1
|
Hariharan A, Bready CJ, Ajello JG, Black SH, Shields GC, Johnson CJ. Stability and Structure of Potentially Atmospherically Relevant Glycine Ammonium Bisulfate Clusters. J Phys Chem A 2024; 128:4268-4278. [PMID: 38752426 DOI: 10.1021/acs.jpca.4c01629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
New particle formation (NPF) is the process by which trace atmospheric acids and bases cluster and grow into particles that ultimately impact climate. Sulfuric acid concentration drives NPF, but nitrogen-containing bases promote the formation of more stable clusters via salt bridge formation. Recent computational efforts have suggested that amino acids can enhance NPF, predicting that they can stabilize new particles via multiple protonation sites, but there has yet to be experimental validation of these predictions. We used mass spectrometry and infrared spectroscopy to study the structure and stability of cationic clusters composed of glycine, sulfuric acid, and ammonia. When collisionally activated, clusters were significantly more likely to eliminate ammonia or sulfuric acid than glycine, while quantum chemical calculations predicted lower binding free energies for ammonia but similar binding free energies for glycine and sulfuric acid. These calculations predicted several low-energy structures, so we compared experimental and computed vibrational spectra to attempt to validate the computationally predicted minimum energy structure. Unambiguous identification of the experimental structure by comparison to these calculations was made difficult by the complexity of the experimental spectra and the fact that the identity of the computed lowest-energy structure depended strongly on temperature. If their vapors are present, amino acids are likely to be enriched in new particles by displacing more weakly bound ammonia, similar to the behavior of other atmospheric amines. The carboxylic acid groups were found to preferentially interact with other carboxylic acids, suggesting incipient organic/inorganic phase separation even at these small sizes.
Collapse
Affiliation(s)
- Annapoorani Hariharan
- Department of Chemistry, Stony Brook University, 100 Nicolls Rd., Stony Brook, New York 11794, United States
| | - Conor J Bready
- Department of Chemistry, Furman University, 3300 Poinsett Highway, Greenville, South Carolina 29613, United States
| | - Jack G Ajello
- Department of Chemistry, Stony Brook University, 100 Nicolls Rd., Stony Brook, New York 11794, United States
| | - Samantha H Black
- Department of Chemistry, Stony Brook University, 100 Nicolls Rd., Stony Brook, New York 11794, United States
| | - George C Shields
- Department of Chemistry, Furman University, 3300 Poinsett Highway, Greenville, South Carolina 29613, United States
| | - Christopher J Johnson
- Department of Chemistry, Stony Brook University, 100 Nicolls Rd., Stony Brook, New York 11794, United States
| |
Collapse
|
2
|
Wu S, Zhu Q, Liu F, Pei C, Hong D, Zhang Y, Lai S. Multiphase reactions of proteins in the air: Oligomerization, nitration and degradation of bovine serum albumin upon ambient exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171617. [PMID: 38467257 DOI: 10.1016/j.scitotenv.2024.171617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Proteins in atmospheric aerosol can react with atmospheric pollutants such as ozone (O3) and nitrogen dioxide (NO2) in the atmosphere via the reactions of oxidation, nitration, and cross-linking etc. Currently, the reactions have been more thoroughly studied in the laboratory but rarely investigated in the ambient environment. In this study, we used bovine serum albumin (BSA) as the model protein to conduct the exposure experiment in the ambient environment in southern China, an area with increasing oxidative capacity, to investigate the reactions of proteins in the atmosphere. We observed the occurrence of oligomerization, nitration and degradation of BSA upon exposure. The mass fraction of BSA monomer decreased by 5.86 ± 1.61% after exposure and those of dimers, trimers and higher oligomers increased by 1.04 ± 0.49%, 1.37 ± 0.74% and 3.40 ± 1.06%, respectively. Simultaneously, the nitration degrees of monomers, dimers, trimers and higher oligomers increased by 0.42 ± 0.15%, 0.53 ± 0.15%, 0.55 ± 0.28% and 2.15 ± 1.01%, respectively. The results show that oligomerization was significantly affected by O3 and temperature and nitration was jointly affected by O3, temperature and relative humidity, indicating the important role of atmospheric oxidants in the atmospheric reactions of protein. Atmospheric degradation of BSA was observed with the release of free amino acids (FAAs) such as glycine, alanine, serine and methionine. Glycine was the dominant FAA with a molar yield ranging from ∼8% to 33% for BSA. The estimated stoichiometric coefficient (α) of glycine is 10-7-10-6 for the degradation of BSA upon O3. Our observation suggests the occurrence of protein reactions in the oxidative ambient environment, leading to the production of nitrated products, oligomers and low molecular weight products such as peptides and FAAs. This study may deepen the current understanding of the atmospheric reaction mechanisms and reveal the influence of environmental factors in the atmosphere.
Collapse
Affiliation(s)
- Shiyi Wu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Qiaoze Zhu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Fobang Liu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China
| | - Chenglei Pei
- Guangzhou Sub-branch of Guangdong Ecological and Environmental Monitoring Center, Guangzhou 510030, China
| | - Dachi Hong
- Guangzhou Sub-branch of Guangdong Ecological and Environmental Monitoring Center, Guangzhou 510030, China
| | - Yingyi Zhang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Senchao Lai
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
3
|
Zhang X, Tan S, Chen X, Yin S. Computational chemistry of cluster: Understanding the mechanism of atmospheric new particle formation at the molecular level. CHEMOSPHERE 2022; 308:136109. [PMID: 36007737 DOI: 10.1016/j.chemosphere.2022.136109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
New particle formation (NPF), which exerts significant influence over human health and global climate, has been a hot topic and rapidly expands field of research in the environmental and atmospheric chemistry recent years. Generally, NPF contains two processes: formation of critical nucleus and further growth of the nucleus. However, due to the complexity of the atmospheric nucleation, which is a multicomponent process, formation of critical clusters as well as their growth is still connected to large uncertainties. Detection limits of instruments in measuring specific gaseous aerosol precursors and chemical compositions at the molecular level call for computational studies. Computational chemistry could effectively compensate the deficiency of laboratory experiments as well as observations and predict the nucleation mechanisms. We review the present theoretical literatures that discuss nucleation mechanism of atmospheric clusters. Focus of this review is on different nucleation systems involving sulfur-containing species, nitrogen-containing species and iodine-containing species. We hope this review will provide a deep insight for the molecular interaction of nucleation precursors and reveal nucleation mechanism at the molecular level.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China
| | - Shendong Tan
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China
| | - Xi Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, PR China
| | - Shi Yin
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
4
|
Wang XQ, Zhang M, Ma X, Yang J, Wu D, Yang J, Hu T. RhB-encapsulated metal-organic cage as a dual-emission fluorescence sensor for detection of malachite green and glycine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121346. [PMID: 35660144 DOI: 10.1016/j.saa.2022.121346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/19/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
RhB@ZrT-1-OH composite was constructed by introduction of Rhodamine B (RhB) into the cages of zirconium-based metal-organic cage that had two fluorescence emission peaks at 466 and 612 nm upon excitation at 327 nm. The dual-emission fluorescence sensor exhibits ultra-high sensitive detection for malachite green (MG) and glycine (Gly) in phosphate buffer solution (pH = 6.86). RhB@ZrT-1-OH as a ratiometric fluorescence probe was applied to detect MG with a low LOD of 0.2879 μM and presented obvious fluorescence visual changes from orange to purple to blue under 254 nm UV-vis lamp. Moreover, RhB@ZrT-1-OH also can be utilized as a "turn-on" fluorescence sensor to recognize Gly with a low LOD of 0.3747 μM and exhibits fluorescence color changes from orange to pink to purple. Notably, the corresponding test papers for sensing MG and Gly were designed for recognize the concentration of MG and Gly. Furthermore, the dual-emission fluorescence sensor can be used to detect MG and Gly in fish and human serum with high sensitivity and reliable. The possible detecting mechanisms of RhB@ZrT-1-OH for sensing MG and Gly were detailedly explored.
Collapse
Affiliation(s)
- Xiao-Qing Wang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, PR China; Shanxi Key Laboratory of Advanced Carbon Based Electrode Materials, North University of China, Taiyuan 030051, PR China.
| | - Man Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, PR China
| | - Xuehui Ma
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, PR China
| | - Jiandong Yang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, PR China
| | - Dan Wu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, PR China
| | - Jie Yang
- Shandong Provincial Key Laboratory of Chemical Energy Storage, Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, PR China.
| | - Tuoping Hu
- Shanxi Key Laboratory of Advanced Carbon Based Electrode Materials, North University of China, Taiyuan 030051, PR China
| |
Collapse
|
5
|
Wu L, Wang Z, Chang T, Song B, Zhao T, Wang H, Ma M. Morphological characteristics of amino acids in wet deposition of Danjiangkou Reservoir in China's South-to-North Water Diversion Project. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73100-73114. [PMID: 35622276 DOI: 10.1007/s11356-022-20802-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Amino acids are an important constituent in organic nitrogen deposition, and changes in the content of their components have a direct impact on the nitrogen input to the ecosystem. From December 2018 to November 2019, 176 precipitation samples were collected at Danjiangkou Reservoir, the source of the middle line of the South-to-North Water Diversion Project, and the variation characteristics of dissolved free amino acids (DFAA) and dissolved combined amino acids (DCAA) were analyzed. The volume-weighted value concentration ranges of DFAA and DCAA were 0.159-1.136 μmol/L and 1.603-7.044 μmol/L, respectively, and amino acids were dominated by DCAA in wet deposition. Our results showed that glutamic acid (Glu), glycine (Gly), and aspartic acid (Asp) were the dominant amino acids in both DFAA and DCAA. The concentration of DFAA was highest in winter, while the concentration of DCAA was in autumn. Dissolved total amino acids (DTAA) were insignificantly correlated with DFAA, whereas they were linearly correlated with DCAA, indicating a significant influence of agricultural activities on DTAA. The analysis of the backward trajectory of air masses showed that amino acids were mainly influenced by proximity inputs around the reservoir. The bioavailability of organic matter was higher in the southeastern of the reservoir than in the northwestern. The wet deposition flux of TDN was 14.096 kg N/ha/year, and the potential ecological impact on water bodies cannot be ignored. This study was conducted to clarify the variation characteristics of amino acids fractions in wet deposition and to provide parameters for regional assessment of amino acids wet deposition. The ecological impact of nitrogen wet deposition on water bodies will be explored to provide a basis for nitrogen pollution control and water quality protection in the middle line of the South-to-North Water Diversion Project.
Collapse
Affiliation(s)
- Li Wu
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Zuheng Wang
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Tianjun Chang
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Baihui Song
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Tongqian Zhao
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Haipo Wang
- Sanmenxia Aoke Chemical Co., Ltd, Sanmenxia, 472000, China
| | - Ming Ma
- Ningbo Customs Technical Center, Ningbo, 315000, China
| |
Collapse
|
6
|
Yanpeng L, Haoyue Z, Aotang L, Jiali Z, Shengli D. High time-resolved variations of proteins in PM 2.5 during haze pollution periods in Xi'an, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119212. [PMID: 35395350 DOI: 10.1016/j.envpol.2022.119212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/01/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Proteinaceous matter is an important component of PM2.5, which can cause adverse health effects and also influence the air quality and climate change. However, there is little attention to high time-resolved variations and potential role of aerosol proteins during haze pollution periods. In this study, PM2.5 samples were first collected by a medium flow sampler in autumn and winter in Xi'an, China. Then three high time-resolved monitoring campaigns during haze pollution periods were conducted to determine the evolving characteristics of total protein concentration and explore the interactive relationship between protein and other chemical compositions. The results showed that the average protein concentration in PM2.5 in Xi'an (5.46 ± 3.32 μg m-3) was higher than those in most cities of China, and varied by seasons and air pollution conditions. In particular, the protein concentration in PM2.5 increased with the increase of air quality index (AQI). The continuous variations of aerosol proteins during the haze pollution periods further showed that PM2.5, atmospheric humidity and long-distance air mass transport exerted the significant impacts on the protein components in aerosols. Based on the present observation, it is suggested that aerosol proteins might affect the generation of secondary aerosols under haze weather conditions. The present results may provide a new possible insight into the variations and the role of aerosol proteinaceous matter during the formation and development of haze pollution.
Collapse
Affiliation(s)
- Li Yanpeng
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an, 710054, China.
| | - Zhang Haoyue
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Li Aotang
- School of Mathematics, Sun Yat-Een University, Guangzhou, 510275, China
| | - Zhang Jiali
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Du Shengli
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
| |
Collapse
|
7
|
Li X, Zhang Y, Shi L, Kawamura K, Kunwar B, Takami A, Arakaki T, Lai S. Aerosol Proteinaceous Matter in Coastal Okinawa, Japan: Influence of Long-Range Transport and Photochemical Degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5256-5265. [PMID: 35358385 DOI: 10.1021/acs.est.1c08658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The characteristics, sources, and atmospheric oxidation processes of marine aerosol proteinaceous matter (APM), including total proteins and free amino acids (FAAs), were investigated using a set of 1 year total suspended particulate (TSP) samples collected in the coastal area of Okinawa Island in the western North Pacific rim. The concentrations of APM at this site (total proteins: 0.16 ± 0.10 μg m-3 and total FAAs: 9.7 ± 5.6 ng m-3, annual average) are comparable to those of marine APM. The major FAA species of APM are also similar to previously reported marine APM with glycine as the dominant species (31%). Based on the different seasonal trends and weak correlations of total proteins and FAAs, we found that they were contributed by different sources, especially with the influence of long-range transport from the Asian continent of northern China and Mongolia and the oceanic area of the Bohai Sea, Yellow Sea, and East China Sea. The photochemical oxidation processes of high-molecular-weight proteins releasing FAAs (especially glycine) were also considered as an important factor influencing the characteristics of APM at this site. In addition, we propose a degradation process based on the correlation with ozone and ultraviolet radiation, emphasizing their roles in the degradation of proteins. Our findings help to deepen the understanding of atmospheric photochemical reaction processes of organic aerosols.
Collapse
Affiliation(s)
- Xiaoying Li
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yingyi Zhang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Luhan Shi
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Kimitaka Kawamura
- Chubu Institute for Advanced Studies, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Bhagawati Kunwar
- Chubu Institute for Advanced Studies, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Akinori Takami
- Center for Regional Environmental Research, National Institute of Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan
| | - Takemitsu Arakaki
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Senchao Lai
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
8
|
Lin CJ, Wang PY, Lin YL, Chang ST, Hsu CS, Wu SP, Wu CH. Nonpolar Side Chains Affect the Photochemical Redox Reactions of Copper(II)-Amino Acid Complexes in Aqueous Solutions. ACS OMEGA 2021; 6:28194-28202. [PMID: 34723017 PMCID: PMC8552463 DOI: 10.1021/acsomega.1c04277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Photochemical redox reactions of Cu(II) complexes of eight amino acid ligands (L) with nonpolar side chains have been systematically investigated in deaerated aqueous solutions. Under irradiation at 313 nm, the intramolecular carboxylate-to-Cu(II) charge transfer within Cu(II)-amino acid complexes leads to Cu(I) formation and the concomitant decomposition of amino acids. All amino acid systems studied here can produce ammonia and aldehydes except proline. For the 1:1 Cu(II) complex species (CuL), the Cu(I) quantum yields at 313 nm (ΦCu(I),CuL) vary by fivefold and in the sequence (0.10 M ionic strength at 25 °C) alanine (0.094) > valine (0.059), leucine (0.059), isoleucine (0.056), phenylalanine (0.057) > glycine (0.052) > methionine (0.032) > proline (0.019). This trend can be rationalized by considering the stability of the carbon-centered radicals and the efficient depopulation of the photoexcited state, both of which are dependent on the side-chain structure. For the 1:2 Cu(II) complex species (CuL2), the Cu(I) quantum yields exhibit a similar trend and are always less than those for CuL. The photoformation rates of ammonia, Cu(I), and aldehydes are in the ratio of 1:2.0 ± 0.2:0.7 ± 0.2, which supports the proposed mechanism. This study suggests that the direct phototransformation of Cu(II)-amino acid complexes may contribute to the bioavailable nitrogen for aquatic microorganisms and cause biological damage on cell surfaces in sunlit waters.
Collapse
Affiliation(s)
- Chen-Jui Lin
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Po-Yen Wang
- Department
of Civil Engineering, Widener University, Chester, Pennsylvania 19013, United States
| | - Yi-Liang Lin
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Sheng-Te Chang
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chao-Sheng Hsu
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shu-Pao Wu
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chien-Hou Wu
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute
of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
9
|
Li L, Zhang R, Ma X, Wei Y, Zhao X, Zhang R, Xu F, Li Y, Huo X, Zhang Q, Wang W. Gas-phase and aqueous-surface reaction mechanism of Criegee radicals with serine and nucleation of products: A theoretical study. CHEMOSPHERE 2021; 280:130709. [PMID: 34162082 DOI: 10.1016/j.chemosphere.2021.130709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 06/13/2023]
Abstract
Criegee intermediates (CIs) are short-lived carbonyl oxides, which can affect the budget of OH radicals, ozone, ammonia, organic/inorganic acids in the troposphere. This study investigated the reaction of CIs with serine (Ser) in the gas phase by using density functional theory (DFT) calculations and at the gas-liquid interface by using Born-Oppenheimer molecular dynamics (BOMD). The results reveal that the reactivity of the three functional groups of Ser can be ordered as follows: COOH > NH2 > OH. Water-mediated reactions of CIs with NH2 and OH groups of Ser on the droplet follow the proton exchange mechanism. The products, sulfuric acids, ammonia, and water molecules form stable clusters within 20 ns. This study shows that hydroperoxide products can contribute to new particle formation (NPF). The result deepens the understanding of the reaction of CIs with multifunctional pollutants and atmospheric behavior of CIs in polluted areas.
Collapse
Affiliation(s)
- Lei Li
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Ruiying Zhang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Xiaohui Ma
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Yuanyuan Wei
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Xianwei Zhao
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Ruiming Zhang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Fei Xu
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Xinxi Huo
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China; Office of Supervisory and Audit, Shandong University, Qingdao, 266237, PR China.
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| |
Collapse
|
10
|
Multidimensional Analytical Characterization of Water-Soluble Organic Aerosols: Challenges and New Perspectives. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062539] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Water-soluble organic aerosols (OA) are an important component of air particles and one of the key drivers that impact both climate and human health. Understanding the processes involving water-soluble OA depends on how well the chemical composition of this aerosol component is decoded. Yet, obtaining detailed information faces several challenges, including water-soluble OA collection, extraction, and chemical complexity. This review highlights the multidimensional non-targeted analytical strategies that have been developed and employed for providing new insights into the structural and molecular features of water-soluble organic components present in air particles. First, the most prominent high-resolution mass spectrometric methods for near real-time measurements of water-soluble OA and their limitations are discussed. Afterward, a special emphasis is given to the degree of compositional information provided by offline multidimensional analytical techniques, namely excitation–emission (EEM) fluorescence spectroscopy, high-resolution mass spectrometry and two-dimensional nuclear magnetic resonance (NMR) spectroscopy and their hyphenation with chromatographic systems. The major challenges ahead on the application of these multidimensional analytical strategies for OA research are also addressed so that they can be used advantageously in future studies.
Collapse
|
11
|
Xu Y, Xiao H, Wu D, Long C. Abiotic and Biological Degradation of Atmospheric Proteinaceous Matter Can Contribute Significantly to Dissolved Amino Acids in Wet Deposition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6551-6561. [PMID: 32391688 DOI: 10.1021/acs.est.0c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Atmospheric proteinaceous matter is characterized by ubiquity and potential bioavailability. However, little is known about the origins, secondary production processes, and biogeochemical role of proteinaceous matter in wet deposition. Precipitation samples were collected in suburban Guiyang (southwestern China) over a 1 year period to investigate their chemical components, mainly including dissolved combined amino acids (DCAAs), dissolved free AAs (DFAAs), and nonleachable particulate AAs (PAAs). Glycine was most abundant in the DFAAs, while the dominant species in DCAAs and PAAs was glutamic acid (including deaminated glutamine). The total DCAA, DFAA, and PAA concentrations peaked on average in spring (min. in summer). On average, the contribution of DCAA-nitrogen (median of 3.44%) to dissolved organic nitrogen was 5-fold higher than that of DFAA-nitrogen (median of 0.60%). Correlation analyses of AAs with ozone, nitrogen dioxide, and the quantitative degradation index suggest that DC(/F)AAs are linked with both abiotic and biological degradation of proteinaceous matter. Moreover, the high FAA scavenging ratios indicate the presence of postdepositional degradation of atmospheric proteinaceous matter. Further, the positive matrix factorization results suggest that the degradation of atmospheric proteinaceous matter markedly contributes to DCAAs and DFAAs in precipitation. Overall, the results suggest that the secondary processes involved in the degradation of atmospheric proteinaceous matter significantly promote direct bioavailability of AA-nitrogen.
Collapse
Affiliation(s)
- Yu Xu
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Huayun Xiao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Daishe Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Chaojun Long
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, No. 99, Linchengxi Road, Guiyang 550081, China
| |
Collapse
|
12
|
Xu Y, Miyazaki Y, Tachibana E, Sato K, Ramasamy S, Mochizuki T, Sadanaga Y, Nakashima Y, Sakamoto Y, Matsuda K, Kajii Y. Aerosol Liquid Water Promotes the Formation of Water-Soluble Organic Nitrogen in Submicrometer Aerosols in a Suburban Forest. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1406-1414. [PMID: 31913023 DOI: 10.1021/acs.est.9b05849] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Water-soluble organic nitrogen (WSON) affects the formation, chemical transformations, hygroscopicity, and acidity of organic aerosols as well as biogeochemical cycles of nitrogen. However, large uncertainties exist in the origins and formation processes of WSON. Submicrometer aerosol particles were collected at a suburban forest site in Tokyo in summer 2015 to investigate the relative impacts of anthropogenic and biogenic sources on WSON formations and their linkages with aerosol liquid water (ALW). The concentrations of WSON (ave. 225 ± 100 ngN m-3) and ALW exhibited peaks during nighttime, which showed a significant positive correlation, suggesting that ALW significantly contributed to WSON formation. Further, the thermodynamic predictions by ISORROPIA-II suggest that ALW was primarily driven by anthropogenic sulfate. Our analysis, including positive matrix factorization, suggests that aqueous-phase reactions of ammonium and reactive nitrogen with biogenic volatile organic compounds (VOCs) play a key role in WSON formation in submicrometer particles, which is particularly significant in nighttime, at the suburban forest site. The formation of WSON associated with biogenic VOCs and ALW was partly supported by the molecular characterization of WSON. The overall result suggests that ALW is an important driver for the formation of aerosol WSON through a combination of anthropogenic and biogenic sources.
Collapse
Affiliation(s)
- Yu Xu
- Institute of Low Temperature Science , Hokkaido University , Sapporo 060-0819 , Japan
| | - Yuzo Miyazaki
- Institute of Low Temperature Science , Hokkaido University , Sapporo 060-0819 , Japan
| | - Eri Tachibana
- Institute of Low Temperature Science , Hokkaido University , Sapporo 060-0819 , Japan
| | - Kei Sato
- National Institute for Environmental Studies , Onogawa , Tsukuba , Ibaraki 305-5506 , Japan
| | - Sathiyamurthi Ramasamy
- National Institute for Environmental Studies , Onogawa , Tsukuba , Ibaraki 305-5506 , Japan
- Graduate School of Global Environmental Studies , Kyoto University , Nihonmatsucho, Sakyo-ku , Kyoto 606-8501 , Japan
| | - Tomoki Mochizuki
- Institute of Low Temperature Science , Hokkaido University , Sapporo 060-0819 , Japan
| | - Yasuhiro Sadanaga
- Department of Applied Chemistry , Osaka Prefecture University , Sakai 599-8531 , Japan
| | - Yoshihiro Nakashima
- Department of Environmental Science on Biosphere , Tokyo University of Agriculture and Technology , Tokyo 183-8509 , Japan
| | - Yosuke Sakamoto
- National Institute for Environmental Studies , Onogawa , Tsukuba , Ibaraki 305-5506 , Japan
- Graduate School of Global Environmental Studies , Kyoto University , Nihonmatsucho, Sakyo-ku , Kyoto 606-8501 , Japan
- Graduate School of Human and Environmental Studies , Kyoto University , Nihonmatsucho, Sakyo-ku , Kyoto 606-8501 , Japan
| | - Kazuhide Matsuda
- Department of Environmental Science on Biosphere , Tokyo University of Agriculture and Technology , Tokyo 183-8509 , Japan
| | - Yoshizumi Kajii
- National Institute for Environmental Studies , Onogawa , Tsukuba , Ibaraki 305-5506 , Japan
- Graduate School of Global Environmental Studies , Kyoto University , Nihonmatsucho, Sakyo-ku , Kyoto 606-8501 , Japan
- Graduate School of Human and Environmental Studies , Kyoto University , Nihonmatsucho, Sakyo-ku , Kyoto 606-8501 , Japan
| |
Collapse
|
13
|
Shan PH, Zhao J, Deng XY, Lin RL, Bian B, Tao Z, Xiao X, Liu JX. Selective recognition and determination of phenylalanine by a fluorescent probe based on cucurbit[8]uril and palmatine. Anal Chim Acta 2020; 1104:164-171. [PMID: 32106948 DOI: 10.1016/j.aca.2020.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 01/06/2023]
Abstract
This paper demonstrated a simple and validated fluorescence enhancing method to selectively recognize and discriminate the amino acid phenylalanine (Phe). 1H NMR spectroscopy reveal that the palmatine (PAL) can be encapsulated into the cucurbit [8]uril (Q [8]) in aqueous solution to form stable 1:2 host-guest inclusion complex PAL2@Q [8], which exhibits moderate intensity fluorescence property. Interestingly, the addition of the Phe into the inclusion complex PAL2@Q [8] leads to dramatically enhancing of the fluorescence intensity. In contrast, the addition of any other natural amino acids into the inclusion complex PAL2@Q [8] gives no fluorescence variation. Furthermore, it is easy to detect the concentration of Phe in target aqueous solution according to the linear relationship between fluorescence intensity and concentration of the Phe.
Collapse
Affiliation(s)
- Pei-Hui Shan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Jie Zhao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Xin-Yu Deng
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Rui-Lian Lin
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, China
| | - Bing Bian
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Xin Xiao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China.
| | - Jing-Xin Liu
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, China.
| |
Collapse
|
14
|
Walker JT, Beachley G, Amos HM, Baron JS, Bash J, Baumgardner R, Bell MD, Benedict KB, Chen X, Clow DW, Cole A, Coughlin JG, Cruz K, Daly RW, Decina SM, Elliott EM, Fenn ME, Ganzeveld L, Gebhart K, Isil SS, Kerschner BM, Larson RS, Lavery T, Lear GG, Macy T, Mast MA, Mishoe K, Morris KH, Padgett PE, Pouyat RV, Puchalski M, Pye HOT, Rea AW, Rhodes MF, Rogers CM, Saylor R, Scheffe R, Schichtel BA, Schwede DB, Sexstone GA, Sive BC, Sosa Echeverría R, Templer PH, Thompson T, Tong D, Wetherbee GA, Whitlow TH, Wu Z, Yu Z, Zhang L. Toward the improvement of total nitrogen deposition budgets in the United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:1328-1352. [PMID: 31466212 PMCID: PMC7724633 DOI: 10.1016/j.scitotenv.2019.07.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Frameworks for limiting ecosystem exposure to excess nutrients and acidity require accurate and complete deposition budgets of reactive nitrogen (Nr). While much progress has been made in developing total Nr deposition budgets for the U.S., current budgets remain limited by key data and knowledge gaps. Analysis of National Atmospheric Deposition Program Total Deposition (NADP/TDep) data illustrates several aspects of current Nr deposition that motivate additional research. Averaged across the continental U.S., dry deposition contributes slightly more (55%) to total deposition than wet deposition and is the dominant process (>90%) over broad areas of the Southwest and other arid regions of the West. Lack of dry deposition measurements imposes a reliance on models, resulting in a much higher degree of uncertainty relative to wet deposition which is routinely measured. As nitrogen oxide (NOx) emissions continue to decline, reduced forms of inorganic nitrogen (NHx = NH3 + NH4+) now contribute >50% of total Nr deposition over large areas of the U.S. Expanded monitoring and additional process-level research are needed to better understand NHx deposition, its contribution to total Nr deposition budgets, and the processes by which reduced N deposits to ecosystems. Urban and suburban areas are hotspots where routine monitoring of oxidized and reduced Nr deposition is needed. Finally, deposition budgets have incomplete information about the speciation of atmospheric nitrogen; monitoring networks do not capture important forms of Nr such as organic nitrogen. Building on these themes, we detail the state of the science of Nr deposition budgets in the U.S. and highlight research priorities to improve deposition budgets in terms of monitoring and flux measurements, leaf- to regional-scale modeling, source apportionment, and characterization of deposition trends and patterns.
Collapse
Affiliation(s)
- J T Walker
- U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, United States of America.
| | - G Beachley
- U.S. Environmental Protection Agency, Office of Air and Radiation, Washington, DC, United States of America
| | - H M Amos
- AAAS Science and Technology Policy Fellow hosted by the U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC, United States of America
| | - J S Baron
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, United States of America
| | - J Bash
- U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, United States of America
| | - R Baumgardner
- U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, United States of America
| | - M D Bell
- National Park Service, Air Resources Division, Lakewood, CO, United States of America
| | - K B Benedict
- Colorado State University, Department of Atmospheric Science, Fort Collins, CO, United States of America
| | - X Chen
- U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, United States of America
| | - D W Clow
- U.S. Geological Survey, Colorado Water Science Center, Denver, CO, United States of America
| | - A Cole
- Environment and Climate Change Canada, Air Quality Research Division, Toronto, ON, Canada
| | - J G Coughlin
- U.S. Environmental Protection Agency, Region 5, Chicago, IL, United States of America
| | - K Cruz
- U.S. Department of Agriculture, National Institute of Food and Agriculture, Washington, DC, United States of America
| | - R W Daly
- U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, United States of America
| | - S M Decina
- University of California, Department of Chemistry, Berkeley, CA, United States of America
| | - E M Elliott
- University of Pittsburgh, Department of Geology & Environmental Science, Pittsburgh, PA, United States of America
| | - M E Fenn
- U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, Riverside, CA, United States of America
| | - L Ganzeveld
- Meteorology and Air Quality (MAQ), Wageningen University and Research Centre, Wageningen, Netherlands
| | - K Gebhart
- National Park Service, Air Resources Division, Fort Collins, CO, United States of America
| | - S S Isil
- Wood Environment & Infrastructure Solutions, Inc., Newberry, FL, United States of America
| | - B M Kerschner
- Prairie Research Institute, University of Illinois, Champaign, IL, United States of America
| | - R S Larson
- Wisconsin State Laboratory of Hygiene, University of Wisconsin, Madison, WI, United States of America
| | - T Lavery
- Environmental Consultant, Cranston, RI, United States of America
| | - G G Lear
- U.S. Environmental Protection Agency, Office of Air and Radiation, Washington, DC, United States of America
| | - T Macy
- U.S. Environmental Protection Agency, Office of Air and Radiation, Washington, DC, United States of America
| | - M A Mast
- U.S. Geological Survey, Colorado Water Science Center, Denver, CO, United States of America
| | - K Mishoe
- Wood Environment & Infrastructure Solutions, Inc., Newberry, FL, United States of America
| | - K H Morris
- National Park Service, Air Resources Division, Lakewood, CO, United States of America
| | - P E Padgett
- U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, Riverside, CA, United States of America
| | - R V Pouyat
- U.S. Forest Service, Bethesda, MD, United States of America
| | - M Puchalski
- U.S. Environmental Protection Agency, Office of Air and Radiation, Washington, DC, United States of America
| | - H O T Pye
- U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, United States of America
| | - A W Rea
- U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, United States of America
| | - M F Rhodes
- D&E Technical, Urbana, IL, United States of America
| | - C M Rogers
- Wood Environment & Infrastructure Solutions, Inc., Newberry, FL, United States of America
| | - R Saylor
- National Oceanic and Atmospheric Administration, Air Resources Laboratory, Oak Ridge, TN, United States of America
| | - R Scheffe
- U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Durham, NC, United States of America
| | - B A Schichtel
- National Park Service, Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, United States of America
| | - D B Schwede
- U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, United States of America
| | - G A Sexstone
- U.S. Geological Survey, Colorado Water Science Center, Denver, CO, United States of America
| | - B C Sive
- National Park Service, Air Resources Division, Lakewood, CO, United States of America
| | - R Sosa Echeverría
- Centro de Ciencias de la Atmosfera, Universidad Nacional Autónoma de México, Mexico
| | - P H Templer
- Boston University, Department of Biology, Boston, MA, United States of America
| | - T Thompson
- AAAS Science and Technology Policy Fellow hosted by the U.S. Environmental Protection Agency, Office of Policy, Washington, DC, United States of America
| | - D Tong
- George Mason University. National Oceanic and Atmospheric Administration, Air Resources Laboratory, College Park, MD, United States of America
| | - G A Wetherbee
- U.S. Geological Survey, Hydrologic Networks Branch, Denver, CO, United States of America
| | - T H Whitlow
- Cornell University, Department of Horticulture, Ithaca, NY, United States of America
| | - Z Wu
- U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, United States of America
| | - Z Yu
- University of Pittsburgh, Department of Geology & Environmental Science, Pittsburgh, PA, United States of America
| | - L Zhang
- Environment and Climate Change Canada, Air Quality Research Division, Toronto, ON, Canada
| |
Collapse
|
15
|
Wang S, Song T, Shiraiwa M, Song J, Ren H, Ren L, Wei L, Sun Y, Zhang Y, Fu P, Lai S. Occurrence of Aerosol Proteinaceous Matter in Urban Beijing: An Investigation on Composition, Sources, and Atmospheric Processes During the "APEC Blue" Period. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7380-7390. [PMID: 31117537 DOI: 10.1021/acs.est.9b00726] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Aerosol proteinaceous matter is comprised of a substantial fraction of bioaerosols. Its origins and interactions in the atmosphere remain poorly understood. We present observations of total proteins, combined, and free amino acids (CAAs and FAAs) in fine particulate matter (PM2.5) samples in urban Beijing before and during the 2014 Asia-Pacific Economic Cooperation (APEC) summit. The decreases in proteins, CAAs and FAAs levels were observed after the implementation of restrictive emission controls. Significant changes were observed for the composition profiles in FAAs with the predominance of valine before the APEC and glycine during the APEC, respectively. These variations could be attributed to the influence of sources, atmospheric processes, and meteorological conditions. FAAs (especially valine and glycine) were suggested to be released by the degradation of high molecular weight proteins/polypeptides by atmospheric oxidants (i.e., ozone and free radicals) and nitrogen dioxide. Besides daytime reactions, nighttime chemistry was found to play an important role in the atmospheric formation of valine during the nights, suggesting the possible influence of NO3 radicals. Our findings provide new insights into the significant impacts of atmospheric oxidation capacity on the occurrence and transformation of aerosol proteinaceous matter which may affect its environmental, climate and health effects.
Collapse
Affiliation(s)
- Shan Wang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, and Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy , South China University of Technology , Guangzhou 510006 , China
| | - Tianli Song
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, and Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy , South China University of Technology , Guangzhou 510006 , China
| | - Manabu Shiraiwa
- Department of Chemistry , University of California , Irvine , California 92697-2025 , United States
| | - Junwei Song
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, and Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy , South China University of Technology , Guangzhou 510006 , China
- Now at Institute of Meteorology and Climate Research , Karlsruhe Institute of Technology , Eggenstein-Leopoldshafen 76344 , Germany
| | - Hong Ren
- Institute of Surface-Earth System Science , Tianjin University , Tianjin 300072 , China
| | - Lujie Ren
- Institute of Surface-Earth System Science , Tianjin University , Tianjin 300072 , China
| | - Lianfang Wei
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics , Chinese Academy of Sciences , Beijing 100029 , China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics , Chinese Academy of Sciences , Beijing 100029 , China
| | - Yingyi Zhang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, and Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy , South China University of Technology , Guangzhou 510006 , China
| | - Pingqing Fu
- Institute of Surface-Earth System Science , Tianjin University , Tianjin 300072 , China
| | - Senchao Lai
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, and Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy , South China University of Technology , Guangzhou 510006 , China
| |
Collapse
|
16
|
Feltracco M, Barbaro E, Kirchgeorg T, Spolaor A, Turetta C, Zangrando R, Barbante C, Gambaro A. Free and combined L- and D-amino acids in Arctic aerosol. CHEMOSPHERE 2019; 220:412-421. [PMID: 30597360 DOI: 10.1016/j.chemosphere.2018.12.147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Aerosol samples were collected with a high-volume cascade impactor with a 10 day sampling frequency at the Gruvebadet observatory, close to Ny-Ålesund (Svalbard Islands). A total of 42 filters were analyzed for free and combined amino acids, as they are key components of bio-aerosol. This article provides the first investigation of free and combined L- and d-amino acids in Arctic atmospheric particulate matter. The main aim of this study was to determine how these compounds are distributed in size-segregated aerosols after short-range and long-range atmospheric transport and understand the possible sources of amino acids. The total load of free amino acids ranged from 2.0 to 10.8 pmol m-3, while combined amino acids ranged from 5.5 to 18.0 pmol m-3. At these levels amino compounds could play a role in the chemistry of cloud condensation nuclei and fine particles, for example by influencing their buffering capacity and basicity. Free and combined amino acids were mainly found in the fine aerosol fraction (<0.49 μm) and their concentrations could be affect by several sources, the most important of which were biological primary production and biomass burning.
Collapse
Affiliation(s)
- Matteo Feltracco
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy; Institute for the Dynamics of Environmental Processes CNR, Via Torino 155, 30172, Venice, Italy.
| | - Elena Barbaro
- Institute for the Dynamics of Environmental Processes CNR, Via Torino 155, 30172, Venice, Italy
| | - Torben Kirchgeorg
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy
| | - Andrea Spolaor
- Institute for the Dynamics of Environmental Processes CNR, Via Torino 155, 30172, Venice, Italy
| | - Clara Turetta
- Institute for the Dynamics of Environmental Processes CNR, Via Torino 155, 30172, Venice, Italy
| | - Roberta Zangrando
- Institute for the Dynamics of Environmental Processes CNR, Via Torino 155, 30172, Venice, Italy
| | - Carlo Barbante
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy; Institute for the Dynamics of Environmental Processes CNR, Via Torino 155, 30172, Venice, Italy
| | - Andrea Gambaro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy; Institute for the Dynamics of Environmental Processes CNR, Via Torino 155, 30172, Venice, Italy
| |
Collapse
|
17
|
Barbaro E, Feltracco M, Cesari D, Padoan S, Zangrando R, Contini D, Barbante C, Gambaro A. Characterization of the water soluble fraction in ultrafine, fine, and coarse atmospheric aerosol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:1423-1439. [PMID: 30678002 DOI: 10.1016/j.scitotenv.2018.12.298] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Water soluble organic carbon significantly contributes to aerosol's carbon mass and its chemical composition is poorly characterized due to the huge number of species. In this study, we determined 94 water-soluble compounds: inorganic ions (Cl-, Br-, I-, NO3-, SO42-,K+, Mg+, Na+, NH4+, Ca2+), organic acids (methanesulfonic acid and C2-C7 carboxylic acids), monosaccharides, alcohol-sugars, levoglucosan and its isomers, sucrose, phenolic compounds, free l- and d-amino acids and photo-oxidation products of α-pinene (cis-pinonic acid and pinic acid). The sampling was conducted using a micro-orifice uniform deposit impactor (MOUDI) at the urban area of Mestre-Venice from March to May 2016. The main aim of this work is to identify the source of each detected compound, evaluating its particle size distribution. Clear differences in size distributions were observed for each class of analyzed compounds. The positive matrix factorization (PMF) model was used to identify six factors related to different sources: a) primary biogenic aerosol particles with particle size > 10 μm; b) secondary sulfate contribution; c) biomass burning; d) primary biogenic aerosol particles distributed between 10 and 1 μm; e) an aged sea salt input and f) SOA pinene. Each factor was also characterized by different composition in waters soluble compounds and different particles size distribution.
Collapse
Affiliation(s)
- Elena Barbaro
- Institute for the Dynamics of Environmental Processes CNR, Via Torino 155, 30172 Venice-Mestre, Italy.
| | - Matteo Feltracco
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice-Mestre, Italy
| | - Daniela Cesari
- Institute for the Dynamics of Environmental Processes CNR, Via Torino 155, 30172 Venice-Mestre, Italy
| | - Sara Padoan
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice-Mestre, Italy
| | - Roberta Zangrando
- Institute for the Dynamics of Environmental Processes CNR, Via Torino 155, 30172 Venice-Mestre, Italy
| | - Daniele Contini
- Institute of Atmospheric Sciences and Climate, ISAC-CNR, 73100 Lecce, Italy
| | - Carlo Barbante
- Institute for the Dynamics of Environmental Processes CNR, Via Torino 155, 30172 Venice-Mestre, Italy; Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice-Mestre, Italy
| | - Andrea Gambaro
- Institute for the Dynamics of Environmental Processes CNR, Via Torino 155, 30172 Venice-Mestre, Italy; Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice-Mestre, Italy
| |
Collapse
|
18
|
Ge P, Luo G, Luo Y, Huang W, Xie H, Chen J, Qu J. Molecular understanding of the interaction of amino acids with sulfuric acid in the presence of water and the atmospheric implication. CHEMOSPHERE 2018; 210:215-223. [PMID: 30005342 DOI: 10.1016/j.chemosphere.2018.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
Amino acids are important components of atmospheric aerosols. Despite the diversity of amino acids structures, however, the role of amino acids with additional non-characteristic functional groups in new particle formation (NPF) has almost remained unexplored. Herein, the interaction of serine (Ser) and threonine (Thr), which feature a hydroxyl group and differ by a methyl-substitution, with sulfuric acid (SA) and up to three water (W) molecules has been investigated at the M06-2X/6-311++G (3df, 3pd) level of theory. The effects of structural differences of amino acids on the structure and properties of clusters were also pointed out. Results show that serine may play more important role in stabilizing sulfuric acid to promote NPF in initial steps compared with threonine, glycine and alanine. Meanwhile, threonine may participate in ion-induced nucleation due to the high dipole moment of (Thr) (SA) isomers. Moreover, the effects of structure differences of amino acids can be seen in several aspects. Firstly, methyl substitution and hydroxyl group of amino acids have great influence on the structure of clusters. Secondly, hydrated (Ser) (SA) and (Tur) (SA) clusters could retain water even at low relative humidity, which may due to the hydroxyl group in serine and threonine. In addition, the Rayleigh light scattering intensities of amino acid-containing clusters are higher than trimethylamine, monoethanolamine and oxalic acid-involved counterparts. The effect of carboxyl group and methyl substitution on optical properties of clusters is also discussed. This study may bring new insight into the role of amino acids with additional non-characteristic functional groups in initial steps of NPF.
Collapse
Affiliation(s)
- Pu Ge
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Gen Luo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yi Luo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Wei Huang
- School of Environmental Science & Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hongbin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
19
|
Barbaro E, Spolaor A, Karroca O, Park KT, Martma T, Isaksson E, Kohler J, Gallet JC, Bjorkman MP, Cappelletti D, Spreen G, Zangrando R, Barbante C, Gambaro A. Free amino acids in the Arctic snow and ice core samples: Potential markers for paleoclimatic studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:454-462. [PMID: 28711841 DOI: 10.1016/j.scitotenv.2017.07.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/04/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
The role of oceanic primary production on climate variability has long been debated. Defining changes in past oceanic primary production can help understanding of the important role that marine algae have in climate variability. In ice core research methanesulfonic acid is the chemical marker commonly used for assessing changes in past primary production. However, other organic compounds such as amino acids, can be produced and emitted into the atmosphere during a phytoplankton bloom. These species can be transported and deposited onto the ice cap in polar regions. Here we investigate the correlation between the concentration of chlorophyll-a, marker of marine primary production, and amino acids present in an ice core. For the first time, free l- and d-amino acids in Arctic snow and firn samples were determined by a sensitive and selective analytical method based on liquid chromatography coupled with tandem mass spectrometry. The new method for the determination of free amino acids concentrations was applied to firn core samples collected on April 2015 from the summit of the Holtedahlfonna glacier, Svalbard (N 79'08.424, E 13'23.639, 1120m a.s.l.). The main results of this work are summarized as follows: (1) glycine, alanine and proline, were detected and quantified in the firn core samples; (2) their concentration profiles, compared with that of the stable isotope δ18O ratio, show a seasonal cycling with the highest concentrations during the spring and summer time; (3) back-trajectories and Greenland Sea chlorophyll-a concentrations obtained by satellite measurements were compared with the amino acids profile obtained from ice core samples, this provided further insights into the present results. This study suggests that the amino acid concentrations in the ice samples collected from the Holtedahlfonna glaciers could reflect changes in oceanic phytoplankton abundance.
Collapse
Affiliation(s)
- Elena Barbaro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice-Mestre, Italy.
| | - Andrea Spolaor
- Institute for the Dynamics of Environmental Processes CNR, Via Torino 155, 30172 Venice-Mestre, Italy
| | - Ornela Karroca
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice-Mestre, Italy
| | - Ki-Tae Park
- Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 406-840, Republic of Korea
| | - Tõnu Martma
- Department of Geology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | | | - Jack Kohler
- Norwegian Polar Institute, Tromsø NO-9296, Norway
| | | | - Mats P Bjorkman
- University of Gothenburg, Department of Earth Sciences, Box 60, 40530 Göteborg, Sweden
| | - David Cappelletti
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Gunnar Spreen
- University of Bremen, Institute of Environmental Physics, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Roberta Zangrando
- Institute for the Dynamics of Environmental Processes CNR, Via Torino 155, 30172 Venice-Mestre, Italy
| | - Carlo Barbante
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice-Mestre, Italy; Institute for the Dynamics of Environmental Processes CNR, Via Torino 155, 30172 Venice-Mestre, Italy
| | - Andrea Gambaro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice-Mestre, Italy; Institute for the Dynamics of Environmental Processes CNR, Via Torino 155, 30172 Venice-Mestre, Italy
| |
Collapse
|
20
|
Song T, Wang S, Zhang Y, Song J, Liu F, Fu P, Shiraiwa M, Xie Z, Yue D, Zhong L, Zheng J, Lai S. Proteins and Amino Acids in Fine Particulate Matter in Rural Guangzhou, Southern China: Seasonal Cycles, Sources, and Atmospheric Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:6773-6781. [PMID: 28505430 DOI: 10.1021/acs.est.7b00987] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Water-soluble proteinaceous matter including proteins and free amino acids (FAAs) as well as some other chemical components was analyzed in fine particulate matter (PM2.5) samples collected over a period of one year in rural Guangzhou. Annual averaged protein and total FAAs concentrations were 0.79 ± 0.47 μg m-3 and 0.13 ± 0.05 μg m-3, accounting for 1.9 ± 0.7% and 0.3 ± 0.1% of PM2.5, respectively. Among FAAs, glycine was the most abundant species (19.9%), followed by valine (18.5%), methionine (16.1%), and phenylalanine (13.5%). Both proteins and FAAs exhibited distinct seasonal variations with higher concentrations in autumn and winter than those in spring and summer. Correlation analysis suggests that aerosol proteinaceous matter was mainly derived from intensive agricultural activities, biomass burning, and fugitive dust/soil resuspension. Significant correlations between proteins/FAAs and atmospheric oxidant (O3) indicate that proteins/FAAs may be involved in O3 related atmospheric processes. Our observation confirms that ambient FAAs could be degraded from proteins under the influence of O3, and the stoichiometric coefficients of the reactions were estimated for FAAs and glycine. This finding provides a possible pathway for the production of aerosol FAAs in the atmosphere, which will improve the current understanding on atmospheric processes of proteinaceous matter.
Collapse
Affiliation(s)
- Tianli Song
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology , Guangzhou 510006, China
| | - Shan Wang
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology , Guangzhou 510006, China
| | - Yingyi Zhang
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology , Guangzhou 510006, China
| | - Junwei Song
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology , Guangzhou 510006, China
| | - Fobang Liu
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , Mainz 55128, Germany
| | - Pingqing Fu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences , Beijing 100029, China
| | - Manabu Shiraiwa
- Department of Chemistry, University of California , Irvine, California 92697-2025, United States
| | - Zhiyong Xie
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research , Geesthacht 21502, Germany
| | - Dingli Yue
- Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring , Guangzhou 510308, China
| | - Liuju Zhong
- Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring , Guangzhou 510308, China
| | - Junyu Zheng
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology , Guangzhou 510006, China
| | - Senchao Lai
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology , Guangzhou 510006, China
| |
Collapse
|
21
|
Li W, Qi X, Zhao CY, Xu XF, Tang AN, Kong DM. A Rapid and Facile Detection for Specific Small-Sized Amino Acids Based on Target-Triggered Destruction of Metal Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2017; 9:236-243. [PMID: 27935274 DOI: 10.1021/acsami.6b13998] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Most of the reported metal organic frameworks (MOFs)-based DNA sensors were developed by utilizing the different adsorption capacities of MOFs to different structural DNAs (for example, single-stranded DNAs (ssDNAs) and double-stranded DNAs (dsDNAs)) or ssDNAs with different lengths. Herein, we introduced another strategy for the design of MOFs-based biosensing platforms. We found that specific small-sized amino acids (for example, glycine and serine) could lead to the destruction of the MOFs formed by [Cu(mal)(bpy)]·2H2O], thus recovering the fluorescence of a fluorophore-labeled ssDNA that had been quenched by MOFs. The corresponding working mechanism was discussed. On the basis of this finding, a mix-and-detect fluorescence method was designed for the turn-on detection of specific small-sized amino acids. The feasibility of its use in real serum samples was also demonstrated. Besides biosensing applications, the discovery of amino acids-triggered destruction of MOFs can also enrich the building blocks of molecular logic gate. As an example, a biomolecular logic gate that performs OR logic operation was constructed using glycine and a DNA strand as inputs.
Collapse
Affiliation(s)
- Wei Li
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, and ‡Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University , 94 Weijin Road, Tianjin 300071, People's Republic of China
| | - Xue Qi
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, and ‡Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University , 94 Weijin Road, Tianjin 300071, People's Republic of China
| | - Chao-Yue Zhao
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, and ‡Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University , 94 Weijin Road, Tianjin 300071, People's Republic of China
| | - Xiu-Fang Xu
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, and ‡Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University , 94 Weijin Road, Tianjin 300071, People's Republic of China
| | - An-Na Tang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, and ‡Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University , 94 Weijin Road, Tianjin 300071, People's Republic of China
| | - De-Ming Kong
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, and ‡Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University , 94 Weijin Road, Tianjin 300071, People's Republic of China
| |
Collapse
|
22
|
Ault AP, Axson JL. Atmospheric Aerosol Chemistry: Spectroscopic and Microscopic Advances. Anal Chem 2016; 89:430-452. [DOI: 10.1021/acs.analchem.6b04670] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Andrew P. Ault
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jessica L. Axson
- Department
of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|