1
|
Ouyang M, Liu T, Yuan X, Xie C, Luo K, Zhou L. Nanomaterials-based aptasensors for rapid detection and early warning of key food contaminants: A review. Food Chem 2025; 462:140990. [PMID: 39208725 DOI: 10.1016/j.foodchem.2024.140990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/04/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The frequent occurrence of food safety incidents has aroused public concern about food safety and key contaminants. Foodborne pathogen contamination, pesticide residues, heavy metal residues, and other food safety problems will significantly impact human health. Therefore, developing efficient and sensitive detection method to ensure food safety early warning is paramount. The aptamer-based sensor (aptasensor) is a novel analytical tool with strong targeting, high sensitivity, low cost, etc. It has been extensively utilized in the pharmaceutical industry, biomedicine, environmental engineering, food safety detection, and in other diverse fields. This work reviewed the latest research progress of aptasensors for food analysis and detection, mainly introducing their application in detecting various key food contaminants. Subsequently, the sensing mechanism and performance of aptasensors are discussed. Finally, the review will examine the challenges and opportunities related to aptasensors for detecting major contaminants in food, and advance implementation of aptasensors in food safety and detection.
Collapse
Affiliation(s)
- Min Ouyang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Ting Liu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaomin Yuan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Can Xie
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Kun Luo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
2
|
Uğurlu Ö, Man E, Gök O, Ülker G, Soytürk H, Özyurt C, Evran S. A review of aptamer-conjugated nanomaterials for analytical sample preparation: Classification according to the utilized nanomaterials. Anal Chim Acta 2024; 1287:342001. [PMID: 38182359 DOI: 10.1016/j.aca.2023.342001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Sample extraction before detection is a critical step in analysis. Since targets of interest are often found in complex matrices, the sample can not be directly introduced to the analytical instrument. Nanomaterials with unique physical-chemical properties are excellent supports for use in sorbent-based extraction. However, they lack selectivity and thus need to be functionalized with target-capturing molecules. Antibodies and molecularly imprinted polymers (MIPs) can be used for this purpose, but they have some problems that limit their practical applications. Hence, functionalization of nanomaterials for selectivity remains a problem. RESULTS Nucleic acid aptamers are affinity reagents that can provide superiority to antibodies since they can be selected in vitro and at a lower cost. Moreover, aptamers can be chemically synthesized and easily modified with different functional groups. Hence, aptamers are good candidates to impart selectivity to the nanomaterials. Recent studies focus on the integration of aptamers with magnetic nanoparticles, carbon-based nanomaterials, metal-organic frameworks, gold nanoparticles, gold nanorods, silica nanomaterials, and nanofibers. The unique properties of nanomaterials and aptamers make the aptamer-conjugated nanomaterials attractive for use in sample preparation. Aptamer-functionalized nanomaterials have been successfully used for selective extraction of proteins, small molecules, and cells from different types of complex samples such as serum, urine, and milk. In particular, magnetic nanoparticles have a wider use due to the rapid extraction of the sample under magnetic field. SIGNIFICANCE In this review, we aim to emphasize how beneficial features of nanomaterials and aptamers could be combined for extraction or enrichment of the analytes from complex samples. We aim to highlight that the benefits are twofold in terms of selectivity and efficiency when employing nanomaterials and aptamers together as a single platform.
Collapse
Affiliation(s)
- Özge Uğurlu
- Department of Medical Services and Techniques, Hatay Vocational School of Health Services, Hatay Mustafa Kemal University, Tayfur Sökmen Campus, 31060, Alahan-Antakya, Hatay, Turkey; Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey
| | - Ezgi Man
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey; EGE SCIENCE PRO Scientific Research Inc., Ege University, IdeEGE Technology Development Zone, 35100, İzmir, Turkey
| | - Oğuz Gök
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey
| | - Gözde Ülker
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey
| | - Hakan Soytürk
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey
| | - Canan Özyurt
- Department of Chemistry and Chemical Processing Technologies, Lapseki Vocational School, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Serap Evran
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey.
| |
Collapse
|
3
|
Lv Y, Shang Y, Li L, Zhang Y, Ma Q. Online hyphenation of in-capillary aptamer-functionalized solid-phase microextraction and extraction nanoelectrospray ionization for miniature mass spectrometry analysis. Analyst 2023; 148:1815-1823. [PMID: 36939082 DOI: 10.1039/d3an00111c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Direct mass spectrometry (MS) analysis is vital to chemical and biological investigations. However, measuring complex samples is challenging due to matrix interference, resulting in compromised MS performance. In this study, an integrated experimental protocol has been developed, combining in-capillary aptamer-functionalized solid-phase microextraction (SPME), extraction nanoelectrospray ionization (nanoESI), and miniature MS analysis. The established method was applied to analyze caffeine in electronic cigarette liquid and beverage samples as proof-of-concept demonstrations. A custom SPME strip fabricated with caffeine-binding aptamers was prepared with an immobilization density of up to 0.812 nmol cm-2. Critical parameters affecting the effects of extraction, desorption, and ionization were optimized. A novel transition ion ratio-based strategy with enhanced quantitation accuracy was developed. The analytical performance of the proposed method was evaluated under optimized conditions. Acceptable recoveries of 87.5-111.5% with relative standard deviations of 3.1-6.1% and satisfactory sensitivity with limits of detection of 1.5 and 3 ng mL-1 and limits of quantitation of 5 and 10 ng mL-1 were obtained, respectively. The developed approach demonstrates a promising potential for rapid on-site applications with appealing analytical performance and efficiency.
Collapse
Affiliation(s)
- Yueguang Lv
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| | - Yuhan Shang
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| | - Linsen Li
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China. .,Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Ying Zhang
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| | - Qiang Ma
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| |
Collapse
|
4
|
Combination of Screen-Printed Carbon Electrode and Molecularly Imprinted Polymers for the Selective Determination of Phenolic Compounds in Wine. Antioxidants (Basel) 2022; 11:antiox11102036. [PMID: 36290759 PMCID: PMC9598643 DOI: 10.3390/antiox11102036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Caffeic acid (CA) is an efficient antioxidant found in wine and in plants and can be extracted from the by-products of the food industry. A molecularly imprinted polymer specific to caffeic acid (CA-MIP) was prepared by radical polymerization using N-phenylacrylamide as the functional monomer, ethylene glycol dimethacrylate as the cross-linker, and azobisisobutyronitrile as the initiator, in the presence of CA as the template molecule. The rebinding activities between the polymers and CA were promoted by an indirect method and characterized by cyclic voltammetry (CV) using a screen-printed carbon electrode (SPCE). It is a fast method, which only requires simple and portable instrumentation. The polymer showed a high selectivity toward CA and a good repeatability. CA-MIP was then applied in wine samples spiked with CA, and the results were compared to those obtained by a chromatographic method. With a limit of detection of 0.06 mM in wine, the recovery values confirmed that the method is suitable for further applications.
Collapse
|
5
|
Recent developments in application of nucleic acid aptamer in food safety. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Emerging affinity ligands and support materials for the enrichment of monoclonal antibodies. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Wang J, Zhu L, Li T, Li X, Huang K, Xu W. Multiple functionalities of functional nucleic acids for developing high-performance lateral flow assays. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Khoshbin Z, Abnous K, Taghdisi SM, Verdian A, Sameiyan E, Ramezani M, Alibolandi M. An ultra-sensitive dual-responsive aptasensor with combination of liquid crystal and intercalating dye molecules: A food toxin case study. Food Chem 2022; 381:132265. [PMID: 35121315 DOI: 10.1016/j.foodchem.2022.132265] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/29/2021] [Accepted: 01/24/2022] [Indexed: 01/21/2023]
Abstract
Herein, a label-free aptasensor was designed through forming a double-stranded DNA skeleton on the glass substrate for ultrasensitive quantification of ochratoxin A (OTA) as a case study. The function fundament of the dual-responsive aptasensor was the perturbation of the vertical alignment of the liquid crystals (LCs) and intercalation of the SYBR Green I (SGI) dye molecules between the base pairs of the double-stranded DNA structure. The presence of OTA decomposed the double-stranded structure of DNA by releasing the OTA-specific aptamer from the sensing platform that induced an apparent alteration of the optical and fluorescent responses. The aptasensor specifically detected the ultra-low levels of OTA as 47.0E-9 pM (0.047 aM) and 34.0E-3 pM (34 fM) based on the polarized and fluorescent responses, respectively. The aptasensor monitored OTA in the coffee and grape drink samples. The aptasensor provides promising insight for manufacturing real-time, cost-effective, and portable sensing devices for food control usage.
Collapse
Affiliation(s)
- Zahra Khoshbin
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Elham Sameiyan
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Xu Z, Zhang Z, She Z, Lin C, Lin X, Xie Z. Aptamer-functionalized metal-organic framework-coated nanofibers with multi-affinity sites for highly sensitive, selective recognition of ultra-trace microcystin-LR. Talanta 2022; 236:122880. [PMID: 34635260 DOI: 10.1016/j.talanta.2021.122880] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/26/2022]
Abstract
A novel aptamer-functionalized metal-organic framework nanofibrous composite (viz. PAN/UiO@UiO2-N3-aptamer) with a high aptamer coverage density was proposed based on the electrospinning and seeded growth method, and used for specific affinity recognition of trace Microcystin-LR (MC-LR). Heterobifunctional ligand was used to modify the metal-organic framework nanoparticles (MOF NPs) surface, which could passivate the MOF surface with respect to unmodified DNA, followed by coupling massive aptamers on MOF of the solid-phase microextraction (SPME) fiber using click chemistry. Characterizations including morphology, spectra analysis, mechanical stability, binding capacity and specificity were fulfilled. Applied to the analysis of MC-LR, the good selective and sensitive recognition were obtained with the detection limit as low as 0.003 ng/mL, which was better than most non-specific SPME or solid-phase extraction (SPE) protocols. The stability and reproducibility were acceptable, and the intra-day, inter-day and column-to-column relative standard deviations (RSDs) for the recovery of MC-LR were gained in the range from 2.5% to 14.3%, respectively. Satisfactory recoveries of MC-LR in environmental water samples were measured as 96.3 ± 4.7% - 98.9 ± 2.7% (n = 3) in tap water, 94.4 ± 2.5% - 96.1 ± 3.5% (n = 3) in pond water, and 97.0 ± 2.1% - 97.9 ± 3.1% (n = 3) in river water, respectively. This work demonstrated that the electrospun nanofibrous composite with massive aptamers would be a better alternative for ultra-trace MC-LR detection with good selectivity, matrix-resistance ability and high resolution.
Collapse
Affiliation(s)
- Zhiqun Xu
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Zhexiang Zhang
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Zongkang She
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Chenchen Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Xucong Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, People's Republic of China; Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fujian, Fuzhou, 350108, People's Republic of China.
| | - Zenghong Xie
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, People's Republic of China; Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fujian, Fuzhou, 350108, People's Republic of China
| |
Collapse
|
10
|
Xu Z, Fan G, Zheng T, Lin C, Lin X, Xie Z. Aptamer-functionalized metal-organic framework-based electrospun nanofibrous composite coating fiber for specific recognition of ultratrace microcystin in water. J Chromatogr A 2021; 1656:462542. [PMID: 34543883 DOI: 10.1016/j.chroma.2021.462542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/23/2021] [Accepted: 09/04/2021] [Indexed: 02/01/2023]
Abstract
A novel aptamer@AuNPs@UiO-66-NH2 electrospun nanofibrous coating fiber for specific recognition of microcystin-LR (MC-LR) was proposed by using electrospinning, metal-organic frameworks (MOF) seed growth and AuNPs bridging aptamer strategies. Characterization of morphology, structure and stability of the obtained affinity nanofibrous coating fiber were investigated. High loading of MOFs and aptamers on the nanofibrous fiber were achieved and successfully applied for accurate identification of MC-LR by solid-phase microextraction (SPME) coupled with LC-MS. Highly specific recognition of MC-LR with little interference of analogs was achieved with extremely low LOD (0.004 ng/mL), good precision (CV% < 11.0%) and low relative error (RE% = -1.5% to -10.0%), which was rather better than that of the traditional SPME or SPE protocols. Satisfactory recoveries of MC-LR were obtained in the range of 92.0-96.8% (n = 3) in fortified tap water, raw pond water and river water samples. This work revealed an attractive alternative access to specific recognition and super-sensitive analysis of MC-LR in water.
Collapse
Affiliation(s)
- Zhiqun Xu
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Guanghui Fan
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Tuo Zheng
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Chenchen Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Xucong Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou 350108, People's Republic of China; Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fuzhou, Fujian 350108, People's Republic of China.
| | - Zenghong Xie
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou 350108, People's Republic of China; Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fuzhou, Fujian 350108, People's Republic of China
| |
Collapse
|
11
|
Zhao T, Ding X, Lin C, Lin X, Xie Z. In situ photo-initiated polymerized oligonucleotide-functionalized hydrophilic capillary affinity monolith for highly selective in-tube microextraction of ochratoxin A mycotoxin. Mikrochim Acta 2021; 188:341. [PMID: 34523048 DOI: 10.1007/s00604-021-04997-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022]
Abstract
A photo-initiated polymerized oligonucleotide-grafted hydrophilic affinity monolithic column was synthesized in situ, and exploited for selective in-tube solid phase micro-extraction (IT-SPME) protocol towards the sensitive detection of ochratoxin A (OTA). Only 7 min was required for the rapid polymerization of aptamer-based affinity monolith, which was much less than the reaction time of most thermal polymerization (12-16 h) and sol-gel chemistry methods (up to 52 h). Characterizations such as polymerization recipes, structure morphology, FTIR spectrum, elemental mapping, mechanical stability, and specific recognition performance were evaluated. A significantly hydrophilic nature with a low contact angle of 15° was observed, and a mixed-mode mechanism including aptamer affinity recognition and hydrophilic interaction (HI) was employed. By coupling with HPLC-fluorescence detection, the highly specific online recognition performance was achieved with an extremely low nonspecific adsorption of the analogues. The calibration curve of OTA was obtained in the concentration range 0.05-50.00 ng·mL-1 with a limit of detection (LOD, S/N = 3) of 0.012 ng·mL-1. Applied to sample analysis, acceptable recovery yields of 95.1 ± 1.4% - 99.5 ± 2.2% (n = 3) were obtained in beer and red wine. The proposed method lighted a promising way to efficiently preparing a hydrophilic aptamer-affinity monolith for highly specific recognition of trace mycotoxin by IT-SPME coupled with HPLC. A hydrophilic oligonucleotide-based affinity capillary monolith was explored via in situ photopolymerization for overcoming low preparation efficiency and achieving high-performance online IT-SPME of OTA mycotoxin.
Collapse
Affiliation(s)
- Tingting Zhao
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Xinyue Ding
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Chenchen Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Xucong Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, People's Republic of China.
| | - Zenghong Xie
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, People's Republic of China
| |
Collapse
|
12
|
Zhao T, Tong S, Zhou S, Lin C, Lin X, Xie Z. A facile aptamer immobilization strategy to fabricate a robust affinity monolith for highly specific in-tube solid-phase microextraction. Analyst 2021; 146:5732-5739. [PMID: 34515698 DOI: 10.1039/d1an00993a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Developing a functional affinity monolithic column towards in-tube solid-phase microextraction (IT-SPME) for selective sample pretreatment is critical. Herein, a high-performance capillary affinity monolithic column with an ultra-high aptamer coverage density was rapidly fabricated via a simple adsorption strategy, in which aptamers with natural sequences were directly immobilized on an ammonium-based strongly cationic matrix. Limitations of the traditional biological or covalent methods such as time-consuming modification reactions, special requirement of active groups (e.g. -NH2 and -SH) on the aptamer, and low aptamer coverage density levels were avoided. An ultra-high coverage density of 8616 pmol μL-1 was achieved with excellent stability, and the highest aptamer-modification level among all the current methods was reached. Selective recognition and high recovery yields of the model mycotoxin ochratoxin A (OTA) were achieved in 95.9 ± 0.98%-97.9 ± 0.28% (n = 3). In particular, there was little cross-reactivity towards the OTB analogue of only 0.5% even in the case of 250 fold of the analogue OTB, which was not reported in previous affinity monoliths. Upon sample analysis, satisfactory discriminations of trace OTA were obtained at 93.7 ± 1.4%-95.5 ± 2.5% (n = 3) in beer and wheat. A facile and direct method for efficiently fabricating an aptamer-based affinity monolith towards online selective IT-SPME was proposed.
Collapse
Affiliation(s)
- Tingting Zhao
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, P.R. China.
| | - Shiqian Tong
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, P.R. China.
| | - Susu Zhou
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, P.R. China.
| | - Chenchen Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, P.R. China.
| | - Xucong Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, P.R. China. .,Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fujian, Fuzhou, 350108, P.R. China
| | - Zenghong Xie
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, P.R. China. .,Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fujian, Fuzhou, 350108, P.R. China
| |
Collapse
|
13
|
Alahmad W, Varanusupakul P, Varanusupakul P. Recent Developments and Applications of Microfluidic Paper-Based Analytical Devices for the Detection of Biological and Chemical Hazards in Foods: A Critical Review. Crit Rev Anal Chem 2021; 53:233-252. [PMID: 34304654 DOI: 10.1080/10408347.2021.1949695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nowadays, food safety has become a major concern for the sustainability of global public health. Through the production and distribution steps, food can be contaminated by either chemical hazards or pathogens, and the determination of these plays a critical role in the processes of ensuring food safety. Therefore, the development of analytical tools that can provide rapid screening of these hazards is highly necessary. Microfluidic paper-based analytical devices (µPADs) have advanced significantly in recent years as they are rapid and low-cost analytical screening tools for testing contaminated food products. This review focuses on recent developments of µPADs for various applications in the food safety field. A description of the fabrication of selected papers is briefly discussed, and evaluation of the μPADs' performance with regard to their precision and accuracy as well as their limits of detection is critically assessed. The advantages and disadvantages of these devices are highlighted.
Collapse
Affiliation(s)
- Waleed Alahmad
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Pakorn Varanusupakul
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
14
|
Khoshbin Z, Abnous K, Taghdisi SM, Verdian A. A novel liquid crystal-based aptasensor for ultra-low detection of ochratoxin a using a π-shaped DNA structure: Promising for future on-site detection test strips. Biosens Bioelectron 2021; 191:113457. [PMID: 34175647 DOI: 10.1016/j.bios.2021.113457] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/22/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022]
Abstract
Ochratoxin A (OTA) as the most dangerous mycotoxin is produced by Aspergillus Ochraceus and Penicillium verrucosum. OTA can be found in beverages and foodstuffs that induces the teratogenic, nephrotoxic, carcinogenic, and immunosuppressive effects on humans. Hence, developing highly sensitive methods for its detection is of great importance. Herein, a novel aptasensor was designed for the label-free monitoring of the ultra-low OTA levels by a combination of the superiority of aptamers and long-range orientational order of liquid crystals (LCs). The aptasensing strategy was based on the conformational switch of the immobilized π-shaped DNA structure on the glass substrate in presence of the target. A shift in the orientation of LCs from random to homeotropic state led to the apparent alteration of the optical appearance of the aptasensor platform from bright to dark. The LC-based aptasensor especially detects OTA at the ultra-trace level as low as 0.63 aM with comparable selectivity. The aptasensor could detect OTA successfully in the grape juice, coffee, and human serum samples. The LC-based aptasensor paves a way for developing portable and real-time sensing probes with high performance for food safety control and clinical application.
Collapse
Affiliation(s)
- Zahra Khoshbin
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|
15
|
|
16
|
Grecco CF, Souza ID, Queiroz MEC. Novel materials as capillary coatings for in‐tube solid‐phase microextraction for bioanalysis. J Sep Sci 2021; 44:1662-1693. [DOI: 10.1002/jssc.202001070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/11/2021] [Accepted: 01/31/2021] [Indexed: 12/18/2022]
Affiliation(s)
- Caroline Fernandes Grecco
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Departamento de Química Universidade de São Paulo São Paulo Brazil
| | - Israel Donizeti Souza
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Departamento de Química Universidade de São Paulo São Paulo Brazil
| | - Maria Eugênia Costa Queiroz
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Departamento de Química Universidade de São Paulo São Paulo Brazil
| |
Collapse
|
17
|
Zhang Q, Yang Y, Zhang C, Zheng Y, Wu Y, Wang X. Development of an aptamer-functionalized capillary monolithic column for the highly-selective and highly-efficient recognition of patulin. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107461] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Allemailem KS, Almatroudi A, Alsahli MA, Basfar GT, Alrumaihi F, Rahmani AH, Khan AA. Recent advances in understanding oligonucleotide aptamers and their applications as therapeutic agents. 3 Biotech 2020; 10:551. [PMID: 33269185 PMCID: PMC7686427 DOI: 10.1007/s13205-020-02546-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
The innovative discovery of aptamers was based on target-specific treatment in clinical diagnostics and therapeutics. Aptamers are synthetic, single-stranded oligonucleotides, simply described as chemical antibodies, which can bind to diverse targets with high specificity and affinity. Aptamers are synthesized by the SELEX technique, and possess distinctive properties as small size (10-50 kDa), higher stability, easy manufacture and less immunogenicity. These oligonucleotides are easily degraded by nucleases, so require some important modifications like capping and incorporation of modified nucleotides. RNA aptamers can be modified chemically on 2' positions using -NH3, -F, -deoxy, or -OMe groups to enhance their nuclease resistance. Aptamers have been employed for multiple purposes, as direct drugs or aptamer-drug conjugates targeted against different diseased cells. Different aptamer-conjugated nanovehicles (e.g., micelles, liposomes, silica nano-shells) have been designed to transport diverse anticancer-drugs like doxorubicin and cisplatin in bulk to minimize systemic cytotoxicity. Some drug-loaded nanovehicles (up to 97% loading capacity) and conjugated with specific aptamer resulted in more than 60% tumor inhibition as compared to unconjugated drug-loaded nanovehicles which showed only 31% cancer inhibition. In addition, aptamers have been widely used in basic research, food safety, environmental monitoring, clinical diagnostics and therapeutics. Different FDA-approved RNA and DNA aptamers are now available in the market, used for the treatment of diverse diseases, especially cancer. These aptamers include Macugen, Pegaptanib, etc. Despite a good progress in aptamer use, the present-day chemotherapeutics and drug targeting systems still face great challenges. Here in this review article, we are discussing nucleic acid aptamers, preparation, role in the transportation of different nanoparticle vehicles and their applications as therapeutic agents.
Collapse
Affiliation(s)
- Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraydah, 51452 Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ghaiyda Talal Basfar
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraydah, 51452 Saudi Arabia
| |
Collapse
|
19
|
Online high-efficient specific detection of zearalenone in rice by using high-loading aptamer affinity hydrophilic monolithic column coupled with HPLC. Talanta 2020; 219:121309. [DOI: 10.1016/j.talanta.2020.121309] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022]
|
20
|
Luo J, Huang Z, Liu L, Wang H, Ruan G, Zhao C, Du F. Recent advances in separation applications of polymerized high internal phase emulsions. J Sep Sci 2020; 44:169-187. [PMID: 32845083 DOI: 10.1002/jssc.202000612] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 01/11/2023]
Abstract
Polymerized high internal phase emulsions as highly porous adsorption materials have received increasing attention and wide applications in separation science in recent years due to their remarkable merits such as highly interconnected porosity, high permeability, good thermal and chemical stability, and tailorable chemistry. In this review, we attempt to introduce some strategies to utilize polymerized high internal phase emulsions for separation science, and highlight the recent advances made in the applications of polymerized high internal phase emulsions for diverse separation of small organic molecules, carbon dioxide, metal ions, proteins, and other interesting targets. Potential challenges and future perspectives for polymerized high internal phase emulsion research in the field of separation science are also speculated at the end of this review.
Collapse
Affiliation(s)
- Jinhua Luo
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China
| | - Zhujun Huang
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China.,Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| | - Linqi Liu
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China
| | - Haiyan Wang
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China
| | - Guihua Ruan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| | - Chenxi Zhao
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China
| | - Fuyou Du
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China.,Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| |
Collapse
|
21
|
Negahdary M. Electrochemical aptasensors based on the gold nanostructures. Talanta 2020; 216:120999. [PMID: 32456913 DOI: 10.1016/j.talanta.2020.120999] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
Electrochemical aptasensors as novel diagnostic tools have attracted sufficient research interest in biomedical sciences. In this review, recent leading trends about gold (Au) nanostructures based electrochemical aptasensors have been collected, reviewed, and compared. Here, the considered electrochemical aptasensors were categorized based on the analytes and diagnostic techniques. Pharmaceutical analytes and biomolecules were reviewed in a separate section consisting of a variety of antibiotics, analgesics, and other biomolecules. Various aptasensors have also measured toxins, ions, and hazardous chemicals, and the findings of them have also been reviewed. Many aptasensors have been designed to detect different disease biomarkers that will play an essential role in the future of early diagnosis of diseases. Pathogen microorganisms have been considered as the analyte in several designed electrochemical aptasensors in recent researches, and their results have been reviewed and discussed as another section. Important aspects considered in the review of the mentioned aptasensors were the type of analyte, features of the aptamer as the biorecognition element, type of Au nanostructures, diagnostic technique, diagnostic mechanism, detection range and the limit of detection (LOD). In the last section, an in-depth analysis has been provided based on the crucial features of all included aptasensors.
Collapse
Affiliation(s)
- Masoud Negahdary
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
22
|
Xu J, Chi J, Lin C, Lin X, Xie Z. Towards high-efficient online specific discrimination of zearalenone by using gold nanoparticles@aptamer-based affinity monolithic column. J Chromatogr A 2020; 1620:461026. [PMID: 32178860 DOI: 10.1016/j.chroma.2020.461026] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/27/2020] [Accepted: 03/08/2020] [Indexed: 12/27/2022]
Abstract
Sensitive and specific analysis of zearalenone (ZEN) mycotoxin in cereals for ensuring food safety is critical and remains challenging. Herein, a new gold nanoparticles @aptamer-functionalized hybrid affinity monolithic column was proposed and employed for online specific recognition of ZEN by HPLC. Characterization on the morphology, Brunauer-Emmett-Teller (BET) surface area mechanical stability and specific performance of the obtained affinity monolith were investigated. A super-high aptamer coverage density could reach 3636 pmol/μL, which is preferable to gain an effective analysis of ZEN with high specificity and a low interference of co-existed substances including typical α-Zearalenol (α-ZOL) and Aflatoxin B1 (AFB1). The sensitive recognition of trace ZEN was obtained with the limit of detection (LOD) as low as 0.05 ng/mL. Applied to real cereal samples, satisfactory recoveries were obtained in the range of 91.6 ± 1.4%-97.8 ± 2.6% (n = 3) in corn, 93.8 ± 3.1%-95.0 ± 3.6% (n = 3) in wheat, and 90.9 ± 4.7%-94.7 ± 3.8% (n = 3) in rice, respectively. The results on quantitative analysis were similar to that of LC-MS and better than that obtained by using immunoaffinity column (IAC) or molecularly imprinted polymer (MIP). This protocol provided an efficient access to high-efficient online specific recognition of ZEN in cereals by using such an aptamer-affinity capillary monolithic column.
Collapse
Affiliation(s)
- Jinhua Xu
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China
| | - Jinxin Chi
- Xiamen huaxia University, Xiamen, 361024, China
| | - Chenchen Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China
| | - Xucong Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China.
| | - Zenghong Xie
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
23
|
Yang K, Li S, Liu L, Chen Y, Zhou W, Pei J, Liang Z, Zhang L, Zhang Y. Epitope Imprinting Technology: Progress, Applications, and Perspectives toward Artificial Antibodies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902048. [PMID: 31423663 DOI: 10.1002/adma.201902048] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/17/2019] [Indexed: 06/10/2023]
Abstract
Epitope imprinting is a promising tool to generate antibody-like specific recognition sites. Recently, because of the ease of obtaining templates, the flexibility in selecting monomers, their resistance to harsh environments, and the high specificity toward targets, epitope-imprinted materials have attracted much attention in various fields, such as bioanalysis, clinical therapy, and pharmacy. Here, the discussion is focused on the current representative epitope imprinting technologies, including epitope bulk imprinting and epitope surface imprinting. Moreover, the application of epitope-imprinted materials to the recognition of peptides, proteins, and cells is reviewed. Finally, the remaining challenges arising from the intrinsic properties of epitope imprinting are discussed, and future development in the field is prospected.
Collapse
Affiliation(s)
- Kaiguang Yang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Senwu Li
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lukuan Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yuwan Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wen Zhou
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jiaqi Pei
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
24
|
Affiliation(s)
- Valérie Pichon
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation-UMR Chimie Biologie Innovation 8231, ESPCI Paris, CNRS , PSL* Research University , 10 rue Vauquelin , 75005 Paris , France.,Sorbonne Université , 75005 Paris , France
| | - Nathalie Delaunay
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation-UMR Chimie Biologie Innovation 8231, ESPCI Paris, CNRS , PSL* Research University , 10 rue Vauquelin , 75005 Paris , France
| | - Audrey Combès
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation-UMR Chimie Biologie Innovation 8231, ESPCI Paris, CNRS , PSL* Research University , 10 rue Vauquelin , 75005 Paris , France
| |
Collapse
|
25
|
Xia L, Li Y, Liu Y, Li G, Xiao X. Recent advances in sample preparation techniques in China. J Sep Sci 2019; 43:189-201. [DOI: 10.1002/jssc.201900768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Ling Xia
- School of ChemistrySun Yat‐sen University Guangzhou P. R. China
| | - Yanxia Li
- School of ChemistrySun Yat‐sen University Guangzhou P. R. China
| | - Yulan Liu
- School of ChemistrySun Yat‐sen University Guangzhou P. R. China
| | - Gongke Li
- School of ChemistrySun Yat‐sen University Guangzhou P. R. China
| | - Xiaohua Xiao
- School of ChemistrySun Yat‐sen University Guangzhou P. R. China
| |
Collapse
|
26
|
Ma Y, Hao L, Lin X, Liu X, Qiu X, Zhang X, Hu X. An in-tube aptamer/gold nanoparticles coated capillary solid-phase microextraction for separation of adenosine in serum and urine samples. J Chromatogr A 2019; 1611:460617. [PMID: 31668868 DOI: 10.1016/j.chroma.2019.460617] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/26/2019] [Accepted: 10/09/2019] [Indexed: 11/29/2022]
Abstract
As an endogenous nucleoside, adenosine was significant for the diagnosis and treatment of some diseases, such as schizophrenia. However, due to the complicated matrix interference, it was difficult to monitor trace or ultra-trace adenosine directly in bio-samples. In this contribution, a novel in-tube SPME technique based on aptamer/Au nanoparticles coated open tubular fused-silica capillary was established to separate and enrich adenosine in bio-samples with high affinity. Therefore, a uniform and dense AuNPs layer was coated on the inner surface of the open tubular capillary, and then adenosine aptamer was immobilized on AuNPs with a high capacity of 2.44 μg per 27-cm capillary. As a result, the capillary shown high selectivity to adenosine with a selectivity factor of 14.4 when compared with the scrambled aptamer/AuNPs coated capillary. Also, the extraction amount of adenosine was 2.8-24.8 times higher than those of its structural analogs and contrast, such as guanosine, uridine, cytidine, thymidine, and toluic acid. After the optimization of extraction conditions, the aptamer/AuNPs coated in-tube SPME-HPLC method was developed for the adenosine assay with the linear range of 0.002-0.100 μg mL-1 and the detection limit of 0.45 ng mL-1. Subsequently, the approach was applied for trace adenosine monitoring in human serum and urine samples. It showed a strong performance of reducing matrix interference and improving sensitivity, and the spiking recoveries of 89.9-92.6% and 91.1-94.5% were achieved respectively.
Collapse
Affiliation(s)
- Yanxia Ma
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, PR China
| | - Lixian Hao
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, PR China
| | - Xiangjun Lin
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, PR China
| | - Xiaofei Liu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, PR China
| | - Xinni Qiu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, PR China
| | - Xiaoting Zhang
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, PR China
| | - Xiaogang Hu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, PR China.
| |
Collapse
|
27
|
Maciel EVS, de Toffoli AL, Neto ES, Nazario CED, Lanças FM. New materials in sample preparation: Recent advances and future trends. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115633] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
|
29
|
Yu X, Lai S, Wang L, Chen Y, Lin X, Xie Z. Preparation of aptamer-bound polyamine affinity monolithic column via a facile triazine-bridged strategy and application to on-column specific discrimination of ochratoxin A. J Sep Sci 2019; 42:2272-2279. [PMID: 31038265 DOI: 10.1002/jssc.201900175] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/10/2019] [Accepted: 04/17/2019] [Indexed: 12/25/2022]
Abstract
Developing a high-performance modification protocol is critical for efficiently fabricating affinity monolith. Herein, by using 2,4,6-trichloro-1,3,5-triazine as the linker, a simple triazine-bridged approach was proposed for efficiently fabricating aptamer-grafted polyhedral oligomeric silsesquioxane-polyethyleneimine affinity monolith with high specificity toward ochratoxin A. Experimental parameters, column characteristics and specificity performances of the resultant affinity monolith were investigated in detail. Under the optimal conditions, 2,4,6-trichloro-1,3,5-triazine was rapidly grafted on the polyamine matrix, and effectively applied to the subsequent bridge linkage of aptamers. It was simple and effective, which resulted in a significant decrease of modification time, excellent properties including the high coverage density of aptamer up to 1799 pmol/μL and sensitive detection of ochratoxin A as low as 10 pg/mL in beer samples. This protocol provides a facile approach for fabricating aptamer-grafted polyamine affinity monoliths with highly selective discrimination performance.
Collapse
Affiliation(s)
- Xia Yu
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, P. R. China.,Zhejiang Fuxing Environment Development, Zhejiang, P. R. China
| | - Shuoke Lai
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, P. R. China
| | - Li Wang
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, P. R. China
| | - Yiqiong Chen
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, P. R. China
| | - Xucong Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, P. R. China
| | - Zenghong Xie
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, P. R. China
| |
Collapse
|
30
|
Acquah C, Agyei D, Obeng EM, Pan S, Tan KX, Danquah MK. Aptamers: an emerging class of bioaffinity ligands in bioactive peptide applications. Crit Rev Food Sci Nutr 2019; 60:1195-1206. [PMID: 30714390 DOI: 10.1080/10408398.2018.1564234] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The food and health applications of bioactive peptides have grown remarkably in the past few decades. Current elucidations have shown that bioactive peptides have unique structural arrangement of amino acids, conferring distinct functionalities, and molecular affinity characteristics. However, whereas interest in the biological potency of bioactive peptides has grown, cost-effective techniques for monitoring the structural changes in these peptides and how these changes affect the biological properties have not grown at the same rate. Due to the high binding affinity of aptamers for other biomolecules, they have a huge potential for use in tracking the structural, conformational, and compositional changes in bioactive peptides. This review provides an overview of bioactive peptides and their essential structure-activity relationship. The review further highlights on the types and methods of synthesis of aptamers before the discussion of the prospects, merits, and challenges in the use of aptamers for bioaffinity interactions with bioactive peptides.
Collapse
Affiliation(s)
- Caleb Acquah
- Department of Chemical Engineering, Curtin University, Sarawak, Malaysia.,School of Nutrition Sciences, Faculty of Health Sciences, Curtin University, Sarawak, Malaysia
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Eugene Marfo Obeng
- Bioengineering Laboratory, Department of Chemical Engineering, Monash University, Victoria, Australia
| | - Sharadwata Pan
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Kei Xian Tan
- Department of Chemical Engineering, Curtin University, Sarawak, Malaysia
| | - Michael Kobina Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga, Tennessee, USA
| |
Collapse
|
31
|
Chen Y, Zhu D, Ding X, Qi G, Lin X, Xie Z. Highly hydrophilic polyhedral oligomeric silsesquioxane (POSS)-containing aptamer-modified affinity hybrid monolith for efficient on-column discrimination with low nonspecific adsorption. Analyst 2019; 144:1555-1564. [DOI: 10.1039/c8an01890a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly hydrophilic aptamer-modified POSS-containing hybrid affinity monolith is presented for efficient on-column discrimination with low non-specific adsorption.
Collapse
Affiliation(s)
- Yiqiong Chen
- Institute of Food Safety and Environment Monitoring
- Fuzhou University
- Fuzhou
- China
| | - Dandan Zhu
- Institute of Food Safety and Environment Monitoring
- Fuzhou University
- Fuzhou
- China
| | - Xinyue Ding
- Institute of Food Safety and Environment Monitoring
- Fuzhou University
- Fuzhou
- China
| | - Guomin Qi
- Institute of Food Safety and Environment Monitoring
- Fuzhou University
- Fuzhou
- China
| | - Xucong Lin
- Institute of Food Safety and Environment Monitoring
- Fuzhou University
- Fuzhou
- China
| | - Zenghong Xie
- Institute of Food Safety and Environment Monitoring
- Fuzhou University
- Fuzhou
- China
| |
Collapse
|
32
|
Wasilewski T, Szulczyński B, Kamysz W, Gębicki J, Namieśnik J. Evaluation of Three Peptide Immobilization Techniques on a QCM Surface Related to Acetaldehyde Responses in the Gas Phase. SENSORS 2018; 18:s18113942. [PMID: 30441858 PMCID: PMC6264005 DOI: 10.3390/s18113942] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 10/26/2018] [Accepted: 11/12/2018] [Indexed: 12/18/2022]
Abstract
The quartz-crystal microbalance is a sensitive and universal tool for measuring concentrations of various gases in the air. Biochemical functionalization of the QCM electrode allows a label-free detection of specific molecular interactions with high sensitivity and specificity. In addition, it enables a real-time determination of its kinetic rates and affinity constants. This makes QCM a versatile bioanalytical screening tool for various applications, with surface modifications ranging from the detection of single molecular monolayers to whole cells. Various types of biomaterials, including peptides mapping the binding sites of olfactory receptors, can be deposited as a sensitive element on the surface of the electrodes. One of key ways to ensure the sensitivity and accuracy of the sensor is provided by application of an optimal and repeatable method of immobilization. Therefore, effective sensors operation requires development of an optimal method of deposition. This paper reviews popular techniques (drop-casting, spin-coating, dip-coating) for coating peptides on piezoelectric crystals surface. Peptide (LEKKKKDC-NH₂) derived from an aldehyde binding site in the HarmOBP7 protein was synthesized and used as a sensing material for the biosensor. The degree of deposition of the sensitive layer was monitoring by variations in the sensors frequency. The highest mass threshold for QCM measurements for peptides was approximately 16.43 µg·mm-2 for spin coating method. Developed sensor exhibited repeatable response to acetaldehyde. Moreover, responses to toluene was observed to evaluate sensors specificity. Calibration curves of the three sensors showed good determination coefficients (R² > 0.99) for drop casting and dip coating and 0.97 for the spin-coating method. Sensors sensitivity vs. acetaldehyde were significantly higher for the dip-coating and drop-casting methods and lower for spin-coating one.
Collapse
Affiliation(s)
- Tomasz Wasilewski
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdansk, Poland.
| | - Bartosz Szulczyński
- Department of Process Engineering and Chemical Technology, Chemical Faculty, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdansk, Poland.
| | - Jacek Gębicki
- Department of Process Engineering and Chemical Technology, Chemical Faculty, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - Jacek Namieśnik
- Department of Analytical Chemistry, Chemical Faculty, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
33
|
Development of immunosorbents for the analysis of forchlorfenuron in fruit juices by ion mobility spectrometry. Anal Bioanal Chem 2018; 410:5961-5967. [PMID: 29982933 DOI: 10.1007/s00216-018-1213-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
Abstract
The advantages of using smart materials as immunosorbents in the analysis of complex matrices by ion mobility spectrometry (IMS) have been highlighted in this study. A novel analytical method has been proposed for the sensitive, selective, and fast determination of residues of the plant growth regulator forchlorfenuron in fruit juices. Three different monoclonal antibodies (s3#22, p2#21, and p6#41) were employed for the production of immunosorbents, based on Sepharose gel beads, which were characterized in terms of loading capacity, solvent resistance, and repeatability for its use in solid-phase extraction (SPE). Immunosorbents that were prepared with antibody p6#44 provided the best performance, with a loading capacity of 0.97 μg, a 10% (v/v) 2-propanol tolerance, and a reusability of at least eight uses. The SPE procedure involved the use of a column with 0.15 g Sepharose beads, containing 0.5 mg antibody, which was loaded to 20 mL of the sample, washed with 2 mL of water plus 2 mL of 10% (v/v) 2-propanol, and eluted with 2 mL of 2-propanol. The cleaned extract was directly analyzed by IMS, giving a limit of detection of 2 μg L-1 with a relative standard deviation of 7.6%. Trueness was assessed by the analysis of blank grape and kiwifruit juice samples spiked with forchlorfenuron concentrations from 10 to 400 μg L-1, with recoveries from 80 to 115%. The analytical performance of the proposed immunosorbent was compared with conventional extraction and cleanup methods, such as QuEChERS and C18-based SPE, giving the cleanest extracts for accurate determinations of forchlorfenuron by IMS. Graphical abstract ᅟ.
Collapse
|
34
|
Recent advances in graphene-based magnetic composites for magnetic solid-phase extraction. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.01.009] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Wu Y, Jiang T, Wu Z, Yu R. Internal standard-based SERS aptasensor for ultrasensitive quantitative detection of Ag + ion. Talanta 2018; 185:30-36. [PMID: 29759204 DOI: 10.1016/j.talanta.2018.03.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/28/2018] [Accepted: 03/07/2018] [Indexed: 12/17/2022]
Abstract
A ratiometric surface-enhanced Raman scattering (SERS) aptasensor based on internal standard (IS) methods was proposed for the ultrasensitive and reproducible quantitative detection of silver ion (Ag+) with Au@Ag core-shell nanoparticle (Au@Ag NP) substrate. In principle, the thiolated 5'-Rox C-containing labeled aptamer probe (Rox-aptamer) is firstly immobilized on the SERS substrate surface and then hybridizes with the complementary DNA (cDNA) to form a rigid double-stranded DNA (dsDNA), in which the Rox Raman labels is used to produce the Raman signal. Furthermore, the pyridine is employed as an IS element to provide the ratiometric determination of target. In the presence of Ag+, the Rox-aptamer is turned into the cytosine (C)-Ag+-C mediated hairpin structure, which remarkably reduces the distance between the Rox labels and the Au@Ag NP surface responsible for a measurable 'turn-on' signal change of Rox. This IS-based ratiometric SERS aptasensor exhibits a limit of detection of 50 pM for Ag+ with a linear detection range from 0.1 to 100 nM and the shortcoming of irreproducibility of SERS signal could be overcome. The proposed method provides a simple, robust, and rapid approach for the sensitive and reproducible quantitative detection of Ag+, and it could also be used for the detection of other metal ions which exhibits specific interactions with natural or synthetic bases.
Collapse
Affiliation(s)
- Yan Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China; Department of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Inorganic Special Functional Materials, Yangtze Normal University, Chongqing, Fuling 408003, People's Republic of China
| | - Tingting Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Zhaoyang Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China.
| | - Ruqin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| |
Collapse
|
36
|
Gan H, Xu H. A novel aptamer-based online magnetic solid phase extraction method for the selective determination of 8-hydroxy-2'-deoxyguanosine in human urine. Anal Chim Acta 2018; 1008:48-56. [PMID: 29420943 DOI: 10.1016/j.aca.2017.12.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/07/2017] [Accepted: 12/16/2017] [Indexed: 12/15/2022]
Abstract
In this work, an innovative magnetic aptamer adsorbent (Fe3O4-aptamer MNPs) was synthesized for the selective extraction of 8-hydroxy-2'-deoxyguanosine (8-OHdG). Amino-functionalized-Fe3O4 was crosslinked with 8-OHdG aptamer by glutaraldehyde and fixed into a steel stainless tube as the sorbent of magnetic solid phase extraction (MSPE). After selective extraction by the aptamer adsorbent, the adsorbed 8-OHdG was desorbed dynamically and online analyzed by high performance liquid chromatography-mass spectrometry (HPLC-MS). The synthesized sorbent presented outstanding features, including specific selectivity, high enrichment capacity, stability and biocompatibility. Moreover, this proposed MSPE-HPLC-MS can achieve adsorption and desorption operation integration, greatly simplify the analysis process and reduce human errors. When compared with offline MSPE, a sensitivity enhancement of 800 times was obtained for the online method. Some experimental parameters such as the amount of the sorbent, sample flow rate and sample volume, were optimized systematically. Under the optimal conditions, low limit of detection (0.01 ng mL-1, S/N = 3), limit of quantity (0.03 ng mL-1, S/N = 10) and wide linear range with a satisfactory correlation coefficient (R2 ≥ 0.9992) were obtained. And the recoveries of 8-OHdG in the urine samples varied from 82% to 116%. All these results revealed that the method is simple, rapid, selective, sensitive and automated, and it could be expected to become a potential approach for the selective determination of trace 8-OHdG in complex urinary samples.
Collapse
Affiliation(s)
- Haijiao Gan
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Hui Xu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China.
| |
Collapse
|
37
|
Hou X, Wang L, Guo Y. Recent Developments in Solid-phase Microextraction Coatings for Environmental and Biological Analysis. CHEM LETT 2017. [DOI: 10.1246/cl.170366] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiudan Hou
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Licheng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Yong Guo
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
38
|
Xu Y, Tan S, Liang Q, Ding M. One-Step Facile Synthesis of Aptamer-Modified Graphene Oxide for Highly Specific Enrichment of Human A-Thrombin in Plasma. SENSORS 2017; 17:s17091986. [PMID: 28902155 PMCID: PMC5621013 DOI: 10.3390/s17091986] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 01/25/2023]
Abstract
The enrichment of low-abundance proteins in complex biological samples plays an important role in clinical diagnostics and biomedical research. This work reports a novel one-step method for the synthesis of aptamer-modified graphene oxide (GO/Apt) nanocomposites, without introducing the use of gold, for the rapid and specific separation and enrichment of human α-thrombin from buffer solutions with highly concentrated interferences. The obtained GO/Apt nanocomposites had remarkable aptamer immobilization, up to 44.8 nmol/mg. Furthermore, GO/Apt nanocomposites exhibited significant specific enrichment efficiency for human α-thrombin (>90%), even under the presence of 3000-fold interference proteins, which was better than the performance of other nanomaterials. Finally, the GO/Apt nanocomposites were applied in the specific capturing of human α-thrombin in highly concentrated human plasma solutions with negligible nonspecific binding of other proteins, which demonstrated their prospects in rare protein analysis and biosensing applications.
Collapse
Affiliation(s)
- Yuan Xu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Siyuan Tan
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Qionglin Liang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Mingyu Ding
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
39
|
Ansari N, Yazdian-Robati R, Shahdordizadeh M, Wang Z, Ghazvini K. Aptasensors for quantitative detection of Salmonella Typhimurium. Anal Biochem 2017. [PMID: 28624297 DOI: 10.1016/j.ab.2017.06.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Salmonella is one of the most frequent causes of food borne infectious disease. Among nearly 2500 documented serotypes are reported, Salmonella Typhimurium is the number one serotype associated with salmonellosis worldwide. Many different methods have been developed for the detection and quantification of S. typhimurium. Most of these assays are usually expensive, time consuming and require difficult sample preparation steps. Therefore, it is necessary to develop rapid, robust, cost-effective and sensitive alternative detection methods. In the last years, aptasensors, used for detection of S. typhimurium in different samples. In this review, recent advances and applications of aptasensors for the detection and quantification of S. typhimurium in details have been summarized.
Collapse
Affiliation(s)
- Najmeh Ansari
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rezvan Yazdian-Robati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahin Shahdordizadeh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Buali Research Institute, Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
40
|
Carrasquilla C, Kapteyn E, Li Y, Brennan JD. Sol-Gel-Derived Biohybrid Materials Incorporating Long-Chain DNA Aptamers. Angew Chem Int Ed Engl 2017; 56:10686-10690. [PMID: 28556430 DOI: 10.1002/anie.201702859] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Indexed: 11/10/2022]
Abstract
Sol-gel-derived bio/inorganic hybrid materials have been examined for diverse applications, including biosensing, affinity chromatography and drug discovery. However, such materials have mostly been restricted to the interaction between entrapped biorecognition elements and small molecules, owing to the requirement for nanometer-scale mesopores in the matrix to retain entrapped biorecognition elements. Herein, we report on a new class of macroporous bio/inorganic hybrids, engineered through a high-throughput materials screening approach, that entrap micron-sized concatemeric DNA aptamers. We demonstrate that the entrapment of these long-chain DNA aptamers allows their retention within the macropores of the silica material, so that aptamers can interact with high molecular weight targets such as proteins. Our approach overcomes the major limitation of previous sol-gel-derived biohybrid materials by enabling molecular recognition for targets beyond small molecules.
Collapse
Affiliation(s)
- Carmen Carrasquilla
- Biointerfaces Institute and the Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 0A3, Canada), or
| | - Emily Kapteyn
- Biointerfaces Institute and the Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 0A3, Canada), or
| | - Yingfu Li
- Biointerfaces Institute and the Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 0A3, Canada), or
| | - John D Brennan
- Biointerfaces Institute and the Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 0A3, Canada), or
| |
Collapse
|
41
|
Carrasquilla C, Kapteyn E, Li Y, Brennan JD. Sol-Gel-Derived Biohybrid Materials Incorporating Long-Chain DNA Aptamers. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Carmen Carrasquilla
- Biointerfaces Institute and the Department of Biochemistry and Biomedical Sciences; McMaster University; 1280 Main Street West Hamilton ON L8S 0A3 Canada), or
| | - Emily Kapteyn
- Biointerfaces Institute and the Department of Biochemistry and Biomedical Sciences; McMaster University; 1280 Main Street West Hamilton ON L8S 0A3 Canada), or
| | - Yingfu Li
- Biointerfaces Institute and the Department of Biochemistry and Biomedical Sciences; McMaster University; 1280 Main Street West Hamilton ON L8S 0A3 Canada), or
| | - John D. Brennan
- Biointerfaces Institute and the Department of Biochemistry and Biomedical Sciences; McMaster University; 1280 Main Street West Hamilton ON L8S 0A3 Canada), or
| |
Collapse
|
42
|
Jagadeesan KK, Rossetti C, Abdel Qader A, Reubsaet L, Sellergren B, Laurell T, Ekström S. Filter Plate-Based Screening of MIP SPE Materials for Capture of the Biomarker Pro-Gastrin-Releasing Peptide. SLAS DISCOVERY 2017; 22:1253-1261. [PMID: 28346098 DOI: 10.1177/2472555216689494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Affinity-based solid-phase extraction (SPE) is an attractive low-cost sample preparation strategy for biomarker analysis. Molecularly imprinted polymers (MIPs) as affinity sorbents offer unique opportunities for affinity SPE, due to their low manufacturing cost and high robustness. A limitation is the prediction of their affinity; therefore, screening of analyte recovery and specificity within a large range of SPE conditions is important in order to ensure high-sensitivity detection and assay reproducibility. Here, a µ-SPE method for screening of the MIP-SPE materials using a commercial 384-well filter plate is presented. The method allows for rapid and automated screening using 10-30 µL of packed SPE sorbent per well and sample volumes in the range of 10-70 µL. This enables screening of many different SPE sorbents while simultaneously identifying optimal SPE conditions. In addition, the 384-well format also facilitates detection with a multitude of analytical platforms. Performance of the µ-MIP-SPE method was investigated using a series of MIPs designed to capture pro-gastrin-releasing peptide (ProGRP). Fractions coming from sample load, cartridge wash, and elution were collected and analyzed using mass spectrometry (MS). The top-performing MIPs were identified, together with proper SPE conditions.
Collapse
Affiliation(s)
| | - Cecilia Rossetti
- 2 Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Abed Abdel Qader
- 3 Department of Environmental Chemistry and Analytical Chemistry, Institute for Environmental Research (INFU), Technical University of Dortmund, Dortmund, Germany
| | - Léon Reubsaet
- 2 Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Börje Sellergren
- 4 Department of Biomedical Sciences, Faculty of Health and Society, University of Malmö, Malmö, Sweden
| | - Thomas Laurell
- 1 Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Simon Ekström
- 1 Department of Biomedical Engineering, Lund University, Lund, Sweden
| |
Collapse
|
43
|
Abnous K, Danesh NM, Ramezani M, Lavaee P, Jalalian SH, Yazdian-Robati R, Emrani AS, Hassanabad KY, Taghdisi SM. A novel aptamer-based DNA diamond nanostructure for in vivo targeted delivery of epirubicin to cancer cells. RSC Adv 2017. [DOI: 10.1039/c6ra28234b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The clinical administration of epirubicin (Epi) in the treatment of cancer has been restricted, owing to its cardiotoxicity.
Collapse
Affiliation(s)
- Khalil Abnous
- Pharmaceutical Research Center
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Noor Mohammad Danesh
- Nanotechnology Research Center
- Mashhad University of Medical Sciences
- Mashhad
- Iran
- Research Institute of Sciences and New Technology
| | - Mohammad Ramezani
- Nanotechnology Research Center
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Parirokh Lavaee
- Academic Center For Education
- Culture and Research (ACECR)-Mashhad Branch
- Mashhad
- Iran
| | - Seyed Hamid Jalalian
- Nanotechnology Research Center
- Mashhad University of Medical Sciences
- Mashhad
- Iran
- Academic Center For Education
| | - Rezvan Yazdian-Robati
- Department of Pharmaceutical Biotechnology
- School of Pharmacy
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | | | - Koroush Yousefi Hassanabad
- Department of Infectious Disease
- Children Medical Center
- North Khorasan University of Medical Sciences
- Bojnord
- Iran
| | | |
Collapse
|
44
|
High Internal Phase Emulsion Polymeric Monolith Extraction Coupling with High-Performance Liquid Chromatography for the Determination of Para Red and Sudan Dyes in Chilli Samples. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0751-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
45
|
Nameghi MA, Danesh NM, Ramezani M, Hassani FV, Abnous K, Taghdisi SM. A fluorescent aptasensor based on a DNA pyramid nanostructure for ultrasensitive detection of ochratoxin A. Anal Bioanal Chem 2016; 408:5811-5818. [PMID: 27311951 DOI: 10.1007/s00216-016-9693-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/02/2016] [Accepted: 06/04/2016] [Indexed: 12/14/2022]
Abstract
Analytical techniques for detection of ochratoxin A (OTA) in food products and blood serum are of great significance. In this study, a fluorescent aptasensor was developed for sensitive and specific detection of OTA, based on a DNA pyramid nanostructure (DPN) and PicoGreen (PG) dye. The designed aptasensor inherits characteristics of DPN, such as high stability and capacity for PG loading. PG, as a fluorescent dye, could bind to double-stranded DNA (dsDNA). In the absence of OTA, the pyramid structure of DPN remains intact, leading to a very strong fluorescence emission. Because of higher affinity of aptamer for its target relative to its complementary strand, upon addition of target, the pyramid structure of DPN is disassembled, leading to a weak fluorescence emission. The presented aptasensor showed high specificity toward OTA with a limit of detection (LOD) as low as 0.135 nM. Besides, the designed sensing strategy was successfully utilized to recognize OTA in serum and grape juice with LODs of 0.184 and 0.149 nM, respectively.
Collapse
Affiliation(s)
| | - Noor Mohammad Danesh
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Razavi Khorasan, Iran.,Research Institute of Sciences and New Technology, Mashhad, Razavi Khorasan, Iran
| | - Mohammad Ramezani
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Razavi Khorasan, Iran
| | - Faezeh Vahdati Hassani
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Razavi Khorasan, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Razavi Khorasan, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Razavi Khorasan, Iran.
| |
Collapse
|
46
|
Lin S, Gan N, Cao Y, Chen Y, Jiang Q. Selective dispersive solid phase extraction-chromatography tandem mass spectrometry based on aptamer-functionalized UiO-66-NH2 for determination of polychlorinated biphenyls. J Chromatogr A 2016; 1446:34-40. [PMID: 27083256 DOI: 10.1016/j.chroma.2016.04.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 10/22/2022]
Abstract
In this paper, a novel dispersive solid phase extraction (dSPE) adsorbent based on aptamer-functionalized magnetic metal-organic framework material was developed for selective enrichment of the trace polychlorinated biphenyls (PCBs) from soil sample. Firstly, we developed a simple, versatile synthetic strategy to prepare highly reproducible magnetic amino-functionalized UiO-66 (Fe3O4@PDA@UiO-66-NH2) by using polydopamine (PDA) as covalent linker. Then amino-functionalized aptamers which can recognize 2,3',5,5'-tetrachlorobiphenyl (PCB72), 2',3',4',5,5'-pentachlorobiphenyl (PCB106) were covalent immobilized on UiO-66-NH2 through coupling reagent of glutaraldehyde. Aptamer-functionalized adsorbent (Fe3O4@PDA@UiO-66-Apt) can specifically capture PCBs from complex matrix with high adsorption capacity based on the specific affinity of aptamer towards target. Moreover, the adsorbent can be easily isolated from the solution through magnetic separation after extraction. Afterwards, the detection was carried out with gas chromatography tandem mass spectrometry (GC-MS). The selective dSPE pretreatment coupled with GC-MS possessed high selectivity, good binding capacity, stability, repeatability and reproducibility for the extraction of PCBs. Furthermore, the adsorbent possessed good mechanical stability which can be applied in replicate at least for 60 extraction cycles with recovery over 80%. It provided a linear range of 0.02-400ngmL(-1) with a good correlation coefficient (R(2)=0.9994-0.9996), and the limit of detection was found to be 0.010-0.015ngmL(-1). The method was successfully utilized for the determination of PCBs in soil samples.
Collapse
Affiliation(s)
- Saichai Lin
- The State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ning Gan
- The State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Yuting Cao
- The State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Yinji Chen
- Deptartment of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210007, China
| | - Qianli Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
47
|
Abnous K, Danesh NM, Sarreshtehdar Emrani A, Ramezani M, Taghdisi SM. A novel fluorescent aptasensor based on silica nanoparticles, PicoGreen and exonuclease III as a signal amplification method for ultrasensitive detection of myoglobin. Anal Chim Acta 2016; 917:71-8. [PMID: 27026602 DOI: 10.1016/j.aca.2016.02.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/22/2016] [Accepted: 02/27/2016] [Indexed: 10/22/2022]
Abstract
Measurement of myoglobin (Mb) in human blood serum is of great interest for quick diagnosis of acute myocardial infarction (AMI). In this study, a novel fluorescent aptasensor was designed for ultrasensitive and selective detection of Mb, based on target-induced high fluorescence intensity, complementary strand of aptamer (CS), PicoGreen (PG) dye, exonuclease III (Exo III) and silica nanoparticles coated with streptavidin (SNPs-Streptavidin). The developed aptasensor obtains characteristics of SNPs as enhancers of fluorescence intensity, Exo III as an enzyme which selectively digests the 3'-end of double-stranded DNA (dsDNA), PG as a fluorescent dye which could selectively bind to dsDNA and high selectivity and sensitivity of aptamer (Apt) toward its target. In the absence of Mb, no free CS remains in the environment of SNPs-Streptavidin, resulting in a weak fluorescence emission. In the present of Mb, dsDNA-modified SNPs-Streptavidin complex forms, leading to a very strong fluorescence emission. The developed fluorescent aptasensor exhibited high specificity toward Mb with a limit of detection (LOD) as low as 52 pM. In addition, the designed fluorescent aptasensor was efficiently used to detect Mb in human serum.
Collapse
Affiliation(s)
- Khalil Abnous
- Academic Center for Education, Culture and Research (ACECR)-Mashhad Branch, Mashhad, Iran; Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Noor Mohammad Danesh
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Research Institute of Sciences and New Technology, Mashhad, Iran
| | | | - Mohammad Ramezani
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
48
|
Płotka-Wasylka J, Szczepańska N, de la Guardia M, Namieśnik J. Modern trends in solid phase extraction: New sorbent media. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.10.010] [Citation(s) in RCA: 290] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
Taghdisi SM, Danesh NM, Beheshti HR, Ramezani M, Abnous K. A novel fluorescent aptasensor based on gold and silica nanoparticles for the ultrasensitive detection of ochratoxin A. NANOSCALE 2016; 8:3439-3446. [PMID: 26791437 DOI: 10.1039/c5nr08234j] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Analytical approaches for the detection and quantitation of ochratoxin A (OTA) in blood serum and food products are high in demand. In this study, a fluorescent aptamer-based sensor (aptasensor) is developed for the selective and sensitive detection of OTA, based on a complementary strand of aptamer (CS) and two types of nanoparticles, gold nanoparticles (AuNPs) and silica nanoparticles (SNPs) coated with streptavidin. The fabricated aptasensor inherits the characteristics of SNPs, as enhancers of fluorescence intensity; AuNPs, such as large surface area and unique optical properties; and high affinity of the aptamer toward its target compared to its CS. In the absence of OTA, no FAM and biotin-labeled CS is in the environment of the SNPs coated with streptavidin, which leads to no fluorescence emission. In the presence of the target, an FAM and biotin-labeled CS-SNPs coated with streptavidin conjugate is formed, thus resulting in a very strong fluorescence emission. The designed fluorescent aptasensor exhibits high selectivity toward OTA with a limit of detection (LOD) as low as 0.098 nM. Furthermore, the fabricated aptasensor was successfully applied for the detection of OTA in grape juice and serum with LODs of 0.113 and 0.152 nM, respectively.
Collapse
Affiliation(s)
- Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | | | |
Collapse
|
50
|
Taghdisi SM, Danesh NM, Ramezani M, Emrani AS, Abnous K. A novel electrochemical aptasensor based on Y-shape structure of dual-aptamer-complementary strand conjugate for ultrasensitive detection of myoglobin. Biosens Bioelectron 2016; 80:532-537. [PMID: 26894983 DOI: 10.1016/j.bios.2016.02.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/28/2016] [Accepted: 02/10/2016] [Indexed: 10/22/2022]
Abstract
Monitoring of myoglobin (Mb) in human blood serum is highly in demand for early diagnosis of acute myocardial infarction (AMI). Here, a novel electrochemical aptasensor was developed for ultrasensitive and selective detection of Mb, based on Y-shape structure of dual-aptamer (DApt)-complementary strand of aptamer (CS) conjugate, gold electrode and exonuclease I (Exo I). The designed aptasensor obtains features of gold, such as high electrochemical conductivity and large surface area, property of Y-shape structure of DApt-CS conjugate to function as a gate and obstacle for the access of redox probe to the surface of electrode, as well as high specificity and sensitivity of aptamer toward its target and Exo I as an enzyme which specifically degrades the 3'-end of single-stranded DNA (ssDNA). In the absence of Mb, the Y-shape structure remains intact. So, a weak electrochemical signal is observed. Upon addition of target, the DApt leave the CS and bind to Mb, leading to disassembly of Y-shape structure and following the addition of Exo I, a strong electrochemical signal could be recorded. The fabricated aptasensor showed high selectivity toward Mb with a limit of detection (LOD) as low as 27 pM. Besides, the developed aptasensor was effectively applied to detect Mb in human serum.
Collapse
Affiliation(s)
- Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Noor Mohammad Danesh
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Research Institute of Sciences and New Technology, Mashhad, Iran
| | - Mohammad Ramezani
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Khalil Abnous
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|