical derivatization has added much-needed methodological strength in analyzing intricate analytical matrices (food, water, and soil). In recent years, analytical chemistry has achieved greater heights through the development of new sensitive methods with simple conventional instruments like High-Performance Liquid Chromatography (HPLC) devoid of Mass detectors. The prompt availability of these straightforward instruments also makes it a favorable option for routine analysis in food, environmental, bioanalytical chemistry. Analyzing food, environmental or bioanalytical specimen has some of the most problematic aspects, like the low concentration of the analytes accompanied by not too suitable analytical properties. Even though conventional HPLC lacks the required sensitivity but merger with derivatization can lead to a remarkable increase in sensitivity. In recent years there has been a lot of application of diverse derivatizations to increase the sensitivity and selectivity of the analyte for available instruments, resulting in notable findings. Therefore, this review describes the application of derivatization principles in the analysis of analytes in food and additional matrices using conventional HPLC instruments such as HPLC-UV, HPLC-DAD, and HPLC-FD. In this article, we will briefly review the different modes and multiple types of derivatizing reagents with their mechanisms and importance for encouraging the use of established HPLC instruments.
Collapse
Affiliation(s)
- Raghav Dogra
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Mohit Kumar
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
| | - Arvind Kumar
- Maharaja Agrasen University, Baddi, Solan, Himachal Pradesh, India
| | - Marco Roverso
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Paolo Pastore
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Uttam Kumar Mandal
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
| |
Collapse
|
44
|
Xu S, Liu H, Bai Y. Highly sensitive and multiplexed mass spectrometric immunoassay techniques and clinical applications. Anal Bioanal Chem 2022; 414:5121-5138. [PMID: 35165779 DOI: 10.1007/s00216-022-03945-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/17/2022] [Accepted: 01/31/2022] [Indexed: 11/29/2022]
Abstract
Immunoassay is one of the most important clinical techniques for disease/pathological diagnosis. Mass spectrometry (MS) has been a popular and powerful readout technique for immunoassays, generating the mass spectrometric immunoassays (MSIAs) with unbeatable channels for multiplexed detection. The sensitivity of MSIAs has been greatly improved with the development of mass labels from element labels to small-molecular labels. MSIAs are also expended from the representative element MS-based methods to the laser-based organic MS and latest ambient MS, improving in both technology and methodology. Various MSIAs present high potential for clinical applications, including the biomarker screening, the immunohistochemistry, and the advanced single-cell analysis. Here, we give an overall review of the development of MSIAs in recent years, highlighting the latest improvement of mass labels and MS techniques for clinical immunoassays.
Collapse
Affiliation(s)
- Shuting Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
45
|
Dogra R, Mandal UK. Recent Applications of Derivatization Techniques for Pharmaceutical and
Bioanalytical Analysis through High-performance Liquid Chromatography. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411017666211108092115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Derivatization of analytes is a quite convenient practice from an analytical perspective. Its vast prevalence is accounted by the availability of distinct reagents, primarily pragmatic for obtaining desired modifications in an analyte structure. Another reason for its handiness is typically to overcome limitations such as lack of sensitive methodology or instrumentation.The past decades have witnessed various new derivatization techniques including in-situ, enzymatic, ultrasound-assisted, microwave-assisted, and photochemical derivatization which have gain popularity recently.
Methods:
The online literature available on the utilization of derivatization as prominent analytical tools in recent years with typical advancements is reviewed. The illustrations of the analytical condition together with the structures of different derivatizing reagents (DRs) are provided to acknowledge the vast capability of derivatization to resolve analytical problems.
Results:
The derivatization techniques have enabled analytical chemists throughout the globe to develop an enhanced sensitivity method with the simplest of the instrument like High-Performance Liquid Chromatography (HPLC). The HPLC, compared to more sensitive Liquid chromatography coupled to tandem mass spectrometer, is readily available and can be readily utilized for routine analysis in fields of pharmaceuticals, bioanalysis, food safety, and environmental contamination. A troublesome aspect of these fields is the presence of a complex matrix with trace concentrations for analyses. Liquid chromatographic methods devoid of MS detectors do not have the desired sensitivity for this. A possible solution for overcoming this is to couple HPLC with derivatization to enable the possibility of detecting trace analytes with a less expensive instrument. Running cost, enhanced sensitivity, low time consumption, and overcoming the inherent problems of analyte are critical parameters for which HPLC is quite useful in high throughput analysis.
Conclusion:
The review critically highlights various kinds of derivatization applications in different fields of analytical chemistry. The information primarily focuses on pharmaceutical and bioanalytical applications in recent years. The various modes, types, and derivatizing reagents with brief mechanisms have been ascribed briefly Additionally, the importance of HPLC coupled to fluorescence and UV detection is presented as an overview through examples accompanied by their analytical conditions.
Collapse
Affiliation(s)
- Raghav Dogra
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Uttam Kumar Mandal
- Department of Pharmaceutical
Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Punjab, India
| |
Collapse
|
46
|
Li Y, Ma C, You J, Zhang S. Stable isotope labeling method with sensitive identification and accurate quantitation function for aldehydes in fried foods. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
47
|
Zhang QF, Xiao HM, Zhan JT, Yuan BF, Feng YQ. Simultaneous determination of indole metabolites of tryptophan in rat feces by chemical labeling assisted liquid chromatography-tandem mass spectrometry. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
48
|
Fully Automated Quantitative Measurement of Serum Organic Acids via LC-MS/MS for the Diagnosis of Organic Acidemias: Establishment of an Automation System and a Proof-of-Concept Validation. Diagnostics (Basel) 2021; 11:diagnostics11122195. [PMID: 34943431 PMCID: PMC8700112 DOI: 10.3390/diagnostics11122195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 11/20/2022] Open
Abstract
Gas chromatography-mass spectrometry has been widely used to analyze hundreds of organic acids in urine to provide a diagnostic basis for organic acidemia. However, it is difficult to operate in clinical laboratories on a daily basis due to sample pretreatment processing. Therefore, we aimed to develop a fully automated system for quantifying serum organic acids using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The pretreatment CLAM-2030 device was connected to an LC-MS/MS system for processing serum under optimized conditions, which included derivatizing serum organic acids using 3-Nitrophenylhydrazine. The derivatized organic acids were separated on a reverse-phase Sceptor HD-C column and detected using negative-ion electrospray ionization multiple reaction monitoring MS. The automated pretreatment-LC-MS/MS system processed serum in less than 1 h and analyzed 19 serum organic acids, which are used to detect organic acidemias. The system exhibited high quantitative sensitivity ranging from approximately 2 to 100 µM with a measurement reproducibility of 10.4% CV. Moreover, a proof-of-concept validation of the system was performed using sera from patients with propionic acidemia (n = 5), methylmalonic acidemia (n = 2), and 3-methylcrotonylglycinuria (n = 1). The levels of marker organic acids specific to each disease were significantly elevated in the sera of the patients compared to those in control samples. The automated pretreatment-LC-MS/MS system can be used as a rapid in-hospital system to measure organic acid levels in serum for the diagnosis of organic acidemias.
Collapse
|
49
|
Yu S, Cai C, Zhang X, Sheng C, Jiang K. Method for the accurate determination of phytic acid in beverages by liquid chromatography-mass spectrometry after methylation with (trimethylsilyl) diazomethane. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Timchenko YV, Stavrianidi AN, Smolenkov AD, Pirogov AV, Shpigun OA. A novel simple and sensitive approach for determination of 1,1-dimethylhydrazine in aqueous samples by high performance liquid chromatography with ultraviolet and tandem mass spectrometric detection after derivatization with unsubstituted aromatic aldehydes. CHEMOSPHERE 2021; 280:130747. [PMID: 33975236 DOI: 10.1016/j.chemosphere.2021.130747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
In this work, simple, rapid and highly sensitive method of hazardous chemical 1,1-dimethylhydrazine (unsymmetrical dimethylhydrazine, UDMH) determination based on pre-column derivatization with unsubstituted aromatic aldehydes and reversed-phase high performance liquid chromatography-ultraviolet-tandem mass spectrometry (RP HPLC-UV-MS/MS) has been developed. Along with benzaldehyde, commercially available aromatic aldehydes, namely: 2-naphthaldehyde, 2-pyridinecarboxaldehyde, and 2-quinolinecarboxaldehyde, were used as derivatizing reagents in the analysis of hydrazines for the first time. The reactions were studied in a wide pH range by varying reaction time and other conditions. A slightly alkaline pH 9 was shown to be optimal for the derivatization of UDMH by aromatic aldehydes. The quantitative yield of derivatization products under the established conditions was confirmed by HPLC analysis with amperometric detection. For all studied reagents, wide linear ranges of concentrations (0.01-1000 μg/L) in natural water samples were observed. The limits of detection for UDMH in natural water were in the 3.7-130 ng/L range. 2-Quinolinecarboxaldehyde was selected as the most appropriate reagent for HPLC-UV-MS/MS determination of UDMH. In case of using this reagent, the accuracy was in the range of 97-102%, and precision, expressed as RSD was less than 8%. The developed approach does not require laborious stages of pre-concentration and isolation of UDMH from natural water components.
Collapse
Affiliation(s)
- Yury V Timchenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, GSP-1, Moscow, 119991, Russia.
| | - Andrey N Stavrianidi
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, GSP-1, Moscow, 119991, Russia; A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Prospect, 31, GSP-1, Moscow, 119071, Russia
| | - Alexander D Smolenkov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, GSP-1, Moscow, 119991, Russia
| | - Andrey V Pirogov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, GSP-1, Moscow, 119991, Russia
| | - Oleg A Shpigun
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, GSP-1, Moscow, 119991, Russia
| |
Collapse
|