1
|
Fang Y, Wang W, Xu Y, Chen Q, Jiao T, Wei J, Chen Q, Chen X. Development of a hydrophilic-lipophilic-balanced copolymer@zirconium-based metal-organic framework-based solid-phase microextraction probe for the trace determination of organophosphorus pesticides in tea infusions. Talanta 2025; 281:126823. [PMID: 39245009 DOI: 10.1016/j.talanta.2024.126823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Organophosphorus pesticides (OPPs) present in tea infusions pose a serious threat to human health. In this study, a sensitive method for the determination of OPPs was developed based on a direct-immersion solid-phase microextraction (DI-SPME) probe. By fine adjustment of the ratio and one-step polymerization of dihydroxy-functionalized zirconium-based metal-organic framework UiO-66-(OH)2 and divinylbenzene-N-vinyl pyrrolidone (DVB-NVP) microspheres, the DVB-NVP@ UiO-66-(OH)2 (D-N@U) composite with an optimal hydrophilic-lipophilic balance (HLB) was achieved. Furthermore, D-N@U was adhesively bonded to stainless-steel wires to fabricate a DI-SPME probe. OPPs, especially those with nonpolar properties characterized by a high octanol-water partition coefficient (log KOW), were selectively and efficiently enriched on the D-N@U-coated DI-SPME probe from tea infusions. Coupled with a gas chromatography-flame photometric detector, the as-fabricated D-N@U-coated DI-SPME probe achieved good performance for OPPs analysis with a wide linear dynamic range of 0.10-500.00 μg/L and low detection limits of 1.96-6.69 ng/L. Moreover, in spiked samples, the recoveries and relative standard deviations were in the ranges of 73.12%-101.20 % and 1.03%-6.56 %, respectively. Owing to its simple operation, high extraction efficiency, and high sensitivity, this approach has great potential for the rapid determination of multiple pesticide trace-level residues in food.
Collapse
Affiliation(s)
- Yuwen Fang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Wanwan Wang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Yi Xu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Qingmin Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Tianhui Jiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Jie Wei
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Xiaomei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
2
|
Mu M, Zhu S, Gao Y, Zhang N, Wang Y, Lu M. Efficient enrichment and sensitive detection of polychlorinated biphenyls using nanoflower MIL-on-UiO as solid-phase microextraction fiber coating. Food Chem 2024; 459:140276. [PMID: 38981380 DOI: 10.1016/j.foodchem.2024.140276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024]
Abstract
The sensitive detection of polychlorinated biphenyls (PCBs) is crucial for protecting the environment and human health. Herein, we constructed a Materials Institute Lavoisier 88B (MIL-88B)-on-University of Oslo 66 (UiO-66) composite (MIL-on-UiO) with a unique nanoflower morphology, in which highly stable UiO-66 is the precursor, with MIL-88B grown on its surface. MIL-on-UiO was used as a fiber coating for headspace solid-phase microextraction to enrich PCBs. Experimental results demonstrated that MIL-on-UiO provided better enrichment performance for PCBs than single components due to multiple interactions, including π-π stacking, halogen bonding, pore-filling, and steric hindrance effects. The method established using the MIL-on-UiO-based SPME fiber coating provided a good linear relationship in the range of 0.001-50 ng·mL-1, with limits of detection ranging from 0.0002 to 0.002 ng·mL-1 and enrichment factors between 3530 and 7420. In addition, the method was used to detect trace PCBs in water and orange juice achieving satisfactory recoveries (81%-111%).
Collapse
Affiliation(s)
- Mengyao Mu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Shiping Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Yanmei Gao
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Ning Zhang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China.
| | - Youmei Wang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Minghua Lu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China.
| |
Collapse
|
3
|
Liu H, Rao H, Guo J, Lu B, Wang Y, Zhu R, Du X. Ultrasound-assisted rapid growth of chemically bonded bifunctional mesoporous covalent organic framework submicrospheres on a nickel-chromium alloy support for efficient solid-phase microextraction of bisphenols from water and milk samples. J Chromatogr A 2024; 1736:465438. [PMID: 39405637 DOI: 10.1016/j.chroma.2024.465438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/17/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
A layer-by-layer chemical bonding strategy was developed for fast in situ growth of bifunctional mesoporous covalent organic framework submicrospheres (COF SMSs) on the nickel-chromium alloy (Ni-Cr) fiber substrate via the ultrasound-assisted Schiff-base reaction for the first time. COF SMSs showed well-defined morphology, extraordinary high surface area (1211 m2·g-1) and narrow mesopore (2.50 nm) as well as excellent stability. Furthermore, the resulting Ni-Cr fiber presented outstanding adsorption capability and improved selectivity for bisphenols (BPs). Consequently, an attractive SPME-HPLC-UV approach with the Ni-Cr@Ni-Cr LDHs NSs@COF SMSs fiber was proposed for rapid preconcentration and sensitive determination of BPs. By optimizing adsorption parameters, the SPME-HPLC-UV method presented good linearity for five BPs in the ranges of 0.02-200 ng·mL-1 with coefficients of determination (R2) higher than 0.999. Limits of detection and limits of quantitation were obtained from 0.003 ng·mL-1 to 0.006 ng·mL-1 and from 0.010 to 0.019 ng·mL-1, respectively. Moreover, the intra-day and inter-day precision expressed as relative standard deviations (RSDs) was 1.57-3.52 % and 2.65-4.38 % for the proposed method with a single fiber, respectively. RSDs of the proposed method with different duplicate fibers were 3.25-6.72 %. The proposed SPME-HPLC-UV method was available for efficient preconcentration and sensitive detection of five BPs from real water and milk samples. The relative recoveries at three spiking levels of BPs were achieved in the range of 80.00-118.8 % with RSDs below 7.81 %. In addition, the prepared fiber still exhibited satisfactory adsorption performance after 120 adsorption-desorption cycles.
Collapse
Affiliation(s)
- Haixia Liu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China; School of Chemical Engineering, Lanzhou City University, Lanzhou, China
| | - Honghong Rao
- School of Chemical Engineering, Lanzhou City University, Lanzhou, China
| | - Jinxin Guo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Baolan Lu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yuyun Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Rongxi Zhu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xinzhen Du
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China; Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou 730070, China.
| |
Collapse
|
4
|
Xie S, Liao B, Yu J, Zhang W, Chen H, Xu J, Zhang L. Self-assembled flower-like carbon nanosheets for magnetic solid-phase extraction of microcystins from aquatic organism. J Chromatogr A 2024; 1730:465139. [PMID: 38970876 DOI: 10.1016/j.chroma.2024.465139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/16/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Adsorbents with good dispersibility and high efficiency are crucial for magnetic solid-phase extraction (MSPE). In this study, flower-like magnetic nanomaterials (F-Ni@NiO@ZnO2-C) were successfully prepared by calcination of metal-organic framework (MOF) precursors that was stacked by two-dimensional (2D) nanosheet. The synthesized F-Ni@NiO@ZnO2-C has a flower-like layered structure with a large amount of pore space, promoting the rapid diffusion of targets. In addition, Zn2+ doped in MOF precursors was still retained that further produced strong metal chelation with targets. The unique structure of F-Ni@NiO@ZnO2-C was used as MSPE adsorbent, and combined with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for extraction of three microcystins (MCs) detection, including microcystin-LR (MC-LR), microcystin-RR (MC-RR), microcystin-YR (MC-YR). The resulting method has a detection limit of 0.2-1.0 pg mL-1, a linear dynamic range of 0.6-500.0 pg mL-1 and has good linearity (R ≥ 0.9996). Finally, the established method was applied to the highly selective enrichment of MCs in biological samples, successfully detecting trace amounts of MCs (8.4-15.0 pg mL-1) with satisfactory recovery rates (83.7-103.1 %). The results indicated that flower-like magnetic F-Ni@NiO@ZnO2-C was a promising adsorbent, providing great potential for the determination of trace amounts of MCs in biological samples.
Collapse
Affiliation(s)
- Shiye Xie
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Baodi Liao
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jing Yu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Wenmin Zhang
- Department of Chemistry and Biotechnology, Minjiang Teachers College, Fuzhou, Fujian 350109, China
| | - Hui Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jinhua Xu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Lan Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
5
|
Hao Y, Xia Y, Huang J, Zhong C, Li G. Covalent-Organic Frameworks for Selective and Sensitive Detection of Antibiotics from Water. Polymers (Basel) 2024; 16:2319. [PMID: 39204541 PMCID: PMC11359747 DOI: 10.3390/polym16162319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
As the consumption of antibiotics rises, they have generated some negative impacts on organisms and the environment because they are often unable to be effectively degraded, and seeking effective detection methods is currently a challenge. Covalent-organic frameworks (COFs) are new types of crystalline porous crystals created based on the strong covalent interactions between blocked monomers, and COFs demonstrate great potential in the detection of antibiotics from aqueous solutions because of their large surface area, adjustable porosity, recyclability, and predictable structure. This review aims to present state-of-the-art insights into COFs (properties, classification, synthesis methods, and functionalization). The key mechanisms for the detection of antibiotics and the application performance of COFs in the detection of antibiotics from water are also discussed, followed by the challenges and opportunities for COFs in future research.
Collapse
Affiliation(s)
| | | | | | - Chenglin Zhong
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China; (Y.H.); (Y.X.); (J.H.)
| | - Guizhen Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China; (Y.H.); (Y.X.); (J.H.)
| |
Collapse
|
6
|
Oshaghi S. Nano-sized magnetic molecularly imprinted polymer solid-phase microextraction for highly selective recognition and enrichment of sulfamethoxazole from spiked water samples. J Chromatogr A 2024; 1729:465016. [PMID: 38852266 DOI: 10.1016/j.chroma.2024.465016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024]
Abstract
This research, described ultrasound-assisted dispersive magnetic solid-phase microextraction, which is efficient for the enrichment and determination of sulfamethoxazole, based on magnetic molecularly imprinted polymer (USA-DMSPME-MIP). Meanwhile, the initial characterization of Fe3O4-MIP was completed by conventional methods and well-known protocols to obtain recognition and adsorbing performance at pre-specified optimum conditions. Fe3O4-MIP exhibited information regarding its selective recognition pattern towards sulfamethoxazole. The USA-DMSPME-MIP parameters were optimized by response surface methodology, and based on optimum conditions, this efficient method for the extraction and enrichment of sulfamethoxazole from spiked water samples and quantification by HPLC-UV was used. The enhanced technique indicates the limit of detection is 2 ng mL-1 for sulfamethoxazole, along with excellent linear range with coefficients of determination >0.99 and good recoveries for spiked water samples (94.2 and 98.2 %) with RSDs less than 3.5 %.
Collapse
Affiliation(s)
- Shadi Oshaghi
- Department of Chemistry, Payame Noor University, Isfahan, Iran.
| |
Collapse
|
7
|
Ji C, Wu H, Long A, Xiao L, Feng S, Xu S. Methyltrimethoxysilane modified tin dioxide microspheres with hydrophobic networks and abundant adsorbed oxygen for efficient solid-phase microextraction of polychlorinated biphenyls. Mikrochim Acta 2024; 191:537. [PMID: 39143439 DOI: 10.1007/s00604-024-06616-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
Methyltrimethoxysilane (MTMS) modified tin dioxide microspheres (MTMS/SnO2) were prepared by a facile hydrothermal method and heated reflux reaction strategy. The characterization results indicate that the modification of MTMS induced the formation of a hydrophobic network within the composites, while maintaining abundant adsorbed oxygen species. Subsequently, the MTMS/SnO2 microspheres were used as a solid-phase microextraction (SPME) coating for the efficient extraction and sensitive determination of trace polychlorinated biphenyls (PCBs) in aqueous solutions coupled to gas chromatography-mass spectrometry. MTMS/SnO2 coating exhibited superior extraction performances for PCBs compared with commercial SPME and pure SnO2 microspheres coatings, owing to the hydrophobic crosslinking and adsorbed oxygen-enhanced hydrogen bonding. The proposed analytical method presented respectable linearity in the concentration range 0.25-1000 ng L-1, with low limits of detection varying from 0.036 to 0.14 ng L-1 for seven PCBs and excellent precision, with relative standard deviations of 5.7-9.8% for a single fiber and 8.2-13.1% for five fibers. Finally, the proposed method was successfully used for determination of PCBs in real water with recoveries ranging from 75.8 to 115.6%. This study proposed a new type SPME coating of MTMS/SnO2 microspheres, which extended the potential of SnO2 in capturing and determining organic pollutants.
Collapse
Affiliation(s)
- Caixia Ji
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Hongwei Wu
- Department of Chemistry, Xinxiang Medical University, Xinxiang, 453000, People's Republic of China
| | - Anying Long
- 113 Geological Brigade, Guizhou Bureau of Geology and Mineral Resources, Liupanshui, 553000, People's Republic of China
| | - Li Xiao
- Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution and Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang, 453007, People's Republic of China.
| | - Suling Feng
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Shengrui Xu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, People's Republic of China.
| |
Collapse
|
8
|
Murtada K, Pawliszyn J. Evaluation of thin film microextraction based on graphene oxide/ polymer composite: Experimental and theoretical insights. Talanta 2024; 274:126032. [PMID: 38581851 DOI: 10.1016/j.talanta.2024.126032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Experimental and theoretical assessments of a graphene oxide-based polymer as adsorbent for thin film microextraction (TFME) were conducted as part of this research. Graphene oxide (GO) was embedded in the organic polymer poly(styrene-co-divinylbenzene) (PS-DVB) to prepare a sorbent suitable for direct-immersion TFME. A TFME membrane coating prepared with the GO/PS-DVB sorbent and polydimethylsiloxane (PDMS) as binder was then applied for extraction of organic pollutants from aqueous and gaseous samples. The surface morphology of the TFME coating was examined by scanning electron microscopy (SEM). Various TFME parameters influencing extraction efficiency, such as extraction time and temperature, desorption temperature, and ionic strength, were investigated and optimized. In a comparison of TFME membranes, the GO/PS-DVB/PDMS TFME membrane was shown to yield higher extraction efficiencies for the targeted analytes than the pure PDMS and DVB/PDMS TFME membranes. The calibration graphs of the organic pollutants displayed linearity for most of the target analytes within the 10-2000 ng L-1 concentration range. The repeatability (RSD %, n = 5) and reproducibility (RSD %, n = 3) of the method were in the ranges of 2.2-5.9 %, and 3.2-8.5 %, respectively, at a concentration level of 500 ng L-1, whereas accuracy (%) ranged between 79.8 and 119 %. The developed method was successfully applied for determinations of organic pollutants in tap water, lake water, and wastewater samples. Furthermore, the impact of mass transfer kinetics on extractions by the GO/PS-DVB/PDMS TFME membrane from gaseous samples was theoretically discussed and experimentally verified. The results of this work demonstrate that the GO/PS-DVB/PDMS TFME method is a simple, efficient, and environmentally friendly method for pre-treatment of organic pollutants.
Collapse
Affiliation(s)
- Khaled Murtada
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
9
|
Riboni N, Ribezzi E, Bianchi F, Careri M. Supramolecular Materials as Solid-Phase Microextraction Coatings in Environmental Analysis. Molecules 2024; 29:2802. [PMID: 38930867 PMCID: PMC11206577 DOI: 10.3390/molecules29122802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Solid-phase microextraction (SPME) has been widely proposed for the extraction, clean-up, and preconcentration of analytes of environmental concern. Enrichment capabilities, preconcentration efficiency, sample throughput, and selectivity in extracting target compounds greatly depend on the materials used as SPME coatings. Supramolecular materials have emerged as promising porous coatings to be used for the extraction of target compounds due to their unique selectivity, three-dimensional framework, flexible design, and possibility to promote the interaction between the analytes and the coating by means of multiple oriented functional groups. The present review will cover the state of the art of the last 5 years related to SPME coatings based on metal organic frameworks (MOFs), covalent organic frameworks (COFs), and supramolecular macrocycles used for environmental applications.
Collapse
Affiliation(s)
- Nicolò Riboni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy; (E.R.); (M.C.)
| | | | - Federica Bianchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy; (E.R.); (M.C.)
| | | |
Collapse
|
10
|
Huang Z, He L, Li H, Zhao J, Chen T, Feng Z, Li Y, You J. Rapid screening of acetylcholinesterase active contaminants in water: A solid phase microextraction-based ligand fishing approach. CHEMOSPHERE 2024; 356:141976. [PMID: 38608773 DOI: 10.1016/j.chemosphere.2024.141976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/01/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Effect-directed analysis (EDA) has been increasingly used for screening toxic contaminants in the environment, but conventional EDA procedures are often time-consuming and labor-extensive. This challenges the use of EDA for toxicant identification in the scenarios when quick answers are demanded. Herein, a solid phase microextraction ligand fishing (SPME-LF) strategy has been proposed as a rapid EDA approach for identifying acetylcholinesterase (AChE) active compounds in water. The feasibility of ligand fishing techniques for screening AChE active chemicals from environmental mixtures was first verified by a membrane separation method. Then, SPME fibers were prepared through self-assembly of boronic acid groups with AChE via co-bonding and applied for SPME-LF. As AChE coated SPME fibers selectively enriched AChE-active compounds from water, comparing sorbing compounds by the SPME fibers with and without AChE coating can quickly distinguish AChE toxicants in mixtures. Compared with conventional EDA, SPME-LF does not require repeating sample separations and bioassays, endowing SPME-LF with the merits of low-cost, labor-saving, and user-friendly. It is believed that cost-efficient and easy-to-use SPME-LF strategy can potentially be a rapid EDA method for screening receptor-specific toxicants in aquatic environment, especially applicable in time-sensitive screening.
Collapse
Affiliation(s)
- Zhoubing Huang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guian New Area, 561113, China; Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| | - Liwei He
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Huizhen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Junbo Zhao
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Tianyang Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Ziang Feng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Yangyang Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
11
|
Zhou H, Li J, Li H, Liu H, Wang X, Du X. Controlled construction of 2D hierarchical core-shell ZnO/MnO 2 nanosheets on Nitinol fiber with enhanced adsorption performance for selective solid-phase microextraction of trace polycyclic aromatic hydrocarbons in water samples. Anal Chim Acta 2024; 1298:342402. [PMID: 38462331 DOI: 10.1016/j.aca.2024.342402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/02/2024] [Accepted: 02/21/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) are an important class of potentially toxic persistent organic pollutants in environmental water. Their concentrations are usually too low to allow for direct determination with analytical instruments, and the preconcentration is required prior to instrumental analysis. Solid phase microextraction (SPME) is considered as a high-performance green sample preparation technique for volatile and non-volatile organic compounds due to its high enrichment factor. In fact, the nature of SPME coatings governs the adsorption performance. Therefore, more efforts have devoted to the controlled construction of novel long-life SPME fibers with enhanced adsorption performance and improved adsorption selectivity. RESULTS 2D hierarchical core-shell ZnO/MnO2 nanosheets (NSs) were constructed on a Nitinol (NiTi) fiber substrate by layer-by-layer assembly for enhanced and selective SPME of PAHs. Firstly, hexagonal ZnO NSs were electrodeposited on the NiTi substrate. Subsequently smaller secondary MnO2 NSs were uniformly grown on the surface of ZnO NSs by a facile hydrothermal oxidation process. ZnO NSs were well protected by the chemically stable MnO2 shell, making the coating highly durable and efficient for SPME application. Meanwhile, the ZnO/MnO2 NSs coating demonstrated superior adsorption performance for PAHs. After the optimization of SPME conditions, the proposed SPME-HPLC-UV method exhibited good analytical performance for preconcentrating and determining trace PAHs with wide linear ranges (0.03-200 μg L-1) and low LODs (0.005-0.112 μg L-1) as well as good repeatability (1.4%-6.9%) and fiber-to-fiber reproducibility (5.3%-7.1%). Moreover, the proposed method showed good precision and recovery in the preconcentration and determination of target PAHs in real water samples. SIGNIFICANCE As compared with representative commercially available fibers, the NiTi@ZnO/MnO2 NSs fiber showed enhanced adsorption efficiency and improved adsorption selectivity for PAHs. The constructed fiber can be used as an alternative to commercial fibers for the adsorption and preconcentration of target PAHs in the environmental water samples. Moreover, the preparation strategy is expected to provide new insights into the precisely controlled construction of the efficient and stable core-shell bimetallic oxide nanostructures on the superielastic NiTi-based fibers.
Collapse
Affiliation(s)
- Hua Zhou
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Jiayu Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Huirong Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Haixia Liu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Xuemei Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China; Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou, 730070, China
| | - Xinzhen Du
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China; Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou, 730070, China.
| |
Collapse
|
12
|
Hu X, Pang L, Wu M, Wang C, Li J. Nanoleaf-derived carbon materials as a sensitivity coating for solid‑phase microextraction of polycyclic aromatic hydrocarbons. Anal Bioanal Chem 2024; 416:277-285. [PMID: 37946033 DOI: 10.1007/s00216-023-05016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
Metal-organic framework-derived carbon materials have shown extensive application in the sensitive extraction of polycyclic aromatic hydrocarbons (PAHs), but more active sites for its adsorption were still a tireless pursuit. In this study, ZIF-nanoleaf-derived carbon (NLCs) was synthesized and developed as a solid-phase microextraction (SPME) fiber (NLCs-F). The extraction performance was compared with ZIF-dodecahedron-derived carbon (DHCs) coated fiber (DHCs-F), which was prepared by only changing the ratio of the reactants. The unique morphology of NLCs provided abundant adsorption active sites for the selected PAHs, while the large average aperture facilitated selective extraction of high molecular weight analytes. Additionally, the high carbon content enhanced the strong enrichment capability for hydrophobic PAHs. Hence, the prepared NLCs-F coupled with GC-MS showed a good correlation coefficient (0.9975) in a wide linear range, low limits of detection (0.3-1.8 ng L-1), satisfactory repeatability, and reproducibility, which made it apply in the enrichment of PAHs in actual tea and coffee samples.
Collapse
Affiliation(s)
- Xingru Hu
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Long Pang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Mingkai Wu
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Chaohai Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China.
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
13
|
Saraji M, Fouladi M, Mohammadnezhad G, Mehrafza N. Application of boehmite as a fiber coating for headspace solid-phase microextraction of chlorophenols from aqueous samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 38037742 DOI: 10.1039/d3ay01421e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
In this paper, the extraction of chlorophenols from water samples was carried out using high surface area boehmite nanoparticles as a sorbent. The surfactant-free process employed to make the nano-boehmite used in this work was simple, green, and efficient. The proposed approach was based on headspace solid-phase microextraction, followed by GC-ECD for the determination of analytes. In situ derivatization of analytes was performed with acetic anhydride in a basic medium. Various effective parameters, including the amount of derivatization reagent, ionic strength, desorption temperature and time, extraction temperature, equilibrium time, and extraction time were studied. Under optimal conditions, the linear dynamic range was 0.05-5.0 μg L-1 for 2,4-dichlorophenol and 2,6-dichlorophenol and 0.003-0.1 μg L-1 for 2,4,6-trichlorophenol. A low limit of detection (0.75 × 10-3-15 × 10-3 μg L-1), and relative standard deviations for real samples (RSDs) <10% were obtained. The precision (as intra- and inter-day RSDs) was between 1.2 and 9.8%. In comparison to commercial fibers (CAR-PDMS, 85 μm), this fiber showed a greater extraction efficiency. Various water samples were subjected to extraction by the proposed method. The recoveries ranged from 90 to 110%.
Collapse
Affiliation(s)
- Mohammad Saraji
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Monir Fouladi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | | | - Narges Mehrafza
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
14
|
Hasani F, Raoof JB, Ghani M, Ojani R. Nanoporous carbon fiber derived from Cu-BDC metal organic framework @pencil graphite as a sorbent for solid phase microextraction of acetamiprid and imidacloprid. Anal Chim Acta 2023; 1278:341650. [PMID: 37709423 DOI: 10.1016/j.aca.2023.341650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 09/16/2023]
Abstract
Solid-phase microextraction (SPME) is a sample pretreatment technique for enrichment of trace level of compounds from complex matrices. The fiber coating, as an extraction phase, is the significant part of SPME, which specifying the analytical performance of the developed SPME. In this study, a novel in situ fabricated Cu@porous carbon fiber that derived from copper benzene-1,4-dicarboxylate framework@pencil graphite (Cu-BDC MOF@PG) fiber was prepared as a SPME fiber. The Cu-BDC MOF was electrodeposited on the surface of pencil graphite. The Cu@porous carbon fiber with nanoporous structure was constructed by the direct carbonization of the electrosynthesized fiber. The Cu@porous carbon fiber showed high analytical performance for direct immersion SPME (DI-SPME) of acetamiprid and imidacloprid in fruit and vegetable samples. The SPME method was coupled by high-performance liquid chromatography-ultraviolet detection (SPME-HPLC-UV) for determination of the analytes. Under the optimized condition, good linear ranges (1-500 μg L-1 and 0.5-200 μg L-1) and acceptable limits of detection (LODs = 0.30 and 0.15 μg L-1), appropriate spiking recoveries in the range 87-109.0% were attained for acetamiprid and imidacloprid, respectively. Intra- and inter-day relative standard deviations were found within the ranges of 2.35-3.46% and 3.30-3.70%, respectively. These results signify promising potential of the in situ fabricated porous carbon fiber for SPME applications. Considering that most of the pencil graphite is made of carbon, after the carbonization of the Cu-BDC MOF@PG fiber, a unified porous carbon fiber is obtained. Compared to other reported procedures, in situ direct carbonization of Cu-BDC MOF@PG fiber was a one-step and straightforward method to fabricate carbon fiber.
Collapse
Affiliation(s)
- Fariba Hasani
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Jahan Bakhsh Raoof
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| | - Milad Ghani
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Reza Ojani
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
15
|
Borsatto JVB, Lanças FM. Recent Trends in Graphene-Based Sorbents for LC Analysis of Food and Environmental Water Samples. Molecules 2023; 28:5134. [PMID: 37446796 DOI: 10.3390/molecules28135134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
This review provides an overview of recent advancements in applying graphene-based materials as sorbents for liquid chromatography (LC) analysis. Graphene-based materials are promising for analytical chemistry, including applications as sorbents in liquid chromatography. These sorbents can be functionalized to produce unique extraction or stationary phases. Additionally, graphene-based sorbents can be supported in various materials and have consequently been applied to produce various devices for sample preparation. Graphene-based sorbents are employed in diverse applications, including food and environmental LC analysis. This review summarizes the application of graphene-based materials in food and environmental water analysis in the last five years (2019 to 2023). Offline and online sample preparation methods, such as dispersive solid phase microextraction, stir bar sorptive extraction, pipette tip solid phase extraction, in-tube solid-phase microextraction, and others, are reviewed. The review also summarizes the application of the columns produced with graphene-based materials in separating food and water components and contaminants. Graphene-based materials have been reported as stationary phases for LC columns. Graphene-based stationary phases have been reported in packed, monolithic, and open tubular columns and have been used in LC and capillary electrochromatography modes.
Collapse
Affiliation(s)
- João V B Borsatto
- Laboratory of Chromatography, Institute of Chemistry at Sao Carlos, University of Sao Paulo, P.O. Box 780, São Carlos 13566-590, Brazil
| | - Fernando M Lanças
- Laboratory of Chromatography, Institute of Chemistry at Sao Carlos, University of Sao Paulo, P.O. Box 780, São Carlos 13566-590, Brazil
| |
Collapse
|
16
|
Zhang G, Xiao P, Yuan M, Li Y, Xu Y, Li H, Sun J, Sun B. Roles of sulfur-containing compounds in fermented beverages with 2-furfurylthiol as a case example. Front Nutr 2023; 10:1196816. [PMID: 37457986 PMCID: PMC10348841 DOI: 10.3389/fnut.2023.1196816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/25/2023] [Indexed: 07/18/2023] Open
Abstract
Aroma is a critical component of the flavor and quality of beverages. Among the volatile chemicals responsible for fragrance perception, sulfur compounds are unique odorants due to their extremely low odor threshold. Although trace amounts of sulfur compounds can enhance the flavor profile of beverages, they can lead to off-odors. Sulfur compounds can be formed via Maillard reaction and microbial metabolism, imparting coffee aroma and altering the flavor of beverages. In order to increase the understanding of sulfur compounds in the field of food flavor, 2-furfurylthiol (FFT) was chosen as a representative to discuss the current status of their generation, sensory impact, enrichment, analytical methods, formation mechanisms, aroma deterioration, and aroma regulation. FFT is comprehensively reviewed, and the main beverages of interest are typically baijiu, beer, wine, and coffee. Challenges and recommendations for FFT are also discussed, including analytical methods and mechanisms of formation, interactions between FFT and other compounds, and the development of specific materials to extend the duration of aroma after release.
Collapse
Affiliation(s)
- Guihu Zhang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Peng Xiao
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Mengmeng Yuan
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Youming Li
- Inner Mongolia Taibus Banner Grassland Brewing Co., Ltd., Xilin Gol League, China
| | - Youqiang Xu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Hehe Li
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Quality and Safety, Beijing Technology and Business University, Beijing, China
| | - Jinyuan Sun
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Quality and Safety, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Quality and Safety, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
17
|
Wei Y, Wang X, Li M, Yu F, Xu R, Qin G, Li Y. Novel electrochemical sensing platform basing on di-functional stimuli-responsive imprinted polymers for simultaneous extraction and determination of metronidazole. Anal Chim Acta 2023; 1260:341219. [PMID: 37121660 DOI: 10.1016/j.aca.2023.341219] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Abstract
A novel magnetic-controlled electrochemical sensor has been fabricated by combined photo-responsive surface molecular imprinted polymers (P-SMIPs) and electrochemical sensor. In particular, the P-SMIPs were obtained by living radical polymerization of photo-responsive functional monomer onto the magnetic Fe3O4 modified multi-walled carbon nanotubes nanocomposites. The magnetic glassy carbon electrode was introduced to make the anchoring and removal of P-SMIPs onto the magnetic-controlled glassy carbon electrode easy to manipulate. Driven by UV/vis light, the platform performs releasing and absorption of metronidazole basing on conformational variations of the photo-responsive monomer at the receptor sites part in the P-SMIPs. This process can be tested by the photo-responsive variations of metronidazole electrochemical signal. As the consequence, extracting of P-SMIPs sensor can be conveniently triggered by the controllable UV light intervention measure, leading to effectively improve in both analytes mass transfer rate to the receiving media and extraction efficiency. The experimental result indicated that the excellent recoveries of metronidazole were varied between 77.9% and 89.9% with RSDs ≤4.87% in the biological samples. Therefore, the P-SMIPs sensor shows satisfactory potential in reusable extractions that can be recycled several times with no significant loss of activity, and this utilization strategy can be extended to other analytes, achieving manifold applications of pharmaceutical and environmental.
Collapse
Affiliation(s)
- Yubo Wei
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China.
| | - Xin Wang
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China
| | - Meihong Li
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China
| | - Fang Yu
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China
| | - Ruoping Xu
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China
| | - Guiping Qin
- Faculty of Science, Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming, 650500, People's Republic of China.
| | - Yupeng Li
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China.
| |
Collapse
|
18
|
Cheng J, Ma J, Li S, Wang Q, Lv M, Li J, Wang X, Wang H, Chen L. The covalent organic framework based nylon membrane extraction coupled with UHPLC-MS/MS for highly efficiency determination of hexabromocyclododecanes in environmental water. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131191. [PMID: 36921418 DOI: 10.1016/j.jhazmat.2023.131191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Hexabromocyclododecanes (HBCDs) have given their adverse effects on environment and human health, and highly sensitive analysis of HBCDs in water is urgent. In this study, a new method for the determination of trace HBCDs in water was established by covalent organic framework (COF) based nylon membrane extraction (ME) coupled with ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The COF had been self-assembled onto the nylon membrane in a gentle strategy to fabricate COF nylon membrane. Several important ME parameters including the dosage of COF, pH, eluent condition and salinity were systematically investigated. The limits of detection and quantification were 0.011-0.014 and 0.038-0.047 ng/L for three HBCDs, respectively. The linear ranges were from 0.04 to 20 ng/L, and the relative standard deviations were 5.7-17.8 % (intra-day) and 5.2-14.1 % (inter-day). In addition, density functional theory (DFT) calculations on adsorption energy proved that the introduction of halogen bond (XB) made a key contribution to high extraction efficiency and excellent selectivity of COF nylon membrane for HBCDs. The 500 mL of samples, including tap water and reservoir water, could be extracted only in 23 min. The established method presented highly sensitive for ultra-trace analysis of HBCDs in environmental water.
Collapse
Affiliation(s)
- Jiawen Cheng
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Jiping Ma
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China.
| | - Shuang Li
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Qiaoning Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Min Lv
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Hongdan Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
19
|
Mametov R, Sagandykova G, Monedeiro-Milanowski M, Gabryś D, Pomastowski P. Electropolymerized polypyrrole-MOF composite as a coating material for SPME fiber for extraction VOCs liberated by bacteria. Sci Rep 2023; 13:8933. [PMID: 37264070 DOI: 10.1038/s41598-023-36081-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/29/2023] [Indexed: 06/03/2023] Open
Abstract
The synthesis of efficient and low-cost coatings for solid-phase microextraction attracted much attention. Conductive polymers are excellent candidates for this purpose due to the possibility of electropolymerization, which results in the reproducible synthesis of films. A plethora of studies reported in the literature concluded that modification of conductive polymers with innovative materials could lead to an increase in sensitivity toward specific analytes. In this work, the metal-organic framework-polypyrrole composite was electrodeposited in one step directly onto a stainless-steel substrate. The effect of synthesis parameters on extraction efficiency was investigated. The obtained PPy@ZIF-8 coating was subjected to physical-chemical characterization using electron microscopy and Fourier-transform IR spectroscopy. The main finding of the study was that the values of the limit of detection and intra- and inter-day reproducibility for analytes with different chemical structures were found to be lower as compared to pure polypyrrole coating. Furthermore, the obtained polypyrrole-MOF coating was applied for the collection of profiles of volatile organic compounds liberated by bacteria. Hence, the polypyrrole@ZIF-8 coating synthesized using a low-cost and facile approach presented in this study can be useful for the profiling of VOCs liberated by bacteria.
Collapse
Affiliation(s)
- Radik Mametov
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100, Toruń, Poland.
| | - Gulyaim Sagandykova
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100, Toruń, Poland
| | - Maciej Monedeiro-Milanowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100, Toruń, Poland
| | - Dorota Gabryś
- Radiotherapy Department, Maria Sklodowska-Curie National Research and Institute of Oncology, Gliwice, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100, Toruń, Poland
| |
Collapse
|
20
|
Riboni N, Bianchi F, Scaccaglia M, Bisceglie F, Secchi A, Massera C, Luches P, Careri M. A novel multiwalled carbon nanotube-cyclodextrin nanocomposite for solid-phase microextraction-gas chromatography-mass spectrometry determination of polycyclic aromatic hydrocarbons in snow samples. Mikrochim Acta 2023; 190:212. [PMID: 37171627 PMCID: PMC10181969 DOI: 10.1007/s00604-023-05799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/13/2023] [Indexed: 05/13/2023]
Abstract
Novel solid-phase microextraction coatings based on the use of multiwalled carbon nanotube-cyclodextrin (MWCNT-CD) nanocomposites were developed for the determination of 16-priority polycyclic aromatic hydrocarbons at ultratrace levels in snow samples. The performance of both β- and γ-CD was tested to increase the detection capabilities towards the heaviest and most lipophilic compounds, i.e., five- and six-ring PAHs. To facilitate the interactions of MWCNTs with CDs, an oxidation procedure using both HNO3 and H2O2 was applied, obtaining superior results using MWCNTs-H2O2-γ-CD fiber. Detection and quantitation limits below 0.7 and 2.3 ng/L, RSD lower than 21%, and recoveries of 88(± 2)-119.8(± 0.4)% proved the reliability of the developed method for the determination of PAHs at ultratrace levels. The complexation capability of the γ-CD was also demonstrated in solution by NMR and fluorescence spectroscopy studies and at solid state by XRD analysis. Finally, snow samples collected in the ski area of Dolomiti di Brenta were analyzed, showing a different distribution of the 16 priority PAHs, being naphthalene, phenanthrene, fluoranthene, and pyrene the only compounds detected in all the analyzed samples.
Collapse
Affiliation(s)
- N Riboni
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy.
| | - F Bianchi
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy.
- University of Parma, Center for Energy and Environment (CIDEA), Parco Area delle Scienze 42, 43124, Parma, Italy.
| | - M Scaccaglia
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - F Bisceglie
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - A Secchi
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - C Massera
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - P Luches
- Nanoscience Institute, CNR, via G. Campi 213/A, 41125, Modena, Italy
| | - M Careri
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| |
Collapse
|
21
|
Song C, Zheng J, Zhang Q, Yuan H, Yu A, Zhang W, Zhang S, Ouyang G. Multifunctionalized Covalent Organic Frameworks for Broad-Spectrum Extraction and Ultrasensitive Analysis of Per- and Polyfluoroalkyl Substances. Anal Chem 2023; 95:7770-7778. [PMID: 37154520 DOI: 10.1021/acs.analchem.3c01137] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The contamination of surface and ground water by per- and polyfluoroalkyl substances (PFASs) has become a growing concern, and the structural diversity of PFASs is the major challenge for their ubiquitous applications. Strategies for monitoring coexistent anionic, cationic, and zwitterionic PFASs even at trace levels in aquatic environments are urgently demanded for effective pollution control. Herein, novel amide group and perfluoroalkyl chain-functionalized covalent organic frameworks (COFs) named COF-NH-CO-F9 are successfully synthesized and used for highly efficient extraction of broad-spectrum PFASs, attributing to their unique structure and the multifunctional groups. Under the optimal conditions, a simple and high-sensitivity method is established to quantify 14 PFASs including anionic, cationic, and zwitterionic species by coupling solid-phase microextraction (SPME) with ultrahigh-performance liquid chromatography-triple quadrupole mass spectrometry (UHPLC-MS/MS) for the first time. The established method displays high enrichment factors (EFs) of 66-160, ultrahigh sensitivity with low limits of detection (LODs) of 0.0035-0.18 ng L-1, a wide linearity of 0.1-2000 ng L-1 with correlation coefficient (R2) ≥0.9925, and satisfactory precision with relative standard deviations (RSDs) ≤11.2%. The excellent performance is validated in real water samples with recoveries of 77.1-108% and RSDs ≤11.4%. This work highlights the potential of rational design of COFs with the desired structure and functionality for the broad-spectrum enrichment and ultrasensitive determination of PFASs in real applications.
Collapse
Affiliation(s)
- Chenchen Song
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, P. R. China
| | - Juan Zheng
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Qidong Zhang
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, P. R. China
- Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou, Henan 450001, P. R. China
| | - Hang Yuan
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, P. R. China
| | - Ajuan Yu
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, P. R. China
| | - Wenfen Zhang
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, P. R. China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, P. R. China
| | - Gangfeng Ouyang
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, P. R. China
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, P. R. China
| |
Collapse
|
22
|
Wang YN, Zhang YP, You WL, Qu L, Chen DL, Chen Y, Chen J. Modified stainless steel wires with superwettability for highly efficient in-tube solid-phase microextraction. J Chromatogr A 2023; 1697:463988. [PMID: 37071965 DOI: 10.1016/j.chroma.2023.463988] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/20/2023]
Abstract
Construction of different surface wettability is meaningful for the interaction between the sorbent surface and target components. In the current study, four kinds of stainless-steel wires (SSWs) with different hydrophobic/hydrophilic property were prepared and used as the absorbents to enrich the target compounds with different polarity. Comparative extraction of six non-polar polycyclic aromatic hydrocarbons (PAHs) and six polar estrogens was carried out by in-tube solid phase microextraction (IT-SPME). The results showed that two SSWs with the superhydrophobic surfaces exhibited high extraction capacity to the non-polar PAHs with the superior enrichment factor (EF) in the range of 29-672 and 57-744, respectively. In contrast, the superhydrophilic SSWs demonstrated higher enrichment efficiency for the polar estrogens than other hydrophobic SSWs. On the basis of optimized conditions, a validated analysis method was established using six PAHs as model analytes for IT-SPME-HPLC. Acceptable linear ranges (0.5-10 μg L-1) and low detection limits (0.0056-0.32 μg L-1) were achieved using the superhydrophobic wire modified by perfluorooctyl trichlorosilane (FOTS). The relative recoveries spiked at 2, 5 and 10 μg L-1 in the lake water samples were in the range of 81.5%-113.7%. The relative standard deviation (RSD) of intraday (≤0.8%, n = 3) and interday (≤5.3%, n = 3) tests demonstrated the good extraction repeatability for the same extraction tube. Satisfactory repeatability for the preparation of extraction tubes (n = 3) was also obtained with the RSD values in the range of 3.6%-8.0%.
Collapse
Affiliation(s)
- Ya-Ning Wang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Yu-Ping Zhang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China; College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, 415000, China; College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453000, China.
| | - Wan-Li You
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, 415000, China
| | - LingBo Qu
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - De-Liang Chen
- Changde Zhengyang Biotechnology Co., Ltd., Changde, 415000, China
| | - Yuan Chen
- Changde Zhengyang Biotechnology Co., Ltd., Changde, 415000, China
| | - Jun Chen
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453000, China
| |
Collapse
|
23
|
Dong Y, Li J, Janiak C, Yang XY. Interfacial design for detection of a few molecules. Chem Soc Rev 2023; 52:779-794. [PMID: 36541179 DOI: 10.1039/d2cs00770c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Major advances in molecular detection are being driven by goals associated with the development of methods that are amenable to miniaturization and automation, and that have high sensitivity and low interference. The new detection methods are confronted by many interfacial issues, which when properly addressed can lead to improved performance. One interfacial property, special wettability, can facilitate precise delivery and local enrichment of molecules to sensing elements. This review summarizes applications of unique features of special wettability in molecular detection including (1) chemical and electrochemical reactions in anchored microdroplets on superwetting surfaces, (2) enrichment of analytes and active materials at low contact areas between droplets and superwetting surfaces, (3) complete opposite affinities of superwetting surfaces toward nonpolar/polar solutes and oil/water phases, and (4) directional droplet transportation on asymmetric superwetting surfaces. The challenges and opportunities that exist in design and applications of special wettability in interfacial delivery and enrichment for detection of a few molecules are also discussed.
Collapse
Affiliation(s)
- Ying Dong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.,Shenzhen Huazhong University of Science and Technology Research Institute, 9 Yuexing Third Road, Nanshan District, Shenzhen 518000, China
| | - Jing Li
- Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Peace Avenue, Wuhan 430081, China.
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China. .,School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
24
|
Zheng J, Kuang Y, Zhou S, Gong X, Ouyang G. Latest Improvements and Expanding Applications of Solid-Phase Microextraction. Anal Chem 2023; 95:218-237. [PMID: 36625125 DOI: 10.1021/acs.analchem.2c03246] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Juan Zheng
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yixin Kuang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Suxin Zhou
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinying Gong
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Gangfeng Ouyang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
25
|
Simple and rapid preparation of homemade SPME PDMS fibers and their application to the analysis of personal care products in water samples. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-022-02608-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Yu C, Zhang J, Luo X, Zhang J. Metal organic framework/covalent organic framework composite for solid-phase microextraction of polycyclic aromatic hydrocarbons in milk samples. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Solid-phase microextraction coatings based on anodic and cathodic plasma electrolytic deposition on titanium wire for determination of nerolidol in aqueous samples. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02683-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Zhao Y, Hu K, Yang C, Liu X, Li L, Li Z, Wang P, Zhang Z, Zhang S. Covalent organic framework@Ti3C2T composite as solid phase microextraction coating for the determination of polycyclic aromatic hydrocarbons in honey samples. Anal Chim Acta 2022; 1237:340581. [DOI: 10.1016/j.aca.2022.340581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
29
|
Liang D, Hu C, Choupani Chaydarreh K, Liu X, Ye Y, Wei Y, Zhang W, Guan L, Gu J, Lin X. Volatile components analysis of Camellia oleifera shells and related products based on HS-SPME-GC-MS. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Meng H, Jiang S, Zhang Y, Hu Y, Liu Y. In Vivo Detection of Tetrodotoxin in Takifugu obscurus Based on Solid-Phase Microextraction Coupled with Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186122. [PMID: 36144854 PMCID: PMC9502389 DOI: 10.3390/molecules27186122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/24/2022]
Abstract
Pufferfish is nutritious and delicious, but the tetrodotoxin (TTX) that may exist in its body poses a serious safety hazard. It is important to use scientific and effective methods to detect the TTX in pufferfish, but most of the existing methods require complex pre-treatment steps and have sample lethality. The solid-phase microextraction (SPME) technology can be used for in vivo detection due to its advantages such as no solvent demand, simple operation, and fast detection speed. In this study, the GO-PAN@PNE SPME fibers were made via a dipping method, and their extraction effect was verified in the TTX aqueous and spiked fish. The established method has good reproducibility, and the limit of detection of TTX in pufferfish was 32 ng·g−1, and the limit of quantitation was 150 ng·g−1, which can meet the detection needs of pufferfish for safe consumption. This method was used to in vivo detect the Takifugu obscurus exposed to the TTX, to determine the content of TTX in the pufferfish muscle. The detection method established in this study can relatively quickly and easily realize the in vivo detection of TTX in the pufferfish, which can provide theoretical support for improvement in the food safety level of the pufferfish.
Collapse
Affiliation(s)
- Hengli Meng
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Engineering Research Center of Food Safety, Shanghai 200240, China
| | - Shui Jiang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Engineering Research Center of Food Safety, Shanghai 200240, China
- Correspondence: (S.J.); (Y.H.)
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Yun Hu
- Yangzhou Center for Food and Drug Control, Yangzhou 225000, China
- Correspondence: (S.J.); (Y.H.)
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Engineering Research Center of Food Safety, Shanghai 200240, China
| |
Collapse
|
31
|
Riboni N, Amorini M, Bianchi F, Pedrini A, Pinalli R, Dalcanale E, Careri M. Ultra-sensitive solid-phase Microextraction-Gas Chromatography-Mass spectrometry determination of polycyclic aromatic hydrocarbons in snow samples using a deep cavity BenzoQxCavitand. CHEMOSPHERE 2022; 303:135144. [PMID: 35660393 DOI: 10.1016/j.chemosphere.2022.135144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 05/26/2023]
Abstract
A very sensitive and selective solid-phase microextraction-gas chromatography-mass spectrometry method based on the use of a deep cavity BenzoQxCavitand as innovative coating was developed and validated for the simultaneous determination of the 16 US-EPA priority pollutants polycyclic aromatic hydrocarbons (PAHs) in snow samples at ultra-trace levels. The presence of a 8.3 Å deep hydrophobic cavity allowed the engulfment of all the 16 PAHs, providing enhanced selectivity also in presence of interfering aromatic pollutants at high concentration levels. Validation proved the reliability of the method for the determination of the investigated compounds achieving detection limits in the 0.03-0.30 ng/L range, good precision, with relative standard deviations <18% and recovery rates in the 90.8(±2.1)%-109.6(±1.0)%. The detection of low-molecular weight PAHs in snow samples from Antarctica and Alps confirms the widespread occurrence of these compounds, thus assessing the impact of anthropogenic activities onto the environment.
Collapse
Affiliation(s)
- N Riboni
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy.
| | - M Amorini
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - F Bianchi
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy; University of Parma, Center for Energy and Environment (CIDEA), Parco Area delle Scienze 42, 43124, Parma, Italy.
| | - A Pedrini
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - R Pinalli
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - E Dalcanale
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - M Careri
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| |
Collapse
|
32
|
Manousi N, Kabir A, Furton KG, Tzanavaras PD, Zacharis CK. In situ synthesis of monolithic sol–gel polyethylene glycol-based sorbent encapsulated in porous polypropylene microextraction capsules and its application for selective extraction of antifungal and anthelmintic drugs from human urine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
33
|
A critical review of covalent organic frameworks-based sorbents in extraction methods. Anal Chim Acta 2022; 1224:340207. [DOI: 10.1016/j.aca.2022.340207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
|
34
|
Cao HL, Yang C, Qian HL, Yan XP. Urea-linked covalent organic framework functionalized polytetrafluoroethylene film for selective and rapid thin film microextraction of rhodamine B. J Chromatogr A 2022; 1673:463133. [PMID: 35584564 DOI: 10.1016/j.chroma.2022.463133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/29/2022] [Accepted: 05/07/2022] [Indexed: 12/01/2022]
Abstract
Incorporation of highly selective and stable adsorbent with facile extraction technology is desired in practical analysis. Here we show the rational preparation of a urea-linked covalent organic framework functionalized polytetrafluoroethylene film (COF-117-PTFE) with ordered porous structure, rich functional groups, and large surface area-to-volume ratio as the effective adsorbent for convenient, selective and rapid thin film microextraction (TFME) of rhodamine B (RB). The COF-117-PTFE based TFME coupled with high performance liquid chromatography-fluorescence detector (HPLC-FLD) successfully realized the determination of RB with the limit of detection of 0.007 μg L-1, the linear range of 0.1 - 100 μg L-1. The relative standard deviation (RSD) of intraday (n = 5) and interday (n = 5) for the determination of 10 μg L-1 RB were 2.3% and 6.8%, respectively. The absolute recoveries were 80.3%, 71.2% and 67.9% in river water, chili powder and Sichuan pepper powder, respectively. The recoveries for RB spiking in complicated real samples (dry chili, chili powder, dry Sichuan pepper, Sichuan pepper powder and river water) ranged from 90.4% to 107.5%. The developed COF-117-PTFE based TFME-HPLC-FLD method is promising in practical application. This work reveals the high potential of functionalized COF film as the adsorbent for effective extraction of trace contaminants in complicated samples.
Collapse
Affiliation(s)
- Hui-Ling Cao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cheng Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
35
|
Xu S, Dong P, Liu H, Li H, Chen C, Feng S, Fan J. Lotus-like Ni@NiO nanoparticles embedded porous carbon derived from MOF-74/cellulose nanocrystal hybrids as solid phase microextraction coating for ultrasensitive determination of chlorobenzenes from water. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128384. [PMID: 35236041 DOI: 10.1016/j.jhazmat.2022.128384] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/16/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Lotus-like Ni@NiO embedded porous carbons (Ni@NiO/PCs) were fabricated by pyrolysis of MOF-74/cellulose nanocrystal hybrids, and used as a solid phase microextraction (SPME) coating for ultrasensitive determination of chlorobenzenes (CBs) from water combined with gas chromatography-mass spectrometry. Owing to its abundant chemical groups, high porosity, and excellent thermal stability, the as-prepared Ni@NiO/PCs presented superior extraction performance compared to commercial SPME coatings. Notably, Ni@NiO/PCs derived from MOF-74/CNC hybrids presented higher extraction efficiencies towards CBs than that derived from pristine CNC and MOF-74 due to the formation of micro/mesopores and more abundant oxygen-containing groups. Under the optimum extraction conditions, the proposed analytical method presented wide linearity range (0.5-1500 ng L-1), ultra-low detection of limit (0.005-0.049 ng L-1), and excellent precision with relative standard deviations of 4.7-9.2% for a single fiber and 8.8-10.9% for 5 fibers, and long lifetime (≥160 times). The proposed analytical method was finally applied for determination of CBs from real water samples, and the recoveries were in the range of 93.2-116.8% towards eight CBs. This study delivered a novel and efficient sorbent as SPME coating to extraction and determination of CBs from water.
Collapse
Affiliation(s)
- Shengrui Xu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China; Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution and Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, PR China.
| | - Panlong Dong
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Hailin Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Huimin Li
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Changpo Chen
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Suling Feng
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China.
| | - Jing Fan
- Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution and Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, PR China
| |
Collapse
|
36
|
Chang N, Kang J, Wang F, Liu H, Wang X, Du X. Hydrothermal in situ growth and application of a novel flower-like phosphorous-doped titanium oxide nanoflakes on titanium alloy substrate for enhanced solid-phase microextraction of polycyclic aromatic hydrocarbons in water samples. Anal Chim Acta 2022; 1208:339808. [DOI: 10.1016/j.aca.2022.339808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 11/27/2022]
|
37
|
Du J, Zhang R, Wang F, Du X. Development of a novel porous cobalt, phosphorus and nitrogen co-doped carbonaceous coating by phosphiding ZIF-67 grown on nitinol fiber for selective solid-phase microextraction of polycyclic aromatic hydrocarbons from water samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1498-1506. [PMID: 35343555 DOI: 10.1039/d2ay00340f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The nature and fabrication of the fiber coatings with good adsorption capacity and selectivity play a decisive role in solid-phase microextraction (SPME). In this work, a facile strategy was proposed to fabricate a cobalt, phosphorus and nitrogen co-doped carbonaceous (Co-P-NC) coating on superelastic nitinol (NiTi) substrate as a binder-free fiber for SPME. In particular, direct electrochemical in situ growth of ZIF-67 crystals served as the N-containing carbon precursor and sacrificial template for subsequent controllable conversion of ZIF-67 into a novel porous Co-P-NC coating on the NiTi wire substrate via a phosphiding process in a N2 atmosphere. The obtained NiTi wire with the Co-P-NC coating (NiTi@Co-P-NC) was employed to investigate the adsorption of some representative aromatic analytes in water samples for the first time coupling with high-performance liquid chromatography with UV detection (HPLC/UV). The results proved that the resulting fiber showed superior adsorption selectivity for polycyclic aromatic hydrocarbons (PAHs). Therefore, the key parameters were further examined for the adsorption and preconcentration of PAHs. Under the obtained conditions, linear chromatographic responses were achieved over the concentration ranges of 0.03-100 μg L-1 with the correlation coefficients ranging from 0.9980 to 0.9991. Limits of detection (LODs) were between 0.007 and 0.149 μg L-1 (S/N = 3). The developed SPME-HPLC/UV method was applied to selective preconcentration and sensitive determination of PAHs in water. Moreover, this fiber had good fiber preparation reproducibility and presented 120 adsorption and desorption cycles at the same time in practical SPME application.
Collapse
Affiliation(s)
- Junliang Du
- Department of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang, 621000, China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Rong Zhang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Feifei Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Xinzhen Du
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|
38
|
Lian C, Feng X, Tian M, Tian Y, Zhang Y. Electrodeposition of zeolitic imidazolate framework coating on stainless steel wire for solid-phase microextraction of polycyclic aromatic hydrocarbons in water samples. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Convenient synthesis of a hyper-cross-linked polymer via knitting strategy for high-performance solid phase microextraction of polycyclic aromatic hydrocarbons. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Zhang YP, Luan CC, Lu ZY, Chen N, Zhang YJ, Cui CX. Brass wires with different surface wettability used for in-tube solid-phase microextraction. J Chromatogr A 2022; 1670:462948. [DOI: 10.1016/j.chroma.2022.462948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022]
|
41
|
Dziedzic D, Nawała J, Gordon D, Dawidziuk B, Popiel S. Nanostructured polyaniline SPME fiber coating for chemical warfare agents analysis. Anal Chim Acta 2022; 1202:339649. [DOI: 10.1016/j.aca.2022.339649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/15/2022]
|
42
|
Peng S, Huang Y, Ouyang S, Huang J, Shi Y, Tong YJ, Zhao X, Li N, Zheng J, Zheng J, Gong X, Xu J, Zhu F, Ouyang G. Efficient solid phase microextraction of organic pollutants based on graphene oxide/chitosan aerogel. Anal Chim Acta 2022; 1195:339462. [DOI: 10.1016/j.aca.2022.339462] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/21/2021] [Accepted: 01/06/2022] [Indexed: 01/30/2023]
|
43
|
Wang F, Du J, Zhou H, Chang N, Kang J, Wang X, Du X. Controllable growth of flower-like hierarchical CoNiO2 nanoflakes anchored on Nitinol fiber substrate with good selectivity for highly efficient solid-phase microextraction of polycyclic aromatic hydrocarbons in water. Anal Chim Acta 2022; 1192:339371. [DOI: 10.1016/j.aca.2021.339371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 11/01/2022]
|
44
|
|
45
|
Du J, Li J, Lv R, Du X. Controllable in situ growth of novel octahedral TiO 2 nanoparticles on nickel/titanium alloy fiber substrate for selective solid-phase microextraction of ultraviolet filters in water samples. RSC Adv 2022; 12:11933-11941. [PMID: 35481081 PMCID: PMC9017461 DOI: 10.1039/d2ra01031c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/05/2022] [Indexed: 12/04/2022] Open
Abstract
The nature and fabrication of fiber coatings with good adsorption capacity and selectivity play a decisive role in solid-phase microextraction (SPME). In this work, a novel SPME fiber was fabricated through hydrothermal in situ growth of octahedral TiO2 nanoparticles (TiO2NPs) on a superelastic nickel/titanium alloy (NiTi) wire substrate in acid solution. The resulting fiber coatings were characterized by scanning electron microscopy and energy dispersive X-ray spectroscopy. Acid types, acid concentration as well as hydrothermal temperature and time were found to be effective route to manipulate the morphologies and composition of TiO2-based nanoflakes grown on the NiTi fiber substrates. At the concentration of 0.4 mol L−1 HCl as well as hydrothermal temperature of 150 °C and hydrothermal time of 12 h, TiO2NPs were in situ grown on the NiTi wire substrates. The obtained NiTi wire with the TiO2NPs coating (NiTi@TiO2NPs fiber) was employed to investigate the adsorption of some representative aromatic analytes in water samples coupling with high-performance liquid chromatography with UV detection (HPLC/UV). The results clearly demonstrate that the fiber exhibits good extraction selectivity for ultraviolet filters (UVFs). In view of good extraction selectivity for the selected UVFs, the key experimental parameters were optimized. Under the optimum conditions, the calibration curves were linear in the ranges of 0.05–100 μg L−1 with the correlation coefficients greater than 0.998. Limits of detection (LODs) were 0.007 to 0.064 μg L−1. Furthermore, the intra-day and inter-day repeatability of the proposed method with the single fiber varied from 4.3% to 6.1% and from 4.5% to 6.8%, respectively. The fiber-to-fiber reproducibility ranged from 5.8% to 8.2%. The developed SPME-HPLC/UV method was applied to selective preconcentration and sensitive determination of target UVFs from real water samples. Moreover, the fabricated fiber showed precisely controllable growth and 150 extraction and desorption cycles. This work presents a facile strategy with in situ growth of TiO2 nanoparticles on nickel/titanium alloy wire through hydrothermal method for selective preconcentration and determination of UVFs in water.![]()
Collapse
Affiliation(s)
- Junliang Du
- College of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang, 621000, China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Juan Li
- College of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang, 621000, China
| | - Rui Lv
- College of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang, 621000, China
| | - Xinzhen Du
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| |
Collapse
|
46
|
Xu Z, Zhang Z, She Z, Lin C, Lin X, Xie Z. Aptamer-functionalized metal-organic framework-coated nanofibers with multi-affinity sites for highly sensitive, selective recognition of ultra-trace microcystin-LR. Talanta 2022; 236:122880. [PMID: 34635260 DOI: 10.1016/j.talanta.2021.122880] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/26/2022]
Abstract
A novel aptamer-functionalized metal-organic framework nanofibrous composite (viz. PAN/UiO@UiO2-N3-aptamer) with a high aptamer coverage density was proposed based on the electrospinning and seeded growth method, and used for specific affinity recognition of trace Microcystin-LR (MC-LR). Heterobifunctional ligand was used to modify the metal-organic framework nanoparticles (MOF NPs) surface, which could passivate the MOF surface with respect to unmodified DNA, followed by coupling massive aptamers on MOF of the solid-phase microextraction (SPME) fiber using click chemistry. Characterizations including morphology, spectra analysis, mechanical stability, binding capacity and specificity were fulfilled. Applied to the analysis of MC-LR, the good selective and sensitive recognition were obtained with the detection limit as low as 0.003 ng/mL, which was better than most non-specific SPME or solid-phase extraction (SPE) protocols. The stability and reproducibility were acceptable, and the intra-day, inter-day and column-to-column relative standard deviations (RSDs) for the recovery of MC-LR were gained in the range from 2.5% to 14.3%, respectively. Satisfactory recoveries of MC-LR in environmental water samples were measured as 96.3 ± 4.7% - 98.9 ± 2.7% (n = 3) in tap water, 94.4 ± 2.5% - 96.1 ± 3.5% (n = 3) in pond water, and 97.0 ± 2.1% - 97.9 ± 3.1% (n = 3) in river water, respectively. This work demonstrated that the electrospun nanofibrous composite with massive aptamers would be a better alternative for ultra-trace MC-LR detection with good selectivity, matrix-resistance ability and high resolution.
Collapse
Affiliation(s)
- Zhiqun Xu
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Zhexiang Zhang
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Zongkang She
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Chenchen Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Xucong Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, People's Republic of China; Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fujian, Fuzhou, 350108, People's Republic of China.
| | - Zenghong Xie
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, People's Republic of China; Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fujian, Fuzhou, 350108, People's Republic of China
| |
Collapse
|
47
|
Mousavi KZ, Yamini Y, Karimi B, Khataei MM, Khorasani M, Seidi S, Ghaemmaghami M. Plugged bifunctional periodic mesoporous organosilica as a high-performance solid phase microextraction coating for improving extraction efficiency of chlorophenols in different matrices. Talanta 2021; 235:122724. [PMID: 34517592 DOI: 10.1016/j.talanta.2021.122724] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
In this study, a sensitive solid phase microextraction (SPME) coating was developed based on two kinds of plugged and non-plugged bifunctional periodic mesoporous organosilicas (BFPMO) with ionic liquid and ethyl units. The extraction efficiency of all plugged and unplugged sorbents was investigated for the extraction of chlorophenols (CPs) in water and honey samples by emphasizing the effect of different physicochemical properties. The separation and determination of the CPs was performed by gas chromatography-mass spectrometry (GC-MS). The extraction results showed that plugged BFPMO coating exhibited outstanding enrichment ability for the extraction of CPs as model analytes with different polarities. This can be attributed to a valuable hydrophobic-hydrophilic balance in the mesochanels of the plugged BFPMO, which is the result of the combination of plug technology and bridged organic groups. Low limits of detection in the range of 5-70 ng L-1, wide linearity, and good reproducibility (RSD = 8.1-10.1 % for n = 6) under the optimized extraction conditions were achieved. Finally, the BFPMOs coated fiber was successfully used for determination of CPs in real water samples. The relative recoveries for the five CPs were in the range of 92.3-104.0 %, which proved the applicability of the method.
Collapse
Affiliation(s)
- Kobra Zavar Mousavi
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Yadollah Yamini
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| | - Babak Karimi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), P.O. Box 45195-1159, Zanjan, 45137-6731, Iran; Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | | | - Mojtaba Khorasani
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), P.O. Box 45195-1159, Zanjan, 45137-6731, Iran
| | - Shahram Seidi
- Department of Analytical Chemistry, K.N. Toosi University of Technology, Tehran, Iran
| | - Mostafa Ghaemmaghami
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| |
Collapse
|
48
|
Yan Q, Huang L, Mao N, Shuai Q. Covalent organic framework derived porous carbon as effective coating for solid phase microextraction of polycyclic aromatic hydrocarbons prior to gas-chromatography mass spectrometry analysis. TALANTA OPEN 2021. [DOI: 10.1016/j.talo.2021.100060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
49
|
Peng S, Huang X, Huang Y, Huang Y, Zheng J, Zhu F, Xu J, Ouyang G. Novel solid-phase microextraction fiber coatings: A review. J Sep Sci 2021; 45:282-304. [PMID: 34799963 DOI: 10.1002/jssc.202100634] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022]
Abstract
The materials used for the fabrication of solid-phase microextraction fiber coatings in the past five years are summarized in the current review, including carbon, metal-organic frameworks, covalent organic frameworks, aerogel, polymer, ionic liquids/poly (ionic liquids), metal oxides, and natural materials. The preparation approaches of different coatings, such as sol-gel technique, in-situ growth, electrodeposition, and glue methods, are briefly reviewed together with the evolution of the supporting substrates. In addition, the limitations of the current coatings and the future development directions of solid-phase microextraction are presented.
Collapse
Affiliation(s)
- Sheng Peng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiaoyu Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yuyan Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yiquan Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Juan Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jianqiao Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
50
|
Kumar S, Kulkarni VV, Jangir R. Covalent‐Organic Framework Composites: A Review Report on Synthesis Methods. ChemistrySelect 2021. [DOI: 10.1002/slct.202102435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shubham Kumar
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology, Ichchanath Surat 395 007 Gujarat INDIA
| | - Vihangraj V. Kulkarni
- Faculty of Environmental Engineering Department of Civil Engineering National Institute of Technology Silchar Silchar 788010 Assam INDIA
| | - Ritambhara Jangir
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology, Ichchanath Surat 395 007 Gujarat, INDIA
| |
Collapse
|