1
|
Makhija R, Barik P, Mehta A, Ganti SS, Asati V. Sustainable approaches to analyzing phenolic compounds: a green chemistry perspective. ANAL SCI 2024; 40:1947-1968. [PMID: 39107656 DOI: 10.1007/s44211-024-00640-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/07/2024] [Indexed: 10/29/2024]
Abstract
Innovative and eco-friendly methodologies for the determination of phenolic compounds, showing a paradigm shift in analytical chemistry toward sustainability. Phenolic compounds, valued for their diverse health benefits, have historically been analyzed using methods that often involve hazardous solvents and energy-intensive processes. This review focuses on green analytical chemistry principles, emphasizing sustainability, reduced environmental impact, and analytical efficiency. The use of DES, specifically Ch: Chl-based DES, emerges as a prominent green alternative for extracting phenolic compounds from various sources. The integration of UAE with DES enhances extraction efficiency, contributing to a more sustainable analytical approach. Furthermore, the review highlights the significance of DLLME and SPME in reducing solvent consumption and simplifying extraction procedures. These techniques exemplify the commitment to making phenolic compound analysis environmentally friendly. The incorporation of portable measurement tools, such as smartphones, into analytical methodologies is a notable aspect discussed in the review. Techniques like UA-DLLME leverage portable devices, making phenolic compound determination more accessible and versatile. Anticipating the future, the review foresees ongoing advancements in sustainable analytical approaches, driven by collaborative efforts across diverse disciplines. Novel solvents, extraction techniques, and portable measurement methods are expected to play pivotal roles in the continuous evolution of green analytical methodologies for the analysis of phenolic compounds. The review encapsulates a transformative journey toward environmentally responsible and efficient analytical practices, paving the way for further research and application in diverse analytical settings.
Collapse
Affiliation(s)
- Rahul Makhija
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, Punjab, India
| | - Pallavi Barik
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, Punjab, India
| | - Ashish Mehta
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, Punjab, India
| | - Subrahmanya S Ganti
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, Punjab, India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India.
| |
Collapse
|
2
|
Hristozova А, Vidal L, Aguirre MÁ, Simitchiev K, Canals A. Natural deep eutectic solvent-based dispersive liquid-liquid microextraction of pesticides in drinking waters combined with GC-MS/MS detection. Talanta 2024; 282:126967. [PMID: 39342671 DOI: 10.1016/j.talanta.2024.126967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
The current research aims to develop a new analytical method applying a dispersive liquid-liquid microextraction (DLLME) assisted by vortex and using an environmentally friendly extractant for the preconcentration of organochlorine and organophosphorus pesticides followed by gas chromatography-tandem mass spectrometry (GC-MS/MS) analysis. The extractant (i.e., natural deep eutectic solvent (NADES)) is safe, cheap, biodegradable and can be prepared by simply mixing DL-menthol and decanoic acid (molar ratio 2:1). The main experimental factors affecting the extraction of all analytes evaluated (19 organochlorine and organophosphorus pesticides) have been optimised using a multivariate analysis consisting in two steps: a Plackett-Burman design followed by a central composite design (CCD). Seven experimental factors have been evaluated: (i) sample volume; (ii) NADES volume; (iii) sample pH; (iv) extraction time; (v) centrifugation time; (vi) centrifugation speed; and (vii) ionic strength (NaCl %, w v-1). For the significant variables, the optimum values were 10 mL sample and 45 μL NADES. No pH adjustment as well as addition of NaCl were needed. The other variables were set at 3 min extraction time, 5 min centrifugation time and 900×g centrifugation speed, respectively. Under the optimised extraction conditions, the limit of quantification (LOQ) values ranged between 0.2 and 78 ng L-1 for all analysed pesticides. Furthermore, the proposed analytical method has been successfully applied to drinking water (bottled spring water). The recovery study (n = 3) has been evaluated at 0.1, 1.0 and 5.0 μg L-1 spiking levels, obtaining relative recovery values within the range of 70 % and 117 % and RSD values between 1 % and 20 % for all the analytes studied, except for p,p-DDT (56-77 % in high conductivity water samples).
Collapse
Affiliation(s)
- Аsya Hristozova
- Department of Analytical Chemistry and Computer Chemistry, University of Plovdiv Paisii Hilendarski, 24 Tzar Asen Str., 4000, Plovdiv, Bulgaria.
| | - Lorena Vidal
- Department of Analytical Chemistry, Nutrition and Food Sciences, University Institute of Materials, Faculty of Science, University of Alicante, P.O. Box 99, 03080, Alicante, Spain
| | - Miguel Ángel Aguirre
- Department of Analytical Chemistry, Nutrition and Food Sciences, University Institute of Materials, Faculty of Science, University of Alicante, P.O. Box 99, 03080, Alicante, Spain
| | - Kiril Simitchiev
- Department of Analytical Chemistry and Computer Chemistry, University of Plovdiv Paisii Hilendarski, 24 Tzar Asen Str., 4000, Plovdiv, Bulgaria
| | - Antonio Canals
- Department of Analytical Chemistry, Nutrition and Food Sciences, University Institute of Materials, Faculty of Science, University of Alicante, P.O. Box 99, 03080, Alicante, Spain
| |
Collapse
|
3
|
Wang L, Zhu Y, Ma L, Hai X, Li X, Yang Z, Gao Y, Yuan M, Xiong H, Chen M, Ma X. Efficient removal of Chromium(VI) from wastewater based on magnetic multiwalled carbon nanotubes coupled with deep eutectic solvents. CHEMOSPHERE 2024; 362:142732. [PMID: 38950746 DOI: 10.1016/j.chemosphere.2024.142732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/03/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Industrial wastewater containing heavy metal Cr(VI) seriously affects the health of organisms and may even lead to cancer. Developing efficient adsorbents that can quickly separate heavy metals is crucial for treating wastewater. In this study, magnetic multiwalled carbon nanotubes (MMWCNTs) with moderate particle size and abundant surface active sites were prepared by coating multiwalled carbon nanotubes with magnetic nanoparticles. The results of FTIR, XRD, TG, VSM, BET, and EDS showed MWCNTs completely encapsulated on the surface of the magnetic nanoparticles, with a particle size of approximately 30 nm. Oxygenated groups provided abundant surface active sites and formed numerous mesopores. The response surface methodology was used to optimize the adsorbent dose, adsorption contact time and adsorption temperature, and the removal rate of Cr(VI) was more than 95%. The quasi-second order kinetics and Freundlich adsorption isotherm model explained the adsorption process to Cr(VI). MMWCNTs interacted with Cr(VI) through electrostatic attraction, reduction reactions, complexation, and other means. The extensive hydrogen bonding of the green solvent deep eutectic solvent (DES) was employed to desorb the MMWCNTs and desorption rate exceed 90%. Even after five adsorption-regeneration cycles, the adsorbent maintained a high capacity. In conclusion, these novel MMWCNTs, as efficient adsorbents paired with DES desorption, hold broad potential for application in the treatment of Cr(VI)-contaminated wastewater.
Collapse
Affiliation(s)
- Lina Wang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650504, PR China; Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, PR China.
| | - Yun Zhu
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650504, PR China
| | - Lei Ma
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650504, PR China
| | - Xiaoping Hai
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650504, PR China
| | - Xiaofen Li
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650504, PR China
| | - Zhi Yang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650504, PR China
| | - Yuntao Gao
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650504, PR China; National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650504, PR China
| | - Mingwei Yuan
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650504, PR China
| | - Huabin Xiong
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, PR China; National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650504, PR China.
| | - Minghong Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, PR China; National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650504, PR China.
| | - Xiaoyan Ma
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, PR China
| |
Collapse
|
4
|
Martínez-Pérez-Cejuela H, Gionfriddo E. Evolution of Green Sample Preparation: Fostering a Sustainable Tomorrow in Analytical Sciences. Anal Chem 2024; 96:7840-7863. [PMID: 38687329 DOI: 10.1021/acs.analchem.4c01328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Affiliation(s)
- H Martínez-Pérez-Cejuela
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - E Gionfriddo
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
5
|
Souza Futigami L, Barcellos Hoff R, Turnes Pasini Deolindo C, Kleemann CR, Alves de Oliveira LV, de Francisco de Casas A, Burin VM. Search for new green natural solid phases for sample preparation for PAHs determination in seafood samples followed by LC and GC-MS/MS analysis. Food Res Int 2024; 183:114240. [PMID: 38760119 DOI: 10.1016/j.foodres.2024.114240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 05/19/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic organic pollutants found in various environments, notably aquatic ecosystems and the food chain, posing significant health risks. Traditional methods for detecting PAHs in food involve complex processes and considerable reagent usage, raising environmental concerns. This study explores eco-friendly approaches suing solid phases derived from natural sources in matrix solid phase dispersion. We aimed to develop, optimize, and validate a sample preparation technique for seafood, employing natural materials for PAH analysis. Ten natural phases were compared with a commercial reference phase. The methodology involved matrix solid phase dispersion and pressurized liquid extraction, followed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Three solid phases (perlite, sweet manioc starch, and barley) showed superior performance in LC-MS/MS and were further evaluated with gas chromatography-tandem mass spectrometry (GC-MS/MS), confirming perlite as the most effective phase. Validation followed Brazilian regulatory guidelines and European Community Regulation 2021/808/EC. The resulting method offered advantages in cost-effectiveness, reduced environmental impact, cleaner extracts, and enhanced analytical performance compared to the reference solid phase and LC-MS/MS. Proficiency analysis confirmed method reliability, with over 50% alignment with green analytical chemistry principles. In conclusion, this study developed an environmentally sustainable sample preparation technique for seafood analysis using natural solid phases, particularly perlite, for PAH determination.
Collapse
Affiliation(s)
- Luana Souza Futigami
- Programa de Pós-Graduação em Ciência dos Alimentos, Universidade Federal de Santa Catarina, Florianópolis 88034-001, SC 88034-100, Brazil
| | - Rodrigo Barcellos Hoff
- Ministério da Agricultura e Pecuária, Laboratório Federal de Defesa Agropecuária, Setor Laboratorial Avançado de São José (SLAV/SC/LFDA/RS), São José, SC 88102-600, Brazil.
| | - Carolina Turnes Pasini Deolindo
- Programa de Pós-Graduação em Ciência dos Alimentos, Universidade Federal de Santa Catarina, Florianópolis 88034-001, SC 88034-100, Brazil; Ministério da Agricultura e Pecuária, Laboratório Federal de Defesa Agropecuária, Setor Laboratorial Avançado de São José (SLAV/SC/LFDA/RS), São José, SC 88102-600, Brazil; Instituto Catarinense de Sanidade Agropecuária (ICASA), Florianópolis, SC 88034-100, Brazil
| | - Cristian Rafael Kleemann
- Programa de Pós-Graduação em Ciência dos Alimentos, Universidade Federal de Santa Catarina, Florianópolis 88034-001, SC 88034-100, Brazil; Ministério da Agricultura e Pecuária, Laboratório Federal de Defesa Agropecuária, Setor Laboratorial Avançado de São José (SLAV/SC/LFDA/RS), São José, SC 88102-600, Brazil; Instituto Catarinense de Sanidade Agropecuária (ICASA), Florianópolis, SC 88034-100, Brazil
| | - Luan Valdomiro Alves de Oliveira
- Programa de Pós-Graduação em Ciência dos Alimentos, Universidade Federal de Santa Catarina, Florianópolis 88034-001, SC 88034-100, Brazil; Ministério da Agricultura e Pecuária, Laboratório Federal de Defesa Agropecuária, Setor Laboratorial Avançado de São José (SLAV/SC/LFDA/RS), São José, SC 88102-600, Brazil
| | - Alicia de Francisco de Casas
- Programa de Pós-Graduação em Ciência dos Alimentos, Universidade Federal de Santa Catarina, Florianópolis 88034-001, SC 88034-100, Brazil; Departamento de Ciência e Tecnologia de Alimentos, Universidade Federal de Santa Catarina, Florianópolis 88034-001, SC 88034-100, Brazil
| | - Vivian Maria Burin
- Programa de Pós-Graduação em Ciência dos Alimentos, Universidade Federal de Santa Catarina, Florianópolis 88034-001, SC 88034-100, Brazil; Departamento de Ciência e Tecnologia de Alimentos, Universidade Federal de Santa Catarina, Florianópolis 88034-001, SC 88034-100, Brazil.
| |
Collapse
|
6
|
Muniandy Y, Mohamad S, Raoov M. Green and efficient magnetic micro-solid phase extraction utilizing tea waste impregnated with magnetic nanoparticles for the analysis of ibuprofen in water samples by using UV-vis spectrophotometry. RSC Adv 2024; 14:11977-11985. [PMID: 38623288 PMCID: PMC11017375 DOI: 10.1039/d4ra00940a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024] Open
Abstract
A green method based on magnetic micro-solid phase extraction (MNP-TW-μ-SPE) of tea waste impregnated with magnetic nanoparticles (MNP-TW) was developed for the extraction of ibuprofen (IBP) in water samples prior to UV-Vis spectrophotometric analysis. Experimenting parameters that affect the extraction efficiency of IBP, such as pH of the sample solution, sorbent dosage, extraction time, ionic strength, volume of the sample, type of desorption solvent, desorption time, and desorption volume, were studied and optimized in detail. The characterization studies for the MNP-TW were carried out by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction spectrometry (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) analysis, a vibrating sample magnetometer (VSM), and thermogravimetric analysis (TGA). Under the optimum conditions, the linearity ranges from 30 to 700 μg L-1 for IBP, with determination coefficients (R2) of 0.9983. The limit of detection (LOD) and limit of quantification (LOQ) were 9.40 μg L-1 and 28.50 μg L-1, respectively. The method also demonstrated good precision in reproducibility (RSD ≤ 1.53%), repeatability (RSD ≤ 1.48%), and recovery (86-115%). This method represents the advantages of low solvent consumption, flexibility, and better sensitivity compared to other studies employing spectrophotometric analysis. The usage of tea waste in the extraction process presents many advantages, as it is biodegradable, versatile, and contributes to an intelligent and sustainable economic strategy projected toward a circular economy approach.
Collapse
Affiliation(s)
- Yagulan Muniandy
- Department of Chemistry, Faculty of Science, Universiti Malaya 50603 Kuala Lumpur Malaysia
| | - Sharifah Mohamad
- Department of Chemistry, Faculty of Science, Universiti Malaya 50603 Kuala Lumpur Malaysia
- Universiti Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, Universiti Malaya Kuala Lumpur 50603 Malaysia
| | - Muggundha Raoov
- Department of Chemistry, Faculty of Science, Universiti Malaya 50603 Kuala Lumpur Malaysia
- Universiti Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, Universiti Malaya Kuala Lumpur 50603 Malaysia
| |
Collapse
|
7
|
Hristozova AD, Simitchiev KK, Kmetov VJ, Rosenberg E. Compatibility of cloud point extraction with gas chromatography: Matrix effects of Triton X-100 on GC-MS and GC-MS/MS analysis of organochlorine and organophosphorus pesticides. Talanta 2024; 269:125445. [PMID: 38039676 DOI: 10.1016/j.talanta.2023.125445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 12/03/2023]
Abstract
Cloud point extraction is an environmentally benign and simple separation/concentration procedure that can be regarded as an alternative to classical liquid-liquid extraction. In the current work, it was studied the compatibility of cloud point extraction followed by back-extraction in low volume of organic solvent with gas chromatography-mass spectrometry (GC-MS and GC-MS/MS). Triton X-100 was preferred than Triton X-114 as a surfactant to produce the clouding phenomenon and hexane or isooctane was found to be appropriate organic solvents which can be used at the back-extraction step. It was observed that ca. 0.09 % w/w Triton X-100 was co-extracted in the organic phase (hexane or isooctane) so further study was carried out to find out its effect on the GC-MS (GC-MS/MS) measurement when liquid samples are injected without any pre-cleaning to remove the surfactant. The chromatographic separation and the mass detection were not deteriorated by the concomitant Triton X-100 for analysis of several Organochlorine and Organophosphorus pesticides (alpha-HCH, beta-HCH, gamma-HCH, Pentachlorobenzene, Hexachlorobenzene, Chlorpyrifos, Chlorpyrifos-methyl, Aldrin, Endrin, Dieldrin, alpha-Endosulfan, Heptachlor, Heptachlor-endo-epoxide-A, o,p-DDD, p,p-DDD, o,p-DDE, p,p-DDE, o,p-DDT and p,p-DDT). The stability of the GC system when introducing surfactant was assessed as acceptable (typically the peak area RSD% for 20 consecutive injections were below 5 %). Under the developed vaporization conditions using PTV or PSS injectors it can be deduced that Triton X-100 is deposited on the inner surface of the liner. This effect is beneficial since the resulting surfactant layer makes a surface which facilitates the pesticides transfer to the GC column. As a consequence, for some analytes, a substantial enhancement (up to 2.3 times) in the sensitivity was observed when the matrix-matched medium (0.09 % w/w Triton X-100 in organic solvent) is used compared to calibration in solely hexane or isooctane. Meanwhile, the measurement precision in the presence of Triton X-100 remains unchanged. The GC-MS/MS analysis was alternatively accomplished by the use of glass or metal liner and it was found that the glass one should be preferable. Finally, it can be concluded that cloud point extraction with Triton X-100 can be combined with GC-MS or GC-MS/MS analysis by applying liquid injection of the target analytes transferred in organic solvents such as hexane or isooctane. We have established a positive effect of Triton X-100 on the instrumental performance which is on opposite to the generally accepted concern of the negative influence of the surfactants on the gas chromatographic analysis.
Collapse
Affiliation(s)
- Asya D Hristozova
- University of Plovdiv Paisii Hilendarski, Faculty of Chemistry, 4000 Plovdiv, Bulgaria.
| | - Kiril K Simitchiev
- University of Plovdiv Paisii Hilendarski, Faculty of Chemistry, 4000 Plovdiv, Bulgaria.
| | - Veselin J Kmetov
- University of Plovdiv Paisii Hilendarski, Faculty of Chemistry, 4000 Plovdiv, Bulgaria
| | - Erwin Rosenberg
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, 1060 Vienna, Austria.
| |
Collapse
|
8
|
Manousi N, Tzanavaras PD, Zacharis CK. Microextraction based on liquid-solid phase transition of benzoic acid: Extraction of statins from human urine followed by chromatographic analysis. Talanta 2024; 266:125088. [PMID: 37625289 DOI: 10.1016/j.talanta.2023.125088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Herein, a microextraction method was reported based on the liquid-solid phase transition of benzoic acid to quantify two statins, namely lovastatin and simvastatin in authentic human urine. The principle of the method is based on the phase transition of benzoic acid by altering the pH of the sample solution enabling efficient dispersion and phase separation in one step. Due to the moderate melting point of benzoic acid, its solidification is performed at ambient temperature without the need for sample cooling. Various experimental parameters that affect the performance of the analytes (i.e. extractant type and its concentration, acid type and concentration, and sample volume) have been examined and optimized. The method was validated based on the total error concept. For this purpose, accuracy profiles were constructed in the concentration range of 100-5000 ng mL-1 while β-expectation tolerance intervals fell within ±15% demonstrating that 95% of future results will not exceed the defined bias limits. The intra-day and inter-day method precision was less than 4.7% and 4.3% for both analytes, while the limit of detection was 15 ng mL-1 for both analytes. It was also proved that the usage of benzoic acid is advantageous in minimizing the potential inter-conversion of the analytes during the acidification step of the extraction procedure. The green potential of the proposed analytical scheme was examined based on Green Analytical Procedure index. The proposed sample pretreatment technique proved to be a valuable tool offering selectivity and rapidness. The developed method was used for the analysis of real human urine obtained after the administration of statin-based pharmaceutical formulations.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Pharmaceutical Analysis, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Paraskevas D Tzanavaras
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Constantinos K Zacharis
- Laboratory of Pharmaceutical Analysis, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
9
|
Schüller M, Lucic I, Øiestad ÅML, Pedersen-Bjergaard S, Øiestad EL. High-throughput quantification of emerging "nitazene" benzimidazole opioid analogs by microextraction and UHPLC-MS-MS. J Anal Toxicol 2023; 47:787-796. [PMID: 37700512 PMCID: PMC10714918 DOI: 10.1093/jat/bkad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
Benzimidazole opioids, often referred to as nitazenes, represent a subgroup of new psychoactive substances with a recent increase in fatal overdoses in the USA and Europe. With a variety of analogs emerging on the illicit drug market, forensic laboratories are challenged to identify these potent drugs. We here present a simple quantitative approach for the determination of nine nitazene analogs, namely, clonitazene, etodesnitazene, etonitazene, etonitazepyne, flunitazene, isotonitazene, metodesnitazene, metonitazene and protonitazene in whole blood using liquid-phase microextraction and electromembrane extraction in a 96-well format and liquid chromatography-tandem mass spectrometry. Green and efficient sample preparation was accomplished by liquid-phase microextraction in a 96-well format and resulted in high extraction yields for all analytes (>81%). Here, blood diluted with buffer (1:1, %v) was extracted from a donor compartment across a thin organic liquid membrane and into an aqueous acceptor solution. The acceptor solution was collected and directly injected into the analysis platform. Chromatographic separation was accomplished with a biphenyl column, allowing for a baseline separation of the structural isomers isotonitazene and protonitazene before detection by multiple reaction monitoring. Validation was performed according to Scientific Working Group of Forensic Toxicology guidelines. The calibration range was from 0.5 to 50 nM (except for protonitazene and clonitazene from 0.1 nM) with good linearity and limits of detection down to 0.01 nM. An AGREEprep assessment was performed to evaluate sample preparation greenness, with a final score of 0.71. Nitazenes represent a current threat to public health, and analytical methods that cover a wide range of these analogs are limited. Here, the described method may assist in the detection of nitazenes in whole blood and prevent these substances from being missed in postmortem investigations.
Collapse
Affiliation(s)
- Maria Schüller
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, Oslo 0316, Norway
| | - Ivana Lucic
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, Oslo 0316, Norway
| | - Åse Marit Leere Øiestad
- Department of Forensic Sciences, Division of Laboratory Medicine, Oslo University Hospital, P.O. Box 4459 Nydalen, Oslo 0424, Norway
| | - Stig Pedersen-Bjergaard
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, Oslo 0316, Norway
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Elisabeth Leere Øiestad
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, Oslo 0316, Norway
- Department of Forensic Sciences, Division of Laboratory Medicine, Oslo University Hospital, P.O. Box 4459 Nydalen, Oslo 0424, Norway
| |
Collapse
|
10
|
JAGIRANI MS, SOYLAK M. Arsenic speciation by using emerging sample preparation techniques: a review. Turk J Chem 2023; 47:991-1006. [PMID: 38173749 PMCID: PMC10760823 DOI: 10.55730/1300-0527.3590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 10/31/2023] [Accepted: 06/23/2023] [Indexed: 01/05/2024] Open
Abstract
Arsenic is a hazardous element that causes environmental pollution. Due to its toxicological effects, it is crucial to quantify and minimize the hazardous impact on the ecology. Despite the significant advances in analytical techniques, sample preparation is still crucial for determining target analytes in complex matrices. Several factors affect the direct analysis, such as trace-level analysis, advanced regulatory requirements, complexity of sample matrices, and incompatible with analytical instrumentation. Along with the development in the sample preparation process, microextraction methods play an essential role in the sample preparation process. Microextraction techniques (METs) are the newest green approach that replaces traditional sample preparation and preconcentration methods. METs have minimized the limitation of conventional sample preparation methods while keeping all their benefits. METs improve extraction efficacy, are fast, automated, use less amount of solvents, and are suitable for the environment. Microextraction techniques with less solvent consumption, such as solid phase microextraction (SPME) solvent-free methods, and liquid phase microextraction (LPME), are widely used in modern analytical procedures. SPME development focuses on synthesizing new sorbents and applying online sample preparation, whereas LPME research investigates the utilization of new solvents.
Collapse
Affiliation(s)
- Muhammad Saqaf JAGIRANI
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri,
Turkiye
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, P. R.
China
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, P. R.
China
- National Center of Excellence in Analytical Chemistry University of Sindh, Kayseri,
Turkiye
| | - Mustafa SOYLAK
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri,
Turkiye
- Technology Research and Application Center (ERUTAUM), Erciyes University, Kayseri,
Turkiye
- Turkish Academy of Sciences (TÜBA), Ankara,
Turkiye
| |
Collapse
|
11
|
Hai X, Shi F, Zhu Y, Ma L, Wang L, Yin J, Li X, Yang Z, Yuan M, Xiong H, Gao Y. Development of magnetic dispersive micro-solid phase extraction of four phenolic compounds from food samples based on magnetic chitosan nanoparticles and a deep eutectic supramolecular solvent. Food Chem 2023; 410:135338. [PMID: 36621335 DOI: 10.1016/j.foodchem.2022.135338] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/07/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
A magnetic dispersive micro-solid phase extraction technique (CS@Fe3O4-MD-μSPE-DESP) based on magnetic chitosan nanoparticles and a deep eutectic supramolecular solvent was developed and applied to determinations of four phenolic compounds in food samples. To prevent environmental pollution and the introduction of toxic substances, deep eutectic supramolecular solvents (DESPs), which exhibited greater desorption capacities than conventional organic solvents and deep eutectic solvents, were used as novel green eluents for the first time. Some important parameters were screened by the Plackett-Burman method and then further optimized with response surface methodology (RSM). Under the optimal conditions, the proposed method showed excellent methodological indices with linearity over the range 0.1-200.0 µg·mL-1, R2 > 0.9988, extraction recoveries above 94.8 %, and precision (RSD%) below 2.9 %. The established method finishes the process of adsorption and desorption in approximately 3 min and enhances the efficiency for determination of phenolic compounds.
Collapse
Affiliation(s)
- Xiaoping Hai
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Feng Shi
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Yun Zhu
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Lei Ma
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Lina Wang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Jinfang Yin
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Xiaofen Li
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Zhi Yang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Mingwei Yuan
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, PR China
| | - Huabin Xiong
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, PR China.
| | - Yuntao Gao
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, PR China.
| |
Collapse
|
12
|
Ponce MDV, Cina M, López C, Cerutti S. Polyurethane Foam as a Novel Material for Ochratoxin A Removal in Tea and Herbal Infusions-A Quantitative Approach. Foods 2023; 12:foods12091828. [PMID: 37174366 PMCID: PMC10178770 DOI: 10.3390/foods12091828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
A novel solid-phase extraction methodology followed by UHPLC-MS/MS has been developed for Ochratoxin A (OTA) analysis in herbal infusions. For this purpose, a commercial polyurethane foam (PUF) was used as sorbent, and the experimental conditions were fully optimized. The strategy was satisfactory for reducing the matrix effect and allowed for OTA quantification in black tea and herbal infusions, with suitable recoveries and quantitation limits in agreement with those required by the maximum levels allowed by current regulations. The achieved results demonstrated the unprecedented use of polyurethane foam as an effective alternative for OTA retention and quantification in herbal infusions with the advantages of simple preparation, time saving, sustainability, and low cost for routine analysis.
Collapse
Affiliation(s)
- María Del Valle Ponce
- Instituto de Química de San Luis (INQUISAL-CONICET-UNSL), Laboratorio de Espectrometría de Masas, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Bloque III, Ejército de los Andes 950, San Luis 5700, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Buenos Aires 1033, Argentina
| | - Mariel Cina
- Instituto de Química de San Luis (INQUISAL-CONICET-UNSL), Laboratorio de Espectrometría de Masas, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Bloque III, Ejército de los Andes 950, San Luis 5700, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Buenos Aires 1033, Argentina
| | - Carlos López
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Buenos Aires 1033, Argentina
- Instituto de Investigaciones en Tecnología Química (INTEQUI-CONICET-UNSL), Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Almirante Brown 1455, San Luis 5700, Argentina
| | - Soledad Cerutti
- Instituto de Química de San Luis (INQUISAL-CONICET-UNSL), Laboratorio de Espectrometría de Masas, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Bloque III, Ejército de los Andes 950, San Luis 5700, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Buenos Aires 1033, Argentina
| |
Collapse
|
13
|
Haq N, Iqbal M, Hussain A, Shakeel F, Ahmad A, Alsarra IA, AlAjmi MF, Mahfooz A, Abouzadeh MA. Utilization of Waste Biomaterial as an Efficient and Eco-Friendly Adsorbent for Solid-Phase Extraction of Pantoprazole Contaminants in Wastewater. SEPARATIONS 2023; 10:253. [DOI: 10.3390/separations10040253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023] Open
Abstract
The objective of this analysis is to establish the potential of biodegradable agro-industrial waste materials as biosorbents in the solid-phase extraction (SPE) technique for sample preparation. In this regard, waste coffee husk (CH) powder was collected, washed, treated chemically, characterized, and applied as an SPE adsorbent to extract pantoprazole from the wastewater samples. Sample detection was accomplished using the UPLC-MS/MS system. The positive mode of electrospray ionization was exploited for the ionization of the sample, and quantification of the target analyte was performed by the multiple reaction monitoring modes. The precursor to product ion transition of 384.02→1380.05 and 384.02→200.05 was used as qualifiers and quantifiers, respectively. Optimization of the particle size, adsorbent dose, and contact time were evaluated to select the best combination of features. The efficiency and regeneration capability of the CH were compared with respect to a commercially available silica-based C18 SPE adsorbent, and it was found that CH possessed comparable (~50%) extraction, as well as regeneration capacity (~95%). The developed biosorbent was applied in a wastewater sample spiked with the target analyte and recovery studies were performed, which found a range of 93.0 to 102.0% with a %RSD of 3.72 to 12.7%. Thus, CH can be exploited as a ‘greener’ replacement for the commercially available adsorbents for the extraction/retention of active pharmaceutical ingredients present in water/wastewater samples.
Collapse
Affiliation(s)
- Nazrul Haq
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ashfaq Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ibrahim A. Alsarra
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Fahad AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Asra Mahfooz
- Department of Chemistry, S.S. Khanna Girls’ Degree College, University of Allahabad, Prayagraj 211003, Uttar Pradesh, India
| | - M. Ali Abouzadeh
- CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, University Pau & Pays Adour, E2S UPPA, IPREM, UMR5254, 64000 Pau, France
| |
Collapse
|
14
|
Gil KA, Jokić S, Cikoš AM, Banožić M, Jakovljević Kovač M, Fais A, Tuberoso CIG. Comparison of Different Green Extraction Techniques Used for the Extraction of Targeted Flavonoids from Edible Feijoa ( Acca sellowiana (O.Berg) Burret) Flowers. PLANTS (BASEL, SWITZERLAND) 2023; 12:1461. [PMID: 37050087 PMCID: PMC10096538 DOI: 10.3390/plants12071461] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
This study aimed to investigate the effect of four green extraction techniques (ultrasound-assisted extraction, UAE; supercritical fluid extraction, SFE; subcritical water extraction, SWE; and extraction using deep eutectic solvents, DES) on the extraction of targeted flavonoids from edible feijoa flowers. The bioactive components in the obtained extracts were quantified by High-Performance Liquid Chromatography-Photodiode Array Detector (HPLC-PDA). Moreover, total polyphenol content and antioxidant activity by DPPH•, ABTS•+, FRAP, and CUPRAC assays were investigated. UAE generally gave the highest yields for isoquercitrin and quercetin content (18.36-25.33 and 10.86-16.13 µg/g), while DES extraction with choline chloride:lactic acid (1:2) and H2O content of 50% gave the highest yield of chrysanthemin (90.81 µg/g). The highest yield of flavone (12.69 mg/g) was obtained with supercritical CO2 at 300 bar. Finally, UAE gave the highest total polyphenol content (ca. 64 mg GAE/g) and antioxidant activity at 70 °C during 30 min with 40% (0.84 mmol TEAC/g and 2.25 mmol Fe2+/g, for ABTS•+ and CUPRAC, respectively) and 60% ethanol-water solution (0.49 mmol TEAC/g and 2.09 mmol Fe2+/g, for DPPH• and FRAP, respectively). The eco-friendly extraction techniques resulted in selective methods capable of extracting targeted bioactive compounds from edible feijoa flowers.
Collapse
Affiliation(s)
- Katarzyna Angelika Gil
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. Monserrato-Sestu km 0.700, 09042 Monserrato, Italy
| | - Stela Jokić
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia
| | - Ana-Marija Cikoš
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia
| | - Marija Banožić
- Faculty of Agriculture and Food Technology, University of Mostar, Biskupa Čule bb, 88000 Mostar, Bosnia and Herzegovina
| | - Martina Jakovljević Kovač
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia
| | - Antonella Fais
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. Monserrato-Sestu km 0.700, 09042 Monserrato, Italy
| | - Carlo Ignazio Giovanni Tuberoso
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. Monserrato-Sestu km 0.700, 09042 Monserrato, Italy
| |
Collapse
|
15
|
Adeeyo AO, Oyetade JA, Alabi MA, Adeeyo RO, Samie A, Makungo R. Tuning water chemistry for the recovery of greener products: pragmatic and sustainable approaches. RSC Adv 2023; 13:6808-6826. [PMID: 36865581 PMCID: PMC9972008 DOI: 10.1039/d2ra06596g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/17/2023] [Indexed: 03/04/2023] Open
Abstract
The environmental impact and denaturing propensity of organic solvents in the extraction of plant bioactives pose great challenges in extraction systems. As a result, proactive consideration of procedures and evidence for tuning water properties for better recovery and positive influence on the green synthesis of products become pivotal. The conventional maceration approach takes a longer duration (1-72 h) for product recovery while percolation, distillation, and Soxhlet extractions take about 1 to 6 h. An intensified modern hydro-extraction process was identified for tuning water properties with an appreciable yield similar to organic solvents within 10-15 min. The percentage yield of tuned hydro-solvents achieved close to 90% recovery of active metabolites. The additional advantage of using tuned water over organic solvents is in the preservation of the bio-activities and forestalling the possibility of contamination of the bio-matrices during extractions with an organic solvent. This advantage is based on the fast extraction rate and selectivity of the tuned solvent when compared to the traditional approach. This review uniquely approaches the study of biometabolite recovery through insights from the chemistry of water under different extraction techniques for the very first time. Current challenges and prospects from the study are further presented.
Collapse
Affiliation(s)
- A O Adeeyo
- Ecology and Resource Management Unit, Faculty of Science, Engineering and Agriculture, University of Venda Thohoyandou 0950 South Africa
- Aqua Plantae Research Group, University of Venda Thohoyandou 0950 South Africa
| | - J A Oyetade
- Material Science and Engineering, School of Materials, Water, Energy and Environmental Science, Nelson Mandela African Institution of Science and Technology Arusha Tanzania
| | - M A Alabi
- Department of Microbiology, School of Life Sciences, Federal University of Technology Akure Nigeria
| | - R O Adeeyo
- Ecology and Resource Management Unit, Faculty of Science, Engineering and Agriculture, University of Venda Thohoyandou 0950 South Africa
| | - A Samie
- Department of Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda Thohoyandou 0950 South Africa
| | - R Makungo
- Department of Earth Science, University of Venda Thohoyandou 0950 South Africa
| |
Collapse
|
16
|
Condensed Phase Membrane Introduction Mass Spectrometry: A Direct Alternative to Fully Exploit the Mass Spectrometry Potential in Environmental Sample Analysis. SEPARATIONS 2023. [DOI: 10.3390/separations10020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Membrane introduction mass spectrometry (MIMS) is a direct mass spectrometry technique used to monitor online chemical systems or quickly quantify trace levels of different groups of compounds in complex matrices without extensive sample preparation steps and chromatographic separation. MIMS utilizes a thin, semi-permeable, and selective membrane that directly connects the sample and the mass spectrometer. The analytes in the sample are pre-concentrated by the membrane depending on their physicochemical properties and directly transferred, using different acceptor phases (gas, liquid or vacuum) to the mass spectrometer. Condensed phase (CP) MIMS use a liquid as a medium, extending the range to new applications to less-volatile compounds that are challenging or unsuitable to gas-phase MIMS. It directly allows the rapid quantification of selected compounds in complex matrices, the online monitoring of chemical reactions (in real-time), as well as in situ measurements. CP-MIMS has expanded beyond the measurement of several organic compounds because of the use of different types of liquid acceptor phases, geometries, dimensions, and mass spectrometers. This review surveys advancements of CP-MIMS and its applications to several molecules and matrices over the past 15 years.
Collapse
|
17
|
Scur R, Dagnoni Huelsmann R, Carasek E. Polyamide-coated paper-based sorptive phase applied in high-throughput thin film microextraction designed by 3D printing. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
18
|
Mohamed DFMS, Kim DY, An J, Kim M, Chun SH, Kwon JH. Simplified Unified BARGE Method to Assess Migration of Phthalate Esters in Ingested PVC Consumer Products. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1907. [PMID: 36767273 PMCID: PMC9914907 DOI: 10.3390/ijerph20031907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The unified bioaccessibility research group of Europe (BARGE) method (UBM) suggests using in vitro experimental conditions for simulating the release of chemicals from confined matrices, such as soils and sediments, in the human gastrointestinal tract. It contains comprehensive steps that simulate human digestion pathways and has good potential for application in the leaching of plastic additives from accidentally ingested plastic particles. However, its complexity could be a challenge for routine screening assessments of the migration of chemicals from consumer plastic products. In this study, the UBM was modified to assess the migration of plastic additives from consumer products with five model phthalate esters (i.e., dibutyl phthalate (DBP), benzyl butyl phthalate (BBP), bis(2-ethylhexyl) phthalate (DEHP), and di-n-octyl phthalate (DNOP)) from polyvinyl chloride (PVC). The migration of phthalate esters was observed in four digestive phases (saliva, gastric, duodenal, and bile). Three separate experiments were conducted with the addition of (1) inorganic constituents only, (2) inorganic and organic constituents, and (3) inorganic and organic constituents in combination with digestive enzymes. While using enzymes with the UBM solution, the migrated mass for leached compounds was comparatively low (0.226 ± 0.04 μg) in most digestion phases, likely due to a self-generated coating of enzymes on the plastic materials. However, higher mass migration (0.301 ± 0.05) was observed when phthalate esters were analyzed in the UBM solution, excluding the enzymes. A ring test among six independent laboratories confirmed the robustness of the modified method. Therefore, we propose a simplified version of the original UBM designed mainly for the migration of inorganic elements using only the inorganic and organic components of the solution throughout all phases of digestion.
Collapse
Affiliation(s)
- Dana Fahad M. S. Mohamed
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Du Yung Kim
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jinsung An
- Department of Civil and Environmental Engineering, Hanyang University, 55 Hanyangdeahak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Minhye Kim
- Chemical Products Team, FITI Testing and Research Institute, 21 Yangcheong 3-gil, Cheongju-si 28115, Republic of Korea
| | - Sa-Ho Chun
- Chemical Products Team, FITI Testing and Research Institute, 21 Yangcheong 3-gil, Cheongju-si 28115, Republic of Korea
| | - Jung-Hwan Kwon
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
19
|
Convenient “on-water” one-pot, synthesis of flavonols catalyzed by LiOH.H2O- and H2O2-mediated oxidation. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04932-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Green Downscaling of Solvent Extractive Determination Employing Coconut Oil as Natural Solvent with Smartphone Colorimetric Detection: Demonstrating the Concept via Cu(II) Assay Using 1,5-Diphenylcarbazide. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238622. [PMID: 36500721 PMCID: PMC9740733 DOI: 10.3390/molecules27238622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Coconut oil as a natural solvent is proposed for green downscaling solvent extractive determination. Determination of Cu(II) using 1,5-Diphenylcarbazide (DPC) was selected as a model for the investigation. Cu(II)-DPC complexes in aqueous solution were transferred into coconut oil phase. The change of the color due to Cu(II)-DPC complexes in coconut oil was followed by using a smartphone and image processing. A single standard concept was used for a series of Cu(II) standard solutions. A downscaling procedure using a 2 mL vial provided a calibration: color intensity = -142 [Cu(II)] + 222, (R2 = 0.98), 10% RSD. Using a well plate, a calibration was: color intensity = 61 [Cu(II)] + 68 (R2 = 0.91), 15% RSD. Both were for the range of 0-1 ppm Cu(II). Application of the developed procedure to water samples was demonstrated. The developed procedures provided a new approach of green chemical analysis.
Collapse
|
21
|
Hussain CM, Hussain CG, Keçili R. White analytical chemistry approaches for analytical and bioanalytical techniques: Applications and challenges. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Lignocellulosic materials as adsorbents in solid phase extraction for trace elements preconcentration. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Ullah N, Tuzen M. A New Trend and Future Perspectives of the Miniaturization of Conventional Extraction Methods for Elemental Analysis in Different Real Samples: A Review. Crit Rev Anal Chem 2022; 54:1729-1747. [PMID: 36197714 DOI: 10.1080/10408347.2022.2128635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
Sample preparation is one of the viable procedures to be used before analysis to enhance sensitivity and reduce the matrix effect. The current review is mainly emphasized the latest outcome and applications of microextraction techniques based on the miniaturization of the classical conventional methods based on liquid-phase and solid-phase extraction for the quantitative elemental analysis in different real samples. The limitation of the conventional sample preparation methods (liquid and solid phase extraction) has been overcome by developing a new way of reducing size as compared with the conventional system through the miniaturization approach. Miniaturization of the sample preparation techniques has received extensive attention due to its extraction at microlevels, speedy, economical, eco-friendly, and high extraction capability. The growing demand for speedy, economically feasible, and environmentally sound analytical approaches is the main intention to upgrade the conventional procedures apply for sample preparation in environmental investigation. A growing trend of research has been perceived to quantify the trace for elemental analysis in different natures of real samples. This review also recapitulates the current futuristic scenarios for the green and economically viable procedure with special overemphasis and concentrates on eco-friendly miniaturized sample-preparation techniques such as liquid-phase microextraction (LPME) and solid-phase microextraction (SPME). This review also emphasizes the latest progress and applications of the LPME and SPME approach and their future perspective.
Collapse
Affiliation(s)
- Naeem Ullah
- Faculty of Science and Arts, Chemistry Department, Tokat Gaziosmanpaşa University, Tokat, Turkey
- Department of Chemistry, University of Turbat, Balochistan, Pakistan
| | - Mustafa Tuzen
- Faculty of Science and Arts, Chemistry Department, Tokat Gaziosmanpaşa University, Tokat, Turkey
- Research Institute, Center for Environment and Marine Studies, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
24
|
Green Extraction Process of Food Grade C-phycocyanin: Biological Effects and Metabolic Study in Mice. Processes (Basel) 2022. [DOI: 10.3390/pr10091793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study aimed to evaluate different parameters in the green process of organic Spirulina biomass (SB) C-phycocyanin (C-PC) extraction to understand the impact on weight and oral glucose tolerance of C-PC extract in Swiss mice fed with a high-fat diet (HFD). The proximate composition and antioxidant activity were analyzed in Spirulina by-products: SB, C-PC, and Remaining biomass (RB). The protein content on a dry basis was 52.05% in SB and 61.16% in RB and 118.97 μg/g in C-PC. The antioxidant activity was equal for SB and C-PC but higher than RB. However, RB can be considered a promising ingredient, promoting the sustainable use of the whole SB. Swiss mice were distributed in five groups: control diet (CD), HFD, HFD plus Spirulina biomass (HFDS), HFD plus C-PC (HFDC), and HFD plus remaining biomass (HFDR). HFDS increased the delta weight of the animals and showed glucose intolerance compared to the CD and HFDC groups. The results demonstrated that the supplementation of 500 mg/kg of body weight of SB in the HFDS group did not show antiobesogenic potential with an HFD, but it is essential to conduct further studies to bring other interesting responses regarding C-PC biological in vivo effects.
Collapse
|
25
|
Manousi N, Kabir A, Furton KG, Tzanavaras PD, Zacharis CK. In situ synthesis of monolithic sol–gel polyethylene glycol-based sorbent encapsulated in porous polypropylene microextraction capsules and its application for selective extraction of antifungal and anthelmintic drugs from human urine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
26
|
Designing an "all-in-one" microextraction capsule device for the liquid chromatographic-fluorescence determination of doxorubicin and its metabolites in rat plasma. J Chromatogr A 2022; 1680:463432. [PMID: 36041251 DOI: 10.1016/j.chroma.2022.463432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022]
Abstract
In this study, an "all-in-one" microextraction device was designed and fabricated for the extraction of doxorubicin and its two metabolites from rat plasma prior to their determination by high performance liquid chromatography coupled to fluorescence detector. A sol-gel-based sorbent was synthesized in situ and incorporated within two conjoined porous polypropylene tubes together with a cylindrical magnetic bar in order to avoid the need of an external stirring bar. Among other sorbents investigated, the moderately polar sol-gel poly(tetrahydrofuran) was found to be advantageous due to its high affinity toward the target analytes. Systematic investigation of the critical parameters affecting the adsorption and the desorption step was carried out. Due to the "built-in" filtration mechanism of the porous microextraction capsules, the isolation of the analytes was performed directly in the plasma matrix without any previous sample pretreatment (i.e., protein precipitation, centrifugation, etc.). The proposed method was validated in terms of linearity, accuracy, precision, specificity, sensitivity, and stability according to the FDA guidelines. The limits of detection ranged between 1 - 2 ng mL-1 while the lower limits of quantitation of the analytes were calculated as 10 ng mL-1. The accuracy (% relative error) was found within -9.7 - 15.3% under both intra- and inter-day conditions. The precision was better than 13.4% in all cases. ComplexGAPI index was employed to present the green attributes of the developed protocol from the preparation of the microextraction device to the final determination of the analytes. Finally, the applicability of the fabricated stand-alone extraction device was demonstrated in the analysis of the target analytes in rat plasma after intravenous administration of doxorubicin in order to assess its pharmacokinetic profile.
Collapse
|
27
|
|
28
|
Puggioni G, Abd-Razak NH, Amura IF, Bird MR, Emanuelsson EA, Shahid S. Preparation and benchmarking of highly hydrophilic polyaniline poly(2-acrylamido-2-methyl-1-propanesulfonic acid) PANI PAMPSA membranes in the separation of sterols and proteins from fruit juice. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Moreira LS, Costa FS, Lidorio RDC, Toledo LWS, Oliveira A, Gonzalez MH, da Silva EGP, Amaral CDB. Evaluation of Trace Elements in Marine Biological Tissues by Graphite Furnace Atomic Absorption Spectrometry After Sample Treatment with Formic Acid. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Determination of 3-nitrobenzanthrone, its metabolites, and 41 polycyclic aromatic compounds (16 PAHs, 19 nitro-PAHs, and 6 oxy-PAHs) in ascidians (Phallusia nigra). Microchem J 2022. [DOI: 10.1016/j.microc.2021.107081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Machado ME, Nascimento MM, Bomfim Bahia PV, Martinez ST, Bittencourt de Andrade J. Analytical advances and challenges for the determination of heterocyclic aromatic compounds (NSO-HET) in sediment: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Pereira JAM, Casado N, Porto-Figueira P, Câmara JS. The Potential of Microextraction Techniques for the Analysis of Bioactive Compounds in Food. Front Nutr 2022; 9:825519. [PMID: 35257008 PMCID: PMC8897005 DOI: 10.3389/fnut.2022.825519] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/26/2022] [Indexed: 12/15/2022] Open
Abstract
For a long time, the importance of sample preparation and extraction in the analytical performance of the most diverse methodologies have been neglected. Cumbersome techniques, involving high sample and solvent volumes have been gradually miniaturized from solid-phase and liquid-liquid extractions formats and microextractions approaches are becoming the standard in different fields of research. In this context, this review is devoted to the analysis of bioactive compounds in foods using different microextraction approaches reported in the literature since 2015. But microextraction also represents an opportunity to mitigate the environmental impact of organic solvents usage, as well as lab equipment. For this reason, in the recent literature, phenolics and alkaloids extraction from fruits, medicinal herbs, juices, and coffee using different miniaturized formats of solid-phase extraction and liquid-liquid microextraction are the most popular applications. However, more ambitious analytical limits are continuously being reported and emergent sorbents based on carbon nanotubes and magnetic nanoparticles will certainly contribute to this trend. Additionally, ionic liquids and deep eutectic solvents constitute already the most recent forefront of innovation, substituting organic solvents and further improving the current microextraction approaches.
Collapse
Affiliation(s)
- Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Natalia Casado
- Departamento de Tecnología Química y Ambiental, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Madrid, Spain
| | | | - José S. Câmara
- CQM—Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia, Universidade da Madeira, Funchal, Portugal
| |
Collapse
|
33
|
Miková B, Dvořák M, Ryšavá L, Malá Z, Gebauer P, Kubáň P. At-line coupling of hollow fiber liquid-phase microextraction to capillary electrophoresis for trace determination of acidic drugs in complex samples. Talanta 2022; 238:123068. [PMID: 34808568 DOI: 10.1016/j.talanta.2021.123068] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 01/14/2023]
Abstract
Direct analysis of complex samples is demonstrated by the at-line coupling of hollow fiber liquid-phase microextraction (HF-LPME) to capillary electrophoresis (CE). The hyphenation of the preparative and the analytical technique is achieved through a 3D-printed microextraction device with an HF located in a sample vial of a commercial CE instrument. The internal geometry of the device guides the CE separation capillary into the HF and the CE injection of the HF-LPME extract is performed directly from the HF lumen. The 3D-printing process ensures uniform dimensions of the devices, their constant position inside the sample vial, and excellent repeatability of the HF-LPME as well as the CE injection. The devices are cheap (∼0.01 €) and disposable, thus eliminating any possible sample-carryover, moreover, the at-line CE analysis of the extract is performed fully autonomously with no need for operator's intervention. The developed HF-LPME/CE-UV method is applied to the determination of acidic drugs in dried blood spot and wastewater samples and is characterized by excellent repeatability (RSD, 0.6-9.6%), linearity (r2, 0.9991-0.9999), enrichment (EF, 29-97), sensitivity (LOD, 0.2-3.4 μg/L), and sample throughput (7 samples/h). A further improvement of selected characteristics of the analytical method is achieved by the at-line coupling of HF-LPME to capillary isotachophoresis (ITP) with electrospray ionization-mass spectrometry (ESI-MS). The HF-LPME/ITP-ESI-MS system facilitates enhanced selectivity, matrix-free analytical signals, and up to 34-fold better sensitivity due to the use of ESI-MS detection and additional on-capillary ITP preconcentration of the HF-LPME extracts.
Collapse
Affiliation(s)
- Blanka Miková
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200, Brno, Czech Republic; Department of Analytical Chemistry, Masaryk University, Kotlářská 2, CZ-60200, Brno, Czech Republic
| | - Miloš Dvořák
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200, Brno, Czech Republic
| | - Lenka Ryšavá
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200, Brno, Czech Republic; Institute of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, CZ-61200, Brno, Czech Republic
| | - Zdenka Malá
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200, Brno, Czech Republic
| | - Petr Gebauer
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200, Brno, Czech Republic
| | - Pavel Kubáň
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200, Brno, Czech Republic.
| |
Collapse
|
34
|
Yu M, Roszkowska A, Pawliszyn J. In Vivo Solid-Phase Microextraction and Applications in Environmental Sciences. ACS ENVIRONMENTAL AU 2022; 2:30-41. [PMID: 37101756 PMCID: PMC10114724 DOI: 10.1021/acsenvironau.1c00024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Solid-phase microextraction (SPME) is a well-established sample-preparation technique for environmental studies. The application of SPME has extended from the headspace extraction of volatile compounds to the capture of active components in living organisms via the direct immersion of SPME probes into the tissue (in vivo SPME). The development of biocompatible coatings and the availability of different calibration approaches enable the in vivo sampling of exogenous and endogenous compounds from the living plants and animals without the need for tissue collection. In addition, new geometries such as thin-film coatings, needle-trap devices, recession needles, coated tips, and blades have increased the sensitivity and robustness of in vivo sampling. In this paper, we detail the fundamentals of in vivo SPME, including the various extraction modes, coating geometries, calibration methods, and data analysis methods that are commonly employed. We also discuss recent applications of in vivo SPME in environmental studies and in the analysis of pollutants in plant and animal tissues, as well as in human saliva, breath, and skin analysis. As we show, in vivo SPME has tremendous potential for the targeted and untargeted screening of small molecules in living organisms for environmental monitoring applications.
Collapse
Affiliation(s)
- Miao Yu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Anna Roszkowska
- Department of Pharmaceutical Chemistry, Medical University of Gdansk, Gdansk 80-416, Poland
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
35
|
LUCAS BN, DALLA NORA, BOEIRA CP, VERRUCK S, ROSA CSD. Determination of total phenolic compounds in plant extracts via Folin-Ciocalteu’s method adapted to the usage of digital images. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.35122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - DALLA NORA
- Universidade Federal de Santa Maria, Brasil
| | | | | | | |
Collapse
|
36
|
Orlic J, Anicic-Urosevic M, Vergel K, Zinicovscaia I, Stojadinovic S, Grzetic I, Ilijevic K. Comparison of non-destructive techniques and conventionally used spectrometric techniques for determination of elements in plant samples (coniferous leaves). JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2022. [DOI: 10.2298/jsc210921101o] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Conventionally used spectrometric techniques of inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma optical emission spectrometry (ICP-MS) usually involve time-consuming sample preparation procedure of a sample dissolution which requires the usage of aggressive and toxic chemicals. The need for suitable and sustainable analytical methods for direct multi-elemental analysis of plant samples has been increased in recent years. Spectrometric techniques for direct sample analysis, instrumental neutron activation analysis (INAA) and X-ray fluorescence (XRF) have been applied in environmental studies and various fields of screening tests. Nevertheless, these techniques are not commonly used for plant sample analysis and their performances need to be evaluated. This research aimed to assess how reliable non-destructive techniques are in the determination of elements in plants compared to conventionally used spectrometric techniques. A total of 49 plant samples of four conifer species (Pinus nigra, Abies alba, Taxus baccata and Larix decidua) were measured using two conventionally applied (ICP-MS, ICP-OES) and two non-destructive techniques (wavelength dispersive XRF (WD-XRF), INAA). The comparison was performed by investigation of relative ratios of concentrations and by correlation analysis. Moreover, precision of the techniques was examined and compared. The quality control included analysis of NIST pine needles certified reference material (1575a) using all examined techniques. Our results suggest that additional analytical and quality control steps are necessary for reaching the highest accuracy of multi-elemental analysis.
Collapse
Affiliation(s)
- Jovana Orlic
- University of Belgrade, Faculty of Chemistry, Belgrade, Serbia
| | | | - Konstantin Vergel
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russian Federation
| | - Inga Zinicovscaia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russian Federation
| | - Sanja Stojadinovic
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy (ICTM), Belgrade, Serbia
| | - Ivan Grzetic
- University of Belgrade, Faculty of Chemistry, Belgrade, Serbia
| | | |
Collapse
|
37
|
Guimarães TG, Andrade DF, Santana AP, Moser P, Ferreira SS, Menezes IM, Amaral CD, Oliveira A, Gonzalez MH. Mixture design and physicochemical characterization of amino acid-based DEEP eutectic solvents (AADES) for sample preparation prior to elemental analysis. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
38
|
El-Deen AK, Shimizu K. Deep Eutectic Solvents as Promising Green Solvents in Dispersive Liquid-Liquid Microextraction Based on Solidification of Floating Organic Droplet: Recent Applications, Challenges and Future Perspectives. Molecules 2021; 26:7406. [PMID: 34885987 PMCID: PMC8659195 DOI: 10.3390/molecules26237406] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022] Open
Abstract
Deep eutectic solvents (DESs) have recently attracted attention as a promising green alternative to conventional hazardous solvents by virtue of their simple preparation, low cost, and biodegradability. Even though the application of DESs in analytical chemistry is still in its early stages, the number of publications on this topic is growing. Analytical procedures applying dispersive liquid-liquid microextraction based on the solidification of floating organic droplets (DLLME-SFOD) are among the more appealing approaches where DESs have been found to be applicable. Herein, we provide a summary of the articles that are concerned with the application of DESs in the DLLME-SFOD of target analytes from diverse samples to provide up-to-date knowledge in this area. In addition, the major variables influencing enrichment efficiency and the microextraction mechanism are fully investigated and explained. Finally, the challenges and future perspectives of applying DESs in DLLME-SFOD are thoroughly discussed and are critically analyzed.
Collapse
Affiliation(s)
- Asmaa Kamal El-Deen
- Department of Agro-Environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan;
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Kuniyoshi Shimizu
- Department of Agro-Environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan;
| |
Collapse
|
39
|
Green Aspects of Ion Chromatography versus Other Methods in the Analysis of Common Inorganic Ions. SEPARATIONS 2021. [DOI: 10.3390/separations8120235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Due to the increasing environmental awareness of the public, green chemistry has become an important element of environmental protection. In laboratories around the world, millions of analyses of inorganic and organic anions and cations in water and wastewater samples, and solid and gaseous samples are performed daily. Unfortunately, these activities still generate large costs, including environmental costs, which are related to the scale of the studies, the use of toxic chemical reagents, the waste generated, and the energy consumed. The methods used so far for inorganic ion analysis, including classical methods, are increasingly being replaced by instrumental methods, primarily based on ion chromatography. This paper presents the most important advantages and limitations of ion chromatography, and compares them with the costs of classical analyses for the analytes and sample types. Both the financial and environmental costs associated with the determination of common inorganic ions, such as Cl−, NO2−, NO3−, and NH4+, in 1000 environmental samples, were compared using selected reference wet classical methods and ion chromatography. The advantages and limitations of ion chromatography that allow this separation technique to be classified as a green analytical chemistry method have been described herein.
Collapse
|
40
|
Nooraee Nia N, Reza Hadjmohammadi M. Development of magnetic dispersive micro-solid phase extraction based on magnetic adipic acid nanoparticles and deep eutectic solvents for the isolation and pre-concentration of phenolic compounds in fruit juice samples prior to determination by HPLC-UV. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106721] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
41
|
Bodur S, Erarpat S, Günkara ÖT, Bakırdere S. One step derivatization and dispersive liquid-liquid microextraction of hydroxychloroquine sulfate for its sensitive and accurate determination using GC-MS. J Pharmacol Toxicol Methods 2021; 113:107130. [PMID: 34688871 DOI: 10.1016/j.vascn.2021.107130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/22/2021] [Accepted: 10/13/2021] [Indexed: 12/22/2022]
Abstract
In the present study, a novel analytical method for the determination of hydroxychloroquine sulfate in human serum and urine samples was established. One step derivatization and dispersive liquid-liquid microextraction (DLLME) was developed for quantitative determination of hydroxychloroquine sulfate in aqueous samples. Hydroxychloroquine sulfate was first hydrolyzed and converted to its benzoate derivative by adding benzoyl chloride in chloroform which also served as extraction solvent. Significant parameters such as type/volume of extraction and dispersive solvents, concentration/volume of sodium hydroxide, type/period of mixing and concentration of derivatizing agent were carefully optimized by one variable at a time approach. Under the optimum DLLME conditions, limit of detection (LOD), quantitation (LOQ) and dynamic range were calculated as 35.2, 117.2 and 96-1980 μg/kg (ppb), respectively. Recovery studies were conducted by spiked human serum and urine samples and the results were ranged between 93 and 107% with low standard deviations. Developed method can be easily used in hydroxychloroquine sulfate based SARS-CoV-2 and malaria treatment studies.
Collapse
Affiliation(s)
- Süleyman Bodur
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, 34210, Davutpasa, Esenler, Istanbul, Turkey
| | - Sezin Erarpat
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, 34210, Davutpasa, Esenler, Istanbul, Turkey
| | - Ömer Tahir Günkara
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, 34210, Davutpasa, Esenler, Istanbul, Turkey
| | - Sezgin Bakırdere
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, 34210, Davutpasa, Esenler, Istanbul, Turkey; Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, 06670, Çankaya, 06690 Ankara, Turkey.
| |
Collapse
|
42
|
Fast accurate quantification of salivary cortisol and cortisone in a large-scale clinical stress study by micro-UHPLC-ESI-MS/MS using a surrogate calibrant approach. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1182:122939. [PMID: 34547590 DOI: 10.1016/j.jchromb.2021.122939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 11/23/2022]
Abstract
Cortisol and cortisone are common markers for stress and thus preferentially analyzed in matrices that allow non-invasive sampling such as saliva. Though the major drawback of immunoassays is lack of specificity due to cross reactivities, they are still most commonly used for quantification of steroid hormones. To overcome such problems, sensitive methods based on liquid chromatography-mass spectrometry are becoming more and more accepted as the golden standard for steroid bioanalysis as they achieve accurate quantification at trace levels for multiple analytes in the same run. Along this line, the aim of this study was the development of a new microflow UHPLC-ESI-MS/MS method for the measurement of salivary cortisol and cortisone, which due to its microflow regime provides enhanced sensitivity and is more ecofriendly. The developed method implemented sample preparation by Solid-Phase Extraction (SPE) in a 96-well plate format. Data acquisitions were carried out in MRM (multiple reaction monitoring) mode. The quantitative determination of endogenous compounds in saliva remains a challenge since analyte-free matrix is lacking. Hence, a surrogate calibrant approach with cortisol-d4 andcortisone-13C3 was applied for the target compounds in the presented method. A number of factors were optimized and the method validated. The lower limit of quantitation (LLOQ) was 72 and 62 pg mL-1for cortisol and cortisone, respectively. Linear calibration was achieved in the range from 0.062 to 75.5 ng mL-1for cortisol-d4 and 0.072 to 44 ng mL-1forcortisone-13C3. The performance of the method was also evaluated via proficiency test for salivary cortisol. Finally, it was applied successfully to evaluate cortisol and cortisone concentrations in multiple batches in routine clinical stress study samples (4056 total injections with 1983 study samples). Moreover, the instrument performance (in particular retention time variability) within each batch, between different batches and lot-to-lot of 5 investigated capillary columns over time is described. The work documents that micro-UHPLC-ESI-MS/MS is suitable and robust enough to carry out a full clinical study with greater than 1000s of samples over an extended period if adequate internal standards can be used.
Collapse
|
43
|
Rahaman A, Kumari A, Farooq MA, Zeng XA, Hassan S, Khalifa I, Aadil RM, Jahangir Chughtai MF, Khaliq A, Ahmad N, Wajid MA. Novel Extraction Techniques: An Effective Way to Retrieve the Bioactive Compounds from Saffron (Crocus Sativus). FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1967377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Abdul Rahaman
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| | - Ankita Kumari
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Muhammad Adil Farooq
- Department of Food Science and Technology, Faculty of Engineering and Technology, Khwaja Fareed University Engineering and Information Technology, Rahimyar, Pakistan
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| | - Sadia Hassan
- Department of Nutritional Sciences, Faculty of Science and Technology, Government College Women University, Faisalabad, Pakistan
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Egypt
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Farhan Jahangir Chughtai
- Department of Food Science and Technology, Faculty of Engineering and Technology, Khwaja Fareed University Engineering and Information Technology, Rahimyar, Pakistan
| | - Adnan Khaliq
- Department of Food Science and Technology, Faculty of Engineering and Technology, Khwaja Fareed University Engineering and Information Technology, Rahimyar, Pakistan
| | - Nabeel Ahmad
- School of Biotechnology, Iftm University, Moradabad, India
| | - Mohd Anas Wajid
- Department of Computer Science, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
44
|
Grau J, Azorín C, Benedé JL, Chisvert A, Salvador A. Use of green alternative solvents in dispersive liquid-liquid microextraction: A review. J Sep Sci 2021; 45:210-222. [PMID: 34490730 DOI: 10.1002/jssc.202100609] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 01/10/2023]
Abstract
Dispersive liquid-liquid microextraction is one of the most widely used microextraction techniques currently in the analytical chemistry field, mainly due to its simplicity and rapidity. The operational mode of this approach has been constantly changing since its introduction, adapting to new trends and applications. Most of these changes are related to the nature of the solvent employed for the microextraction. From the classical halogenated solvents (e.g., chloroform or dichloromethane), different alternatives have been proposed in order to obtain safer and non-pollutants microextraction applications. In this sense, low-density solvents, such as alkanols, switchable hydrophobicity solvents, and ionic liquids were the first and most popular replacements for halogenated solvents, which provided similar or better results than these classical dispersive liquid-liquid microextraction solvents. However, despite the good performances obtained with low-density solvents and ionic liquids, researchers have continued investigating in order to obtain even greener solvents for dispersive liquid-liquid microextraction. For that reason, in this review, the evolution over the last five years of the three types of solvents already mentioned and two of the most promising solvent alternatives (i.e., deep eutectic solvents and supramolecular solvents), have been studied in detail with the purpose of discussing which one provides the greenest alternative.
Collapse
Affiliation(s)
- José Grau
- Department of Analytical Chemistry, GICAPC Research group, University of Valencia, Burjassot, Spain
| | - Cristian Azorín
- Department of Analytical Chemistry, GICAPC Research group, University of Valencia, Burjassot, Spain
| | - Juan L Benedé
- Department of Analytical Chemistry, GICAPC Research group, University of Valencia, Burjassot, Spain
| | - Alberto Chisvert
- Department of Analytical Chemistry, GICAPC Research group, University of Valencia, Burjassot, Spain
| | - Amparo Salvador
- Department of Analytical Chemistry, GICAPC Research group, University of Valencia, Burjassot, Spain
| |
Collapse
|
45
|
Trombino S, Cassano R, Procopio D, Di Gioia ML, Barone E. Valorization of Tomato Waste as a Source of Carotenoids. Molecules 2021; 26:molecules26165062. [PMID: 34443647 PMCID: PMC8398759 DOI: 10.3390/molecules26165062] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Fast-accumulating scientific evidence from many studies has revealed that fruits and vegetables are the main source of bioactive compounds; in most cases, wastes and byproducts generated by the food processing industry present similar or a higher content of antioxidant compounds. In recent years, the ever-growing amount of agricultural and food wastes has raised serious concerns from an environmental point of view. Therefore, there is an increasing interest in finding new ways for their processing toward safely upgrading these wastes for recovering high-value-added products with a sustainable approach. Among food waste, the abundance of bioactive compounds in byproducts derived from tomato suggests possibility of utilizing them as a low-cost source of antioxidants as functional ingredients. This contribution gives an overview of latest studies on the extraction methods of carotenoids from tomato waste, along with an evaluation of their antioxidant activity, as well as their industrial applications.
Collapse
Affiliation(s)
- Sonia Trombino
- Department of Pharmacy and Health and Nutrition Sciences, Department of Excellence L. 232/2016, Edificio Polifunzionale, Università della Calabria, 87036 Rende, Italy; (S.T.); (R.C.); (D.P.)
| | - Roberta Cassano
- Department of Pharmacy and Health and Nutrition Sciences, Department of Excellence L. 232/2016, Edificio Polifunzionale, Università della Calabria, 87036 Rende, Italy; (S.T.); (R.C.); (D.P.)
| | - Debora Procopio
- Department of Pharmacy and Health and Nutrition Sciences, Department of Excellence L. 232/2016, Edificio Polifunzionale, Università della Calabria, 87036 Rende, Italy; (S.T.); (R.C.); (D.P.)
| | - Maria Luisa Di Gioia
- Department of Pharmacy and Health and Nutrition Sciences, Department of Excellence L. 232/2016, Edificio Polifunzionale, Università della Calabria, 87036 Rende, Italy; (S.T.); (R.C.); (D.P.)
- Correspondence: (M.L.D.G.); (E.B.); Tel.: +39-0984493095 (M.L.D.G.); +39-06-49910935 (E.B.)
| | - Eugenio Barone
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro, 00185 Rome, Italy
- Correspondence: (M.L.D.G.); (E.B.); Tel.: +39-0984493095 (M.L.D.G.); +39-06-49910935 (E.B.)
| |
Collapse
|
46
|
Dutta S, Priyadarshini SR, Moses JA, Anandharamakrishnan C. Supercritical Fluid and Ultrasound‐assisted Green Extraction Technologies for Catechin Recovery. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202100001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sayantani Dutta
- Ministry of Food Processing Industries, Govt. of India Computational Modeling and Nanoscale Processing Unit Indian Institute of Food Processing Technology (IIFPT) 613 005 Thanjavur Tamil Nadu India
| | - S. R. Priyadarshini
- Ministry of Food Processing Industries, Govt. of India Computational Modeling and Nanoscale Processing Unit Indian Institute of Food Processing Technology (IIFPT) 613 005 Thanjavur Tamil Nadu India
| | - Jeyan A. Moses
- Ministry of Food Processing Industries, Govt. of India Computational Modeling and Nanoscale Processing Unit Indian Institute of Food Processing Technology (IIFPT) 613 005 Thanjavur Tamil Nadu India
| | - C. Anandharamakrishnan
- Ministry of Food Processing Industries, Govt. of India Computational Modeling and Nanoscale Processing Unit Indian Institute of Food Processing Technology (IIFPT) 613 005 Thanjavur Tamil Nadu India
| |
Collapse
|
47
|
Manousi N, Alampanos V, Priovolos I, Kabir A, Furton KG, Rosenberg E, Zachariadis GA, Samanidou VF. Designing a moderately hydrophobic sol-gel monolithic Carbowax 20 M sorbent for the capsule phase microextraction of triazine herbicides from water samples prior to HPLC analysis. Talanta 2021; 234:122710. [PMID: 34364502 DOI: 10.1016/j.talanta.2021.122710] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 01/23/2023]
Abstract
The determination of triazine herbicides in water samples is of utmost importance, due to their persistence and excessive use. However, since the concentration of triazine pesticides in real samples is low, an extraction/preconcentration step is typically required. Capsule phase microextraction (CPME) is a recently introduced sample preparation technique in which highly efficient sol-gel sorbents are encapsulated in a tubular polymer membrane. This particular design integrates the filtration and stirring mechanism into one extraction device, enabling the application of CPME for in situ sampling. In this study, CPME coupled to high performance liquid chromatography-diode array detection (HPLC-DAD) was employed for the first time for the determination of six triazine herbicides (i.e., simazine, cyanazine, atrazine, prometryn, terbuthylazine and propazine) in water samples. Microextraction capsules containing a moderately hydrophobic sol-gel Carbowax 20 M sorbent provided the highest extraction efficiency towards the examined pesticides. The main parameters affecting the adsorption and desorption steps of the CPME procedure were investigated and optimized. Under the selected conditions, limits of detection (signal/noise = 3.3) were 0.15 ng mL-1 for the target analytes. Moreover, the relative standard deviation for the within-day and between-days repeatability were less than 7.2% and 9.9%, respectively. The method was successfully applied to the analysis of mineral water, tap water, rainwater and lake water samples. The reported protocol could overcome the need for sample filtration prior to the sample preparation of the water samples, resulting in simplification of the overall sample handling, improved data quality with minimal loss of analytes and reduced sample preparation cost.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Vasileios Alampanos
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Ioannis Priovolos
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Kenneth G Furton
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Erwin Rosenberg
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, 1060, Vienna, Austria
| | - George A Zachariadis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Victoria F Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.
| |
Collapse
|
48
|
Magnetic Solid-Phase Extraction Followed by HPLC–DAD for Highly Sensitive Determination of Phthalate Esters in Edible Vegetable Oils. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02041-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
da Silva Costa R, Sainara Maia Fernandes T, de Sousa Almeida E, Tomé Oliveira J, Carvalho Guedes JA, Julião Zocolo G, Wagner de Sousa F, do Nascimento RF. Potential risk of BPA and phthalates in commercial water bottles: a minireview. JOURNAL OF WATER AND HEALTH 2021; 19:411-435. [PMID: 34152295 DOI: 10.2166/wh.2021.202] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The global water bottling market grows annually. Today, to ensure consumer safety, it is important to verify the possible migration of compounds from bottles into the water contained in them. Potential health risks due to the prevalence of bisphenol A (BPA) and phthalates (PAEs) exposure through water bottle consumption have become an important issue. BPA, benzyl butyl phthalate (BBP), di-n-butyl phthalate (DBP) and di (2-ethylhexyl) phthalate (DEHP) can cause adverse effects on human health. Papers of literature published in English, with BPA, BBP, DBP and DEHP detections during 2017, by 2019 by liquid chromatography and gas chromatography analysis methods were searched. The highest concentrations of BPA, BBP, DBP and DEHP in all the bottled waters studied were found to be 5.7, 12.11, 82.8 and 64.0 μg/L, respectively. DBP was the most compound detected and the main contributor by bottled water consumption with 23.7% of the Tolerable Daily Intake (TDI). Based on the risk assessment, BPA, BBP, DBP and DEHP in commercial water bottles do not pose a serious concern for humans. The average estrogen equivalent level revealed that BPA, BBP, DBP and DEHP in bottled waters may induce adverse estrogenic effects on human health.
Collapse
Affiliation(s)
- Rouse da Silva Costa
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, R. Humberto Monte S/N, 60455700 Fortaleza, CE, Brazil E-mail:
| | - Tatiana Sainara Maia Fernandes
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, R. Humberto Monte S/N, 60455700 Fortaleza, CE, Brazil E-mail:
| | - Edmilson de Sousa Almeida
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, R. Humberto Monte S/N, 60455700 Fortaleza, CE, Brazil E-mail:
| | - Juliene Tomé Oliveira
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, R. Humberto Monte S/N, 60455700 Fortaleza, CE, Brazil E-mail:
| | - Jhonyson Arruda Carvalho Guedes
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, R. Humberto Monte S/N, 60455700 Fortaleza, CE, Brazil E-mail: ; Embrapa Tropical Agroindustry, R. Dra Sara Mesquita 2270, 60511-110 Fortaleza, CE, Brazil
| | | | - Francisco Wagner de Sousa
- Department of Education - Chemistry Licenciate, Federal Institute of Education, Science and Technology, R. Francisco da Rocha Martins S/N, 61609-090 Caucaia, CE, Brazil
| | - Ronaldo Ferreira do Nascimento
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, R. Humberto Monte S/N, 60455700 Fortaleza, CE, Brazil E-mail:
| |
Collapse
|
50
|
Manousi N, Plastiras OE, Deliyanni EA, Zachariadis GA. Green Bioanalytical Applications of Graphene Oxide for the Extraction of Small Organic Molecules. Molecules 2021; 26:molecules26092790. [PMID: 34065150 PMCID: PMC8126010 DOI: 10.3390/molecules26092790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
Bioanalysis is the scientific field of the quantitative determination of xenobiotics (e.g., drugs and their metabolites) and biotics (e.g., macromolecules) in biological matrices. The most common samples in bioanalysis include blood (i.e., serum, plasma and whole blood) and urine. However, the analysis of alternative biosamples, such as hair and nails are gaining more and more attention. The main limitations for the determination of small organic compounds in biological samples is their low concentration in these matrices, in combination with the sample complexity. Therefore, a sample preparation/analyte preconcentration step is typically required. Currently, the development of novel microextraction and miniaturized extraction techniques, as well as novel adsorbents for the analysis of biosamples, in compliance with the requirements of Green Analytical Chemistry, is in the forefront of research in analytical chemistry. Graphene oxide (GO) is undoubtedly a powerful adsorbent for sample preparation that has been successfully coupled with a plethora of green extraction techniques. GO is composed of carbon atoms in a sp2 single-atom layer of a hybrid connection, and it exhibits high surface area, as well as good mechanical and thermal stability. In this review, we aim to discuss the applications of GO and functionalized GO derivatives in microextraction and miniaturized extraction techniques for the determination of small organic molecules in biological samples.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Correspondence: (N.M.); (G.A.Z.)
| | - Orfeas-Evangelos Plastiras
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Eleni A. Deliyanni
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - George A. Zachariadis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Correspondence: (N.M.); (G.A.Z.)
| |
Collapse
|