• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4667253)   Today's Articles (46)   Subscriber (51746)
For: Ma Y, Wang S, Wang L. Nanomaterials for luminescence detection of nitroaromatic explosives. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2014.09.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Number Cited by Other Article(s)
1
Shen Y, Hong R, He X, Wang C, Wang X, Li S, Zhu X, Gui D. Utilizing excited-state proton transfer fluorescence quenching mechanism, layered rare earth hydroxides enable ultra-sensitive detection of nitroaromatic. J Colloid Interface Sci 2024;673:564-573. [PMID: 38889547 DOI: 10.1016/j.jcis.2024.06.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/23/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
2
De Iacovo A, Mitri F, De Santis S, Giansante C, Colace L. Colloidal Quantum Dots for Explosive Detection: Trends and Perspectives. ACS Sens 2024;9:555-576. [PMID: 38305121 PMCID: PMC11425854 DOI: 10.1021/acssensors.3c02097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
3
Sharma B, Gadi R. Analytical Tools and Methods for Explosive Analysis in Forensics: A Critical Review. Crit Rev Anal Chem 2023:1-27. [PMID: 37934616 DOI: 10.1080/10408347.2023.2274927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
4
Xing J, Zhang H, Bai L, Zhu G, Yu Q, Huang B, Liu Y, Wang W, Li S, Liu Y. Nano-Voids in Ultrafine Explosive Particles: Characterization and Effects on Thermal Stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023;39:3391-3399. [PMID: 36821086 DOI: 10.1021/acs.langmuir.2c03320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
5
Alharthi FA, Aldubeikl HK, Alanazi HS, Al-Nafaei WS, Hasan I. Fluorometric Sensing and Detection of p-Nitroaniline by Mixed Metal (Zn, Ni) Tungstate Nanocomposite. NANOMATERIALS (BASEL, SWITZERLAND) 2023;13:362. [PMID: 36678116 PMCID: PMC9863953 DOI: 10.3390/nano13020362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
6
Photophysical and Fluorescence Nitroaromatic Sensing Properties of Methylated Derivative of a Pamoic Acid Ester. J Fluoresc 2023;33:77-90. [PMID: 36251202 DOI: 10.1007/s10895-022-03038-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 09/30/2022] [Indexed: 02/03/2023]
7
Santiwat T, Sornkaew N, Srikittiwanna K, Sukwattanasinitt M, Niamnont N. Electrospun nanofiber sheets mixed with a novel triphenylamine-pyrenyl salicylic acid fluorophore for the selective detection of picric acid. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
8
Şen FB, Bener M, Aşçı YS, Lalikoglu M, Apak R. Selective determination of 2,4,6-Trinitrotoluene (TNT) with cysteamine in deep eutectic solvents. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
9
S A, B S S, Reddy MLP. Phosphorescent Iridium Molecular Materials as Chemosensors for Nitroaromatic Explosives: Recent Advances. COMMENT INORG CHEM 2022. [DOI: 10.1080/02603594.2022.2090347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
10
Pan T, Wu P, Zhang W, Shen Y, Huo F. Multi-responsive luminescent coordination polymer nanosheets for selective detection of nitroaromatics. Chem Commun (Camb) 2022;58:7809-7812. [PMID: 35736140 DOI: 10.1039/d2cc01153k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
11
Ma Y, Deng M, Wang X, Gao X, Song H, Zhu Y, Feng L, Zhang Y. 2H–MoS2/Co3O4 nanohybrid with type I nitroreductase-mimicking activity for the electrochemical assays of nitroaromatic compounds. Anal Chim Acta 2022;1221:340078. [DOI: 10.1016/j.aca.2022.340078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/22/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022]
12
Sol-gel Synthesis of CaYAlO4:Tb Phosphors and Their Application in Detecting Nitroaromatic Compounds. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
13
Khatib M, Haick H. Sensors for Volatile Organic Compounds. ACS NANO 2022;16:7080-7115. [PMID: 35511046 DOI: 10.1021/acsnano.1c10827] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
14
Computational design of a nanoconjugate model of pyrene-linked CdTe quantum dot for the detection of trinitrotoluene. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
15
Santos APLA, Deokaran GO, Costa CV, Gama LILM, Mazzini Júnior EG, de Assis AML, de Freitas JD, de Araujo WR, Dias RP, da Silva JCS, Costa LMM, Ribeiro AS. A "turn-off" fluorescent sensor based on electrospun polycaprolactone nanofibers and fluorene(bisthiophene) derivative for nitroaromatic explosive detection. Forensic Sci Int 2021;329:111056. [PMID: 34736045 DOI: 10.1016/j.forsciint.2021.111056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/21/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022]
16
Colorimetric optical nanosensors for trace explosive detection using metal nanoparticles: advances, pitfalls, and future perspective. Emerg Top Life Sci 2021;5:367-379. [PMID: 33960382 DOI: 10.1042/etls20200281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022]
17
Zhang Q, Liu Y, Jia X, He Y, Zhang R, Guan T, Zhang Q, Yang Y, Liu Y. Fluorescence turn off–on mechanism of selective chemosensor for hydrogen sulfide: A theoretical perspective. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
18
Zhang X, Gou Z, Zuo Y, Lin W. Pyrene-based polymer fluorescent materials for the detection of 2,4,6-trinitrophenol and cell imaging. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
19
Yang J, Hao H, Dai H, Xu C, Liu C, Chen X, Yi A, Xu B, Shi G, Chi Z. Recyclable electropolymerized films based on donor-acceptor type AIEE-active chromophore for detecting 2,4,6-trinitrophenol. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
20
Nawaz MAH, Meng L, Zhou H, Ren J, Shahzad SA, Hayat A, Yu C. Tetraphenylethene probe based fluorescent silica nanoparticles for the selective detection of nitroaromatic explosives. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021;13:825-831. [PMID: 33502411 DOI: 10.1039/d0ay01945c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
21
Krishnapandi A, Muthukutty B, Chen SM, Arul KT, Shiuan HJ, Selvaganapathy M. Bismuth molybdate incorporated functionalized carbon nanofiber as an electrocatalytic tool for the pinpoint detection of organic pollutant in life samples. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021;209:111828. [PMID: 33385681 DOI: 10.1016/j.ecoenv.2020.111828] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/07/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
22
Elbasuney S, Baraka A, Gobara M, El-Sharkawy YH. 3D spectral fluorescence signature of cerium(III)-melamine coordination polymer: A novel sensing material for explosive detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021;245:118941. [PMID: 32980756 DOI: 10.1016/j.saa.2020.118941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/25/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
23
Wang Z, Si S, Luo Z, Qin T, Xu Z, Liu B. An AIE-based Fluorescent Probe for Detection of Picric Acid in Water. CHEM LETT 2021. [DOI: 10.1246/cl.200618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
24
Zhao X, Liang Y, Wang T, Li F, Wang H. Self-assembled porous nanoparticles based on silicone polymers with aggregation-induced emission for highly sensitive detection of nitroaromatics. Polym Chem 2021. [DOI: 10.1039/d1py01012c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
25
Patil VB, Ture SA, Yelamaggad CV, Nadagouda MN, Venkataraman A. Turn‐off Fluorescent Sensing of Energetic Materials using Protonic Acid doped Polyaniline: A Spectrochemical Mechanistic Approach. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
26
Synthesis of new fluorene compounds for highly selective sensing of picric acid, Fe3+ and l-arginine. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
27
Rasheed T, Nabeel F, Rizwan K, Bilal M, Hussain T, Shehzad SA. Conjugated supramolecular architectures as state-of-the-art materials in detection and remedial measures of nitro based compounds: A review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115958] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
28
A novel SERS selective detection sensor for trace trinitrotoluene based on meisenheimer complex of monoethanolamine molecule. Talanta 2020;218:121157. [PMID: 32797911 DOI: 10.1016/j.talanta.2020.121157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/06/2020] [Accepted: 05/10/2020] [Indexed: 11/21/2022]
29
Sarih NM, Ciupa A, Moss S, Myers P, Slater AG, Abdullah Z, Tajuddin HA, Maher S. Furo[3,2-c]coumarin-derived Fe3+ Selective Fluorescence Sensor: Synthesis, Fluorescence Study and Application to Water Analysis. Sci Rep 2020;10:7421. [PMID: 32366859 PMCID: PMC7198544 DOI: 10.1038/s41598-020-63262-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/19/2020] [Indexed: 02/05/2023]  Open
30
Li H, Jia R, Wang Y. p-Pyridine BODIPY-based fluorescence probe for highly sensitive and selective detection of picric acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020;228:117793. [PMID: 31757705 DOI: 10.1016/j.saa.2019.117793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
31
Kayhomayun Z, Ghani K, Zargoosh K. Template-directed synthesis of Sm2Ti2O7 nanoparticles: a FRET-based fluorescent chemosensor for the fast and selective determination of picric acid. NEW J CHEM 2020. [DOI: 10.1039/d0nj04219f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
32
Chen YQ, Tian Y, Yao SL, Zhang J, Feng RY, Bian YJ, Liu SJ. CdII -Organic Frameworks Fabricated with a N-Rich Ligand and Flexible Dicarboxylates: Structural Diversity and Multi-Responsive Luminescent Sensing for Toxic Anions and Ethylenediamine. Chem Asian J 2019;14:4420-4428. [PMID: 31709758 DOI: 10.1002/asia.201901489] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/06/2019] [Indexed: 01/21/2023]
33
Öztürk BÖ, Şehitoğlu SK. Pyrene substituted amphiphilic ROMP polymers as nano-sized fluorescence sensors for detection of TNT in water. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121868] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
34
Rawtani D, Tharmavaram M, Pandey G, Hussain CM. Functionalized nanomaterial for forensic sample analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115661] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
35
Luminescent sensors for nitroaromatic compound detection: Investigation of mechanism and evaluation of suitability of using in screening test in forensics. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
36
Patel S, Seet J, Li L, Duhamel J. Detection of Nitroaromatics by Pyrene-Labeled Starch Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019;35:13145-13156. [PMID: 31498989 DOI: 10.1021/acs.langmuir.9b02371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
37
Fluorimetric detections of nitroaromatic explosives by polyaromatic imine conjugates. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
38
Kose M, Kırpık H, Kose A, Karabork M. New Sm (III) and Nd (III) complexes: Synthesis, structural characterization and fluorescent sensing of nitro‐aromatic compounds. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
39
Zhou C, Han X, Liao G, Zhou C, Jin P, Guo Y, Gao H, Zhang Y, Yang S, Sun J. A Fluorescent Chemosensor with a Hybridized Local and Charge Transfer Nature and Aggregation-Induced Emission Effect for the Detection of Picric Acid. ChemistrySelect 2019. [DOI: 10.1002/slct.201900294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
40
An organometallic ruthenium nanocluster with conjugated aromatic ligand skeleton for explosive sensing. J CHEM SCI 2019. [DOI: 10.1007/s12039-018-1589-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
41
Yuan Y, Gao C, Wang D, Zhou C, Zhu B, He Q. Janus-micromotor-based on-off luminescence sensor for active TNT detection. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019;10:1324-1331. [PMID: 31293869 PMCID: PMC6604751 DOI: 10.3762/bjnano.10.131] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/28/2019] [Indexed: 05/08/2023]
42
Zhou H, Chua MH, Tang BZ, Xu J. Aggregation-induced emission (AIE)-active polymers for explosive detection. Polym Chem 2019. [DOI: 10.1039/c9py00322c] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
43
Explosives Detection: From Sensing to Response. SPRINGER SERIES ON FLUORESCENCE 2019. [DOI: 10.1007/4243_2019_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
44
Rajamanikandan R, Ilanchelian M. Fluorescence Sensing Approach for High Specific Detection of 2,4,6-Trinitrophenol Using Bright Cyan Blue Color-Emittive Poly(vinylpyrrolidone)-Supported Copper Nanoclusters as a Fluorophore. ACS OMEGA 2018;3:18251-18257. [PMID: 31458403 PMCID: PMC6644161 DOI: 10.1021/acsomega.8b03065] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 12/12/2018] [Indexed: 05/23/2023]
45
Mako TL, Racicot JM, Levine M. Supramolecular Luminescent Sensors. Chem Rev 2018;119:322-477. [DOI: 10.1021/acs.chemrev.8b00260] [Citation(s) in RCA: 363] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
46
El-Sharkawy YH, Elbasuney S. Real time recognition of explosophorous group and explosive material using laser induced photoacoustic spectroscopy associated with novel algorithm for time and frequency domain analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018;204:25-32. [PMID: 29902768 DOI: 10.1016/j.saa.2018.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/01/2018] [Accepted: 06/03/2018] [Indexed: 06/08/2023]
47
Investigation on probing explosive nitroaromatic compound vapors using graphyne nanosheet: a first-principle study. Struct Chem 2018. [DOI: 10.1007/s11224-018-1212-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
48
Elbasuney S, El-Sharkawy YH. Instant identification of explosive material: Laser induced photoacoustic spectroscopy versus fourier transform infrared. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
49
Instantaneous identification of hazardous explosive-related materials using laser induced photoacoustic spectroscopy. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
50
Song Y, Yan X, Ostermeyer G, Li S, Qu L, Du D, Li Z, Lin Y. Direct Cytosolic MicroRNA Detection Using Single-Layer Perfluorinated Tungsten Diselenide Nanoplatform. Anal Chem 2018;90:10369-10376. [DOI: 10.1021/acs.analchem.8b02193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
PrevPage 1 of 2 12Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA