1
|
Azari A, Kamani H, Sarkhosh M, Vatankhah N, Yousefi M, Mahmoudi-Moghaddam H, Razavinasab SA, Masoudi MR, Sadeghi R, Sharifi N, Yaghmaeain K. Nectarine core-derived magnetite biochar for ultrasound-assisted preconcentration of polycyclic aromatic hydrocarbons (PAHs) in tomato paste: A cost-effective and sustainable approach. Food Chem X 2024; 24:101810. [PMID: 39310888 PMCID: PMC11414710 DOI: 10.1016/j.fochx.2024.101810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
A novel ultrasound-assisted magnetic solid-phase extraction coupled with gas chromatography-mass spectrometry (US-MSPE-GC/MS) was developed to detect trace amounts of polycyclic aromatic hydrocarbons (PAHs) in tomato paste, using a magnetic biochar adsorbent derived from nectarine cores. The highest extraction recovery was attained under 10 mg adsorbent mass, 30 min extraction time, 9 % (w/v) sodium chloride, and elution with 200 μL of dichloromethane. Under optimum conditions, the method demonstrated excellent linearity (R2 > 0.992) across a wide concentration range (0.01-100 ng g-1) with high sensitivity (LODs: 0.028-0.053 ng g-1, LOQs: 0.094-0.176 ng g-1) and good repeatability (RSDs <5.96 %). The application of the US-MSPE-GC/MS method was tested on four brands of real tomato paste and no PAHs were detected in unspiked samples, indicating no background contamination. This method showed high relative recoveries 88.03-98.52 %) and good reproducibility (<9.19 %.) at two concentration levels, confirming its effectiveness for PAH analysis in real samples.
Collapse
Affiliation(s)
- Ali Azari
- Sirjan School of Medical Sciences, Sirjan, Iran
- National Elites Foundation, Tehran, Iran
| | - Hossein Kamani
- Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Maryam Sarkhosh
- Department of Environmental Health Engineering, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Vatankhah
- Department of Pharmaceutical, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmood Yousefi
- Department of Environmental Health Engineering, School of Health, Khoy University of Medical Sciences, Khoy, Iran
| | - Hadi Mahmoudi-Moghaddam
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | | | | | | | | - Kamyar Yaghmaeain
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Lanjwani MF, Tuzen M, Khuhawar MY, Afshar Mogaddam MR, Farajzadeh MA. Deep Eutectic Solvents for Extraction and Preconcentration of Organic and Inorganic Species in Water and Food Samples: A Review. Crit Rev Anal Chem 2024; 54:1290-1303. [PMID: 35980662 DOI: 10.1080/10408347.2022.2111655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Deep eutectic solvents (DESs) have been developed as green solvents and these are capable as alternatives to conventional solvents used for the extraction of organic and inorganic species from food and water samples. The continuous generation of contaminated waste and increasing concern for the human health and environment have compelled the scientific community to investigate more ecological schemes. In this concern, the use of DESs have developed in one of the chief approach in the field of chemistry. These solvents have appeared as a capable substitute to conventional hazardous solvents and ionic liquids. The DESs has distinctive properties, easy preparation and components availability. It is not only used in scienctific fields but also used in quotidian life. There are many advantages of DESs in analytical chemistry, they are largely used for extraction and determination of inorganic and organic compounds from different samples. In previous a few years, several advanced researches have been focused on the separation and preconcentration of low level of pollutants using DESs as the extractants. This review summarizes the use of DESs in the separation and preconcentration of organic and inorganic species from water and food samples using various microextraction processes.
Collapse
Affiliation(s)
- Muhammad Farooque Lanjwani
- Faculty of Science and Arts, Chemistry Department, Tokat Gaziosmanpasa University, Tokat, Turkey
- Dr M. A. Kazi Institute of Chemistry, University of Sindh, Jamshoro, Sindh, Pakistan
| | - Mustafa Tuzen
- Faculty of Science and Arts, Chemistry Department, Tokat Gaziosmanpasa University, Tokat, Turkey
- King Fahd University of Petroleum and Minerals, Research Institute, Center for Environment and Marine Studies, Dhahran, Saudi Arabia
| | - Muhammad Yar Khuhawar
- Institute of Advanced Research Studies in Chemical Sciences, University of Sindh, Jamshoro, Sindh, Pakistan
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
3
|
Hu X, Li H, Yang J, Wen X, Wang S, Pan M. Nanoscale Materials Applying for the Detection of Mycotoxins in Foods. Foods 2023; 12:3448. [PMID: 37761156 PMCID: PMC10528894 DOI: 10.3390/foods12183448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Trace amounts of mycotoxins in food matrices have caused a very serious problem of food safety and have attracted widespread attention. Developing accurate, sensitive, rapid mycotoxin detection and control strategies adapted to the complex matrices of food is crucial for in safeguarding public health. With the continuous development of nanotechnology and materials science, various nanoscale materials have been developed for the purification of complex food matrices or for providing response signals to achieve the accurate and rapid detection of various mycotoxins in food products. This article reviews and summarizes recent research (from 2018 to 2023) on new strategies and methods for the accurate or rapid detection of mold toxins in food samples using nanoscale materials. It places particular emphasis on outlining the characteristics of various nanoscale or nanostructural materials and their roles in the process of detecting mycotoxins. The aim of this paper is to promote the in-depth research and application of various nanoscale or structured materials and to provide guidance and reference for the development of strategies for the detection and control of mycotoxin contamination in complex matrices of food.
Collapse
Affiliation(s)
- Xiaochun Hu
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huilin Li
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xintao Wen
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mingfei Pan
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
4
|
Wei Y, Wang X, Li M, Yu F, Xu R, Qin G, Li Y. Novel electrochemical sensing platform basing on di-functional stimuli-responsive imprinted polymers for simultaneous extraction and determination of metronidazole. Anal Chim Acta 2023; 1260:341219. [PMID: 37121660 DOI: 10.1016/j.aca.2023.341219] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Abstract
A novel magnetic-controlled electrochemical sensor has been fabricated by combined photo-responsive surface molecular imprinted polymers (P-SMIPs) and electrochemical sensor. In particular, the P-SMIPs were obtained by living radical polymerization of photo-responsive functional monomer onto the magnetic Fe3O4 modified multi-walled carbon nanotubes nanocomposites. The magnetic glassy carbon electrode was introduced to make the anchoring and removal of P-SMIPs onto the magnetic-controlled glassy carbon electrode easy to manipulate. Driven by UV/vis light, the platform performs releasing and absorption of metronidazole basing on conformational variations of the photo-responsive monomer at the receptor sites part in the P-SMIPs. This process can be tested by the photo-responsive variations of metronidazole electrochemical signal. As the consequence, extracting of P-SMIPs sensor can be conveniently triggered by the controllable UV light intervention measure, leading to effectively improve in both analytes mass transfer rate to the receiving media and extraction efficiency. The experimental result indicated that the excellent recoveries of metronidazole were varied between 77.9% and 89.9% with RSDs ≤4.87% in the biological samples. Therefore, the P-SMIPs sensor shows satisfactory potential in reusable extractions that can be recycled several times with no significant loss of activity, and this utilization strategy can be extended to other analytes, achieving manifold applications of pharmaceutical and environmental.
Collapse
Affiliation(s)
- Yubo Wei
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China.
| | - Xin Wang
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China
| | - Meihong Li
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China
| | - Fang Yu
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China
| | - Ruoping Xu
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China
| | - Guiping Qin
- Faculty of Science, Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming, 650500, People's Republic of China.
| | - Yupeng Li
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China.
| |
Collapse
|
5
|
Bucur MP, Radulescu MC, Radu GL, Bucur B. Cavitation-Effect-Based Treatments and Extractions for Superior Fruit and Milk Valorisation. Molecules 2023; 28:4677. [PMID: 37375232 DOI: 10.3390/molecules28124677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Ultrasound generates cavities in liquids with high-energy behaviour due to large pressure variations, leading to (bio)chemical effects and material modification. Numerous cavity-based treatments in food processes have been reported, but the transition from research to industrial applications is hampered by specific engineering factors, such as the combination of several ultrasound sources, more powerful wave generators or tank geometry. The challenges and development of cavity-based treatments developed for the food industry are reviewed with examples limited to two representative raw materials (fruit and milk) with significantly different properties. Both active compound extraction and food processing techniques based on ultrasound are taken into consideration.
Collapse
Affiliation(s)
- Madalina-Petruta Bucur
- National Institute of Research and Development for Biological Sciences, Centre of Bioanalysis, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Maria-Cristina Radulescu
- National Institute of Research and Development for Biological Sciences, Centre of Bioanalysis, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Gabriel Lucian Radu
- National Institute of Research and Development for Biological Sciences, Centre of Bioanalysis, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Bogdan Bucur
- National Institute of Research and Development for Biological Sciences, Centre of Bioanalysis, 296 Splaiul Independentei, 060031 Bucharest, Romania
| |
Collapse
|
6
|
Zheng J, Kuang Y, Zhou S, Gong X, Ouyang G. Latest Improvements and Expanding Applications of Solid-Phase Microextraction. Anal Chem 2023; 95:218-237. [PMID: 36625125 DOI: 10.1021/acs.analchem.2c03246] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Juan Zheng
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yixin Kuang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Suxin Zhou
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinying Gong
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Gangfeng Ouyang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
7
|
Poly Schiff-base based on polyimides functionalized with magnetic nanoparticles as novel sorbent for magnetic solid-phase extraction of non-steroidal anti-inflammatory drugs in environmental water samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Li S, Lv X, Yang Q, Zhang S, Su J, Cheng SB, Lai Y, Chen J, Zhan J. Dynamic SPME-SERS Induced by Electric Field: Toward In Situ Monitoring of Pharmaceuticals and Personal Care Products. Anal Chem 2022; 94:9270-9277. [PMID: 35729729 DOI: 10.1021/acs.analchem.2c00523] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The core of the surface-enhanced Raman spectroscopy (SERS)-based techniques for dynamic monitoring is to realize rapid and reversible adsorption. Herein, the integration technology of electro-enhanced adsorption, solid-phase microextraction, and surface-enhanced Raman spectroscopy (EE-SPME-SERS) was developed to obtain sensitive, ultrafast, and reversible SERS response toward in situ monitoring of pharmaceuticals and personal care products (PPCPs). In the EE-SPME-SERS method, a roughened Ag fiber with Au modification (r-Ag/Au fiber) was used as the SERS substrate, SPME sorbent, and working electrode. The r-Ag/Au fiber displayed good SERS sensitivity, ultrahigh photostability, and adsorption properties. The adsorption efficiency of benzidine was 76 times accelerated in EE-SPME-SERS compared to that in static adsorption. The whole process of "sampling and detection" in EE-SPME-SERS can be finished within 1 s. Reversible adsorption and desorption can be achieved in situ by switching the direction of electric field, and the regeneration process takes only a few minutes. Simulated release of benzidine from household wastewater was in situ and dynamically monitored using this strategy. EE-SPME-SERS was proved universal for ionized PPCPs and can detect multicomponents simultaneously. In addition, EE-SPME-SERS showed very good analytical properties. Great potential of EE-SPME-SERS can be expected in environmental monitoring.
Collapse
Affiliation(s)
- Shu Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiaochen Lv
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Qing Yang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shaoying Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jie Su
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shi-Bo Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yongchao Lai
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Jing Chen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jinhua Zhan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
9
|
Shi N, Bu X, Zhang M, Wang B, Xu X, Shi X, Hussain D, Xu X, Chen D. Current Sample Preparation Methodologies for Determination of Catecholamines and Their Metabolites. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092702. [PMID: 35566052 PMCID: PMC9099465 DOI: 10.3390/molecules27092702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 12/18/2022]
Abstract
Catecholamines (CAs) and their metabolites play significant roles in many physiological processes. Changes in CAs concentration in vivo can serve as potential indicators for the diagnosis of several diseases such as pheochromocytoma and paraganglioma. Thus, the accurate quantification of CAs and their metabolites in biological samples is quite important and has attracted great research interest. However, due to their extremely low concentrations and numerous co-existing biological interferences, direct analysis of these endogenous compounds often suffers from severe difficulties. Employing suitable sample preparation techniques before instrument detection to enrich the target analytes and remove the interferences is a practicable and straightforward approach. To date, many sample preparation techniques such as solid-phase extraction (SPE), and liquid-liquid extraction (LLE) have been utilized to extract CAs and their metabolites from various biological samples. More recently, several modern techniques such as solid-phase microextraction (SPME), liquid-liquid microextraction (LLME), dispersive solid-phase extraction (DSPE), and chemical derivatizations have also been used with certain advanced features of automation and miniaturization. There are no review articles with the emphasis on sample preparations for the determination of catecholamine neurotransmitters in biological samples. Thus, this review aims to summarize recent progress and advances from 2015 to 2021, with emphasis on the sample preparation techniques combined with separation-based detection methods such capillary electrophoresis (CE) or liquid chromatography (LC) with various detectors. The current review manuscript would be helpful for the researchers with their research interests in diagnostic analysis and biological systems to choose suitable sample pretreatment and detection methods.
Collapse
Affiliation(s)
- Nian Shi
- Physics Diagnostic Division, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China;
| | - Xinmiao Bu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.B.); (M.Z.); (B.W.); (X.X.)
| | - Manyu Zhang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.B.); (M.Z.); (B.W.); (X.X.)
| | - Bin Wang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.B.); (M.Z.); (B.W.); (X.X.)
| | - Xinli Xu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.B.); (M.Z.); (B.W.); (X.X.)
| | - Xuezhong Shi
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China;
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Correspondence: (D.H.); (X.X.); (D.C.)
| | - Xia Xu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.B.); (M.Z.); (B.W.); (X.X.)
- Correspondence: (D.H.); (X.X.); (D.C.)
| | - Di Chen
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.B.); (M.Z.); (B.W.); (X.X.)
- Correspondence: (D.H.); (X.X.); (D.C.)
| |
Collapse
|
10
|
Convenient synthesis of a hyper-cross-linked polymer via knitting strategy for high-performance solid phase microextraction of polycyclic aromatic hydrocarbons. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Roszkowska A, Plenis A, Kowalski P, Bączek T, Olędzka I. Recent advancements in techniques for analyzing modern, atypical antidepressants in complex biological matrices and their application in biomedical studies. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Zhao Y, Li J, Xie H, Li H, Chen X. Covalent organic nanospheres as a fiber coating for solid-phase microextraction of genotoxic impurities followed by analysis using gas chromatography–mass spectrometry. J Pharm Anal 2021; 12:583-589. [PMID: 36105168 PMCID: PMC9463475 DOI: 10.1016/j.jpha.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Yanfang Zhao
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Jingkun Li
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Hanyi Xie
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Huijuan Li
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Xiangfeng Chen
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Corresponding author. School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| |
Collapse
|
13
|
Hu B, Ouyang G. In situ solid phase microextraction sampling of analytes from living human objects for mass spectrometry analysis. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116368] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Martins FCOL, Batista AD, Melchert WR. Current overview and perspectives in environmentally friendly microextractions of carbamates and dithiocarbamates. Compr Rev Food Sci Food Saf 2021; 20:6116-6145. [PMID: 34564942 DOI: 10.1111/1541-4337.12821] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 01/07/2023]
Abstract
Carbamates and dithiocarbamates are two classes of pesticides widely employed in the agriculture practice to control and avoid pests and weeds, hence, the monitoring of the residue of those pesticides in different foodstuff samples is important. Thus, this review presents the classification, chemical structure, use, and toxicology of them. Moreover, it was shown the evolution of liquid- and solid-phase microextractions employed in the extraction of carbamates and dithiocarbamates in water and foodstuff samples. The classification, operation mode, and application of the microextractions of liquid-phase and solid-phase used in their extraction were discussed and related to the analytical parameters and guidelines of green analytical chemistry.
Collapse
Affiliation(s)
| | - Alex D Batista
- Institute of Chemistry, University of Uberlândia, Uberlândia, Brazil
| | - Wanessa R Melchert
- College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
15
|
|
16
|
Aladaghlo Z, Maddah B, Fakhari AR. Fabrication of Co 3O 4 quantum dot incorporated polyacrylamide ethylene glycol dimethacrylate as a new fiber for solid phase microextraction and trace determination of organophosphorus pesticides in environmental water samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3394-3401. [PMID: 34236068 DOI: 10.1039/d1ay00855b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this paper, a novel solid phase microextraction fiber based on Co3O4 quantum dot incorporated polyacrylamide-co-ethylene glycol dimethacrylate followed by corona discharge ion mobility spectrometry is presented for the trace determination of organophosphorus pesticides in environmental water samples. Ion mobility spectrometry is a comparatively inexpensive, well-known, robust, and easy to operate analytical instrument. This combination would provide a low-cost, fast, selective, and sensitive quantitative system for detection of organophosphorus pesticides. In order to obtain the best extraction efficiency, the optimization of parameters affecting this method was carried out. After optimization, a solution pH of 7.0, extraction temperature of 60 °C, adsorption temperature of 260 °C, extraction time of 30 min, stirring speed of 750 rpm, and ionic strength of 10% w/w were obtained. Consequently, the presented method showed low limits of detection (0.3-0.6 ng mL-1), excellent enrichment factors (PF = 221-263), good linearity (R2 > 0.995), and repeatabilities (intra-day: 3.4 to 4.8%) and (inter-day: 4.7 to 6.1%). The reproducibility (RSD% of fiber to fiber) was also investigated by analyzing three as-prepared fibers under the same conditions and was found to be less than 7.6%. Finally, the developed fiber was used for determination of organophosphorus pesticides in the field samples.
Collapse
Affiliation(s)
- Zolfaghar Aladaghlo
- Department of Analytical Chemistry, Faculty of Chemistry, Shahid Beheshti University, Tehran, Iran
| | | | | |
Collapse
|
17
|
Bakaraki Turan N, Zaman BT, Chormey DS, Onkal Engin G, Bakırdere S. Atrazine: From Detection to Remediation – A Minireview. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1937196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Nouha Bakaraki Turan
- Civil Engineering Faculty, Environmental Engineering Department, Yildiz Technical University, İstanbul, Turkey
| | - Buse Tuğba Zaman
- Faculty of Art and Science, Department of Chemistry, Yildiz Technical University, İstanbul, Turkey
| | - Dotse Selali Chormey
- Faculty of Art and Science, Department of Chemistry, Yildiz Technical University, İstanbul, Turkey
| | - Güleda Onkal Engin
- Civil Engineering Faculty, Environmental Engineering Department, Yildiz Technical University, İstanbul, Turkey
| | - Sezgin Bakırdere
- Faculty of Art and Science, Department of Chemistry, Yildiz Technical University, İstanbul, Turkey
| |
Collapse
|
18
|
Paiva AC, Crucello J, de Aguiar Porto N, Hantao LW. Fundamentals of and recent advances in sorbent-based headspace extractions. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116252] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
19
|
Mao Y, Huang L, Liu Z, He Y, Wang W, Bao Y, Niu L. Improved performance of wrinkled CoNi-LDHs via in situ immobilization onto cotton gauze for solid phase extraction of non-steroidal anti-inflammatory drugs. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Tang W, An Y, Row KH. Emerging applications of (micro) extraction phase from hydrophilic to hydrophobic deep eutectic solvents: opportunities and trends. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116187] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|