1
|
Kamble BB, Sharma KK, Sonawane KD, Tayade SN, Grammatikos S, Reddy YVM, Reddy SL, Shin JH, Park JP. Graphitic carbon nitride-based electrochemical sensors: A comprehensive review of their synthesis, characterization, and applications. Adv Colloid Interface Sci 2024; 333:103284. [PMID: 39226798 DOI: 10.1016/j.cis.2024.103284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/02/2024] [Accepted: 08/24/2024] [Indexed: 09/05/2024]
Abstract
Graphitic carbon nitride (g-C3N4) has garnered much attention as a promising 2D material in the realm of electrochemical sensors. It contains a polymeric matrix that can serve as an economical and non-toxic electrode material for the detection of a diverse range of analytes. However, its performance is impeded by a relatively limited active surface area and inherent instability. Although electrochemistry involving metal-doped g-C3N4 nanomaterials is rapidly progressing, it remains relatively unexplored. The metal doping of g-C3N4 augments the electrochemically active surface area of the resulting electrode, which has the potential to significantly enhance electrode kinetics and bolster catalytic activity. Consequentially, the main objective of this review is to provide insight into the intricacies of synthesizing and characterizing metal-doped g-C3N4. Furthermore, we comprehensively delve into the fundamental attributes of electrochemical sensors based on metal-doped g-C3N4, with a specific focus on healthcare and environmental applications. These applications encompass a meticulous exploration of detecting biomolecules, drug molecules, and organic pollutants.
Collapse
Affiliation(s)
- Bhagyashri B Kamble
- Department of Chemistry, Shivaji University, Kolhapur 416004, Maharashtra, India.
| | - Kiran Kumar Sharma
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra 416004, India
| | - Kailas D Sonawane
- Department of Microbiology, Shivaji University, Kolhapur, Maharashtra 416004, India
| | - Shivaji N Tayade
- Department of Chemistry, Shivaji University, Kolhapur 416004, Maharashtra, India
| | - Sotirios Grammatikos
- ASEMlab - Laboratory of Advanced and Sustainable Engineering Materials, Department of Manufacturing and Civil Engineering, Norwegian University of Science and Technology (NTNU), Gjøvik, Norway
| | - Y Veera Manohara Reddy
- Department of Manufacturing and Civil Engineering, Norwegian University of Science and Technology (NTNU), Gjøvik, Norway; Department of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi 110026, India.
| | - S Lokeswara Reddy
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi 630003, TN, India
| | - Jae Hwan Shin
- Department of Food Science and Technology, GreenTech-Based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodongdaero, Anseong 17546, Republic of Korea
| | - Jong Pil Park
- Department of Food Science and Technology, GreenTech-Based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodongdaero, Anseong 17546, Republic of Korea.
| |
Collapse
|
2
|
Park S, Kaufman D, Ben-Yoav H, Yossifon G. On-Chip Electrochemical Sensing with an Enhanced Detecting Signal Due to Concentration Polarization-Based Analyte Preconcentration. Anal Chem 2024; 96:6501-6510. [PMID: 38593185 PMCID: PMC11044107 DOI: 10.1021/acs.analchem.4c01018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024]
Abstract
Here, we integrated two key technologies within a microfluidic system, an electrokinetic preconcentration of analytes by ion Concentration Polarization (CP) and local electrochemical sensors to detect the analytes, which can synergistically act to significantly enhance the detection signal. This synergistic combination, offering both decoupled and coupled operation modes for continuous monitoring, was validated by the intensified fluorescent intensities of CP-preconcentrated analytes and the associated enhanced electrochemical response using differential pulse voltammetry and chronoamperometry. The system performance was evaluated by varying the location of the active electrochemical sensor, target analyte concentrations, and electrolyte concentration using fluorescein molecules as the model analyte and Homovanillic acid (HVA) as the target bioanalyte within both phosphate-buffered saline (PBS) and artificial sweat solution. The combination of on-chip electrochemical sensing with CP-based preconcentration renders this generic approach adaptable to various analytes. This advanced system shows remarkable promise for enhancing biosensing detection in practical applications while bridging the gap between fundamental research and practical implementation.
Collapse
Affiliation(s)
- Sinwook Park
- School
of Mechanical Engineering, Tel-Aviv University, Tel Aviv, 6997801, Israel
- Department
of Biomedical Engineering, Tel-Aviv University, Tel Aviv, 6997801, Israel
| | - Daniel Kaufman
- Nanobioelectronics
Laboratory (NBEL), Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Hadar Ben-Yoav
- Nanobioelectronics
Laboratory (NBEL), Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Gilad Yossifon
- School
of Mechanical Engineering, Tel-Aviv University, Tel Aviv, 6997801, Israel
- Department
of Biomedical Engineering, Tel-Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
3
|
Honda T, Takemura K, Matsumae S, Morita N, Iwasaki W, Arita R, Ueda S, Liang YW, Fukuda O, Kikunaga K, Ohmagari S. Quantification of caffeine in coffee cans using electrochemical measurements, machine learning, and boron-doped diamond electrodes. PLoS One 2024; 19:e0298331. [PMID: 38530838 DOI: 10.1371/journal.pone.0298331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/18/2024] [Indexed: 03/28/2024] Open
Abstract
Electrochemical measurements, which exhibit high accuracy and sensitivity under low contamination, controlled electrolyte concentration, and pH conditions, have been used in determining various compounds. The electrochemical quantification capability decreases with an increase in the complexity of the measurement object. Therefore, solvent pretreatment and electrolyte addition are crucial in performing electrochemical measurements of specific compounds directly from beverages owing to the poor measurement quality caused by unspecified noise signals from foreign substances and unstable electrolyte concentrations. To prevent such signal disturbances from affecting quantitative analysis, spectral data of voltage-current values from electrochemical measurements must be used for principal component analysis (PCA). Moreover, this method enables highly accurate quantification even though numerical data alone are challenging to analyze. This study utilized boron-doped diamond (BDD) single-chip electrochemical detection to quantify caffeine content in commercial beverages without dilution. By applying PCA, we integrated electrochemical signals with known caffeine contents and subsequently utilized principal component regression to predict the caffeine content in unknown beverages. Consequently, we addressed existing research problems, such as the high quantification cost and the long measurement time required to obtain results after quantification. The average prediction accuracy was 93.8% compared to the actual content values. Electrochemical measurements are helpful in medical care and indirectly support our lives.
Collapse
Affiliation(s)
- Tatsuya Honda
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tosu, Saga, Japan
- Graduate School of Science and Engineering, Saga University, Saga, Japan
| | - Kenshin Takemura
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tosu, Saga, Japan
| | - Susumu Matsumae
- Graduate School of Science and Engineering, Saga University, Saga, Japan
| | - Nobutomo Morita
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tosu, Saga, Japan
| | - Wataru Iwasaki
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tosu, Saga, Japan
| | - Ryoji Arita
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tosu, Saga, Japan
- Graduate School of Science and Engineering, Saga University, Saga, Japan
| | - Suguru Ueda
- Graduate School of Science and Engineering, Saga University, Saga, Japan
| | - Yeoh Wen Liang
- Graduate School of Science and Engineering, Saga University, Saga, Japan
| | - Osamu Fukuda
- Graduate School of Science and Engineering, Saga University, Saga, Japan
| | - Kazuya Kikunaga
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tosu, Saga, Japan
| | - Shinya Ohmagari
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tosu, Saga, Japan
| |
Collapse
|
4
|
Chen X, Liu H, Li C, Xu Y, Xu B. Revealing the characteristic aroma and boundary compositions of five pig breeds based on HS-SPME/GC-O-MS, aroma recombination and omission experiments. Food Res Int 2024; 178:113954. [PMID: 38309911 DOI: 10.1016/j.foodres.2024.113954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
To clarify the characteristic aroma compounds and flavor discrepancies of five Chinese typical pig species, headspace-solid phase microextraction gas chromatography-olfactometry-mass spectrometry (HS-SPME/GC-O-MS), electronic nose (E-nose), aroma recombination and omission experiments were used to analyze the characteristic aroma and boundary of five boiled pork. A total of 38 volatile compounds were identified, of which 14 were identified as important odorants with odor-activity values (OAVs) greater than 1. Aroma recombination and omission experiments revealed 8 key characteristic aroma compounds, which significantly contributed to the overall aroma. Sensory evaluation of the recombination model with the 8 aroma compounds scored 3.0 to 4.0 out of 5 points. 12 potential markers were identified to distinguish by principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), including (E)-2-octenal, 3-ethyl-2-methyl-1,3-hexadiene, (E)-2-heptenal, 2-pentylfuran, cyclooctanol, 1-heptanol, sec-butylamine, D-limonene, N-vinylformamide, 2,3-octanedione, 2-ethylfuran and 3-pentanamine. Alongside benzaldehyde and pentanal, the combinations and fluctuations of these 14 aroma markers were proposed to constitute the aroma boundaries of different pork breeds. The aroma-active substances were able to effectively differentiate different breeds.
Collapse
Affiliation(s)
- Xueli Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Haoyue Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China; School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Cong Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China.
| | - Yujuan Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China; Engineering Research Center of Bio-Process of Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230601, Anhui Province, China.
| |
Collapse
|
5
|
Gaye O, Fall CB, Jalloh M, Faye B, Jobin M, Cussenot O. Detection of urological cancers by the signature of organic volatile compounds in urine, from dogs to electronic noses. Curr Opin Urol 2023; 33:437-444. [PMID: 37678152 DOI: 10.1097/mou.0000000000001128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
PURPOSE OF REVIEW Urine volatile organic compound (VOC) testing for early detection of urological cancers is a minimally invasive and promising method. The objective of this review was to present the results of recently published work on this subject. RECENT FINDINGS Organic volatile compounds are produced through oxidative stress and peroxidation of cell membranes, and they are eliminated through feces, urine, and sweat. Studies looking for VOCs in urine for the diagnosis of urological cancers have mostly focused on bladder and prostate cancers. However, the number of patients included in the studies was small. The electronic nose was the most widely used means of detecting VOCs in urine for the detection of urological cancers. MOS sensors and pattern recognition machine learning were more used for the composition of electronic noses. Early detection of urological cancers by detection of VOCs in urine is a method with encouraging results with sensitivities ranging from 27 to 100% and specificities ranging from 72 to 94%. SUMMARY The olfactory signature of urine from patients with urological cancers is a promising biomarker for the early diagnosis of urological cancers. The electronic nose with its ability to recognize complex odors is an excellent alterative to canine diagnosis and analytical techniques. Nevertheless, additional research improving the technology of Enoses and the methodology of the studies is necessary for its implementation in daily clinical practice.
Collapse
Affiliation(s)
- Oumar Gaye
- Urology Department, Dalal Jamm Hospital
- University Cheikh Anta Diop
| | | | - Mohamed Jalloh
- Urology Department, Idrissa Pouye General Hospital, Dakar, Senegal
| | | | - Marc Jobin
- HEPIA, University of Applied Sciences of Western Switzerland (HES-SO), Genève, Switzerland
| | - Olivier Cussenot
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- CeRePP, Paris, France
| |
Collapse
|
6
|
Wang J, Du W, Lei Y, Chen Y, Wang Z, Mao K, Tao S, Pan B. Quantifying the dynamic characteristics of indoor air pollution using real-time sensors: Current status and future implication. ENVIRONMENT INTERNATIONAL 2023; 175:107934. [PMID: 37086491 DOI: 10.1016/j.envint.2023.107934] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
People generally spend most of their time indoors, making indoor air quality be of great significance to human health. Large spatiotemporal heterogeneity of indoor air pollution can be hardly captured by conventional filter-based monitoring but real-time monitoring. Real-time monitoring is conducive to change air assessment mode from static and sparse analysis to dynamic and massive analysis, and has made remarkable strides in indoor air evaluation. In this review, the state of art, strengths, challenges, and further development of real-time sensors used in indoor air evaluation are focused on. Researches using real-time sensors for indoor air evaluation have increased rapidly since 2018, and are mainly conducted in China and the USA, with the most frequently investigated air pollutants of PM2.5. In addition to high spatiotemporal resolution, real-time sensors for indoor air evaluation have prominent advantages in 3-dimensional monitoring, pollution peak and source identification, and short-term health effect evaluation. Huge amounts of data from real-time sensors also facilitate the modeling and prediction of indoor air pollution. However, challenges still remain in extensive deployment of real-time sensors indoors, including the selection, performance, stability, as well as calibration of sensors. In future, sensors with high performance, long-term stability, low price, and low energy consumption are welcomed. Furthermore, more target air pollutants are also expected to be detected simultaneously by real-time sensors in indoor air monitoring.
Collapse
Affiliation(s)
- Jinze Wang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China.
| | - Yali Lei
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Zhenglu Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Shu Tao
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Bo Pan
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| |
Collapse
|
7
|
Joo H, Han SW, Lee CS, Jang HS, Kim ST, Han JS. Field application of cost-effective sensors for the monitoring of NH 3, H 2S, and TVOC in environmental treatment facilities and the estimation of odor intensity. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2023; 73:50-64. [PMID: 36200828 DOI: 10.1080/10962247.2022.2131652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 08/19/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Odor is usually a complex mixture of various compounds. In many countries, odor complaints have been addressed using the air dilution olfactory method (ADOM) to reduce their malodor complaint. In this study, continuous monitoring of ammonia, hydrogen sulfide, and total volatile organic compounds (TVOC) using sensors was conducted in facilities for municipal and livestock wastewater treatment (LWT), and for food waste composting (FWC). Odor intensity was modeled by multivariate linear regression using sensor monitoring data with air dilution measured by the ADOM. In testing the performance of sensors in the lab, all three sensors showed acceptable values for linearity, accuracy, repeatability, lowest detection limit, and response time, so the sensors were acceptable for application in the field. In on-site real-time monitoring, the three sensors functioned well in the three environmental facilities during the testing period. Average ammonia and hydrogen sulfide concentrations were high in the LWT facility, while TVOC showed the highest concentration in the FWC facility. A longer sampling time is necessary for ammonia monitoring. Odor intensity from individual sensor data correlated well to complex odor measured by the ADOM. Finally, we suggest a protocol for field application of sensor monitoring and odor data reproduction.Implications: We suggest a protocol for the field application of sensor monitoring and odor data estimation in this study. This study can be useful to a policy maker and field operator to reduce odor emission through the determination of a more effective treatment technology and removal pathway for individual odorants.
Collapse
Affiliation(s)
- HungSoo Joo
- Department of Environmental Engineering, Anyang University, Anyang-si, Gyeonggi-do, Korea
| | - Sang-Woo Han
- Department of Environmental Engineering, Anyang University, Anyang-si, Gyeonggi-do, Korea
| | - Chun-Sang Lee
- Department of Environmental Engineering, Anyang University, Anyang-si, Gyeonggi-do, Korea
| | - Hyun-Seop Jang
- Zero Emission Center, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Korea
| | - Sung-Tae Kim
- E2M3 Inc, Anyang University, Anyang-si, Gyeonggi-do, Korea
| | - Jin-Seok Han
- Department of Environmental Engineering, Anyang University, Anyang-si, Gyeonggi-do, Korea
| |
Collapse
|
8
|
Liu W, Liu P, Han F, Xiao Y. Research on electronic nose for compound malodor recognition combined with artificial neural network and linear discriminant analysis. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2022. [DOI: 10.3233/jifs-222539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The foul odor of foul gas has many harmful effects on the environment and human health. In order to accurately assess this impact, it is necessary to identify specific malodorous components and levels. In order to meet the qualitative and quantitative identification of the components of malodorous gas, an electronic nose system is developed in this paper. Both principal component analysis (PCA) and linear discriminant analysis (LDA) were used to reduce the dimensionality of the collected data. The reduced-dimensional data are combined with a support vector machine (SVM) and backpropagation (BP) neural network for classification and recognition to compare the recognition results. Regarding qualitative recognition, this paper selects the method of LDA combined with the BP neural network after comparison. Experiments show that the qualitative recognition rate of this method in this study can reach 100%, and the amount of data after LDA dimensionality reduction is small, which speeds up the pattern speed of recognition. Regarding quantitative identification, this paper proposes a prediction experiment through Partial least squares (PLS) and BP neural networks. The experiment shows that the average relative error of the trained BP network is within 6%. Finally, the experiment of quantitative analysis of malodorous compound gas by this system shows that the maximum relative error of this method is only 4.238%. This system has higher accuracy and faster recognition speed than traditional methods.
Collapse
Affiliation(s)
- Weiling Liu
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, China
| | - Ping Liu
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, China
| | - Furong Han
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, China
| | - Yanjun Xiao
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, China
| |
Collapse
|
9
|
Rozman M, Lukšič M. Stainless Steel Foil-Based Label-Free Modular Thin-Film Electrochemical Detector for Solvent Identification. MICROMACHINES 2022; 13:2256. [PMID: 36557555 PMCID: PMC9780910 DOI: 10.3390/mi13122256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Most organic solvents are colorless liquids, usually stored in sealed containers. In many cases, their identification depends on the appropriate description on the container to prevent mishandling or mixing with other materials. Although modern laboratories rely heavily on identification technologies, such as digitized inventories and spectroscopic methods (e.g., NMR or FTIR), there may be situations where these cannot be used due to technical failure, lack of equipment, or time. An example of a portable and cost-effective solution to this problem is an electrochemical sensor. However, these are often limited to electrochemical impedance spectroscopy (EIS) or voltammetry methods. To address this problem, we present a novel modular electrochemical sensor for solvent identification that can be used with either an EIS-enabled potentiostat/galvanostat or a simple multimeter. A novel method of fabricating and using a sensor consisting of a thin-film coating of an organic substance on a stainless-steel electrode substrate is presented. The differences in the solubility of the thin film in different solvents are used to distinguish between common organic solvents such as water, ethanol, and tetrahydrofuran.
Collapse
Affiliation(s)
- Martin Rozman
- FunGlass—Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, SK-91150 Trenčín, Slovakia
| | - Miha Lukšič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana , Večna pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
Sun L, Wu J, Wang K, Liang T, Liu Q, Yan J, Yang Y, Qiao K, Ma S, Wang D. Comparative Analysis of Acanthopanacis Cortex and Periplocae Cortex Using an Electronic Nose and Gas Chromatography-Mass Spectrometry Coupled with Multivariate Statistical Analysis. Molecules 2022; 27:molecules27248964. [PMID: 36558097 PMCID: PMC9781861 DOI: 10.3390/molecules27248964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Chinese Herbal Medicines (CHMs) can be identified by experts according to their odors. However, the identification of these medicines is subjective and requires long-term experience. The samples of Acanthopanacis Cortex and Periplocae Cortex used were dried cortexes, which are often confused in the market due to their similar appearance, but their chemical composition and odor are different. The clinical use of the two herbs is different, but the phenomenon of being confused with each other often occurs. Therefore, we used an electronic nose (E-nose) to explore the differences in odor information between the two species for fast and robust discrimination, in order to provide a scientific basis for avoiding confusion and misuse in the process of production, circulation and clinical use. In this study, the odor and volatile components of these two medicinal materials were detected by the E-nose and by gas chromatography-mass spectrometry (GC-MS), respectively. An E-nose combined with pattern analysis methods such as principal component analysis (PCA) and partial least squares (PLS) was used to discriminate the cortex samples. The E-nose was used to determine the odors of the samples and enable rapid differentiation of Acanthopanacis Cortex and Periplocae Cortex. GC-MS was utilized to reveal the differences between the volatile constituents of Acanthopanacis Cortex and Periplocae Cortex. In all, 82 components including 9 co-contained components were extracted by chromatographic peak integration and matching, and 24 constituents could be used as chemical markers to distinguish these two species. The E-nose detection technology is able to discriminate between Acanthopanacis Cortex and Periplocae Cortex, with GC-MS providing support to determine the material basis of the E-nose sensors' response. The proposed method is rapid, simple, eco-friendly and can successfully differentiate these two medicinal materials by their odors. It can be applied to quality control links such as online detection, and also provide reference for the establishment of other rapid detection methods. The further development and utilization of this technology is conducive to the further supervision of the quality of CHMs and the healthy development of the industry.
Collapse
|
11
|
Ali MEM, Moniem SM, Hemdan BA, Ammar NS, Ibrahim HS. Innovative polymeric inorganic coagulant-flocculant for wastewater purification with simultaneous microbial reduction in treated effluent and sludge. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
12
|
Malik R, Joshi N, Tomer VK. Functional graphitic carbon (IV) nitride: A versatile sensing material. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214611] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Sensing performances of spinel ferrites MFe2O4 (M = Mg, Ni, Co, Mn, Cu and Zn) based electrochemical sensors: A review. Anal Chim Acta 2022; 1233:340362. [DOI: 10.1016/j.aca.2022.340362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/19/2022]
|
14
|
Guo Y, Wang H, Yang B, Shu J, Jiang K, Yu Z, Zhang Z, Li Z, Huang J, Wei Z. An ultrasensitive SPI/PAI ion source based on a high-flux VUV lamp and its applications for the online mass spectrometric detection of sub-pptv sulfur ethers. Talanta 2022; 247:123558. [DOI: 10.1016/j.talanta.2022.123558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/29/2022] [Accepted: 05/14/2022] [Indexed: 10/18/2022]
|
15
|
Marzouk SAM, Abu Namous AJ. Gas Identification by Simultaneous Permeation through Parallel Membranes: Proof of Concept. Anal Chem 2022; 94:11134-11143. [PMID: 35920637 DOI: 10.1021/acs.analchem.2c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This paper describes an experimental system for simultaneous permeation of a pressurized test gas through different gas permeable membranes and provides a proof of concept for a novel approach for gas identification/fingerprinting for potential construction of electronic noses. The design, construction, and use of a six-channel system which allows simultaneous gas permeation from a single pressurized gas compartment through six different parallel membranes are presented. The permeated gas is accumulated in confined spaces behind the respective membranes. The rate of gas pressure accumulation behind each membrane is recorded and used as a measure of the gas permeation rate through the membrane. The utilized gas permeable membranes include Teflon AF, silicone rubber, track-etch hydrophilic polycarbonate, track-etch hydrophobic polycarbonate, track-etch polyimide, nanoporous anodic aluminum oxide, zeolite ZSM-5, and zeolite NaY. An analogy between the rate of pressure accumulation of the permeating gas behind the membrane and the charging of an electric capacitor in a single series RC circuit is proposed and thoroughly validated. The simultaneous permeation rates through different membranes demonstrated a very promising potential as characteristic fingerprints for 10 test gases, that is, helium, neon, argon, hydrogen, nitrogen, carbon dioxide, methane, ethane, propane, and ethylene, which are selected as representative examples of mono-, di-, tri-, and polyatomic gases and to include some homologous series as well as to allow testing the potential of the proposed system to discriminate between closely related gases such as ethane and ethylene or carbon dioxide and propane which have almost identical molecular masses. Finally, a preliminary investigation of the possibility of applying the developed gas permeation system for semiquantitative analysis of the CO2-N2 binary mixture is also presented.
Collapse
Affiliation(s)
- Sayed A M Marzouk
- Department of Chemistry, UAE University, Al Ain 15551, United Arab Emirates
| | | |
Collapse
|
16
|
The Application of In Situ Methods to Monitor VOC Concentrations in Urban Areas—A Bibliometric Analysis and Measuring Solution Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14148815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Urbanisation development affects urban vegetation both directly and indirectly. Since this process usually involves a dramatic change in land use, it is seen as likely to cause ecological pressure on local ecosystems. All forms of human activity, including urbanisation of areas close to residential buildings, significantly impact air quality. This study aims to identify and characterise different measurement solutions of VOCs, allowing the quantification of total and selective compounds in a direct at source (in situ) manner. Portable devices for direct testing can generally be divided into detectors, chromatographs, and electronic noses. They differ in parameters such as operating principle, sensitivity, measurement range, response time, and selectivity. Direct research allows us to obtain measurement results in a short time, which is essential from the point of view of immediate reaction in the case of high concentrations of tested compounds and the possibility of ensuring the well-being of people. The paper also attempts to compare solutions and devices available on the market and assess their application.
Collapse
|
17
|
Naser Zaid A, Al Ramahi R, AlKilany A, Abu-Khalaf N, El Kharouf M, Abu Dayeh D, Al-omari L, Yaqoup M. Following drug degradation and consequent taste deterioration of an oral reconstituted paediatric suspension during dosing interval via electronic tongue. Saudi Pharm J 2022; 30:555-561. [PMID: 35693442 PMCID: PMC9177456 DOI: 10.1016/j.jsps.2022.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/27/2022] [Indexed: 10/26/2022] Open
Abstract
Background The taste of oral liquid dosage forms is a crucial factor that impacts pediatric patient compliance. Taste of suspensions can be typically evaluated by human volunteers. Recently, the electronic tongue (ET) has been proven as an emerging tool that could be useful to follow up various formulations' properties like taste and composition. This study aimed to evaluate the potential use of ET in assessing the taste deterioration of reconstituted oral suspensions and compare the results obtained with the typical in vivo panel taste method. Methods Four commercially available brands of amoxicillin/ clavulanic acid suspensions (one brand and three generic formulations) were reconstituted and stored in refrigerator to assess their taste on a daily basis. The taste of these products was assessed using Alpha-Astree ET and the obtained results were compared with those obtained from an in vivo panel taste assessment using a hedonic panel test (the 5-point hedonic scale). Results All evaluated suspensions exhibited similar trends. ET and in vivo analysis indicated low taste scores for all evaluated suspensions immediately after reconstitution, possibly due to the incomplete dissolution of sucrose. The scores for all formulations were higher on day 2, followed by a steady state for the next two days. After that, a significant decay in the scores was observed in the fifth day for all evaluated suspensions. ET results were in excellent agreement with the results obtained via in vivo panel test method. Conclusion The ET seems to be promising for testing the taste of pharmaceutical liquid preparations and evaluate possible deterioration upon storage or after reconstitution. It may provide a platform to avoid the involvement of pediatric volunteers in clinical evaluation and can be employed as a quality control tool during manufacturing.
Collapse
Affiliation(s)
- Abdel Naser Zaid
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus P.O. Box 7, Palestine
| | - Rowa Al Ramahi
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus P.O. Box 7, Palestine
| | | | - Nawaf Abu-Khalaf
- College of Agricultural Sciences and Technology, Palestine Technical University-Kadoorie (PTUK), Tulkarm P.O. Box 7, Palestine
| | - Maher El Kharouf
- Quality Manager, Jerusalem Pharmaceuticals, Ramallah, P.O. Box: 3570, Palestine
| | - Dana Abu Dayeh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus P.O. Box 7, Palestine
| | - Leena Al-omari
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus P.O. Box 7, Palestine
| | - Mohammad Yaqoup
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus P.O. Box 7, Palestine
| |
Collapse
|
18
|
Zhang WL, Liu ZY, Liang K, Wang Y, Chen KF, Sun YW, Wang S. Experimental realization of visible gas sensing technology based on spatial heterodyne spectroscopy. Sci Rep 2022; 12:1423. [PMID: 35082371 PMCID: PMC8791975 DOI: 10.1038/s41598-022-05510-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/13/2022] [Indexed: 11/28/2022] Open
Abstract
Based on the characteristics of optical absorption gas sensing technology (OA-GST) and spatial heterodyne spectroscopy (SHS), a novel type of visual gas sensing technology (V-GST) can present the invisible gas information in the form of two-dimensional visual fingerprint, which has attracted people's attention. In this paper, we have realized the NO2 detection of V-GST in the laboratory environment for the first time. Experimental results show that: V-GST not only has different interferogram response to different spectra, but also has good response to different concentrations of NO2, which lays a foundation for the application of this technology in gas sensing. And the average classification recognition rate of the system for different band NO2 response data is over 80%, which verifies the effectiveness of the V-GST in gas detection.
Collapse
|
19
|
Ramirez-Montes S, Santos EM, Galan-Vidal CA, Tavizon-Pozos JA, Rodriguez JA. Classification of Edible Vegetable Oil Degradation Using Multivariate Data Analysis From Electrochemical Techniques. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02083-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Kharel M, Chalise S, Chalise B, Sharma KR, Gyawali D, Paudyal H, Neupane BB. Assessing volatile organic compound level in selected workplaces of Kathmandu Valley. Heliyon 2021; 7:e08262. [PMID: 34765781 PMCID: PMC8571507 DOI: 10.1016/j.heliyon.2021.e08262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/04/2021] [Accepted: 10/22/2021] [Indexed: 01/24/2023] Open
Abstract
Volatile organic compounds (VOCs) are one of the major contributors to poor indoor air quality. Due to advancements in sensor technologies, continuous if not regular monitoring total VOC (TVOC) and or some specific VOC in potential high risk workplaces is possible even in resource limited settings. In this study, we implemented a portable VOC sensor to measure concentration of TVOC and formaldehyde (HCHO) in six types of potential high risk workplaces (n = 56 sites) of Katmandu Valley. For comparison, concentration was also measured in immediate surroundings (n = 56) of all the sites. To get preliminary information on safety practices, a survey study was also conducted. The mean TVOC and HCHO concentration in the sites ranged from 1.5‒8 mg/m3 and <0.01–5.5 mg/m3, respectively. The indoor: outdoor TVOC and HCHO ratio (I/O) was found to be significantly higher (I/O > 1.5 and p < 0.05) in 34 (~61%) and 47 sites (∼84%), respectively. A strong positive correlation between HCHO and TVOC concentration was observed in furniture industry (R = 0.91) and metal workshops (R = 0.98). Interestingly, we found TVOC and HCHO concentration higher than WHO safe limit in ∼64% and ∼32% sites, respectively. A rough estimate of chronic daily intake (CDI) of formaldehyde showed that CDI is higher than WHO limit in four sites. These findings suggested that indoor air quality in the significant number of the workplaces is poor and possible measures should be taken to minimize the exposure.
Collapse
Affiliation(s)
- Madhav Kharel
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
| | - Surendra Chalise
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
| | - Baburam Chalise
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
| | - Khaga Raj Sharma
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
| | - Deepak Gyawali
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal.,Ministry of Forests and Environment, Department of Environment, Government of Nepal, Nepal
| | - Hari Paudyal
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
| | | |
Collapse
|
21
|
Coating-Based Quartz Crystal Microbalance Detection Methods of Environmentally Relevant Volatile Organic Compounds. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070153] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Volatile organic compounds (VOCs) that evaporate under standard atmospheric conditions are of growing concern. This is because it is well established that VOCs represent major contamination risks since release of these compounds into the atmosphere can contribute to global warming, and thus, can also be detrimental to the overall health of worldwide populations including plants, animals, and humans. Consequently, the detection, discrimination, and quantification of VOCs have become highly relevant areas of research over the past few decades. One method that has been and continues to be creatively developed for analyses of VOCs is the Quartz Crystal Microbalance (QCM). In this review, we summarize and analyze applications of QCM devices for the development of sensor arrays aimed at the detection of environmentally relevant VOCs. Herein, we also summarize applications of a variety of coatings, e.g., polymers, macrocycles, and ionic liquids that have been used and reported in the literature for surface modification in order to enhance sensing and selective detection of VOCs using quartz crystal resonators (QCRs) and thus QCM. In this review, we also summarize novel electronic systems that have been developed for improved QCM measurements.
Collapse
|
22
|
A Short Review of Cavity-Enhanced Raman Spectroscopy for Gas Analysis. SENSORS 2021; 21:s21051698. [PMID: 33801211 PMCID: PMC7957899 DOI: 10.3390/s21051698] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022]
Abstract
The market of gas sensors is mainly governed by electrochemical, semiconductor, and non-dispersive infrared absorption (NDIR)-based optical sensors. Despite offering a wide range of detectable gases, unknown gas mixtures can be challenging to these sensor types, as appropriate combinations of sensors need to be chosen beforehand, also reducing cross-talk between them. As an optical alternative, Raman spectroscopy can be used, as, in principle, no prior knowledge is needed, covering nearly all gas compounds. Yet, it has the disadvantage of a low quantum yield through a low scattering cross section for gases. There have been various efforts to circumvent this issue by enhancing the Raman yield through different methods. For gases, in particular, cavity-enhanced Raman spectroscopy shows promising results. Here, cavities can be used to enhance the laser beam power, allowing higher laser beam-analyte interaction lengths, while also providing the opportunity to utilize lower cost equipment. In this work, we review cavity-enhanced Raman spectroscopy, particularly the general research interest into this topic, common setups, and already achieved resolutions.
Collapse
|
23
|
Farahmand E, Razavi SH, Mohtasebi SS. Investigating effective variables to produce desirable aroma in sourdough using e‐nose and sensory panel. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Elham Farahmand
- Bioprocess Engineering Laboratory (BPEL), Department of Food Science, Engineering and Technology, Faculty of Agricultural Engineering and Technology University of Tehran Karaj Iran
| | - Seyed Hadi Razavi
- Bioprocess Engineering Laboratory (BPEL), Department of Food Science, Engineering and Technology, Faculty of Agricultural Engineering and Technology University of Tehran Karaj Iran
| | - Seyed Saeid Mohtasebi
- Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology University of Tehran Karaj Iran
| |
Collapse
|
24
|
Fei C, Ren C, Wang Y, Li L, Li W, Yin F, Lu T, Yin W. Identification of the raw and processed Crataegi Fructus based on the electronic nose coupled with chemometric methods. Sci Rep 2021; 11:1849. [PMID: 33473146 PMCID: PMC7817683 DOI: 10.1038/s41598-020-79717-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 12/11/2020] [Indexed: 11/26/2022] Open
Abstract
Crataegi Fructus (CF) is widely used as a medicinal and edible material around the world. Currently, different types of processed CF products are commonly found in the market. Quality evaluation of them mainly relies on chemical content determination, which is time and money consuming. To rapidly and nondestructively discriminate different types of processed CF products, an electronic nose coupled with chemometrics was developed. The odour detection method of CF was first established by single-factor investigation. Then, the sensor array was optimised by a stepwise discriminant analysis (SDA) and analysis of variance (ANOVA). Based on the best-optimised sensor array, the digital and mode standard were established, realizing the odour quality control of samples. Meanwhile, mathematical prediction models including the discriminant formula and back-propagation neural network (BPNN) model exhibited good evaluation with a high accuracy rate. These results suggest that the developed electronic nose system could be an alternative way for evaluating the odour of different types of processed CF products.
Collapse
Affiliation(s)
- Chenghao Fei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenchen Ren
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yulin Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lin Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weidong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fangzhou Yin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Tulin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Wu Yin
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
25
|
Wojnowski W, Kalinowska K, Gębicki J, Zabiegała B. Monitoring the BTEX Volatiles during 3D Printing with Acrylonitrile Butadiene Styrene (ABS) Using Electronic Nose and Proton Transfer Reaction Mass Spectrometry. SENSORS 2020; 20:s20195531. [PMID: 32992544 PMCID: PMC7582819 DOI: 10.3390/s20195531] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/09/2020] [Accepted: 09/23/2020] [Indexed: 12/28/2022]
Abstract
We describe a concept study in which the changes of concentration of benzene, toluene, ethylbenzene, and xylene (BTEX) compounds and styrene within a 3D printer enclosure during printing with different acrylonitrile butadiene styrene (ABS) filaments were monitored in real-time using a proton transfer reaction mass spectrometer and an electronic nose. The quantitative data on the concentration of the BTEX compounds, in particular the concentration of carcinogenic benzene, were then used as reference values for assessing the applicability of an array of low-cost electrochemical sensors in monitoring the exposure of the users of consumer-grade fused deposition modelling 3D printers to potentially harmful volatiles. Using multivariate statistical analysis and machine learning, it was possible to determine whether a set threshold limit value for the concentration of BTEX was exceeded with a 0.96 classification accuracy and within a timeframe of 5 min based on the responses of the chemical sensors.
Collapse
Affiliation(s)
- Wojciech Wojnowski
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland;
- Correspondence: (W.W.); (K.K.)
| | - Kaja Kalinowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland;
- Correspondence: (W.W.); (K.K.)
| | - Jacek Gębicki
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland;
| | - Bożena Zabiegała
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland;
| |
Collapse
|
26
|
Ollé EP, Farré-Lladós J, Casals-Terré J. Advancements in Microfabricated Gas Sensors and Microanalytical Tools for the Sensitive and Selective Detection of Odors. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5478. [PMID: 32987904 PMCID: PMC7583964 DOI: 10.3390/s20195478] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022]
Abstract
In recent years, advancements in micromachining techniques and nanomaterials have enabled the fabrication of highly sensitive devices for the detection of odorous species. Recent efforts done in the miniaturization of gas sensors have contributed to obtain increasingly compact and portable devices. Besides, the implementation of new nanomaterials in the active layer of these devices is helping to optimize their performance and increase their sensitivity close to humans' olfactory system. Nonetheless, a common concern of general-purpose gas sensors is their lack of selectivity towards multiple analytes. In recent years, advancements in microfabrication techniques and microfluidics have contributed to create new microanalytical tools, which represent a very good alternative to conventional analytical devices and sensor-array systems for the selective detection of odors. Hence, this paper presents a general overview of the recent advancements in microfabricated gas sensors and microanalytical devices for the sensitive and selective detection of volatile organic compounds (VOCs). The working principle of these devices, design requirements, implementation techniques, and the key parameters to optimize their performance are evaluated in this paper. The authors of this work intend to show the potential of combining both solutions in the creation of highly compact, low-cost, and easy-to-deploy platforms for odor monitoring.
Collapse
Affiliation(s)
- Enric Perarnau Ollé
- Department of Mechanical Engineering, Polytechnical University of Catalonia (UPC), MicroTech Lab, Colom street 11, 08222 Terrassa, Spain; (J.F.-L.); (J.C.-T.)
- SEAT S.A., R&D Department in Future Urban Mobility Concepts, A-2, Km 585, 08760 Martorell, Spain
| | - Josep Farré-Lladós
- Department of Mechanical Engineering, Polytechnical University of Catalonia (UPC), MicroTech Lab, Colom street 11, 08222 Terrassa, Spain; (J.F.-L.); (J.C.-T.)
| | - Jasmina Casals-Terré
- Department of Mechanical Engineering, Polytechnical University of Catalonia (UPC), MicroTech Lab, Colom street 11, 08222 Terrassa, Spain; (J.F.-L.); (J.C.-T.)
| |
Collapse
|
27
|
Chen C, Xiong D, Gu M, Lu C, Yi FY, Ma X. MOF-Derived Bimetallic CoFe-PBA Composites as Highly Selective and Sensitive Electrochemical Sensors for Hydrogen Peroxide and Nonenzymatic Glucose in Human Serum. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35365-35374. [PMID: 32657131 DOI: 10.1021/acsami.0c09689] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The fabrication of two-dimensional (2D) metal-organic frameworks (MOFs) and Prussian blue analogues (PBAs) combines the advantages of 2D materials, MOFs and PBAs, resolving the poor electronic conductivity and slow diffusion of MOF materials for electrochemical applications. In this work, 2D leaflike zeolitic imidazolate frameworks (Co-ZIF and Fe-ZIF) as sacrificial templates are in situ converted into PBAs, realizing the successful fabrication of PBA/ZIF nanocomposites on nickel foam (NF), namely, CoCo-PBA/Co-ZIF/NF, FeFe-PBA/Fe-ZIF/NF, CoFe-PBA/Co-ZIF/NF, and Fe/CoCo-PBA/Co-ZIF/NF. Such fabrication can effectively reduce transfer resistance and greatly enhance electron- and mass-transfer efficiency due to the electrochemically active PBA particles and NF substrate. These fabricated electrodes as multifunctional sensors achieve highly selective and sensitive glucose and H2O2 biosensing with a very wide detective linear range, extremely low limit of detection (LOD), and good stability. Among them, CoFe-PBA/Co-ZIF/NF exhibits the best sensing performance with a very wide linear range from 1.4 μM to 1.5 mM, a high sensitivity of 5270 μA mM-1 cm-2, a low LOD of 0.02 μM (S/N = 3), and remarkable stability and selectivity toward glucose. What is more, it can realize excellent detection of glucose in human serum, demonstrating its practical applications. Furthermore, this material as a multifunctional electrochemical sensor also manifests superior detection performance against hydrogen peroxide with a wide linear range of 0.2-6.0 mM, a high sensitivity of 196 μA mM-1 cm-2, and a low limit of detection of 1.08 nM (S/N = 3). The sensing mechanism for enhanced performance for glucose and H2O2 is discussed and proved by experiments in detail.
Collapse
Affiliation(s)
- Chen Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Dengke Xiong
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Minli Gu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Chunxiao Lu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Fei-Yan Yi
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
- Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province, Ningbo 315211, P. R. China
| | - Xinghua Ma
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
- Department of Chemistry & Biochemistry, The City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| |
Collapse
|
28
|
He S, Yuan Y, Nag A, Feng S, Afsarimanesh N, Han T, Mukhopadhyay SC, Organ DR. A Review on the Use of Impedimetric Sensors for the Inspection of Food Quality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5220. [PMID: 32698330 PMCID: PMC7400391 DOI: 10.3390/ijerph17145220] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/06/2020] [Accepted: 07/16/2020] [Indexed: 01/02/2023]
Abstract
This paper exhibits a thorough review of the use of impedimetric sensors for the analysis of food quality. It helps to understand the contribution of some of the major types of impedimetric sensors that are used for this application. The deployment of impedimetric sensing prototypes has been advantageous due to their wide linear range of responses, detection of the target analyte at low concentrations, good stability, high accuracy and high reproducibility in the results. The choice of these sensors was classified on the basis of structure and the conductive material used to develop them. The first category included the use of nanomaterials such as graphene and metallic nanowires used to form the sensing devices. Different forms of graphene nanoparticles, such as nano-hybrids, nanosheets, and nano-powders, have been largely used to sense biomolecules in the micro-molar range. The use of conductive materials such as gold, copper, tungsten and tin to develop nanowire-based prototypes for the inspection of food quality has also been shown. The second category was based on conventional electromechanical circuits such as electronic noses and other smart systems. Within this sector, the standardized systems, such as electronic noses, and LC circuit -based systems have been explained. Finally, some of the challenges posed by the existing sensors have been listed out, along with an estimate of the increase in the number of sensors employed to assess food quality.
Collapse
Affiliation(s)
- Shan He
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (S.H.); (Y.Y.)
- Flinders Institute of Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Yang Yuan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (S.H.); (Y.Y.)
| | - Anindya Nag
- DGUT-CNAM Institute, Dongguan University of Technology, Dongguan 523000, China; (N.A.); (T.H.)
| | - Shilun Feng
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Nasrin Afsarimanesh
- DGUT-CNAM Institute, Dongguan University of Technology, Dongguan 523000, China; (N.A.); (T.H.)
| | - Tao Han
- DGUT-CNAM Institute, Dongguan University of Technology, Dongguan 523000, China; (N.A.); (T.H.)
| | | | - Dominic Rowan Organ
- Department of Social Sciences, Heriot-Watt University, Edinburgh SC000278, UK;
| |
Collapse
|
29
|
Wasilewski T, Szulczyński B, Wojciechowski M, Kamysz W, Gębicki J. Determination of long-chain aldehydes using a novel quartz crystal microbalance sensor based on a biomimetic peptide. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104509] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Affiliation(s)
- Marcin Bielecki
- The Faculty of Mathematics and Natural Sciences, Institute of Chemistry, Jan Kochanowski University, Kielce, Poland
| | - Zygfryd Witkiewicz
- The Faculty of Advanced Technologies and Chemistry, Institute of Chemistry, Military University of Technology, Warsaw, Poland
| | - Paweł Rogala
- The Faculty of Mathematics and Natural Sciences, Institute of Chemistry, Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
31
|
Rusinek R, Gancarz M, Nawrocka A. Application of an electronic nose with novel method for generation of smellprints for testing the suitability for consumption of wheat bread during 4-day storage. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108665] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
The Influence of Hydrogen on the Indications of the Electrochemical Carbon Monoxide Sensors. SUSTAINABILITY 2019. [DOI: 10.3390/su12010014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This article examines electrochemical carbon monoxide (CO) sensors used as mobile devices by rescue and firefighting units in Poland. The conducted research indicates that the presence of chlorine (Cl2), ammonia (NH3), hydrogen sulfide (H2S), hydrogen chloride (HCl), hydrogen cyanide (HCN), nitrogen (IV) oxide (NO2), and sulfur (IV) oxide (SO2) in the atmosphere does not affect the functioning of the electrochemical CO sensor. In the case of this sensor, there was a significant cross effect in relation to hydrogen (H2). It was found that the time and manner of using the sensor affects the behavior in relation to H2. Such a relationship was not recorded for CO. Measurements in a mixture of CO and H2 confirm the effect of hydrogen on the changes taking place inside the sensor. Independently of the ratio of H2 to CO, readings of CO were flawed. All analyses showed a significant difference between the electrochemical CO sensor readings and the expected values. Only in experiments with a 1:3 mixture of CO and H2 was the relative error less than 15%. The relative error in the analyzed concentration range for a sensor with an additional compensation electrode ranged from 7% to 38%; for a sensor without this electrode, it ranged from 23% to 55%. It was ascertained that in the cases of measurements for tests carried out at higher concentrations of H2 in relation to CO, a sensor with an additional electrode is significantly better (more accurate) than a sensor without such an electrode. Differences at the significance level p = 0.01 for measurements made in the CO:H2 mixture at a ratio of 1:3 were ascertained.
Collapse
|
33
|
Mesophilic and thermophilic dark fermentation course analysis using sensor matrices and chromatographic techniques. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-01010-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
34
|
Liu MM, Guo ZZ, Liu H, Li SH, Chen Y, Zhong Y, Lei Y, Lin XH, Liu AL. Paper-based 3D culture device integrated with electrochemical sensor for the on-line cell viability evaluation of amyloid-beta peptide induced damage in PC12 cells. Biosens Bioelectron 2019; 144:111686. [DOI: 10.1016/j.bios.2019.111686] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/11/2022]
|
35
|
Lin MH, Ke LY, Yao DJ. Discrimination of Red Wines with a Gas-Sensor Array Based on a Surface-Acoustic-Wave Technique. MICROMACHINES 2019; 10:mi10110725. [PMID: 31717824 PMCID: PMC6915528 DOI: 10.3390/mi10110725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/17/2019] [Accepted: 10/23/2019] [Indexed: 11/24/2022]
Abstract
We applied a thermal-desorption gas-chromatograph mass-spectrometer (TD-GC–MS) system to identify the marker volatile organic compounds (VOCs) in the aroma of red wine. After obtaining the marker VOC, we utilized surface acoustic waves (SAWs) to develop a highly sensitive sensing system as ‘electronic nose’ to detect these marker VOC. The SAW chips were fabricated on a LiNbO3 substrate with a lithographic process. We coated sensing polymers on the sensing area to adsorb the marker VOC in a sample gas. The adsorption of the marker VOC altered the velocity of the SAW according to a mass-loading effect, causing a frequency decrease. This experiment was conducted with wines of three grape varieties—cabernet sauvignon, merlot and black queen. According to the results of TD-GC–MS, the King brand of red wine is likely to have unique VOC, which are 2-pentanone, dimethyl disulfide, 2-methylpropyl acetate and 2-pentanol; Blue Nun-1 probably has a special VOC such as 2,3-butanedione. We hence used a SAW sensor array to detect the aroma of red wines and to distinguish their components by their frequency shift. The results show that the use of polyvinyl butyral (PVB) as a detecting material can distinguish Blue Nun-2 from the others and the use of polyvinyl alcohol (PVA) can distinguish King from the others. We conducted random tests to prove the accuracy and the reliability of our SAW sensors.
Collapse
Affiliation(s)
- Min-Han Lin
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Ling-Yi Ke
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Da-Jeng Yao
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30013, Taiwan;
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan;
- Correspondence: ; Tel.: +886-3-5715-1314-2850
| |
Collapse
|
36
|
van den Broek J, Abegg S, Pratsinis SE, Güntner AT. Highly selective detection of methanol over ethanol by a handheld gas sensor. Nat Commun 2019; 10:4220. [PMID: 31527675 PMCID: PMC6746816 DOI: 10.1038/s41467-019-12223-4] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/28/2019] [Indexed: 11/29/2022] Open
Abstract
Methanol poisoning causes blindness, organ failure or even death when recognized too late. Currently, there is no methanol detector for quick diagnosis by breath analysis or for screening of laced beverages. Typically, chemical sensors cannot distinguish methanol from the much higher ethanol background. Here, we present an inexpensive and handheld sensor for highly selective methanol detection. It consists of a separation column (Tenax) separating methanol from interferants like ethanol, acetone or hydrogen, as in gas chromatography, and a chemoresistive gas sensor (Pd-doped SnO2 nanoparticles) to quantify the methanol concentration. This way, methanol is measured within 2 min from 1 to 1000 ppm without interference of much higher ethanol levels (up to 62,000 ppm). As a proof-of-concept, we reliably measure methanol concentrations in spiked breath samples and liquor. This could enable the realization of highly selective sensors in emerging applications such as breath analysis or air quality monitoring.
Collapse
Affiliation(s)
- J van den Broek
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - S Abegg
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - S E Pratsinis
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - A T Güntner
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland.
- Department of Endocrinology, Diabetes, and Clinical Nutrition, University Hospital Zurich, 8091, Zurich, Switzerland.
| |
Collapse
|
37
|
Szulczyński B, Gębicki J. Determination of Odor Intensity of Binary Gas Mixtures Using Perceptual Models and an Electronic Nose Combined with Fuzzy Logic. SENSORS 2019; 19:s19163473. [PMID: 31398955 PMCID: PMC6720763 DOI: 10.3390/s19163473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/03/2019] [Accepted: 08/06/2019] [Indexed: 11/16/2022]
Abstract
Measurement and monitoring of air quality in terms of odor nuisance is an important problem. From a practical point of view, it would be most valuable to directly link the odor intensity with the results of analytical air monitoring. Such a solution is offered by electronic noses, which thanks to the possibility of holistic analysis of the gas sample, allow estimation of the odor intensity of the gas mixture. The biggest problem is the occurrence of odor interactions between the mixture components. For this reason, methods that can take into account the interaction between components of the mixture are used to analyze data from the e-nose. In the presented study, the fuzzy logic algorithm was proposed for determination of odor intensity of binary mixtures of eight odorants: n-Hexane, cyclohexane, toluene, o-xylene, trimethylamine, triethylamine, α-pinene, and β-pinene. The proposed algorithm was compared with four theoretical perceptual models: Euclidean additivity, vectorial additivity, U model, and UPL model.
Collapse
Affiliation(s)
- Bartosz Szulczyński
- Department of Process Engineering and Chemical Technology, Chemical Faculty, Gdansk University of Technology, 11/12 G. Narutowicza Str., 80-233 Gdańsk, Poland.
| | - Jacek Gębicki
- Department of Process Engineering and Chemical Technology, Chemical Faculty, Gdansk University of Technology, 11/12 G. Narutowicza Str., 80-233 Gdańsk, Poland
| |
Collapse
|
38
|
Abstract
Odor reproduction, a branch of machine olfaction, is a technology through which a machine represents various odors by blending several odor sources in different proportions and releases them. In this paper, an odor reproduction system is proposed. The system includes an atomization-based odor dispenser using 16 micro-porous piezoelectric transducers. The authors propose the use of an electronic nose combined with a Principal Component Analysis–Linear Discriminant Analysis (PCA–LDA) model to evaluate the effectiveness of the system. The results indicate that the model can be used to evaluate the system.
Collapse
|
39
|
Evolution of Electronic Noses from Research Objects to Engineered Environmental Odour Monitoring Systems: A Review of Standardization Approaches. BIOSENSORS-BASEL 2019; 9:bios9020075. [PMID: 31159226 PMCID: PMC6627819 DOI: 10.3390/bios9020075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/20/2019] [Accepted: 05/27/2019] [Indexed: 01/03/2023]
Abstract
Since electronic noses are used more and more for air quality monitoring purposes, and in some countries are starting to have a legal value, there is a need for standardization and programs for the quality verification of instruments. Such quality programs have the aim to guarantee the main characteristics of the instrument for both the final user and local authorities, let the user establish a suitable maintenance procedure and give information on measurement uncertainty. One critical aspect when dealing with electronic noses for environmental odour monitoring is that environmental odours are complex mixtures that are not repeatable nor reproducible, giving that they are not suitable for quality verifications. This paper aims to review and discuss the different approaches that can be adopted in order to perform quality checks on electronic noses (e-noses) used for environmental odour monitoring, thereby referring to existing technical standards, such as the Dutch NTA 9055:2012, the new German VDI 3518-3:2018, and the Italian UNI 1605848 project, which directly refer to electronic noses. Moreover, also the European technical standards that are prescriptive for automatic measuring systems (AMSs) are taken into consideration (i.e., EN 14181:2014 and EN 15267:2009), and their possible applicability to electronic noses is investigated. Finally, the pros and cons of the different approaches are presented and discussed in the conclusions section.
Collapse
|
40
|
Fung AG, Rajapakse MY, McCartney MM, Falcon AK, Fabia FM, Kenyon NJ, Davis CE. Wearable Environmental Monitor To Quantify Personal Ambient Volatile Organic Compound Exposures. ACS Sens 2019; 4:1358-1364. [PMID: 31074262 DOI: 10.1021/acssensors.9b00304] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Air pollution can cause acute and chronic health problems. It has many components, and one component of interest is volatile organic compounds (VOCs). While the outdoor environment may have regulations regarding exposure limits, the indoor environment is often unregulated and VOCs often appear in greater concentrations in the indoor environment. Therefore, it is equally critical to monitor both the indoor and outdoor environments for ambient chemical levels that an individual person is exposed to. While a number of different chemical detectors exist, most lack the ability to provide portable monitoring. We have developed a portable and wearable sampler that collects environmental VOCs in a person's immediate "exposure envelope" onto custom micro-preconcentrator chips for later benchtop analysis. The system also records ambient temperature and humidity and the GPS location during sampling, and the chip cartridges can be used in sequence over time to complete a profile of individual chemical exposure over the course of hours/days/weeks/months. The system can be programmed to accumulate sample for various times with varying periodicity. We first tested our sampler in the laboratory by completing calibration curves and testing saturation times for various common chemicals. The sampler was also tested in the field by collecting both indoor and outdoor personal exposure samples. Additionally under IRB approval, a teenaged volunteer wore the sampler for 5 days during which it sampled periodically throughout a 12 h period each day and the volunteer replaced the micro-preconcentrator chip each day.
Collapse
Affiliation(s)
- Alexander G. Fung
- Mechanical and Aerospace Engineering, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Maneeshin Y. Rajapakse
- Mechanical and Aerospace Engineering, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Mitchell M. McCartney
- Mechanical and Aerospace Engineering, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Alexandria K. Falcon
- Mechanical and Aerospace Engineering, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Fauna M. Fabia
- Mechanical and Aerospace Engineering, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Nicholas J. Kenyon
- Department of Internal Medicine, University of California, Davis, 4150 V Street,
Suite 3400, Sacramento, California 95817, United States
- Center for Comparative Respiratory Biology and Medicine, University of California, Davis, Davis, California 95616, United States
- VA Northern California Health Care System, 10535 Hospital Way, Mather, California 95655, United States
| | - Cristina E. Davis
- Mechanical and Aerospace Engineering, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
41
|
|
42
|
Wojnowski W, Kalinowska K, Majchrzak T, Płotka-Wasylka J, Namieśnik J. Prediction of the Biogenic Amines Index of Poultry Meat Using an Electronic Nose. SENSORS 2019; 19:s19071580. [PMID: 30939836 PMCID: PMC6480166 DOI: 10.3390/s19071580] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 01/05/2023]
Abstract
The biogenic amines index of fresh chicken meat samples during refrigerated storage was predicted based on the headspace analysis using an electronic nose equipped with an array of electrochemical sensors. The reference biogenic amines index values were obtained using dispersive liquid–liquid microextraction–gas chromatography–mass spectrometry. A prototype electronic nose with modular construction and a dedicated sample chamber was used to rapidly analyze the volatile fraction of chicken meat samples, with a single measurement time of five minutes. Back-propagation artificial neural network was used to estimate the biogenic amines index of the samples with a determination coefficient of 0.954 based on ten-fold stratified cross-validation. The results indicate that the determination of the biogenic amines index is a good reference method for studies in which the freshness of meat products is assessed based on headspace analysis and fingerprinting, and that the described electronic device can be used to assess poultry meat freshness based on this value with high accuracy.
Collapse
Affiliation(s)
- Wojciech Wojnowski
- Department of Analytical Chemistry, Faculty of Chemistry,Gdańsk University of Technology, 80-233 Gdańsk, Poland.
| | - Kaja Kalinowska
- Department of Analytical Chemistry, Faculty of Chemistry,Gdańsk University of Technology, 80-233 Gdańsk, Poland.
| | - Tomasz Majchrzak
- Department of Analytical Chemistry, Faculty of Chemistry,Gdańsk University of Technology, 80-233 Gdańsk, Poland.
| | - Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry,Gdańsk University of Technology, 80-233 Gdańsk, Poland.
| | - Jacek Namieśnik
- Department of Analytical Chemistry, Faculty of Chemistry,Gdańsk University of Technology, 80-233 Gdańsk, Poland.
| |
Collapse
|
43
|
Self-Assembled Vanadium Oxide Nanoflakes for p-Type Ammonia Sensors at Room Temperature. NANOMATERIALS 2019; 9:nano9030317. [PMID: 30818822 PMCID: PMC6473898 DOI: 10.3390/nano9030317] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/17/2019] [Accepted: 02/21/2019] [Indexed: 11/29/2022]
Abstract
VO2(B), VO2(M), and V2O5 are the most famous compounds in the vanadium oxide family. Here, their gas-sensing properties were investigated and compared. VO2(B) nanoflakes were first self-assembled via a hydrothermal method, and then VO2(M) and V2O5 nanoflakes were obtained after a heat-phase transformation in nitrogen and air, respectively. Their microstructures were evaluated using X-ray diffraction and scanning and transmission electron microscopies, respectively. Gas sensing measurements indicated that VO2(M) nanoflakes were gas-insensitive, while both VO2(B) and V2O5 nanoflakes were highly selective to ammonia at room temperature. As ammonia sensors, both VO2(B) and V2O5 nanoflakes showed abnormal p-type sensing characteristics, although vanadium oxides are generally considered as n-type semiconductors. Moreover, V2O5 nanoflakes exhibited superior ammonia sensing performance compared to VO2(B) nanoflakes, with one order of magnitude higher sensitivity, a shorter response time of 14–22 s, and a shorter recovery time of 14–20 s. These characteristics showed the excellent potential of V2O5 nanostructures as ammonia sensors.
Collapse
|
44
|
Waste to Carbon: Influence of Structural Modification on VOC Emission Kinetics from Stored Carbonized Refuse-Derived Fuel. SUSTAINABILITY 2019. [DOI: 10.3390/su11030935] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The torrefaction of municipal solid waste is one of the solutions related to the Waste to Carbon concept, where high-quality fuel—carbonized refuse-derived fuel (CRDF)—is produced. An identified potential problem is the emission of volatile organic compounds (VOCs) during CRDF storage. Kinetic emission parameters have not yet been determined. It was also shown that CRDF can be pelletized for energy densification and reduced volume during storage and transportation. Thus, our working hypothesis was that structural modification (via pelletization) might mitigate VOC emissions and influence emission kinetics during CRDF storage. Two scenarios of CRDF structural modification on VOC emission kinetics were tested, (i) pelletization and (ii) pelletization with 10% binder addition and compared to ground (loose) CRDF (control). VOC emissions from simulated sealed CRDF storage were measured with headspace solid-phase microextraction and gas chromatography–mass spectrometry. It was found that total VOC emissions from stored CRDF follow the first-order kinetic model for both ground and pelletized material, while individual VOC emissions may deviate from this model. Pelletization significantly decreased (63%~86%) the maximum total VOC emission potential from stored CDRF. Research on improved sustainable CRDF storage is warranted. This could involve VOC emission mechanisms and environmental-risk management.
Collapse
|
45
|
Byliński H, Barczak RJ, Gębicki J, Namieśnik J. Monitoring of odors emitted from stabilized dewatered sludge subjected to aging using proton transfer reaction-mass spectrometry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:5500-5513. [PMID: 30610582 PMCID: PMC6403207 DOI: 10.1007/s11356-018-4041-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
One of the potential emission sources of odorous compounds from wastewater treatment plants is sludge processing. The odorous compounds released from dewatered sludge can result in odor nuisance. This study concerns the use of flux hood chamber combined with proton transfer reaction-time of flight-mass spectrometry (PTR-MS) technique for periodical monitoring of odorous compounds emitted from aged, stabilized dewatered sludge samples from 2 different wastewater treatment plants located in Pomeranian Voivodeship, Poland. Based on determined concentration of the chemical compounds and olfactory threshold values, theoretical odor concentrations (known also as "odor activity value" or "odor index") were calculated for 17 selected odorous compounds. As a result, sulfur compounds such as diethyl sulphide, dimethyl sulphide, methanethiol, and ethanethiol were estimated as the most significant chemical compounds responsible for malodorous effect (average results, e.g., methanethiol, 178 ou/m3; diethyl sulphide, 184 ou/m3). Based on Pearson correlation coefficient, we revealed a correlation between odorous substances emitted from aged, stabilized dewatered sludge cakes. It was revealed that stabilized dewatered sludge still possessed significant amount of odorous compounds and applied measurement technique could be used for monitoring of odor concentration level of selected malodorous compounds.
Collapse
Affiliation(s)
- Hubert Byliński
- Faculty of Chemistry, Department of Analytical Chemistry, Gdańsk University of Technology, Narutowicza 11/12 Street, 80-233, Gdańsk, Poland.
| | - Radosław J Barczak
- Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, 20 Nowowiejska Street, 00-653, Warsaw, Poland
- UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW, Sydney, NSW, 2052, Australia
| | - Jacek Gębicki
- Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdańsk University of Technology, Narutowicza 11/12 Street, Gdańsk, Poland.
| | - Jacek Namieśnik
- Faculty of Chemistry, Department of Analytical Chemistry, Gdańsk University of Technology, Narutowicza 11/12 Street, 80-233, Gdańsk, Poland
| |
Collapse
|
46
|
Discrimination of Two Cultivars of Alpinia Officinarum Hance Using an Electronic Nose and Gas Chromatography-Mass Spectrometry Coupled with Chemometrics. SENSORS 2019; 19:s19030572. [PMID: 30704021 PMCID: PMC6387208 DOI: 10.3390/s19030572] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/25/2019] [Accepted: 01/26/2019] [Indexed: 12/26/2022]
Abstract
Background: Alpinia officinarum Hance is both an herbal medicine and a condiment, and generally has different cultivars such as Zhutou galangal and Fengwo galangal. The appearance of these A. officinarum cultivars is similar, but their chemical composition and quality are different. It is therefore important to discriminate between different A. officinarum plants to ensure the consistency of the efficacy of the medicine. Therefore, we used an electronic nose (E-nose) to explore the differences in odor information between the two cultivars for fast and robust discrimination. Methods: Odor and volatile components of all A. officinarum samples were detected by the E-nose and gas chromatography-mass spectrometry (GC-MS), respectively. The E-nose sensors and GC-MS data were analyzed respectively by principal component analysis (PCA), the correlation between E-nose sensors and GC-MS data were analyzed by partial least squares (PLS). Results: It was found that Zhutou galangal and Fengwo galangal can be discriminated by combining the E-nose with PCA, and the E-nose sensors S2, S6, S7, S9 were important sensors for distinguishing different cultivars of A. officinarum. A total of 56 volatile components of A. officinarum were identified by the GC-MS analysis, and the composition and content of the volatile components from the two different A. officinarum cultivars were different, in particular the relative contents of 1,8-cineole and α-farnesene. The classification result by PCA analysis based on GC-MS data was consistent with the E-nose results. The PLS analysis demonstrated that the volatile terpene, alcohol and ester components primarily interacted with the sensors S2 and S7, indicating that particular E-nose sensors were highly correlated with some aroma constituents. Conclusions: Combined with advanced chemometrics, the E-nose detection technology can discriminate two cultivars of A. officinarum, with GC-MS providing support to determine the material basis of the E-nose sensors’ response.
Collapse
|
47
|
Deuscher Z, Andriot I, Sémon E, Repoux M, Preys S, Roger JM, Boulanger R, Labouré H, Le Quéré JL. Volatile compounds profiling by using proton transfer reaction-time of flight-mass spectrometry (PTR-ToF-MS). The case study of dark chocolates organoleptic differences. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:92-119. [PMID: 30478865 DOI: 10.1002/jms.4317] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 05/28/2023]
Abstract
Direct-injection mass spectrometry (DIMS) techniques have evolved into powerful methods to analyse volatile organic compounds (VOCs) without the need of chromatographic separation. Combined to chemometrics, they have been used in many domains to solve sample categorization issues based on volatilome determination. In this paper, different DIMS methods that have largely outperformed conventional electronic noses (e-noses) in classification tasks are briefly reviewed, with an emphasis on food-related applications. A particular attention is paid to proton transfer reaction mass spectrometry (PTR-MS), and many results obtained using the powerful PTR-time of flight-MS (PTR-ToF-MS) instrument are reviewed. Data analysis and feature selection issues are also summarized and discussed. As a case study, a challenging problem of classification of dark chocolates that has been previously assessed by sensory evaluation in four distinct categories is presented. The VOC profiles of a set of 206 chocolate samples classified in the four sensory categories were analysed by PTR-ToF-MS. A supervised multivariate data analysis based on partial least squares regression-discriminant analysis allowed the construction of a classification model that showed excellent prediction capability: 97% of a test set of 62 samples were correctly predicted in the sensory categories. Tentative identification of ions aided characterisation of chocolate classes. Variable selection using dedicated methods pinpointed some volatile compounds important for the discrimination of the chocolates. Among them, the CovSel method was used for the first time on PTR-MS data resulting in a selection of 10 features that allowed a good prediction to be achieved. Finally, challenges and future needs in the field are discussed.
Collapse
Affiliation(s)
- Zoé Deuscher
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000, Dijon, France
- CIRAD, UMR 95 QUALISUD, F-34000, Montpellier, France
| | - Isabelle Andriot
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000, Dijon, France
- ChemoSens Platform, CSGA, F-21000, Dijon, France
| | - Etienne Sémon
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000, Dijon, France
- ChemoSens Platform, CSGA, F-21000, Dijon, France
| | | | | | - Jean-Michel Roger
- IRSTEA, Information, Technologies and Environmental Assessment for Agro-Processes, F-34000, Montpellier, France
| | | | - Hélène Labouré
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Jean-Luc Le Quéré
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| |
Collapse
|
48
|
Sample preparation and recent trends in volatolomics for diagnosing gastrointestinal diseases. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.08.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Giungato P, Di Gilio A, Palmisani J, Marzocca A, Mazzone A, Brattoli M, Giua R, de Gennaro G. Synergistic approaches for odor active compounds monitoring and identification: State of the art, integration, limits and potentialities of analytical and sensorial techniques. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
50
|
Shim YS, Kwon KC, Suh JM, Choi KS, Song YG, Sohn W, Choi S, Hong K, Jeon JM, Hong SP, Kim S, Kim SY, Kang CY, Jang HW. Synthesis of Numerous Edge Sites in MoS 2 via SiO 2 Nanorods Platform for Highly Sensitive Gas Sensor. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31594-31602. [PMID: 30136839 DOI: 10.1021/acsami.8b08114] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The utilization of edge sites in two-dimensional materials including transition-metal dichalcogenides (TMDs) is an effective strategy to realize high-performance gas sensors because of their high catalytic activity. Herein, we demonstrate a facile strategy to synthesize the numerous edge sites of vertically aligned MoS2 and larger surface area via SiO2 nanorod (NRs) platforms for highly sensitive NO2 gas sensor. The SiO2 NRs encapsulated by MoS2 film with numerous edge sites and partially vertical-aligned regions synthesized using simple thermolysis process of [(NH4)2MoS4]. Especially, the vertically aligned MoS2 prepared on 500 nm thick SiO2 NRs (500MoS2) shows approximately 90 times higher gas-sensing response to 50 ppm NO2 at room temperature than the MoS2 film prepared on flat SiO2, and the theoretical detection limit is as low as ∼2.3 ppb. Additionally, it shows reliable operation with reversible response to NO2 gas without degradation at an operating temperature of 100 °C. The use of the proposed facile approach to synthesize vertically aligned TMDs using nanostructured platform can be extended for various TMD-based devices including sensors, water splitting catalysts, and batteries.
Collapse
Affiliation(s)
- Young-Seok Shim
- Center for Electronic Materials , Korea Institute of Science and Technology (KIST) , Seoul 02791 , Republic of Korea
| | - Ki Chang Kwon
- Department of Materials Science and Engineering, Research Institute of Advanced Materials , Seoul National University , Seoul 08826 , Republic of Korea
| | - Jun Min Suh
- Department of Materials Science and Engineering, Research Institute of Advanced Materials , Seoul National University , Seoul 08826 , Republic of Korea
| | - Kyoung Soon Choi
- Advanced Nano-Surface Research Group , Korea Basic Science Institute (KBSI) , Daejeon 34133 , Republic of Korea
| | - Young Geun Song
- Center for Electronic Materials , Korea Institute of Science and Technology (KIST) , Seoul 02791 , Republic of Korea
| | - Woonbae Sohn
- Department of Materials Science and Engineering, Research Institute of Advanced Materials , Seoul National University , Seoul 08826 , Republic of Korea
| | - Seokhoon Choi
- Department of Materials Science and Engineering, Research Institute of Advanced Materials , Seoul National University , Seoul 08826 , Republic of Korea
| | - Kootak Hong
- Department of Materials Science and Engineering, Research Institute of Advanced Materials , Seoul National University , Seoul 08826 , Republic of Korea
| | - Jong-Myeong Jeon
- Department of Materials Science and Engineering, Research Institute of Advanced Materials , Seoul National University , Seoul 08826 , Republic of Korea
| | - Seung-Pyo Hong
- Department of Materials Science and Engineering, Research Institute of Advanced Materials , Seoul National University , Seoul 08826 , Republic of Korea
| | - Sangtae Kim
- Center for Electronic Materials , Korea Institute of Science and Technology (KIST) , Seoul 02791 , Republic of Korea
| | - Soo Young Kim
- School of Chemical Engineering and Materials Science , Chung-Ang University , Seoul 06974 , Republic of Korea
| | - Chong-Yun Kang
- Center for Electronic Materials , Korea Institute of Science and Technology (KIST) , Seoul 02791 , Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology , Korea University , Seoul 02841 , Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials , Seoul National University , Seoul 08826 , Republic of Korea
| |
Collapse
|