1
|
Cheng HY, Wang W, Wang W, Yang MY, Zhou YY. Interkingdom Hormonal Regulations between Plants and Animals Provide New Insight into Food Safety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4-26. [PMID: 38156955 DOI: 10.1021/acs.jafc.3c04712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Food safety has become an attractive topic among consumers. Raw material production for food is also a focus of social attention. As hormones are widely used in agriculture and human disease control, consumers' concerns about the safety of hormone agents have never disappeared. The present review focuses on the interkingdom regulations of exogenous animal hormones in plants and phytohormones in animals, including physiology and stress resistance. We summarize these interactions to give the public, researchers, and policymakers some guidance and suggestions. Accumulated evidence demonstrates comprehensive hormonal regulation across plants and animals. Animal hormones, interacting with phytohormones, help regulate plant development and enhance environmental resistance. Correspondingly, phytohormones may also cause damage to the reproductive and urinary systems of animals. Notably, the disease-resistant role of phytohormones is revealed against neurodegenerative diseases, cardiovascular disease, cancer, and diabetes. These resistances derive from the control for abnormal cell cycle, energy balance, and activity of enzymes. Further exploration of these cross-kingdom mechanisms would surely be of greater benefit to human health and agriculture development.
Collapse
Affiliation(s)
- Hang-Yuan Cheng
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Wang
- Human Development Family Studies, Iowa State University, 2330 Palmer Building, Ames, Iowa 50010, United States
| | - Wei Wang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Mu-Yu Yang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Yu-Yi Zhou
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| |
Collapse
|
2
|
Li Y, Qin Y, Wei S, Ling L, Ding CF. Differentiation of steroid isomers by steroid analogues adducted trapped ion mobility spectrometry-mass spectrometry. Anal Bioanal Chem 2024; 416:313-319. [PMID: 37940728 DOI: 10.1007/s00216-023-05019-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
Steroids are one of the important indicators of health and disease. However, due to the high similarity of steroid structures, there are several potential obstacles in the differentiation of steroids, especially for their isomers. Herein, we described a trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) approach based on the steroid analogue adduction for isomer-specific identification of steroids. The application of dexamethasone (DEX) to form heterodimers with steroids enhanced the separation of their isomers in TIMS. Two isomer pairs including 17-hydroxyprogesterone/11-deoxycorticosterone and androsterone/epiandrosterone were successfully separated as the heterodimers with DEX by TIMS. The stability of DEX-adducted heterodimers is comparable with steroid dimers. Owing to the high separation efficiency and stability, the relative quantification of steroid isomers was demonstrated with the proposed method.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yujiao Qin
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Songchang Wei
- Ningbo No.6 Hospital, Ningbo, 315040, Zhejiang, China
| | - Ling Ling
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
3
|
Fu XK, Han SQ, Ha W, Shi YP. Click Chemoselective Probe with a Photoswitchable Handle for Highly Sensitive Determination of Steroid Hormones in Food Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14814-14824. [PMID: 37782472 DOI: 10.1021/acs.jafc.3c05262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Residues of endocrine disrupting steroid hormones in food might cause various diseases like cardiovascular diseases and breast and prostate cancers. Monitoring steroid hormone levels plays a vital role in ensuring food safety and exploring the pathogenic mechanism of steroid hormone-related diseases. Based on the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction, a novel chemoselective probe, Azo-N3, which contains a reactive site N3, an imidazolium salt-based MS tag, and an azobenzene-based photoswitchable handle, was designed and synthesized to label ethynyl-bearing steroid hormones. The probe Azo-N3 was applied for the highly selective and sensitive detection of four ethynyl-bearing steroid hormones in food samples (milk, egg, and pork) by using ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The ionization efficiency of the labeled analytes could be increased by 6-105-fold, and such a labeled method exhibited satisfactory detection limits (0.04-0.2 μg/L), recovery (80.6-122.4%), and precision (RSDs% lower than 6.9%). Interestingly, the efficient immobilization of the probe Azo-N3 onto α-cyclodextrin (α-CD)-modified magnetic particles to construct a solid supported chemoselective probe Fe3O4-CD-Azo-N3 and UV light-controlled release of the labeled analytes from a magnetic support can be achieved by taking advantage of the photoswitched host-guest inclusion between the azobenzene unit and α-CD. The potential applications of Fe3O4-CD-Azo-N3 for labeling, capturing, and the photocontrolled release of the labeled steroid hormones were fully investigated by mass spectrometry imaging analysis. This work not only provides a sensitive and accurate method to detect steroid hormones in food but also opens a new avenue in designing solid supported chemoselective probes.
Collapse
Affiliation(s)
- Xiao-Kang Fu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Si-Qi Han
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Ha
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China
| |
Collapse
|
4
|
Reis R, Dhawle R, Du Pasquier D, Tindall AJ, Frontistis Z, Mantzavinos D, de Witte P, Cabooter D. Electrochemical degradation of 17α-ethinylestradiol: Transformation products, degradation pathways and in vivo assessment of estrogenic activity. ENVIRONMENT INTERNATIONAL 2023; 176:107992. [PMID: 37244003 DOI: 10.1016/j.envint.2023.107992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Conventional water treatment methods are not efficient in eliminating endocrine disrupting compounds (EDCs) in wastewater. Electrochemical Advanced Oxidation Processes (eAOPs) offer a promising alternative, as they electro-generate highly reactive species that oxidize EDCs. However, these processes produce a wide spectrum of transformation products (TPs) with unknown chemical and biological properties. Therefore, a comprehensive chemical and biological evaluation of these remediation technologies is necessary before they can be safely applied in real-life situations. In this study, 17α-ethinylestradiol (EE2), a persistent estrogen, was electrochemically degraded using a boron doped diamond anode with sodium sulfate (Na2SO4) and sodium chloride (NaCl) as supporting electrolytes. Ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry was used for the quantification of EE2 and the identification of TPs. Estrogenic activity was assessed using a transgenic medaka fish line. At optimal operating conditions, EE2 removal reached over 99.9% after 120 min and 2 min, using Na2SO4 and NaCl, respectively. The combined EE2 quantification and in vivo estrogenic assessment demonstrated the overall estrogenic activity was consistently reduced with the degradation of EE2, but not completely eradicated. The identification and time monitoring of TPs showed that the radical agents readily oxidized the phenolic A-ring of EE2, leading to the generation of hydroxylated and/or halogenated TPs and ring-opening products. eAOP revealed to be a promising technique for the removal of EE2 from water. However, caution should be exercised with respect to the generation of potentially toxic TPs.
Collapse
Affiliation(s)
- Rafael Reis
- Laboratory of Pharmaceutical Analysis, Department for Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Leuven, Belgium
| | - Rebecca Dhawle
- Department of Chemical Engineering, University of Patras, 26500 Patras, Greece
| | - David Du Pasquier
- Laboratoire WatchFrog, Bâtiment Genavenir 3, 1 Rue Pierre Fontaine, 91000 Evry, France
| | - Andrew J Tindall
- Laboratoire WatchFrog, Bâtiment Genavenir 3, 1 Rue Pierre Fontaine, 91000 Evry, France
| | - Zacharias Frontistis
- Department of Chemical Engineering, University of Western Macedonia, GR-50132 Kozani, Greece; School of Sciences and Engineering, University of Nicosia, 2417 Nicosia, Cyprus
| | | | - Peter de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Leuven, Belgium
| | - Deirdre Cabooter
- Laboratory of Pharmaceutical Analysis, Department for Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Leuven, Belgium.
| |
Collapse
|
5
|
Chen Y, Yang J, Yao B, Zhi D, Luo L, Zhou Y. Endocrine disrupting chemicals in the environment: Environmental sources, biological effects, remediation techniques, and perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119918. [PMID: 35952990 DOI: 10.1016/j.envpol.2022.119918] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/06/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Endocrine disrupting chemicals (EDCs) have been identified as emerging contaminants, which poses a great threat to human health and ecosystem. Pesticides, polycyclic aromatic hydrocarbons, dioxins, brominated flame retardants, steroid hormones and alkylphenols are representative of this type of contaminant, which are closely related to daily life. Unfortunately, many wastewater treatment plants (WWTPs) do not treat EDCs as targets in the normal treatment process, resulting in EDCs entering the environment. Few studies have systematically reviewed the related content of EDCs in terms of occurrence, harm and remediation. For this reason, in this article, the sources and exposure routes of common EDCs are systematically described. The existence of EDCs in the environment is mainly related to human activities (Wastewater discharges and industrial activities). The common hazards of these EDCs are clarified based on available toxicological data. At the same time, the mechanism and effect of some mainstream EDCs remediation technologies (such as adsorption, advanced oxidation, membrane bioreactor, constructed wetland, etc.) are separately mentioned. Moreover, our perspectives are provided for further research of EDCs.
Collapse
Affiliation(s)
- Yuxin Chen
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Jian Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Bin Yao
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Dan Zhi
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Lin Luo
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
6
|
Biodegradation and Metabolic Pathway of 17β-Estradiol by Rhodococcus sp. ED55. Int J Mol Sci 2022; 23:ijms23116181. [PMID: 35682859 PMCID: PMC9181579 DOI: 10.3390/ijms23116181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 01/25/2023] Open
Abstract
Endocrine disrupting compounds (EDCs) in the environment are considered a motif of concern, due to the widespread occurrence and potential adverse ecological and human health effects. The natural estrogen, 17β-estradiol (E2), is frequently detected in receiving water bodies after not being efficiently removed in conventional wastewater treatment plants (WWTPs), promoting a negative impact for both the aquatic ecosystem and human health. In this study, the biodegradation of E2 by Rhodococcus sp. ED55, a bacterial strain isolated from sediments of a discharge point of WWTP in Coloane, Macau, was investigated. Rhodococcus sp. ED55 was able to completely degrade 5 mg/L of E2 in 4 h in a synthetic medium. A similar degradation pattern was observed when the bacterial strain was used in wastewater collected from a WWTP, where a significant improvement in the degradation of the compound occurred. The detection and identification of 17 metabolites was achieved by means of UPLC/ESI/HRMS, which proposed a degradation pathway of E2. The acute test with luminescent marine bacterium Aliivibrio fischeri revealed the elimination of the toxicity of the treated effluent and the standardized yeast estrogenic (S-YES) assay with the recombinant strain of Saccharomyces cerevisiae revealed a decrease in the estrogenic activity of wastewater samples after biodegradation.
Collapse
|
7
|
Li Q, Liu J, Zhang L, Shi Y, Li G. Click Isotope Mass Probe for Highly Selective Determination of Trace Steroid Hormones in Food Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5748-5755. [PMID: 35499160 DOI: 10.1021/acs.jafc.1c07323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Matrix effects are a great challenge for the quantitative analysis of complex food samples by liquid chromatography-tandem mass spectrometry analysis (LC-MS/MS). Stable isotope labeling (SIL) has been widely used as an effective strategy to eliminate matrix effects. Herein, a copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click-reaction-based SIL method was proposed for a highly sensitive and selective determination of six synthetic steroid hormones in three different food samples (milk, yogurt, and eggs) by high-performance liquid chromatography (HPLC)-MS/MS. A pair of novel SIL agents, N-(2-azidyl ethyl) aniline (d0-AEA) and d5-N-(2-azidyl ethyl) aniline (d5-AEA) were synthesized to label steroid hormones in the samples and standard solution, respectively. The reaction accomplishes in 30 min at 60 °C. The heavy labeled standards were used as internal standards (ISs), which experience the identical ionization processes with light labeled samples to minimize matrix effects. After derivatization, the ionization efficiencies of steroid hormones were greatly improved by 2-54-folds, and the matrix effects ranged from 88.6 to 99.8%. The established method achieved satisfactory detection limits (0.1-2.5 μg L-1) and high recoveries (85-102%). These results demonstrated that the proposed method holds unique advantages for trace steroid hormones analysis in foodstuffs.
Collapse
Affiliation(s)
- Qianyu Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jianghua Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Luyao Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yiheng Shi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
8
|
Dembitsky VM. In Silico Prediction of Steroids and Triterpenoids as Potential Regulators of Lipid Metabolism. Mar Drugs 2021; 19:650. [PMID: 34822521 PMCID: PMC8618826 DOI: 10.3390/md19110650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
This review focuses on a rare group of steroids and triterpenoids that share common properties as regulators of lipid metabolism. This group of compounds is divided by the type of chemical structure, and they represent: aromatic steroids, steroid phosphate esters, highly oxygenated steroids such as steroid endoperoxides and hydroperoxides, α,β-epoxy steroids, and secosteroids. In addition, subgroups of carbon-bridged steroids, neo steroids, miscellaneous steroids, as well as synthetic steroids containing heteroatoms S (epithio steroids), Se (selena steroids), Te (tellura steroids), and At (astatosteroids) were presented. Natural steroids and triterpenoids have been found and identified from various sources such as marine sponges, soft corals, starfish, and other marine invertebrates. In addition, this group of rare lipids is found in fungi, fungal endophytes, and plants. The pharmacological profile of the presented steroids and triterpenoids was determined using the well-known computer program PASS, which is currently available online for all interested scientists and pharmacologists and is currently used by research teams from more than 130 countries of the world. Our attention has been focused on the biological activities of steroids and triterpenoids associated with the regulation of cholesterol metabolism and related processes such as anti-hyperlipoproteinemic activity, as well as the treatment of atherosclerosis, lipoprotein disorders, or inhibitors of cholesterol synthesis. In addition, individual steroids and triterpenoids were identified that demonstrated rare or unique biological activities such as treating neurodegenerative diseases, Alzheimer's, and Parkinson's diseases with a high degree of certainty over 95 percent. For individual steroids or triterpenoids or a group of compounds, 3D drawings of their predicted biological activities are presented.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
9
|
Zhao HN, Tian Z, Kim KE, Wang R, Lam K, Kolodziej EP. Biotransformation of Current-Use Progestin Dienogest and Drospirenone in Laboratory-Scale Activated Sludge Systems Forms High-Yield Products with Altered Endocrine Activity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13869-13880. [PMID: 34582191 DOI: 10.1021/acs.est.1c03805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dienogest (DIE) and drospirenone (DRO) are two fourth-generation synthetic progestins widely used as oral contraceptives. Despite their increasing detection in wastewaters and surface waters, their fate during biological wastewater treatment is unclear. Here, we investigated DIE and DRO biotransformation with representative activated sludge batch incubations and identified relevant transformation products (TPs) using high-resolution mass spectrometry. DIE exhibited slow biotransformation (16-30 h half-life) and proceeded through a quantitative aromatic dehydrogenation to form TP 309 (molar yields of ∼55%), an aromatic TP ∼30% estrogenic as 17β-estradiol. DRO experienced more rapid biotransformation (<0.5 h half-life), and 1,2-dehydrogenation formed the major TP 364 (molar yields of ∼40%), an antimineralocorticoid drug candidate named as spirorenone. Lactone ring hydrolysis was another important biotransformation pathway for DRO (molar yields of ∼20%) and generated pharmacologically inactive TP 384. Other minor pathways for DIE and DRO included hydroxylation, methoxylation, and 3-keto and C4(5) double-bond hydrogenation; distinct bioactivities are plausible for such TPs, including antigestagenic activity, antigonadotropic activity, and pregnancy inhibition effects. Thus, biotransformation products of DIE and DRO during wastewater treatment should be considered in environmental assessments of synthetic progestins, especially certain TPs such as the estrogenic TP 309 of DIE and the antimineralocorticoid spirorenone (TP 364) of DRO.
Collapse
Affiliation(s)
- Haoqi Nina Zhao
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
- Center for Urban Waters, Tacoma, Washington 98421, United States
| | - Zhenyu Tian
- Center for Urban Waters, Tacoma, Washington 98421, United States
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421, United States
| | - Kelly E Kim
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421, United States
| | - Rui Wang
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
- Center for Urban Waters, Tacoma, Washington 98421, United States
| | - Kenji Lam
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Edward P Kolodziej
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
- Center for Urban Waters, Tacoma, Washington 98421, United States
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421, United States
| |
Collapse
|
10
|
Zhou L, Liu H, Xu Z, Guan S, Zhang L. Identification and structural characterization of febuxostat metabolites in rat serum and urine samples using UHPLC–QTOF/MS. Biomed Chromatogr 2019; 33:e4568. [DOI: 10.1002/bmc.4568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/06/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Liping Zhou
- School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou China
- Evaluation and Monitoring Center of Occupational HealthGuangzhou Twelfth People's Hospital Guangzhou China
| | - Hexiang Liu
- School of Biology and Biological EngineeringSouth China University of Technology Guangzhou China
| | - Zhongyong Xu
- School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou China
| | - Su Guan
- School of Biology and Biological EngineeringSouth China University of Technology Guangzhou China
| | - Lei Zhang
- School of Biology and Biological EngineeringSouth China University of Technology Guangzhou China
| |
Collapse
|