1
|
Dai X, Wang S, Liu X, Jiang J, Liu K, Wang Z, Tan K, Jing J, Liu H, Xu T, Liu T. Lossy Mode Resonance Optical Fiber Enhanced by Electrochemical-Molecularly Imprinted Polymers for Glucose Detection. ACS Sens 2024. [PMID: 39480059 DOI: 10.1021/acssensors.4c02032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Noninvasive glucose sensors are emergent intelligent sensors for analyzing glucose concentration in body fluids within invasion-free conditions. Conventional glucose sensors are often limited by a number of issues such as invasive and real-time detection, creating challenges in continuously characterizing biomarkers or subtle binding dynamics. In this study, we introduce an efficient lossy mode resonance (LMR) optical fiber sensor incorporating the molecularly imprinted polymers (MIPs) to amplify glucose molecules. A molecularly imprinted recognition platform is created on an LMR sensor surface through a convenient one-step electrochemical (EC) polymerization method, in which 3-Aminophenylboric acid and glucose serve as the functional monomer and template molecule, respectively. LMR resonance wavelength shift induced by the coupling of the optical lossy mode and the fiber core mode is employed as the parameter to characterize biomolecules. Due to its high sensitivity to surrounding environment changes, a limit of detection (LOD) of 4.62 × 10-2 μmol/L for glucose can be achieved by this optical fiber sensor. Additionally, the prepared EC-MIPs LMR sensor is capable of detecting glucose molecules in human saliva samples with high accuracy, endowing its potential for practical applications.
Collapse
Affiliation(s)
- Xiaoshuang Dai
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Shuang Wang
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xiang Liu
- College of Science, Civil Aviation University of China, Tianjin 300300, China
| | - Junfeng Jiang
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Kun Liu
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Ziyihui Wang
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Ke Tan
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Jianying Jing
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Hongyu Liu
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Tianhua Xu
- School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Tiegen Liu
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Li Y, Huang Y, Zhao P, Fei J, Xie Y. A review on Pd-M bimetallic electrochemical sensors: Techniques, performance, and applications. Talanta 2024; 282:126989. [PMID: 39383725 DOI: 10.1016/j.talanta.2024.126989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Environmental pollution, food safety, and medical diagnostics pose severe threats to human health, making the development of effective detection technologies crucial. Electrochemical sensors, as an efficient detection method, are extensively employed in detecting environmental pollutants, food additives, and biomolecules. Pd-M bimetallic materials, known for their excellent electrocatalytic performance, are extensively utilized as electrode modification materials. Although earlier reviews have covered the sensing applications of bimetallic materials, they have not targeted discussed Pd-based bimetallic materials. This paper systematically summarizes the preparation methods of Pd-M bimetallic materials, explores their structural and morphological regulation, and elaborates on their recent applications in pesticide detection, environmental pollutant detection, food additive detection, drug detection, and biosensing. It enumerates the detection performance of various Pd-M bimetallic material-modified electrochemical sensors for the aforementioned analytes in detail, including specific modification materials, linear range, detection limits, and sensitivity parameters.
Collapse
Affiliation(s)
- Yuhong Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yutian Huang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Pengcheng Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China; Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| | - Yixi Xie
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, People's Republic of China.
| |
Collapse
|
3
|
Cheng Q, Xue C, Abdiryim T, Jamal R. Molecular imprinting electrochemical sensor based on hollow spherical PProDOT-2CH 2OH and chitosan-derived carbon materials for highly sensitive detection of chloramphenicol. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135615. [PMID: 39181003 DOI: 10.1016/j.jhazmat.2024.135615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
The misuse of chloramphenicol (CAP) has jeopardized environmental safety. It is critical to create an effective and sensitive CAP detection technique. In this paper, a composite of chitosan (CS)-derived carbon material modified hollow spherical hydroxylated poly(3,4-propylenedioxythiophene) (PProDOT-2CH2OH) was designed, which innovatively used o-phenylenediamine and p-aminobenzoic acid as bi-functional monomers to prepare molecular imprinting polymer (MIP) sensors for highly sensitive analysis and determination of CAP. It was found that the hollow spherical structure of PProDOT-2CH2OH significantly enhanced the rapid electron migration. When combined with the CS-derived carbon material, which has multi-functional sites, it improved the electrical activity and stability of the sensor. It also provided more active centers for the MIP layer to specifically recognize CAP. Therefore, this MIP sensor had a wide linear response (0.0001 ∼ 125 μM), a low limit of detection (LOD, 6.6 pM), excellent selectivity and stability. In addition, studies showed that the sensor has potential practical value. ENVIRONMENTAL IMPLICATION: Chloramphenicol (CAP) is one of the most widely used antibiotics with the highest dosage due to its low price and broad-spectrum antimicrobial properties. Due to its incomplete metabolism in living organisms and its difficulty in degrading in the environment, contamination caused by it can pose a threat to public health. In this study, a novel molecularly imprinted sensor (MIP/PC2C1/GCE) was designed to provide a new idea for rapid and precise removal of CAP by adsorption. The detection of CAP in pharmaceutical, water quality, and food fields was realized.
Collapse
Affiliation(s)
- Qian Cheng
- College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China; State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Cong Xue
- College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China; State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Tursun Abdiryim
- College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China; State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| | - Ruxangul Jamal
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, PR China; State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| |
Collapse
|
4
|
Bao Y, Zheng X, Guo R, Wang L, Liu C, Zhang W. Biomass chitosan/sodium alginate colorimetric imprinting hydrogels with integrated capture and visualization detection for cadmium(II). Carbohydr Polym 2024; 331:121841. [PMID: 38388049 DOI: 10.1016/j.carbpol.2024.121841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024]
Abstract
Due to Cd(II) with highly toxic, persistent and bioaccumulative, the discharge of it into the environment brings serious pollution. Developing strategies that are efficient, low-cost, pollution-free and specific to removing Cd(II) from wastewater is therefore of great urgency and prime importance. A novel chitosan/sodium alginate ionic imprinting(IICA) hydrogels with specific adsorption capacity for Cd(II) was prepared through freeze-thaw and ion imprinting, and finally the colorimetric sensor (IICAS) was prepared via introducing Rhodamine B(RhB) and Victoria blue(VBB) by immersion to achieve visual detection of Cd(II). The IICA hydrogels with imprinted hole structure had higher adsorption capacity and better specific selectivity for Cd(II). As well as internal diffusion, coordination, ion exchange, and hydrogen bonding influenced the adsorption rate. Moreover, the IICAS exhibited good selective detection ability and linearity for Cd(II) with the fitted correlation coefficient (R2) = 0.98, limit of detection (LOD) = 35 nmol/L. Combined with the smartphone platform, portable and quantitative detection of Cd(II) can be achieved, Within the 0-100 mg/L range, R2 remained 0.94, and LOD was 75 nmol/L. This strategy of preparing a novel whole biomass IICAS integrating capture and visual detection provides a new insight into the construction of a promising candidate sensor for the removal and detection of Cd(II).
Collapse
Affiliation(s)
- Yan Bao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an, 710021, PR China.
| | - Xi Zheng
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an, 710021, PR China
| | - Ruyue Guo
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an, 710021, PR China
| | - Luxuan Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an, 710021, PR China
| | - Chao Liu
- Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Wenbo Zhang
- Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| |
Collapse
|
5
|
Abd-Elsabour M, Abou-Krisha M, Alhamzani AG, Alotaibi AN, Yousef TA. Voltametric Sensor Based on Magnetic Chitosan Acetylindole-Based Nanocomposite for the Determination of Sulfamethazine. ACS OMEGA 2024; 9:17323-17333. [PMID: 38645363 PMCID: PMC11024945 DOI: 10.1021/acsomega.3c10390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/08/2024] [Accepted: 03/22/2024] [Indexed: 04/23/2024]
Abstract
Sulfamethazine (SMZ), a persistent antibiotic, is frequently detected in drinking water and milk. For this reason, our research aimed to develop a novel electrochemical sensor based on a magnetic nanocomposite supported on chitosan modified by 3-acetylindole through the formation of chitosan acetylindole Schiff base (Chs-Aci). The objective was to detect extremely low concentrations of SMZ in milk. The synthesized nanocomposites were characterized by various techniques, including FT-IR, XRD, EDX, SEM, and TEM. To enhance the electrocatalytic efficiency for sensitive SMZ detection in food samples, a magnetic chitosan acetylindole nanocomposite (M-Chs-Aci) was employed as a modifier for a carbon paste electrode (CPE). The electrochemical measurements revealed that the M-Chs-Aci/CPE exhibits good electrocatalytic performance compared to a bare CPE. Moreover, low detection limit, repeatability, and stability were achieved at 0.021 μM, 3.83%, and 94.87%, respectively. Finally, the proposed M-Chs-Aci/CPE proved to be highly effective in detecting SMZ in milk samples. The obtained findings paved the way for the effective usability of M-Chs-Aci/CPE as a sensor for detecting SMZ in real samples, with acceptable recoveries of 95%-98.87%.
Collapse
Affiliation(s)
| | - Mortaga
M. Abou-Krisha
- Chemistry
Department, College of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Chemistry
Department, Faculty of Science, South Valley
University, Luxor 85951, Egypt
| | - Abdulrahman G. Alhamzani
- Chemistry
Department, College of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Abdullah N. Alotaibi
- Chemistry
Department, College of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Tarek A. Yousef
- Chemistry
Department, College of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Department
of Toxic and Narcotic Drug, Forensic Medicine, Mansoura Laboratory, Medicolegal Organization, Cairo 11435, Egypt
| |
Collapse
|
6
|
Song Y, Zhao G, Zhang S, Xie C, Yang R, Li X. Chitosan nanofiber paper used as separator for high performance and sustainable lithium-ion batteries. Carbohydr Polym 2024; 329:121530. [PMID: 38286525 DOI: 10.1016/j.carbpol.2023.121530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/07/2023] [Accepted: 10/24/2023] [Indexed: 01/31/2024]
Abstract
Separators are indispensable components in lithium-ion batteries (LIBs), providing efficient pathways for lithium ions to travel and isolating the positive and negative electrodes to avoid short circuits. However, traditional polyolefin-based separators exhibit inferior electrolyte affinities, limited porosities, and low thermal stabilities. In this study, a novel method was developed to prepare chitosan micro/nanofiber membranes as LIB separators using natural materials. The pore sizes of the chitosan micro/nanofibers separators were modulated by changing the diameters of the chitosan fibers. The results demonstrated that the chitosan nanofiber separators (CSNFs) had superior electrolyte uptake (281 %), excellent thermal dimensional stability, and electrochemical performance in LiFePO4/Li half-cell, as indicated by the higher discharge capacity after 100 cycles, and higher rate capacity than commercial Celgard2325 separator. This study paves the way for the fabrication of eco-efficient and environment-friendly separators for high-performance LIBs.
Collapse
Affiliation(s)
- Yanghui Song
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Guanglei Zhao
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Sihan Zhang
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Chong Xie
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Runde Yang
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiaofeng Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510644, China.
| |
Collapse
|
7
|
Hong WL, Ke CB, Chen JL. Chloramphenicol-imprinted polychitosan bounded with carbon dots as fluorescent sensor, dispersive sorbent, and drug carrier. Mikrochim Acta 2024; 191:227. [PMID: 38558113 DOI: 10.1007/s00604-024-06324-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024]
Abstract
Chitosan, an abundant natural polysaccharide, was conjugated with carbon dots (CDs) and self-polymerized with chloramphenicol (CAP) templates to synthesize CD-incorporated and molecularly CAP-imprinted polychitosan (CD-MIC). The CD-MIC was used for fluorescent sensing, dispersive sorption, and dosage release of CAP at different pH levels. The sphere of action mechanism, approved by emission and excitation fluorescence, UV-Vis absorption, and fluorescence lifetime measurements, regulated the fluorescence static quenching. By the Perrin model, the quenching extent was linearly correlated to CAP within 0.17 - 33.2 μM (LOD = 37 nM) at pH 7.0. With an imprinting factor of 3.1, the CD-MIC was more selective for CAP than CD, although it was less sensitive to CAP. The recoveries of 5.0 μM CAP from milk matrix were 95% (RSD = 2.3%) for CD-MIC probes and 62% (RSD = 4.5%) for CD. The Langmuir and pseudo-second-order models preferably described the isothermal and kinetic sorptions of CAP into the imprinted cavities in CD-MICs, respectively. The Weber - Morris kinetic model showed three stages involved in intraparticle diffusion, which was pH-dependent and gradually arduous at the later stage, and showed external diffusion partly engaged in the diffusion mechanism. The 20 - 70% of CAP formulated in CAP-embedded CD-MICs were released in 8 - 48 h. The release percentage was lower at pH 7.0 than at pH 5.0 and 9.0, but the equilibrium time was shorter. At pH 7.0, the release percentage reached 45% at 10 min and slowly increased to 51% at 24 h.
Collapse
Affiliation(s)
- Wei-Lun Hong
- School of Pharmacy, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist, Taichung, 406040, Taiwan
| | - Ching-Bin Ke
- Department of Beauty and Health Care, Min-Hwei Junior College of Health Care Management, No. 1116, Sec 2, Zhongshan E. Rd, Tainan, 73658, Taiwan
| | - Jian-Lian Chen
- School of Pharmacy, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist, Taichung, 406040, Taiwan.
| |
Collapse
|
8
|
McDonald SR, Tao S. An optical fiber chlorogenic acid sensor using a Chitosan membrane coated bent optical fiber probe. Anal Chim Acta 2024; 1288:342142. [PMID: 38220277 DOI: 10.1016/j.aca.2023.342142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/03/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024]
Abstract
Hydrogel polymers have hydrophilic function groups bonded on the polymer's backbone network. Water molecules and compounds soluble in aqueous solution can permeate into hydrogel's network. This property was employed in this work in developing an optical fiber chemical sensor for detecting chlorogenic acid (CGA). A Chitosan membrane was coated on a bent optical fiber probe (BOFP) by simply dipping the BOFP into a Chitosan solution, which was made by dissolving solid Chitosan in a 2 % acetic acid solution, and pulling out. When such a Chitosan-coated BOFP was exposed to CGA in an aqueous sample solution, CGA molecules permeate into the Chitosan membrane, and were detected through monitoring the compound's intrinsic optical absorption signal at 400 nm. Chitosan has one amine group on each of its glucose rings, which helps the membrane concentrating CGA (a weak acid) from aqueous sample solution. Therefore, the sensor shows high sensitivity in detecting CGA with a detection limit of 0.018 μg/mL. The sensor's response to CGA is reversible, because CGA permeation into/out of the polymer network is a reversible process. The effectiveness of the developed sensor for detecting CGA was verified though analyzing CGA in green coffee extract products. The analytical results obtained with the developed sensor agree well with results obtained with a traditional UV/Vis optical absorption spectrometric method. The effectiveness of the sensor for analyzing CGA in green coffee extract samples was also verified through standard addition and recovery experiment with obtained recovery rate ranging from 97 % to 100 %.
Collapse
Affiliation(s)
- Sean R McDonald
- Department of Chemistry and Physics, West Texas A&M University, WTAMU Box 60787, Canyon, TX, 79015, USA
| | - Shiquan Tao
- Department of Chemistry and Physics, West Texas A&M University, WTAMU Box 60787, Canyon, TX, 79015, USA.
| |
Collapse
|
9
|
Jiang R, Zhu HY, Zang X, Fu YQ, Jiang ST, Li JB, Wang Q. A review on chitosan/metal oxide nanocomposites for applications in environmental remediation. Int J Biol Macromol 2024; 254:127887. [PMID: 37935288 DOI: 10.1016/j.ijbiomac.2023.127887] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
A cleaner and safer environment is one of the most important requirements in the future. It has become increasingly urgent and important to fabricate novel environmentally-friendly materials to remove various hazardous pollutants. Compared with traditional materials, chitosan is a more environmentally friendly material due to its abundance, biocompatibility, biodegradability, film-forming ability and hydrophilicity. As an abundant of -NH2 and -OH groups on chitosan molecular chain could chelate with all kinds of metal ions efficiently, chitosan-based materials hold great potential as a versatile supporting matrix for metal oxide nanomaterials (MONMs) (TiO2, ZnO, SnO2, Fe3O4, etc.). Recently, many chitosan/metal oxide nanomaterials (CS/MONMs) have been reported as adsorbents, photocatalysts, heterogeneous Fenton-like agents, and sensors for potential and practical applications in environmental remediation and monitoring. This review analyzed and summarized the recent advances in CS/MONMs composites, which will provide plentiful and meaningful information on the preparation and application of CS/MONMs composites for wastewater treatment and help researchers to better understand the potential of CS/MONMs composites for environmental remediation and monitoring. In addition, the challenges of CS/MONM have been proposed.
Collapse
Affiliation(s)
- Ru Jiang
- Institute of Environmental Engineering Technology, Taizhou University, Taizhou, Zhejiang 318000, PR China; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, PR China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Hua-Yue Zhu
- Institute of Environmental Engineering Technology, Taizhou University, Taizhou, Zhejiang 318000, PR China; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, PR China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, Zhejiang 318000, PR China.
| | - Xiao Zang
- Institute of Environmental Engineering Technology, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Yong-Qian Fu
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, PR China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Sheng-Tao Jiang
- Institute of Environmental Engineering Technology, Taizhou University, Taizhou, Zhejiang 318000, PR China; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Jian-Bing Li
- Environmental Engineering Program, University of Northern British Columbia, Prince George, British Columbia V2N 4Z9, Canada
| | - Qi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, PR China.
| |
Collapse
|
10
|
Zhang L, Mo H, Wang C, Li X, Jiang S, Fan W, Zhang Y. Synthesis and Properties of Cefixime Core-Shell Magnetic Nano-Molecularly Imprinted Materials. Polymers (Basel) 2023; 15:4464. [PMID: 38006188 PMCID: PMC10674183 DOI: 10.3390/polym15224464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Novel core-shell magnetic molecularly imprinted polymers (MMIPs) were synthesized using the sol-gel method for the adsorption of cefixime (CFX). Fe3O4@SiO2 is the core, and molecularly imprinted polymers (MIPs) are the shell, which can selectively interact with CFX. The preparation conditions, adsorption kinetics, adsorption isotherms, selective adsorption ability, and reutilization performance of the MMIPs were investigated. The adsorption capacity of MMIPs for CFX was 111.38 mg/g, which was about 3.5 times that of MNIPs. The adsorption equilibrium time was 180 min. The dynamic adsorption experiments showed that the adsorption process of MMIPs to CFX conformed to the pseudo-second-order model. Through static adsorption study, the Scatchard analysis showed that MMIPs had two types of binding sites-the high-affinity binding sites and the low-affinity binding sites-while the Langmuir model fit the adsorption isotherms well (R2 = 0.9962). Cefepime and ceftiofur were selected as the structural analogs of CFX for selective adsorption studies; the adsorption of CFX by MMIPs was higher than that of other structural analogs; and the imprinting factors of CFX, cefepime, and ceftiofur were 3.5, 1.7, and 1.4, respectively. Furthermore, the MMIPs also showed excellent reusable performance.
Collapse
Affiliation(s)
- Li Zhang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China;
| | - Hongbo Mo
- Chongqing Academy of Metrology and Quality Inspection, Chongqing 401123, China
| | - Chuan Wang
- Chongqing Academy of Metrology and Quality Inspection, Chongqing 401123, China
| | - Xiaofeng Li
- Chongqing Academy of Metrology and Quality Inspection, Chongqing 401123, China
| | - Shuai Jiang
- Chongqing Academy of Metrology and Quality Inspection, Chongqing 401123, China
| | - Weigang Fan
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China;
| | - Yagang Zhang
- School of Materials and Energy, University of Electronic Science and Technology, Chengdu 611731, China;
| |
Collapse
|
11
|
Bu L, Su C, Song Q, Jiang D, Shan X, Wang W, Chen Z. A molecularly imprinted polypyrrole electrochemiluminescence sensor based on a novel zinc-based metal-organic framework and chitosan for determination of enrofloxacin. Analyst 2023; 148:6087-6096. [PMID: 37916516 DOI: 10.1039/d3an01236k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Nowadays, bacterial resistance caused by the abuse of antibiotics has become a worldwide problem. In this work, a quinolone antibiotic, enrofloxacin (ENR), was rapidly monitored by combining a selective molecular imprinting polymer (MIP) with the electrochemiluminescence (ECL) method. Zn-PTC, a novel zinc-based metal-organic framework (MOF) that has a large specific surface area and ultra-high luminous efficiency, was used as the ECL luminophore. Chitosan (CHIT) was used to contact the specific surface area of molecularly imprinted polymer films and further improved the detection sensitivity. Subsequently, the molecularly imprinted polypyrrole was electropolymerized on the surface of the Zn-PTC and CHIT modified glassy carbon electrode (GCE). The specific sites that could target recombining ENR were shaped on the surface of MIP after extracting the ENR templates. The specific concentrations of ENR could be detected according to the difference in ECL intensity (ΔECL) between the eluting and rebinding of ENR. After optimization, a good linear response of ΔECL and a logarithm of specific ENR concentrations could be obtained in the range of 1.0 × 10-12-1.0 × 10-4 mol L-1, with a detection limit of 9.3 × 10-13 mol L-1 (S/N = 3). Notably, this study provided a rapid, convenient, and cheap method for the detection of ENR in actual samples.
Collapse
Affiliation(s)
- Liyin Bu
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.
| | - Chang Su
- School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Qingyuan Song
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.
| | - Ding Jiang
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Xueling Shan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Wenchang Wang
- Analysis and Testing Center, NERC Biomass of Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Zhidong Chen
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.
| |
Collapse
|
12
|
Bounegru AV, Bounegru I. Chitosan-Based Electrochemical Sensors for Pharmaceuticals and Clinical Applications. Polymers (Basel) 2023; 15:3539. [PMID: 37688165 PMCID: PMC10490380 DOI: 10.3390/polym15173539] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Chitosan (CTS), a biocompatible and multifunctional material derived from chitin, has caught researchers' attention in electrochemical detection due to its unique properties. This review paper provides a comprehensive overview of the recent progress and applications of CTS-based electrochemical sensors in the analysis of pharmaceutical products and other types of samples, with a particular focus on the detection of medicinal substances. The review covers studies and developments from 2003 to 2023, highlighting the remarkable properties of CTS, such as biocompatibility, chemical versatility, and large surface area, that make it an excellent candidate for sensor modification. Combining CTS with various nanomaterials significantly enhances the detection capabilities of electrochemical sensors. Various types of CTS-based sensors are analyzed, including those utilizing carbon nanomaterials, metallic nanoparticles, conducting polymers, and molecularly imprinted CTS. These sensors exhibit excellent sensitivity, selectivity, and stability, enabling the precise and reliable detection of medications. The manufacturing strategies used for the preparation of CTS-based sensors are described, the underlying detection mechanisms are elucidated, and the integration of CTS sensors with transducer systems is highlighted. The prospects of CTS-based electrochemical sensors are promising, with opportunities for miniaturization, simultaneous detection, and real-time monitoring applications.
Collapse
Affiliation(s)
- Alexandra Virginia Bounegru
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, "Dunărea de Jos" University of Galati, 47 Domnească Street, 800008 Galati, Romania
| | - Iulian Bounegru
- Competences Centre: Interfaces-Tribocorrosion-Electrochemical Systems, "Dunărea de Jos" University of Galati, 47 Domnească Street, 800008 Galati, Romania
- Faculty of Medicine and Pharmacy, "Dunărea de Jos" University of Galati, 35 Al. I. Cuza Street, 800010 Galati, Romania
| |
Collapse
|
13
|
Karrat A, García-Guzmán JJ, Palacios-Santander JM, Amine A, Cubillana-Aguilera L. Magnetic Molecularly Imprinted Chitosan Combined with a Paper-Based Analytical Device for the Smartphone Discrimination of Tryptophan Enantiomers. BIOSENSORS 2023; 13:830. [PMID: 37622916 PMCID: PMC10452675 DOI: 10.3390/bios13080830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023]
Abstract
The separation of enantiomers plays a critical role in pharmaceutical development, ensuring therapeutic efficacy, safety, and patent protection. It enables the production of enantiopure drugs and enhances our understanding of the properties of chiral compounds. In this study, a straightforward and effective chiral detection strategy was developed for distinguishing between tryptophan (TRP) enantiomers. The approach involved the preparation of a magnetic molecularly imprinted chitosan (MMIC) for preparation of the sample, which was combined with a nitrocellulose membrane (a paper-based analytical device, PAD) integrated with D-TRP covalently grafted with polymethacrylic acid (PAD-PMA_D-TRP). Discriminating between the TRP enantiomers was achieved using AuNPs as a colorimetric probe. Indeed, the presence of D-TRP rapidly induced the aggregation of AuNPs due to its strong affinity to PAD-PMA_D-TRP, resulting in a noticeable change in the color of the AuNPs from red to purple. On the other hand, L-TRP did not induce any color changes. The chiral analysis could be easily performed with the naked eye and/or a smartphone. The developed method exhibited a detection limit of 3.3 µM, and it was successfully applied to detect TRP in serum samples, demonstrating good recovery rates. The proposed procedure is characterized by its simplicity, cost-effectiveness, rapidity, and ease of operation.
Collapse
Affiliation(s)
- Abdelhafid Karrat
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510 Puerto Real, Cádiz, Spain; (A.K.); (L.C.-A.)
- Laboratory of Process Engineering & Environment, Faculty of Science and Technology, Hassan II University of Casablanca, B.P. 146, Mohammedia 28810, Morocco
| | - Juan José García-Guzmán
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510 Puerto Real, Cádiz, Spain; (A.K.); (L.C.-A.)
| | - José María Palacios-Santander
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510 Puerto Real, Cádiz, Spain; (A.K.); (L.C.-A.)
| | - Aziz Amine
- Laboratory of Process Engineering & Environment, Faculty of Science and Technology, Hassan II University of Casablanca, B.P. 146, Mohammedia 28810, Morocco
| | - Laura Cubillana-Aguilera
- Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510 Puerto Real, Cádiz, Spain; (A.K.); (L.C.-A.)
| |
Collapse
|
14
|
Madaci A, Suwannin P, Raffin G, Hangouet M, Martin M, Ferkous H, Bouzid A, Bausells J, Elaissari A, Errachid A, Jaffrezic-Renault N. A Sensitive Micro Conductometric Ethanol Sensor Based on an Alcohol Dehydrogenase-Gold Nanoparticle Chitosan Composite. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2316. [PMID: 37630900 PMCID: PMC10458242 DOI: 10.3390/nano13162316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
In this paper, a microconductometric sensor has been designed, based on a chitosan composite including alcohol dehydrogenase-and its cofactor-and gold nanoparticles, and was calibrated by differential measurements in the headspace of aqueous solutions of ethanol. The role of gold nanoparticles (GNPs) was crucial in improving the analytical performance of the ethanol sensor in terms of response time, sensitivity, selectivity, and reproducibility. The response time was reduced to 10 s, compared to 21 s without GNPs. The sensitivity was 416 µS/cm (v/v%)-1 which is 11.3 times higher than without GNPs. The selectivity factor versus methanol was 8.3, three times higher than without GNPs. The relative standard deviation (RSD) obtained with the same sensor was 2%, whereas it was found to be 12% without GNPs. When the air from the operator's mouth was analyzed just after rinsing with an antiseptic mouthwash, the ethanol content was very high (3.5 v/v%). The background level was reached only after rinsing with water.
Collapse
Affiliation(s)
- Anis Madaci
- Institute of Analytical Sciences, University of Lyon, 69100 Villeurbanne, France; (A.M.); (P.S.); (G.R.); (M.H.); (M.M.); (A.E.); (A.E.)
- Laboratory of Materials and Electronics Systems, University El-Bachir El-Ibrahimi Bordj Bou Arreridj, Bordj Bou Arreridj 34000, Algeria;
| | - Patcharapan Suwannin
- Institute of Analytical Sciences, University of Lyon, 69100 Villeurbanne, France; (A.M.); (P.S.); (G.R.); (M.H.); (M.M.); (A.E.); (A.E.)
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Guy Raffin
- Institute of Analytical Sciences, University of Lyon, 69100 Villeurbanne, France; (A.M.); (P.S.); (G.R.); (M.H.); (M.M.); (A.E.); (A.E.)
| | - Marie Hangouet
- Institute of Analytical Sciences, University of Lyon, 69100 Villeurbanne, France; (A.M.); (P.S.); (G.R.); (M.H.); (M.M.); (A.E.); (A.E.)
| | - Marie Martin
- Institute of Analytical Sciences, University of Lyon, 69100 Villeurbanne, France; (A.M.); (P.S.); (G.R.); (M.H.); (M.M.); (A.E.); (A.E.)
| | - Hana Ferkous
- Laboratory of Mechanical Engineering and Materials, Faculty of Technology, University of Skikda, Skikda 21000, Algeria;
| | - Abderrazak Bouzid
- Laboratory of Materials and Electronics Systems, University El-Bachir El-Ibrahimi Bordj Bou Arreridj, Bordj Bou Arreridj 34000, Algeria;
| | - Joan Bausells
- El Consejo Superior de Investigaciones Científicas (CSIC), Centro Nacional de Microelectrónica (CNM), Institut de Microelectrònica de Barcelona (IMB), Campus UAB, 08193 Barcelona, Spain;
| | - Abdelhamid Elaissari
- Institute of Analytical Sciences, University of Lyon, 69100 Villeurbanne, France; (A.M.); (P.S.); (G.R.); (M.H.); (M.M.); (A.E.); (A.E.)
| | - Abdelhamid Errachid
- Institute of Analytical Sciences, University of Lyon, 69100 Villeurbanne, France; (A.M.); (P.S.); (G.R.); (M.H.); (M.M.); (A.E.); (A.E.)
| | - Nicole Jaffrezic-Renault
- Institute of Analytical Sciences, University of Lyon, 69100 Villeurbanne, France; (A.M.); (P.S.); (G.R.); (M.H.); (M.M.); (A.E.); (A.E.)
| |
Collapse
|
15
|
Wu Y, Qu W, Qiu C, Chen K, Zhuang Y, Zeng Z, Yan Y, Gu Y, Tao W, Gao J, Li K. The Method and Study of Detecting Phenanthrene in Seawater Based on a Carbon Nanotube-Chitosan Oligosaccharide Modified Electrode Immunosensor. Molecules 2023; 28:5701. [PMID: 37570671 PMCID: PMC10420227 DOI: 10.3390/molecules28155701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Phenanthrene (PHE), as a structurally simple, tricyclic, polycyclic aromatic hydrocarbon (PAHs), is widely present in marine environments and organisms, with serious ecological and health impacts. It is crucial to study fast and simple high-sensitivity detection methods for phenanthrene in seawater for the environment and the human body. In this paper, a immunosensor was prepared by using a multi-wall carbon nanotube (MWCNTs)-chitosan oligosaccharide (COS) nanocomposite membrane loaded with phenanthrene antibody. The principle was based on the antibody-antigen reaction in the immune reaction, using the strong electron transfer ability of multi-walled carbon nanotubes, coupled with chitosan oligosaccharides with an excellent film formation and biocompatibility, to amplify the detection signal. The content of the phenanthrene in seawater was studied via differential pulse voltammetry (DPV) using a potassium ferricyanide system as a redox probe. The antibody concentration, pH value, and probe concentration were optimized. Under the optimal experimental conditions, the response peak current of the phenanthrene was inversely proportional to the concentration of phenanthrene, in the range from 0.5 ng·mL-1 to 80 ng·mL-1, and the detection limit was 0.30 ng·mL-1. The immune sensor was successfully applied to the detection of phenanthrene in marine water, with a recovery rate of 96.1~101.5%, and provided a stable, sensitive, and accurate method for the real-time monitoring of marine environments.
Collapse
Affiliation(s)
- Yuxuan Wu
- College of Mechanical, Naval Architecture & Ocean Engineering, Beibu Gulf University, Qinzhou 535011, China; (Y.W.); (C.Q.); (K.C.); (Y.Z.); (Z.Z.); (Y.Y.); (Y.G.); (W.T.); (J.G.); (K.L.)
| | - Wei Qu
- Eastern Michigan Associated Engineering College, Beibu Gulf University, Qinzhou 535011, China
- College of Electronics and Information Engineering, Beibu Gulf University, Qinzhou 535011, China
- Guangxi Key Laboratory of Ocean Engineering Equipment and Technology, Qinzhou 535011, China
| | - Chengjun Qiu
- College of Mechanical, Naval Architecture & Ocean Engineering, Beibu Gulf University, Qinzhou 535011, China; (Y.W.); (C.Q.); (K.C.); (Y.Z.); (Z.Z.); (Y.Y.); (Y.G.); (W.T.); (J.G.); (K.L.)
- Guangxi Key Laboratory of Ocean Engineering Equipment and Technology, Qinzhou 535011, China
| | - Kaixuan Chen
- College of Mechanical, Naval Architecture & Ocean Engineering, Beibu Gulf University, Qinzhou 535011, China; (Y.W.); (C.Q.); (K.C.); (Y.Z.); (Z.Z.); (Y.Y.); (Y.G.); (W.T.); (J.G.); (K.L.)
| | - Yuan Zhuang
- College of Mechanical, Naval Architecture & Ocean Engineering, Beibu Gulf University, Qinzhou 535011, China; (Y.W.); (C.Q.); (K.C.); (Y.Z.); (Z.Z.); (Y.Y.); (Y.G.); (W.T.); (J.G.); (K.L.)
| | - Zexi Zeng
- College of Mechanical, Naval Architecture & Ocean Engineering, Beibu Gulf University, Qinzhou 535011, China; (Y.W.); (C.Q.); (K.C.); (Y.Z.); (Z.Z.); (Y.Y.); (Y.G.); (W.T.); (J.G.); (K.L.)
| | - Yirou Yan
- College of Mechanical, Naval Architecture & Ocean Engineering, Beibu Gulf University, Qinzhou 535011, China; (Y.W.); (C.Q.); (K.C.); (Y.Z.); (Z.Z.); (Y.Y.); (Y.G.); (W.T.); (J.G.); (K.L.)
| | - Yang Gu
- College of Mechanical, Naval Architecture & Ocean Engineering, Beibu Gulf University, Qinzhou 535011, China; (Y.W.); (C.Q.); (K.C.); (Y.Z.); (Z.Z.); (Y.Y.); (Y.G.); (W.T.); (J.G.); (K.L.)
| | - Wei Tao
- College of Mechanical, Naval Architecture & Ocean Engineering, Beibu Gulf University, Qinzhou 535011, China; (Y.W.); (C.Q.); (K.C.); (Y.Z.); (Z.Z.); (Y.Y.); (Y.G.); (W.T.); (J.G.); (K.L.)
| | - Jiaqi Gao
- College of Mechanical, Naval Architecture & Ocean Engineering, Beibu Gulf University, Qinzhou 535011, China; (Y.W.); (C.Q.); (K.C.); (Y.Z.); (Z.Z.); (Y.Y.); (Y.G.); (W.T.); (J.G.); (K.L.)
| | - Ke Li
- College of Mechanical, Naval Architecture & Ocean Engineering, Beibu Gulf University, Qinzhou 535011, China; (Y.W.); (C.Q.); (K.C.); (Y.Z.); (Z.Z.); (Y.Y.); (Y.G.); (W.T.); (J.G.); (K.L.)
| |
Collapse
|
16
|
Han E, Pan Y, Li L, Cai J. Bisphenol A detection based on nano gold-doped molecular imprinting electrochemical sensor with enhanced sensitivity. Food Chem 2023; 426:136608. [PMID: 37348395 DOI: 10.1016/j.foodchem.2023.136608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
A facile electrochemical sensor based on nano gold-doped molecularly imprinted polymer (MIP) was proposed to realize the selective detection of bisphenol A (BPA) with enhanced sensitivity. Initially, gold-doped MIP (Au@MIP) film was constructed by electropolymerizing p-aminobenzoic acid (PABA) and BPA with in situ gold reduction to distribute gold nanoparticles nearby the imprinted cavities. Subsequently, the template molecules were further extracted from the polymer film, then the MIP could rebind with the template molecules to achieve specific detection of BPA. The nano gold-doped MIP increased the effective surface area and promoted conductivity when BPA was oxidized in the imprinted cavities, which improved the determination sensitivity. Under optimal conditions, the prepared sensor displayed a linear range from 0.5 to 100 μM for BPA detection with a detection limit of 52 nM. The designed sensor was further used to detect BPA in food samples, obtaining satisfactory recoveries from 96.7% to 107.6%.
Collapse
Affiliation(s)
- En Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Yingying Pan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lei Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jianrong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
17
|
Hashkavayi AB, Alizadeh A, Azimi R, Peyrovi M, Raoof JB, Chun H. Development of core-shell magnetic molecularly imprinted polymer-based electrochemical sensor for sensitive and selective detection of ezetimibe. Heliyon 2023; 9:e17169. [PMID: 37332928 PMCID: PMC10276227 DOI: 10.1016/j.heliyon.2023.e17169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/20/2023] Open
Abstract
A sensitive electrochemical molecularly imprinted polymer (MIP) sensor was fabricated for detection of ezetimibe (Eze) as an effective cholesterol absorption inhibitor on the surface of a screen-printed carbon electrode based on a magnetic nanoparticle decorated with MIP (Fe3O4@MIP). Placing the magnetic nanoparticle inside the MIP increases the biocompatibility, surface-to-volume ratio, and sensitivity of the sensor. Methacrylic acid (MAA) was used as a monomer, ethylene glycol dimethacrylate (EGDMA) as a cross-linker, and Eze as a template. The fabricated Fe3O4@MIP was characterized using Fourier-transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Detection of Eze was achieved by differential pulse voltammetry. Using this sensor, Eze can be sensitively detected in the range of 1.0 nM-10 μM and detection limit of 0.7 nM. In addition, we have shown that the proposed sensor successfully detects different concentrations of Eze in human serum samples and thus proves its practical application.
Collapse
Affiliation(s)
| | - Abdolhossein Alizadeh
- Department of Chemical Industry, Bushehr Branch, Technical and Vocational University, Bushehr, Iran
| | - Razieh Azimi
- Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Moazameh Peyrovi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Jahan Bakhsh Raoof
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Honggu Chun
- Department of Biomedical Engineering, Korea University, Seoul 02841, South Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, South Korea
| |
Collapse
|
18
|
Direksilp C, Parinyanitikul N, Ariyasajjamongkol N, Sirivat A. A label-free electrochemical immunosensor based on 11-mercaptoundecanoic acid grafted chitosan and poly(N-methylaniline) for the detection of carcinoembryonic antigen. Bioelectrochemistry 2023; 152:108446. [PMID: 37084572 DOI: 10.1016/j.bioelechem.2023.108446] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
Carcinoembryonic antigen (CEA) is a cancer marker used for monitoring cancer treatment. Herein, a label-free electrochemical immunosensor for determining CEA concentration composed of the thiolated chitosan (tCHI) and the doped poly(N-methylaniline) (dPNMA) is proposed. The tCHI served as a support matrix for the immobilization of CEA antibodies (anti-CEA) and was prepared by using 11-mercaptoundecanoic acid (MUA) as a grafting agent on chitosan (CHI). The excellent electrical conductivity of the dPNMA was utilized as an electron transfer layer for the proposed immunosensor. The successful preparation of the tCHI was confirmed by the attenuated-total reflection Fourier transform spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) were used to illustrate the performance of the proposed immunosensor. The determination of CEA concentration was relied on the decrease in the DPV current response with increasing CEA concentration from the creation of the antigen-antibody immunocomplex. The proposed immunosensor demonstrated a broad concentration range of 0.01 to 30 ng mL-1 with a low limit of detection (LOD) of 0.01 ng mL-1. In addition, the present sensor exhibited excellent selectivity, reproducibility, and long-term stability, suggesting its potential use to determine CEA in clinical immunoassay.
Collapse
Affiliation(s)
- Chatrawee Direksilp
- The Conductive and Electroactive Polymer Research Unit, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University Research Building, Bangkok 10330, Thailand
| | - Napa Parinyanitikul
- Medical Oncology Unit, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Department of Medicine, Faculty of Medicine, Chulalongkorn University, Thailand
| | - Nuttha Ariyasajjamongkol
- The Conductive and Electroactive Polymer Research Unit, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University Research Building, Bangkok 10330, Thailand
| | - Anuvat Sirivat
- The Conductive and Electroactive Polymer Research Unit, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University Research Building, Bangkok 10330, Thailand.
| |
Collapse
|
19
|
Xu X, Xie Y, Guo P, Shi Y, Sun M, Zhou J, Wang C, Han C, Liu J, Li T. Facile synthesis of novel helical imprinted fibers based on zucchini-derived microcoils for efficient recognition of target protein in biological sample. Food Chem 2023; 404:134645. [DOI: 10.1016/j.foodchem.2022.134645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/11/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
|
20
|
Xu Z, Li L, Li J, Deng P. One-pot synthesis of ion-imprinted three-dimensional porous material based on graphene oxide for the selective adsorption of copper(II). JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:515-524. [PMID: 37032569 DOI: 10.1080/10934529.2023.2199650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Molecularly imprinted polymers (MIPs) are synthetic polymers with predetermined selectivity for a given analyte. One major problem associated with MIPs is the inaccessibility of a large fraction of the recognition sites that remain buried within the polymeric matrix. To address this problem, the high selectivity imparted by the imprinting technique and the porosity of three-dimensional (3D) graphene oxide (GO)-based porous materials were utilized in this work to prepare a 3D GO-based Cu(II)-ion-imprinted material (hereafter denoted as IIM) via one-pot reactions of GO, chitosan (CS), and glutaraldehyde in the presence of Cu(II). Results of equilibrium binding experiments show that IIM has a high template-ion binding capacity (1.75 mmol g-1) and good imprinting factor (2.19). Further, results of selectivity tests indicate that IIM has a high Cu(II)-recognition ability. IIM also has a fast binding rate and satisfactory reusability. In addition, the Langmuir isotherm model was well fitted with the experimental data, indicating the monolayer adsorption of Cu(II) ions. The present work provided a convenient approach to prepare 3D GO-based imprinted materials that are promising for enrichment or recycling of target compounds from wastewater.
Collapse
Affiliation(s)
- Zhifeng Xu
- College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, PR China
- Key Laboratory of Organometallic New Materials of Hunan Province, Hengyang, PR China
- Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, Hengyang, PR China
| | - Lizhen Li
- College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, PR China
- Key Laboratory of Organometallic New Materials of Hunan Province, Hengyang, PR China
- Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, Hengyang, PR China
| | - Junhua Li
- College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, PR China
- Key Laboratory of Organometallic New Materials of Hunan Province, Hengyang, PR China
- Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, Hengyang, PR China
| | - Peihong Deng
- College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, PR China
- Key Laboratory of Organometallic New Materials of Hunan Province, Hengyang, PR China
- Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, Hengyang, PR China
| |
Collapse
|
21
|
Application of Molecularly Imprinted Electrochemical Biomimetic Sensors for Detecting Small Molecule Food Contaminants. Polymers (Basel) 2022; 15:polym15010187. [PMID: 36616536 PMCID: PMC9824611 DOI: 10.3390/polym15010187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Environmental chemical contaminants in food seriously impact human health and food safety. Successful detection methods can effectively monitor the potential risk of emerging chemical contaminants. Among them, molecularly imprinted polymers (MIPs) based on electrochemical biomimetic sensors overcome many drawbacks of conventional detection methods and offer opportunities to detect contaminants with simple equipment in an efficient, sensitive, and low-cost manner. We searched eligible papers through the Web of Science (2000-2022) and PubMed databases. Then, we introduced the sensing mechanism of MIPs, outlined the sample preparation methods, and summarized the MIP characterization and performance. The classification of electrochemistry, as well as its advantages and disadvantages, are also discussed. Furthermore, the representative application of MIP-based electrochemical biomimetic sensors for detecting small molecular chemical contaminants, such as antibiotics, pesticides, toxins, food additives, illegal additions, organic pollutants, and heavy metal ions in food, is demonstrated. Finally, the conclusions and future perspectives are summarized and discussed.
Collapse
|
22
|
Ayerdurai V, Lach P, Lis-Cieplak A, Cieplak M, Kutner W, Sharma PS. An advantageous application of molecularly imprinted polymers in food processing and quality control. Crit Rev Food Sci Nutr 2022; 64:3407-3440. [PMID: 36300633 DOI: 10.1080/10408398.2022.2132208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In the global market era, food product control is very challenging. It is impossible to track and control all production and delivery chains not only for regular customers but also for the State Sanitary Inspections. Certified laboratories currently use accurate food safety and quality inspection methods. However, these methods are very laborious and costly. The present review highlights the need to develop fast, robust, and cost-effective analytical assays to determine food contamination. Application of the molecularly imprinted polymers (MIPs) as selective recognition units for chemosensors' fabrication was herein explored. MIPs enable fast and inexpensive electrochemical and optical transduction, significantly improving detectability, sensitivity, and selectivity. MIPs compromise durability of synthetic materials with a high affinity to target analytes and selectivity of molecular recognition. Imprinted molecular cavities, present in MIPs structure, are complementary to the target analyte molecules in terms of size, shape, and location of recognizing sites. They perfectly mimic natural molecular recognition. The present review article critically covers MIPs' applications in selective assays for a wide range of food products. Moreover, numerous potential applications of MIPs in the food industry, including sample pretreatment before analysis, removal of contaminants, or extraction of high-value ingredients, are discussed.
Collapse
Affiliation(s)
| | - Patrycja Lach
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | - Maciej Cieplak
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
- Faculty of Mathematics and Natural Sciences, School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Warsaw, Poland
| | | |
Collapse
|
23
|
Zhan X, Liu Y, Wang F, Zhao D, Yang KL, Luo D. A highly sensitive fluorescent sensor for ammonia detection based on aggregation-induced emission luminogen-doped liquid crystals. SOFT MATTER 2022; 18:7662-7669. [PMID: 36172725 DOI: 10.1039/d2sm00568a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As a toxic substance, ammonia can cause serious irritation to the human respiratory system and lungs. Although many detection techniques have been reported, most of them have drawbacks, such as expensive devices and complex and time-consuming fabrication processes. Thus, it is important to develop a simple method for ammonia detection. In this paper, we demonstrate a highly sensitive fluorescent sensor for ammonia detection based on aggregation-induced emission luminogen-doped liquid crystals without the use of polarizers. The homeotropic orientation of the liquid crystals on a modified substrate can be disturbed by ammonia, resulting in the fluorescence intensity change of an aggregation-induced emission luminogen. This aggregation-induced emission luminogen-doped liquid crystal-based fluorescent sensor for ammonia detection exhibited a low detection limit of 5.4 ppm, which is 3 times lower than previously reported liquid crystal-based optical sensors. The detection range is also broad from 0 ppm to 1600 ppm. Meanwhile, this sensor can be applied to detect aqueous ammonia with a low limit of detection of 1.8 ppm. The proposed fluorescent sensor for ammonia detection based on an aggregation-induced emission luminogen-doped liquid crystal is highly sensitive, highly selective, simple, and low cost with wide potential applications in chemical and biological fields. This strategy of designing a liquid crystal fluorescent sensor provides an inspiring stage for other toxic chemical substrates by changing specific decorated molecules.
Collapse
Affiliation(s)
- Xiyun Zhan
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Road 1088, Shenzhen, Guangdong 518055, China.
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore.
| | - Yanjun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Road 1088, Shenzhen, Guangdong 518055, China.
| | - Fei Wang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Road 1088, Shenzhen, Guangdong 518055, China.
| | - Dongyu Zhao
- School of Chemistry and Environment, Beihang University, Xueyuan Road 37, Beijing 100191, China.
| | - Kun-Lin Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore.
| | - Dan Luo
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Road 1088, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
24
|
Ru M, Hai AM, Wang L, Yan S, Zhang Q. Recent progress in silk-based biosensors. Int J Biol Macromol 2022; 224:422-436. [DOI: 10.1016/j.ijbiomac.2022.10.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/05/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
25
|
|
26
|
Cetinkaya A, Kaya SI, Şenel P, Cini N, Atici EB, Ozkan SA, Yurtsever M, Gölcü A. Detection of Axitinib Using Multiwalled Carbon Nanotube-Fe 2O 3/Chitosan Nanocomposite-Based Electrochemical Sensor and Modeling with Density Functional Theory. ACS OMEGA 2022; 7:34495-34505. [PMID: 36188240 PMCID: PMC9520732 DOI: 10.1021/acsomega.2c04244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
In this study, axitinib (AXI), a potent and selective inhibitor of vascular endothelial growth factor receptor (VEGFR) tyrosine kinase and used as a second-generation targeted drug, was investigated electrochemically under optimized conditions using multiwalled carbon nanotubes/iron(III) oxide nanoparticle-chitosan nanocomposite (MWCNT/Fe2O3@chitosan NC) modified on the glassy carbon electrode (GCE) surface. Characterization of the modified electrode was performed using scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The adsorptive stripping differential pulse voltammetric (AdSDPV) technique was used for the sensitive, rapid, and precise detection of AXI. The current peak obtained with the MWCNT/Fe2O3@chitosan NC modified electrode was 23 times higher compared to the bare electrode. The developed modified electrode showed excellent electrocatalytic activity in AXI oxidation. Under optimized conditions, the effect of supporting electrolyte and pH was investigated, and 0.1 M H2SO4 was chosen as the electrolyte with the highest peak current for the target analyte. In the concentration range of MWCNT/Fe2O3@chitosan NC/GCE, 6 × 10-9 and 1 × 10-6 M, the limit of detection (LOD) and limit of quantification (LOQ) values were calculated to be 0.904 and 0.0301 pM, respectively. Tablet and serum samples were used for the applicability of the developed sensor, relative standard deviation (RSD) values for all samples were below 2%, and the recovery results were 99.23 and 101.84%, respectively. The MWCNT/Fe2O3@chitosan NC/GCE designed to determine AXI demonstrated the applicability, selectivity, precision, and accuracy of the sensor. The mechanism of electron transfer from the modified GCE surface to the analyte solution is studied via modeling the modified GCE surface by the density functional theory (DFT) method at B3LYP/6-311+g(d,p) and M062X/6-31g(d,p) levels. We observed that the iron oxide nanoparticles play an important role in channeling electron flow from the analyte solution to the MWCNT-coated GCE electrode surface. Adsorption of the nanocomposite material onto the GCE surface occurs via strong electrostatic interactions, including ionic and hydrogen bond formations. During the adsorption-controlled oxidation process of the axitinib, the electrons are transferred via the highest occupied molecular orbital (HOMO) localized on the iron oxide moiety to the lowest unoccupied molecular orbital (LUMO) of the MWCNT/GCE surface.
Collapse
Affiliation(s)
- Ahmet Cetinkaya
- Department
of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkiye
| | - S. Irem Kaya
- Department
of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkiye
- Department
of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, 06010 Ankara, Turkiye
| | - Pelin Şenel
- Chemistry
Department, Science and Letters Faculty, Istanbul Technical University, Maslak, 34469 Istanbul, Turkiye
| | - Nejla Cini
- Chemistry
Department, Science and Letters Faculty, Istanbul Technical University, Maslak, 34469 Istanbul, Turkiye
| | - Esen B. Atici
- Research
& Development Center, DEVA Holding A.S., 59520 Tekirdağ, Turkiye
| | - Sibel A. Ozkan
- Department
of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkiye
| | - Mine Yurtsever
- Chemistry
Department, Science and Letters Faculty, Istanbul Technical University, Maslak, 34469 Istanbul, Turkiye
| | - Ayşegül Gölcü
- Chemistry
Department, Science and Letters Faculty, Istanbul Technical University, Maslak, 34469 Istanbul, Turkiye
| |
Collapse
|
27
|
Vicentini FC, Silva LRG, Stefano JS, Lima ARF, Prakash J, Bonacin JA, Janegitz BC. Starch-Based Electrochemical Sensors and Biosensors: A Review. BIOMEDICAL MATERIALS & DEVICES 2022. [PMCID: PMC9510496 DOI: 10.1007/s44174-022-00012-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Natural green compounds for sensor modification (binders) are challenging in electrochemistry. Starch is a carbohydrate biopolymer that has been used extensively in the development of biomaterials for the food industry due to its ability to impart textural characteristics and provide gelling or film formation. In particular, the excellent film-forming characteristics have been used for the development of new surface modifying architectures for electrodes. Here, we highlight a very comprehensive overview of the properties of interest of various types of starch in conjunction with (bio)materials in the chemical modification of sensors and biosensors. Throughout the review, we first give an introduction to the extraction, applications, and properties of starches followed by an overview of the prospects and their possible applications in electrochemical sensors and biosensors. In this context, we discuss some important characteristics of starches and different strategies of their film formation with an emphasis on their role in the development of electrochemical sensors and biosensors highlighting their main contributions to enhancing the performance of these devices and their applications in environmental and clinical samples.
Collapse
Affiliation(s)
- Fernando C. Vicentini
- Center of Nature Sciences, Federal University of São Carlos, Rod. Lauri Simões de Barros km 12, Buri, SP 18290-000 Brazil
| | - Luiz R. G. Silva
- Laboratory of Sensors, Nanomedicine, and Nanostructured Materials (LSNano), Federal University of São Carlos, Araras, São Paulo 13600-970 Brazil
| | - Jéssica S. Stefano
- Laboratory of Sensors, Nanomedicine, and Nanostructured Materials (LSNano), Federal University of São Carlos, Araras, São Paulo 13600-970 Brazil
| | - Alan R. F. Lima
- Center of Nature Sciences, Federal University of São Carlos, Rod. Lauri Simões de Barros km 12, Buri, SP 18290-000 Brazil
| | - Jai Prakash
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur, Himachal Pradesh 177005 India
| | - Juliano A. Bonacin
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo 13083-859 Brazil
| | - Bruno C. Janegitz
- Laboratory of Sensors, Nanomedicine, and Nanostructured Materials (LSNano), Federal University of São Carlos, Araras, São Paulo 13600-970 Brazil
| |
Collapse
|
28
|
Han S, Ding Y, Teng F, Yao A, Leng Q. Molecularly imprinted electrochemical sensor based on 3D-flower-like MoS2 decorated with silver nanoparticles for highly selective detection of butylated hydroxyanisole. Food Chem 2022; 387:132899. [DOI: 10.1016/j.foodchem.2022.132899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/23/2022] [Accepted: 04/03/2022] [Indexed: 12/17/2022]
|
29
|
Malik S, Khan A, Rahman G, Ali N, Khan H, Khan S, Sotomayor MDPT. Core-shell magnetic molecularly imprinted polymer for selective recognition and detection of sunset yellow in aqueous environment and real samples. ENVIRONMENTAL RESEARCH 2022; 212:113209. [PMID: 35378121 DOI: 10.1016/j.envres.2022.113209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Magnetic Molecularly imprinted polymers (MMIPs) have been recently recognized as an exceptional tool for monitoring and decontamination of environmental and biological samples of diverse nature. Based on the potential applications as sorbents and biomimetic sensors, herein, a core-shell magnetic-molecularly imprinted polymer (MMIP) was developed as a selective material for separation and sensing of sunset yellow (SY) dye in an aqueous environment and real samples. The MMIP was synthesized via precipitation polymerization using SY as a template, MAA as a functional monomer (chosen based on simulation studies), EGDMA as a cross-linking agent, and AIBN as an initiator. To elaborate the specificity of MMIP, a comparative agent, magnetic non-imprinted polymer (MNIP) was also synthesized. The XRD results showed that the MMIP showed both crystalline and amorphous structure attributed to the presence and polymeric and non-polymeric groups. The FTIR spectra confirmed synthesis of intermediate and final MMIP product. The SEM results showed spherical morphology and porous structure of the MMIP with an average particle size of 0.636 μm in diameter. The MMIP was first employed as a sorbent for the removal of SY from the aqueous environment. The binding experiments performed at optimized operating conditions (pH 2; time 30 min; sorbent dosage 3 mg; sorbate concentration 80 ppm) showed more selectivity when compared with MNIP. The data fitted best to Langmuir's sorption isotherm (Qo 359.8 mg/g) and followed the pseudo-second-order kinetic model. The synthesized MMIP was also used as an electrochemical sensor for detection of SY dye in the aqueous environment, which exhibited a linear range of detection as (1.51 × 10-6 - 1.5 × 10-3 M). The limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.00413 M and 0.0137 M, respectively. While the R2 value was found to be 0.997 at optimized analytical conditions. These results suggested that the synthesized MMIP can be applied for the selective separation and quantification of SY dye in sample of diverse nature.
Collapse
Affiliation(s)
- Sumeet Malik
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan.
| | - Gul Rahman
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Nauman Ali
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Hamayun Khan
- Department of Chemistry, Islamia College University, Peshawar, KP, 25120, Pakistan
| | - Sabir Khan
- Laboratory of Physical Chemistry Research, Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Rimac, Lima, Peru; Institute of Chemistry, São Paulo State University (UNESP) and National Institute of Alternative Technologies for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), 14801-970, Araraquara, SP, Brazil
| | - Maria D P T Sotomayor
- Institute of Chemistry, São Paulo State University (UNESP) and National Institute of Alternative Technologies for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), 14801-970, Araraquara, SP, Brazil.
| |
Collapse
|
30
|
The Separation of Chlorobenzene Compounds from Environmental Water Using a Magnetic Molecularly Imprinted Chitosan Membrane. Polymers (Basel) 2022; 14:polym14153221. [PMID: 35956733 PMCID: PMC9371115 DOI: 10.3390/polym14153221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022] Open
Abstract
In this work, a magnetic molecularly imprinted chitosan membrane (MMICM) was synthesized for the extraction of chlorobenzene compounds in environmental water using the membrane separation method. The optimal extraction amount for chlorobenzene (9.64 mg·L−1) was found to be a 1:2 solid to liquid ratio, with a 20 min extraction time and 35 °C extraction temperature. This method proved to be successfully applied for the separation and trace quantification of chlorobenzene compounds in environmental water, with the limit of detection (LOD) (0.0016–0.057 ng·L−1), limit of quantification (LOQ) (0.0026–0.098 ng·L−1), and the recoveries ranging (89.02–106.97%).
Collapse
|
31
|
Mabrouk M, Hammad SF, Mansour FR, Abdella AA. A Critical Review of Analytical Applications of Chitosan as a Sustainable Chemical with Functions Galore. Crit Rev Anal Chem 2022; 54:840-856. [PMID: 35903052 DOI: 10.1080/10408347.2022.2099220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Biomass and biowastes stand as sustainable and cost-effective environmentally benign alternative feedstock. Chitosan is a biocompatible, bioactive, and biodegradable biopolymer derived from chitin to achieve eight aspects out of the 12 green chemistry principles. Chitosan got significant attention in several fields including chemical analysis, in addition to chemical functionally, which enabled its use as adsorbent and its structural crosslinking using various crosslinkers. The physicochemical, technological, and optical properties of chitosan have been extensively exploited in analysis. Mainly, deacetylation degree and molecular weight are controlling its properties and hence controlling its functions. This review presents a structure, properties, and functions relationships of chitosan. It also aims to provide an overview of the different functions that chitosan can serve in each analytical technique such as supporting matrix, catalyst…etc. The contribution of chitosan in improving the ecological performance is discussed in each technique.
Collapse
Affiliation(s)
- Mokhtar Mabrouk
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
- Pharmaceutical Services Center, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Sherin F Hammad
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Fotouh R Mansour
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
- Pharmaceutical Services Center, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Aya A Abdella
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
32
|
Koh LM, Khor SM. Current state and future prospects of sensors for evaluating polymer biodegradability and sensors made from biodegradable polymers: A review. Anal Chim Acta 2022; 1217:339989. [PMID: 35690422 DOI: 10.1016/j.aca.2022.339989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 11/20/2022]
Abstract
Since the invention of fully synthetic plastic in the 1900s, plastics have been extensively applied in various fields and represent a significant market due to their satisfactory properties. However, the non-biodegradable nature of most plastics has contributed to the accumulation of plastic waste, which poses a threat to both the environment and living beings. Given this, biodegradable polymers have emerged as eco-friendly substitutes for non-biodegradable polymers, and standard test methods have been established to evaluate polymer biodegradability. Technological advancement and the weaknesses of conventional test methods drive the invention of sensors that enable real-time monitoring of biodegradability. Besides, biodegradable polymers have been utilized to make sensors with different functionalities. Given this, the current paper is the first to compare and contrast sensors capable of identifying biodegradable polymers. The detection using sensors represents an innovative perspective for real-time monitoring of biodegradability. Besides, sensors made from biodegradable polymers are included, and these sensors are of different types and show various applications. Finally, the challenges associated with developing these sensors are described to advance future research.
Collapse
Affiliation(s)
- Lai Mun Koh
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sook Mei Khor
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Centre for Innovation in Medical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
33
|
Xiao W, Wang L, Wei X, Li J. Chitosan-based molecularly imprinted photoelectric sensor with ZnO/Bi 2O 3/Bi 2S 3 sensing layer for thiamethoxam determination. Mikrochim Acta 2022; 189:247. [PMID: 35676546 DOI: 10.1007/s00604-022-05326-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/30/2022] [Indexed: 10/18/2022]
Abstract
A molecularly imprinted photoelectrochemical sensor with high sensitivity and stable structure was constructed and applied to detect thiamethoxam pesticide. ZnO/Bi2O3/Bi2S3 heterojunction photoelectric material was formed on the fluorine-doped tin oxide (FTO) electrode by seed layer growth, drip coating, and in situ ion exchange. A chitosan-imprinted polymer membrane was prepared using chitosan as the functional monomer, glutaraldehyde as the cross-linking agent, and thiamethoxam as the template molecule. The photoelectric material was characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive x-ray spectroscopy analyses. The electron transfer mechanism of Z-type heterojunction was verified by ultraviolet-visible curve and Mott-Schottky curve. When thiamethoxam was re-adsorbed on the imprinted membrane, the current recorded at 0 V (vs. Ag/AgCl) was reduced because the thiamethoxam molecule blocked the electron transfer. The molecularly imprinted sensor exhibited a linear relationship to thiamethoxam concentration in the range from 7.0 × 10-13 mol/L to 7.0 × 10-10 mol/L and the detection limit was 3.32 × 10-13 mol/L, which is lower than the values reported by other detection methods. Most pesticides, such as propoxur and isoprocarband carbaryl, do not interfere with the determination. The sensor also showed good practicability and suitability for the determination of trace thiamethoxam in environmental water and soil leaching solutions, with a recovery of 99.6-102.1% (RSD < 3.74%). A novel molecularly imprinted photoelectrochemical (MI-PEC) sensor with high sensitivity and selectivity for the determination of thiamethoxam (TMX) was developed. A Z-type heterojunction ZnO/Bi2O3/Bi2S3 photoelectric material was synthesized for the first time. The MI-PEC sensor was prepared with ZnO/Bi2O3/Bi2S3 as the sensitive material and MI membrane as the recognition element. The sensor exhibits an extremely sensitive response to thiamethoxam with a detection limit of 3.32 × 10-13 mol/L due to the excellent photoelectrochemical properties of ZnO/Bi2O3/Bi2S3.
Collapse
Affiliation(s)
- Wei Xiao
- College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China
| | - Liangfeng Wang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China
| | - Xiaoping Wei
- College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China. .,Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guangxi, 541004, China.
| | - Jianping Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China. .,Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guangxi, 541004, China.
| |
Collapse
|
34
|
Musa I, Raffin G, Hangouet M, Martin M, Alcacer A, Zine N, Bellagambi F, Jaffrezic-Renault N, ERRACHID A. Development of a chitosan/nickel phthalocyanine composite based conductometric micro‐sensor for methanol detection. ELECTROANAL 2022. [DOI: 10.1002/elan.202100707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Tertis M, Sirbu PL, Suciu M, Bogdan D, Pana O, Cristea C, Simon I. An innovative sensor based on chitosan and graphene oxide for selective and highly‐sensitive detection of serotonin. ChemElectroChem 2022. [DOI: 10.1002/celc.202101328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mihaela Tertis
- Iuliu Hațieganu University of Medicine and Pharmacy: Universitatea de Medicina si Farmacie Iuliu Hatieganu of Analytical Chemistry 4 Pasteut StreetCluj-Napoca 400021 Cluj-Napoca ROMANIA
| | - Petra Lia Sirbu
- Iuliu Hațieganu University of Medicine and Pharmacy: Universitatea de Medicina si Farmacie Iuliu Hatieganu of Analytical Chemistry 4 Pasteut StreetCluj-Napoca 400021 Cluj-Napoca ROMANIA
| | - Maria Suciu
- Babes-Bolyai University: Universitatea Babes-Bolyai Biology and Geology 5-7 Clinicilor Street 400009 Cluj Napoca ROMANIA
| | - Diana Bogdan
- Development and Policies Research Center Molecular and Biomolecular Physics Departemnt 67-103 Donat Street 400293 Cluj-Napoca ROMANIA
| | - Ovidiu Pana
- National Institute of Research and Development of Isotopic and Molecular Technologies Physics and Nanostructured Systems Department 67-103 Donat Street 400293 Cluj-Napoca ROMANIA
| | - Cecilia Cristea
- University of Medicine and Pharmacy Iuliu Hatieganu Cluj-Napoca Analytical Chemistry str. V. Babes nr. 8 400021 Cluj-Napoca ROMANIA
| | - Ioan Simon
- Iuliu Hațieganu University of Medicine and Pharmacy: Universitatea de Medicina si Farmacie Iuliu Hatieganu Surgery IV 18 Republicii Street 400021 Cluj-Napoca ROMANIA
| |
Collapse
|
36
|
Chu Z, Xue C, Shao K, Xiang L, Zhao X, Chen C, Pan J, Lin D. Photonic Crystal-Embedded Molecularly Imprinted Contact Lenses for Controlled Drug Release. ACS APPLIED BIO MATERIALS 2022; 5:243-251. [PMID: 35014810 DOI: 10.1021/acsabm.1c01045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
As a noninvasive eye disease detection and drug delivery device, contact lenses can improve eye bioavailability and enable continuous drug delivery. In order to monitor the release of drugs in real time, molecularly imprinted contact lenses (MICLs) based on photonic crystals (PCs) were prepared for the treatment of diabetes-related diseases. The specific adsorption of molecularly imprinted polymers on dexamethasone sodium phosphate (DSP) increased the drug loading and optimized the drug release behavior. At the same time, the drug release ensures the rapid color report during the loading and releasing of drugs due to the volume and refractive index change of the hydrogel matrix. The continuous and slow release of DSP by MICLs in artificial tears was successfully monitored through structural color changes, and the cytotoxicity test results showed that the MICL had good biocompatibility. Therefore, MICLs with a PC structure color have great biomedical potentiality in the future.
Collapse
Affiliation(s)
- Zhaoran Chu
- Shanghai Engineering Research Center of Advanced Thermal Functional Materials and School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
| | - Chao Xue
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Kan Shao
- Department of Endocrinology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Lanlan Xiang
- Shanghai Engineering Research Center of Advanced Thermal Functional Materials and School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
| | - Xueling Zhao
- Shanghai Engineering Research Center of Advanced Thermal Functional Materials and School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
| | - Cheng Chen
- Shanghai Engineering Research Center of Advanced Thermal Functional Materials and School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
| | - Jianfeng Pan
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Donghai Lin
- Shanghai Engineering Research Center of Advanced Thermal Functional Materials and School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
| |
Collapse
|
37
|
Zouaoui F, Bourouina-Bacha S, Bourouina M, Zine N, Errachid A, Jaffrezic-Renault N. Mathematical Modelling of Glyphosate Molecularly Imprinted Polymer-Based Microsensor with Multiple Phenomena. Molecules 2022; 27:493. [PMID: 35056806 PMCID: PMC8780333 DOI: 10.3390/molecules27020493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
The massive and careless use of glyphosate (GLY) in agricultural production raises many questions regarding environmental pollution and health risks, it is then important to develop simple methods to detect it. Electrochemical impedance spectroscopy (EIS) is an effective analytical tool for characterizing properties at the electrode/electrolyte interface. It is useful as an analytical procedure, but it can also help in the interpretation of the involved fundamental electrochemical and electronic processes. In this study, the impedance data obtained experimentally for a microsensor based on molecularly imprinted chitosan graft on 4-aminophenylacetic acid for the detection of glyphosate was analyzed using an exact mathematical model based on physical theories. The procedure for modeling experimental responses is well explained. The analysis of the observed impedance response leads to estimations of the microscopic parameters linked to the faradic and capacitive current. The interaction of glyphosate molecules with the imprinted sites of the CS-MIPs film is observed in the high frequency range. The relative variation of the charge transfer resistance is proportional to the log of the concentration of glyphosate. The capacitance decreases as the concentration of glyphosate increases, which is explained by the discharging of the charged imprinted sites when the glyphosate molecule interacts with the imprinted sites through electrostatic interactions. The phenomenon of adsorption of the ions in the CMA film is observed in the low frequency range, this phenomenon being balanced by the electrostatic interaction of glyphosate with the imprinted sites in the CS-MIPs film.
Collapse
Affiliation(s)
- Fares Zouaoui
- Institute of Analytical Sciences, University of Lyon, 69100 Villeurbanne, France; (F.Z.); (N.Z.); (A.E.)
| | | | - Mustapha Bourouina
- Faculty of Technology, University of Bejaia, 06000 Bejaia, Algeria; (S.B.-B.); (M.B.)
| | - Nadia Zine
- Institute of Analytical Sciences, University of Lyon, 69100 Villeurbanne, France; (F.Z.); (N.Z.); (A.E.)
| | - Abdelhamid Errachid
- Institute of Analytical Sciences, University of Lyon, 69100 Villeurbanne, France; (F.Z.); (N.Z.); (A.E.)
| | - Nicole Jaffrezic-Renault
- Institute of Analytical Sciences, University of Lyon, 69100 Villeurbanne, France; (F.Z.); (N.Z.); (A.E.)
| |
Collapse
|
38
|
Kholafazad kordasht H, Mirzaie A, Seidi F, Hasanzadeh M. Low fouling and ultra-sensitive electrochemical screening of ractopamine using mixed self-assembly of PEG and aptamer immobilized on the interface of poly (dopamine)/GCE: A new apta-platform towards point of care (POC) analysis. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Silva AO, Cunha RS, Hotza D, Machado RAF. Chitosan as a matrix of nanocomposites: A review on nanostructures, processes, properties, and applications. Carbohydr Polym 2021; 272:118472. [PMID: 34420731 DOI: 10.1016/j.carbpol.2021.118472] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 01/30/2023]
Abstract
Chitosan is a biopolymer that is natural, biodegradable, and relatively low price. Chitosan has been attracting interest as a matrix of nanocomposites due to new properties for various applications. This study presents a comprehensive overview of common and recent advances using chitosan as a nanocomposite matrix. The focus is to present alternative processes to produce embedded or coated nanoparticles, and the shaping techniques that have been employed (3D printing, electrospinning), as well as the nanocomposites emerging applications in medicine, tissue engineering, wastewater treatment, corrosion inhibition, among others. There are several reviews about single chitosan material and derivatives for diverse applications. However, there is not a study that focuses on chitosan as a nanocomposite matrix, explaining the possibility of nanomaterial additions, the interaction of the attached species, and the applications possibility following the techniques to combine chitosan with nanostructures. Finally, future directions are presented for expanding the applications of chitosan nanocomposites.
Collapse
Affiliation(s)
- Angelo Oliveira Silva
- Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), 88040-900 Florianópolis, SC, Brazil
| | - Ricardo Sousa Cunha
- Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), 88040-900 Florianópolis, SC, Brazil
| | - Dachamir Hotza
- Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), 88040-900 Florianópolis, SC, Brazil
| | - Ricardo Antonio Francisco Machado
- Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
40
|
Chen RN, Kang SH, Li J, Lu LN, Luo XP, Wu L. Comparison and recent progress of molecular imprinting technology and dummy template molecular imprinting technology. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4538-4556. [PMID: 34570126 DOI: 10.1039/d1ay01014j] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular imprinting technology for the preparation of polymers with specific molecular recognition function had become one of the current research hotspots. It has been widely applied in chromatographic separation, antibody and receptor mimetics, solid-phase extraction, bio-sensors, and other fields in the last decades. In this study, molecular imprinting technology was summarized from the points of templates and dummy templates, and four typical target analytes were selected to compare the differences between templates and dummy templates. The current status and prospects of molecular imprinting technology were also proposed.
Collapse
Affiliation(s)
| | | | - Jia Li
- Northwest Minzu University, China.
| | - Li-Na Lu
- Northwest Minzu University, China.
| | | | - Lan Wu
- Northwest Minzu University, China.
| |
Collapse
|
41
|
Ofoegbu O, Ike DC, Batiha GES, Fouad H, Srichana RS, Nicholls I. Molecularly Imprinted Chitosan-Based Thin Films with Selectivity for Nicotine Derivatives for Application as a Bio-Sensor and Filter. Polymers (Basel) 2021; 13:3363. [PMID: 34641180 PMCID: PMC8512477 DOI: 10.3390/polym13193363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022] Open
Abstract
This study reports the feasible use of chitosan as a thin film biosensor on the very sensitive quartz crystal micro balance system for detection of blends of multiple templates within a single matrix. The development of chitosan-based thin film materials with selectivity for nicotine derivatives is described. The molecular imprinting of a combination of nicotine derivatives in N-diacryloyl pipiradine-chitosan-methacrylic acid copolymer films on quartz crystal resonators was used to generate thin films with selectivity for nicotine and a range of nicotine analogues, particularly 3-phenylpyridine. The polymers were characterized by spectroscopic and microscopic evaluations; surface area, pore size, pore volume using Breuner-Emmet-Teller method. Temperature characteristics were also studied. The swelling and structure consistency of the Chitosan was achieved by grafting with methylmethacrylic acid and cross-linking with N-diacrylol pipiradine. A blend of 0.002 g (0.04 mmol) of Chitosan, 8.5 μL Methylmethacrylic Acid and 1.0 mg N-diacrylol pipradine (BAP) presented the best blend formulation. Detections were made within a time interval of 99 s, and blend templates were detected at a concentration of 0.5 mM from the Quartz crystal microbalance resonator analysis. The successful crosslinking of the biopolymers ensured successful control of the swelling and agglomeration of the chitosan, giving it the utility potential for use as thin film sensor. This successful crosslinking also created successful dual multiple templating on the chitosan matrix, even for aerosolized templates. The products can be used in environments with temperature ranges between 60 °C and 250 °C.
Collapse
Affiliation(s)
- Obinna Ofoegbu
- Organic, Polymer, Nano Materials and Molecular Recognition Research Group, Department of Chemistry, Joseph Sarwuan Tarka University, Makurdi 970101, Nigeria;
| | - David Chukwuebuka Ike
- Organic, Polymer, Nano Materials and Molecular Recognition Research Group, Department of Chemistry, Joseph Sarwuan Tarka University, Makurdi 970101, Nigeria;
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Hassan Fouad
- Applied Medical Science Department, Community College, King Saudi University, P.O. Box 10219, Riyadh 11433, Saudi Arabia;
| | - Roongnapa S. Srichana
- Molecular Recognition Materials Research Unit, Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla 90112, Thailand;
| | - Ian Nicholls
- Centre for Biomaterials Chemistry, Linnaeus University, 39782 Kalmar, Sweden;
| |
Collapse
|
42
|
Recent Advances in Electrochemical Chitosan-Based Chemosensors and Biosensors: Applications in Food Safety. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9090254] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chitosan is a biopolymer derived from chitin. It is a non-toxic, biocompatible, bioactive, and biodegradable polymer. Due to its properties, chitosan has found applications in several and different fields such as agriculture, food industry, medicine, paper fabrication, textile industry, and water treatment. In addition to these properties, chitosan has a good film-forming ability which allows it to be widely used for the development of sensors and biosensors. This review is focused on the use of chitosan for the formulation of electrochemical chemosensors. It also aims to provide an overview of the advantages of using chitosan as an immobilization platform for biomolecules by highlighting its applications in electrochemical biosensors. Finally, applications of chitosan-based electrochemical chemosensors and biosensors in food safety are illustrated.
Collapse
|
43
|
Wang Y, Zhang B, Tang Y, Zhao F, Zeng B. Fabrication and application of a rutin electrochemical sensor based on rose-like AuNPs-MoS2-GN composite and molecularly imprinted chitosan. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106505] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
44
|
Voltammetric determination of lactic acid in milk samples using carbon paste electrode modified with chitosan-based magnetic molecularly imprinted polymer. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-021-01619-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Song M, Sun H, Yu J, Wang Y, Li M, Liu M, Zhao G. Enzyme-Free Molecularly Imprinted and Graphene-Functionalized Photoelectrochemical Sensor Platform for Pollutants. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37212-37222. [PMID: 34327984 DOI: 10.1021/acsami.1c10242] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, a label-free nonenzymatic photoelectrochemical (PEC) sensor is successfully developed for the detection of a typical pollutant, microcystin-LR (MC-LR), based on a visible-light-responsive alloy oxide, with highly ordered and vertically aligned Ti-Fe-O nanotubes (NTs) as substrates. Ti-Fe-O NTs consisting mainly of TiO2 and atomically doped Fe2O3 are in situ prepared on a Ti-Fe alloy by electrochemical anodic oxidation. Using a simple electrochemical deposition technique, reduced graphene oxide (RGO) could be grown onto Ti-Fe-O NTs, exhibiting significant bifunctions. It not only provides an ideal microenvironment for functionalization of molecularly imprinted polymers (MIPs) on the surface but also serves as the PEC signal amplification element because of its outstanding conductivity for photons and electrons. The designed MIP/RGO/Ti-Fe-O NT PEC sensor exhibits high sensitivity toward MC-LR with a limit of detection as low as 10 pM. High selectivity toward MC-LR is also proven for the sensor. A promising detection platform not only for MC-LR but also for other pollutants has therefore been provided.
Collapse
Affiliation(s)
- Menglin Song
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Huanhuan Sun
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Jing Yu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Yu Wang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Mingfang Li
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Meichuan Liu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai 200092, China
| |
Collapse
|
46
|
Del Sole R, Mele G, Bloise E, Mergola L. Green Aspects in Molecularly Imprinted Polymers by Biomass Waste Utilization. Polymers (Basel) 2021; 13:2430. [PMID: 34372030 PMCID: PMC8348058 DOI: 10.3390/polym13152430] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Molecular Imprinting Polymer (MIP) technology is a technique to design artificial receptors with a predetermined selectivity and specificity for a given analyte, which can be used as ideal materials in various application fields. In the last decades, MIP technology has gained much attention from the scientific world as summarized in several reviews with this topic. Furthermore, green synthesis in chemistry is nowadays one of the essential aspects to be taken into consideration in the development of novel products. In accordance with this feature, the MIP community more recently devoted considerable research and development efforts on eco-friendly processes. Among other materials, biomass waste, which is a big environmental problem because most of it is discarded, can represent a potential sustainable alternative source in green synthesis, which can be addressed to the production of high-value carbon-based materials with different applications. This review aims to focus and explore in detail the recent progress in the use of biomass waste for imprinted polymers preparation. Specifically, different types of biomass waste in MIP preparation will be exploited: chitosan, cellulose, activated carbon, carbon dots, cyclodextrins, and waste extracts, describing the approaches used in the synthesis of MIPs combined with biomass waste derivatives.
Collapse
Affiliation(s)
- Roberta Del Sole
- Department of Engineering for Innovation, University of Salento, via per Monteroni Km1, 73100 Lecce, Italy; (G.M.); (E.B.); (L.M.)
| | | | | | | |
Collapse
|
47
|
Mousavi H. A comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings. Int J Biol Macromol 2021; 186:1003-1166. [PMID: 34174311 DOI: 10.1016/j.ijbiomac.2021.06.123] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/16/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Heterocyclic compounds are among the most prestigious and valuable chemical molecules with diverse and magnificent applications in various sciences. Due to the remarkable and numerous properties of the heterocyclic frameworks, the development of efficient and convenient synthetic methods for the preparation of such outstanding compounds is of great importance. Undoubtedly, catalysis has a conspicuous role in modern chemical synthesis and green chemistry. Therefore, when designing a chemical reaction, choosing and or preparing powerful and environmentally benign simple catalysts or complicated catalytic systems for an acceleration of the chemical reaction is a pivotal part of work for synthetic chemists. Chitosan, as a biocompatible and biodegradable pseudo-natural polysaccharide is one of the excellent choices for the preparation of suitable catalytic systems due to its unique properties. In this review paper, every effort has been made to cover all research articles in the field of one-pot synthesis of heterocyclic frameworks in the presence of chitosan-based catalytic systems, which were published roughly by the first quarter of 2020. It is hoped that this review paper can be a little help to synthetic scientists, methodologists, and catalyst designers, both on the laboratory and industrial scales.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| |
Collapse
|
48
|
Zouaoui F, Bourouina-Bacha S, Bourouina M, Alcacer A, Bausells J, Jaffrezic-Renault N, Zine N, Errachid A. Electrochemical Impedance Spectroscopy Microsensor Based on Molecularly Imprinted Chitosan Film Grafted on a 4-Aminophenylacetic Acid (CMA) Modified Gold Electrode, for the Sensitive Detection of Glyphosate. Front Chem 2021; 9:621057. [PMID: 34046395 PMCID: PMC8145283 DOI: 10.3389/fchem.2021.621057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 04/06/2021] [Indexed: 12/20/2022] Open
Abstract
A novel electrochemical impedance spectroscopy (EIS) microsensor was implemented for the dosage of traces of glyphosate, in real and synthetic water samples. Molecularly imprinted chitosan was covalently immobilized on the surface of the microelectrode previously modified with 4-aminophenylacetic acid (CMA). The characterization of the resulting microelectrodes was carried out by using cyclic voltammetry measurement (CV), scanning electron microscopy (SEM), and electrochemical impedance spectrometry (EIS). EIS responses of the CS-MIPs/CMA/Au microsensor toward GLY was well-proportional to the concentration in the range from 0.31 × 10-9 to 50 × 10-6 mg/mL indicating a good correlation. The detection limit of GLY was 1 fg/mL (S/N = 3). Moreover, this microsensor showed good reproducibility and repeatability, high selectivity, and can be used for the detection of GLY in river water.
Collapse
Affiliation(s)
- Fares Zouaoui
- Institut des Sciences Analytiques, Université de Lyon, Villeurbanne, France.,Département de Génie des Procédés, Faculté de Technologie, Université de Bejaia, Bejaia, Algeria
| | - Saliha Bourouina-Bacha
- Département de Génie des Procédés, Faculté de Technologie, Université de Bejaia, Bejaia, Algeria
| | - Mustapha Bourouina
- Département de Génie des Procédés, Faculté de Technologie, Université de Bejaia, Bejaia, Algeria.,Departement de Chimie, Faculté des Sciences Exactes, Université de Bejaia, Bejaia, Algeria
| | - Albert Alcacer
- Institute of Microelectronics of Barcelona IMB-CNM-CSIC, Autonomous University of Barcelona, Barcelona, Spain
| | - Joan Bausells
- Institute of Microelectronics of Barcelona IMB-CNM-CSIC, Autonomous University of Barcelona, Barcelona, Spain
| | | | - Nadia Zine
- Institut des Sciences Analytiques, Université de Lyon, Villeurbanne, France
| | | |
Collapse
|
49
|
Nejadmansouri M, Majdinasab M, Nunes GS, Marty JL. An Overview of Optical and Electrochemical Sensors and Biosensors for Analysis of Antioxidants in Food during the Last 5 Years. SENSORS (BASEL, SWITZERLAND) 2021; 21:1176. [PMID: 33562374 PMCID: PMC7915219 DOI: 10.3390/s21041176] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Antioxidants are a group of healthy substances which are useful to human health because of their antihistaminic, anticancer, anti-inflammatory activity and inhibitory effect on the formation and the actions of reactive oxygen species. Generally, they are phenolic complexes present in plant-derived foods. Due to the valuable nutritional role of these mixtures, analysis and determining their amount in food is of particular importance. In recent years, many attempts have been made to supply uncomplicated, rapid, economical and user-friendly analytical approaches for the on-site detection and antioxidant capacity (AOC) determination of food antioxidants. In this regards, sensors and biosensors are regarded as favorable tools for antioxidant analysis because of their special features like high sensitivity, rapid detection time, ease of use, and ease of miniaturization. In this review, current five-year progresses in different types of optical and electrochemical sensors/biosensors for the analysis of antioxidants in foods are discussed and evaluated well. Moreover, advantages, limitations, and the potential for practical applications of each type of sensors/biosensors have been discussed. This review aims to prove how sensors/biosensors represent reliable alternatives to conventional methods for antioxidant analysis.
Collapse
Affiliation(s)
- Maryam Nejadmansouri
- Department of Food Science & Technology, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Marjan Majdinasab
- Department of Food Science & Technology, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Gilvanda S Nunes
- Pesticide Residue Analysis Center, Federal University of Maranhao, 65080-040 Sao Luis, Brazil
| | - Jean Louis Marty
- Faculty of Sciences, University of Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan CEDEX 9, France
| |
Collapse
|
50
|
An K, Guan L, Kang H, Tian D. Zipper-like thermosensitive molecularly imprinted polymers based on konjac glucomannan for metformin hydrochloride. IRANIAN POLYMER JOURNAL 2021. [DOI: 10.1007/s13726-020-00892-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|