1
|
Dong H, Huang R, Yang D, Zhao J, Lin B, Pan Y, Lin X, Yang Y, Guo Z, Li N, Zhuang J. Just-in-Time Generation of Nanolabels via In Situ Biomineralization of ZIF-8 Enabling Ultrasensitive MicroRNA Detection on Unmodified Electrodes. Anal Chem 2024; 96:16793-16801. [PMID: 39391952 DOI: 10.1021/acs.analchem.4c03434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Nanolabels can enhance the detection performance of electrochemical biosensing methods, yet their practical application is hindered by complex preparation, batch-to-batch variability, and poor long-term storage stability. Herein, we present a novel electrochemical method for miRNA detection based on the just-in-time generation of zeolitic imidazolate framework-8 (ZIF-8) nanolabels initiated by nucleic acids. In this design, the target miRNA-21 is captured with magnetic beads and polyadenylated by Escherichia coli Poly(A) polymerase (EPP), producing miRNA-21 molecules with poly(A) tails (miR-21-poly(A)). These molecules are then adsorbed onto a bare gold electrode (AuE) surface via adenine-gold affinity interactions, serving as nucleation sites for the rapid in situ formation of ZIF-8 nanoparticles. The ZIF-8 nanoparticles function as signal labels, impeding electron transfer at the electrode interfaces and thereby generating a notable electrochemical signal. The developed method demonstrated exceptional sensitivity, with a detection limit (LOD) as low as 2.3 aM and a linear detection range from 10 aM to 1000 fM. The practical application of the developed method was validated by using it to evaluate miRNA-21 expression levels in various biological samples, including cell lines, tumor tissues, and clinical blood samples from non-small cell lung cancer (NSCLC) patients. This approach simplifies the detection process by eliminating the need for presynthesized nanomaterials and premodified electrodes. Its simplicity and high sensitivity make this method a promising tool for point-of-care testing and a wide range of biomedical research applications.
Collapse
Affiliation(s)
- Haiyan Dong
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Rong Huang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Dayun Yang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Jia Zhao
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Baoquan Lin
- Department of Cardio thoracic Surgery, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian 350025, China
| | - Yingxin Pan
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Xi Lin
- Public Technology Service Center, Fujian Medical University, Fuzhou 350122, China
| | - Yang Yang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Zhao Guo
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Ning Li
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Junyang Zhuang
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
2
|
Yu ZJ, Yang TT, Liu G, Deng DH, Liu L. Gold Nanoparticles-Based Colorimetric Immunoassay of Carcinoembryonic Antigen with Metal-Organic Framework to Load Quinones for Catalytic Oxidation of Cysteine. SENSORS (BASEL, SWITZERLAND) 2024; 24:6701. [PMID: 39460180 PMCID: PMC11510933 DOI: 10.3390/s24206701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/13/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
This work reported gold nanoparticles (AuNPs)-based colorimetric immunoassay with the Cu-based metal-organic framework (MOF) to load pyrroloquinoline quinone (PQQ) for the catalytic oxidation of cysteine. In this method, both Cu2+ and PQQ in the MOF could promote the oxidation of inducer cysteine by redox cycling, thus limiting the cysteine-induced aggregation of AuNPs and achieving dual signal amplification. Specifically, the recombinant carcinoembryonic antigen (CEA) targets were anchored on the MOF through the metal coordination interactions between the hexahistidine (His6) tag in CEA and the unsaturated Cu2+ sites in MOF. The CEA/PQQ-loaded MOF could be captured by the antibody-coated ELISA plate to catalyze the oxidation of cysteine. However, once the target CEA in the samples bound to the antibody immobilized on the plate surface, the attachment of CEA/PQQ-loaded MOF would be limited. Cysteine remaining in the solution would trigger the aggregation of AuNPs and cause a color change from red to blue. The target concentration was positively related to the aggregation and color change of AuNPs. The signal-on competitive plasmonic immunoassay exhibited a low detection limit with a linear range of 0.01-1 ng/mL. Note that most of the proteins in commercial ELISA kits are recombinant with a His6 tag in the N- or C-terminal, so the work could provide a sensitive plasmonic platform for the detection of biomarkers.
Collapse
Affiliation(s)
| | | | | | | | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (Z.-J.Y.); (T.-T.Y.); (G.L.); (D.-H.D.)
| |
Collapse
|
3
|
Gao F, Wu Y, Gan C, Hou Y, Deng D, Yi X. Overview of the Design and Application of Photothermal Immunoassays. SENSORS (BASEL, SWITZERLAND) 2024; 24:6458. [PMID: 39409498 PMCID: PMC11479306 DOI: 10.3390/s24196458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024]
Abstract
Developing powerful immunoassays for sensitive and real-time detection of targets has always been a challenging task. Due to their advantages of direct readout, controllable sensing, and low background interference, photothermal immunoassays have become a type of new technology that can be used for various applications such as disease diagnosis, environmental monitoring, and food safety. By modification with antibodies, photothermal materials can induce temperature changes by converting light energy into heat, thereby reporting specific target recognition events. This article reviews the design and application of photothermal immunoassays based on different photothermal materials, including noble metal nanomaterials, carbon-based nanomaterials, two-dimensional nanomaterials, metal oxide and sulfide nanomaterials, Prussian blue nanoparticles, small organic molecules, polymers, etc. It pays special attention to the role of photothermal materials and the working principle of various immunoassays. Additionally, the challenges and prospects for future development of photothermal immunoassays are briefly discussed.
Collapse
Affiliation(s)
- Fengli Gao
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang 455000, China; (F.G.); (Y.W.); (C.G.); (Y.H.)
| | - Yike Wu
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang 455000, China; (F.G.); (Y.W.); (C.G.); (Y.H.)
| | - Cui Gan
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang 455000, China; (F.G.); (Y.W.); (C.G.); (Y.H.)
| | - Yupeng Hou
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang 455000, China; (F.G.); (Y.W.); (C.G.); (Y.H.)
| | - Dehua Deng
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang 455000, China; (F.G.); (Y.W.); (C.G.); (Y.H.)
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
4
|
Li Y, Liu J, McClements DJ, Zhang X, Zhang T, Du Z. Recent Advances in Hollow Nanostructures: Synthesis Methods, Structural Characteristics, and Applications in Food and Biomedicine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20241-20260. [PMID: 39253980 DOI: 10.1021/acs.jafc.4c05910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The development and investigation of innovative nanomaterials stand poised to advance technological progress and meet the contemporary demand for efficient, environmentally friendly, and intelligent products. Hollow nanostructures (HNS), characterized by their hollow architecture, exhibit diverse properties such as expansive specific surface area, low density, high drug-carrying capacity, and customizable structures. These elaborated structures, encompass nanospheres, nanoboxes, rings, cubes, and nanowires, have wide-ranging applications in biomedicine, materials chemistry, food industry, and environmental science. Herein, HNS and their cutting-edge synthesis methods, including solvothermal methods, liquid-interface assembly methods, and the self-templating methods are discussed in-depth. Meanwhile, the potential applications of HNS in food and biomedicine such as food packing, biosensor, and drug delivery over the past three years are summarized, together with a prospective view of future research directions and challenges. This review will offer new insights into designing next generation of hollow nanomaterials for food and biomedicine applications.
Collapse
Affiliation(s)
- Yajuan Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, People's Republic of China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, People's Republic of China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, People's Republic of China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, People's Republic of China
| |
Collapse
|
5
|
Gao F, Liu M, Wang W, Lou J, Chang Y, Xia N. Aggregation-induced emission-based competitive immunoassays for "signal-on" detection of proteins with multifunctional metal-organic frameworks as signal tags. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 325:125088. [PMID: 39241398 DOI: 10.1016/j.saa.2024.125088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
An aggregation-induced emission (AIE)-based strategy was proposed for fluorescence immunoassays of protein biomarkers using Cu-based metal-organic frameworks (Cu-MOFs) to load recombinant targets and enzymes for dual signal amplification. The immunosensing platform was built based on the sequestration and consumption of the substrates of pyrophosphate (PPi) ions by Cu-MOFs and enzymatic catalysis. The negatively charged PPi could trigger the aggregation of positively charged tetraphenylethene (TPE)-substituted pyridinium salt nanoparticles (TPE-Py NPs) by electrostatic interactions, lighting up the fluorescence due to the AIE phenomenon. The consumption of PPi by the captured Cu-MOFs through the Cu2+-PPi chelation interaction and ALP-enzymatic hydrolysis depressed the aggregation of TPE-Py NPs. Capture of the tested targets in samples by the antibodies on the plate surface could prevent the attachment of target/ALP-loaded Cu-MOFs due to the competitive immunoreactions. The "signal-on" competitive immunoassay was applied for the detection of procalcitonin (PCT) as the model analyte with a linear range of 0.01-10 pg/mL and a detection limit down to 8 pg/mL. The conceptual integration of AIE with enzymatic and MOFs-based dual signal amplification endowed fluorescence immunoassays with high sensitivity and selectivity. The surface modification of Cu-MOFs with hexahistine (His6)-tagged recombinant proteins through metal coordination interactions should be evaluable for the design of novel biosensors.
Collapse
Affiliation(s)
- Fengli Gao
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Meiling Liu
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Weiqiang Wang
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Jiaxin Lou
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Yong Chang
- Shiyan Key Laboratory of Biological Resources and Eco-environmental Protection, Department of Chemistry and Environmental Engineering, Hanjiang Normal University, Shiyan 442000 China.
| | - Ning Xia
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China.
| |
Collapse
|
6
|
Jiang W, Tang Q, Zhu Y, Gu X, Wu L, Qin Y. Research progress of microfluidics-based food safety detection. Food Chem 2024; 441:138319. [PMID: 38218144 DOI: 10.1016/j.foodchem.2023.138319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 01/15/2024]
Abstract
High demands for food safety detection and analysis have been advocated with people's increasing living standards. Even though numerous analytical testing techniques have been proposed, their widespread adoption is still constrained by the high limit of detection, narrow detection ranges, and high implementation costs. Due to their advantages, such as reduced sample and reagent consumption, high sensitivity, automation, low cost, and portability, using microfluidic devices for food safety monitoring has generated significant interest. This review provides a comprehensive overview of the latest microfluidic detection platforms (published in recent 4 years) and their applications in food safety, aiming to provide references for developing efficient research strategies for food contaminant detection and facilitating the transition of these platforms from laboratory research to practical field use.
Collapse
Affiliation(s)
- Wenjun Jiang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Qu Tang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Yidan Zhu
- Medical School, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Xijuan Gu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu 226019, PR China; School of Life Science, Nantong University, Nantong, Jiangsu 226001, PR China.
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu 226019, PR China.
| |
Collapse
|
7
|
Feng Y, Gao F, Yi X, La M. Optical Bioassays Based on the Signal Amplification of Redox Cycling. BIOSENSORS 2024; 14:269. [PMID: 38920573 PMCID: PMC11201508 DOI: 10.3390/bios14060269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024]
Abstract
Optical bioassays are challenged by the growing requirements of sensitivity and simplicity. Recent developments in the combination of redox cycling with different optical methods for signal amplification have proven to have tremendous potential for improving analytical performances. In this review, we summarized the advances in optical bioassays based on the signal amplification of redox cycling, including colorimetry, fluorescence, surface-enhanced Raman scattering, chemiluminescence, and electrochemiluminescence. Furthermore, this review highlighted the general principles to effectively couple redox cycling with optical bioassays, and particular attention was focused on current challenges and future opportunities.
Collapse
Affiliation(s)
- Yunxiao Feng
- School of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan 467000, China;
| | - Fengli Gao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Ming La
- School of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan 467000, China;
| |
Collapse
|
8
|
Zhang X, Shi Y, Wu D, Fan L, Liu J, Wu Y, Li G. A bifunctional core-shell gold@Prussian blue nanozyme enabling dual-readout microfluidic immunoassay of food allergic protein. Food Chem 2024; 434:137455. [PMID: 37741244 DOI: 10.1016/j.foodchem.2023.137455] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/25/2023]
Abstract
Food allergy has posed a great threat for public health due to its rising prevalence worldwide, and thus sensitive and reliable food allergen monitoring methods is of great significance. In this study, we prepared a bifunctional core-shell gold@Prussian blue nanoparticles (Au@PBNP) nanozyme, which not only could serve as an alternative to natural peroxidase for colorimetric immunoassay, but also act as a unique Raman label in Raman-silent region (1800-2800 cm-1) for SERS analysis. By combining microfluidic device, smartphone, and portable Raman spectrometer, a new smartphone/SERS dual-readout microfluidic immunoassay platform was established for portable detection of food allergic protein (i.e., alpha-lactalbumin (α-LA)). The established method for detection of α-LA showed a LOD of 0.011 ng/mL in a liner range of 0.2-600 ng/mL. Furthermore, this method was also challenged in spiked food samples with good average recoveries, showing a great potential in practical applications.
Collapse
Affiliation(s)
- Xianlong Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yiheng Shi
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom
| | - Lihua Fan
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jianghua Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yongning Wu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
9
|
Hu X, Li H, Yang J, Wen X, Wang S, Pan M. Nanoscale Materials Applying for the Detection of Mycotoxins in Foods. Foods 2023; 12:3448. [PMID: 37761156 PMCID: PMC10528894 DOI: 10.3390/foods12183448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Trace amounts of mycotoxins in food matrices have caused a very serious problem of food safety and have attracted widespread attention. Developing accurate, sensitive, rapid mycotoxin detection and control strategies adapted to the complex matrices of food is crucial for in safeguarding public health. With the continuous development of nanotechnology and materials science, various nanoscale materials have been developed for the purification of complex food matrices or for providing response signals to achieve the accurate and rapid detection of various mycotoxins in food products. This article reviews and summarizes recent research (from 2018 to 2023) on new strategies and methods for the accurate or rapid detection of mold toxins in food samples using nanoscale materials. It places particular emphasis on outlining the characteristics of various nanoscale or nanostructural materials and their roles in the process of detecting mycotoxins. The aim of this paper is to promote the in-depth research and application of various nanoscale or structured materials and to provide guidance and reference for the development of strategies for the detection and control of mycotoxin contamination in complex matrices of food.
Collapse
Affiliation(s)
- Xiaochun Hu
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huilin Li
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xintao Wen
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mingfei Pan
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
10
|
Pan M, Li H, Yang J, Wang Y, Wang Y, Han X, Wang S. Review: Synthesis of metal organic framework-based composites for application as immunosensors in food safety. Anal Chim Acta 2023; 1266:341331. [PMID: 37244661 DOI: 10.1016/j.aca.2023.341331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/29/2023]
Abstract
Ensuring food safety continues to be one of the major global challenges. For effective food safety monitoring, fast, sensitive, portable, and efficient food safety detection strategies must be devised. Metal organic frameworks (MOFs) are porous crystalline materials that have attracted attention for use in high-performance sensors for food safety detection owing to their advantages such as high porosity, large specific surface area, adjustable structure, and easy surface functional modification. Immunoassay strategies based on antigen-antibody specific binding are one of the important means for accurate and rapid detection of trace contaminants in food. Emerging MOFs and their composites with excellent properties are being synthesized, providing new ideas for immunoassays. This article summarizes the synthesis strategies of MOFs and MOF-based composites and their applications in the immunoassays of food contaminants. The challenges and prospects of the preparation and immunoassay applications of MOF-based composites are also presented. The findings of this study will contribute to the development and application of novel MOF-based composites with excellent properties and provide insights into advanced and efficient strategies for developing immunoassays.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Huilin Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yixin Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yueyao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Xintong Han
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China.
| |
Collapse
|
11
|
Wu L, Tang X, Wu T, Zeng W, Zhu X, Hu B, Zhang S. A review on current progress of Raman-based techniques in food safety: From normal Raman spectroscopy to SESORS. Food Res Int 2023; 169:112944. [PMID: 37254368 DOI: 10.1016/j.foodres.2023.112944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023]
Abstract
Frequently occurrence of food safety incidents has induced global concern over food safety. To ensure food quality and safety, an increasing number of rapid and sensitive analytical methods have been developed for analysis of all kinds of food composition and contaminants. As one of the high-profile analytical techniques, Raman spectroscopy has been widely applied in food analysis with simple, rapid, sensitive, and nondestructive detection performance. Research on Raman techniques is a direction of great interest to many fields, especially in food safety. Hence, it is crucial to gain insight into recent advances on the use of Raman-based techniques in food safety applications. In this review, we introduce Raman techniques from normal Raman spectroscopy to developed ones (e.g., surface enhanced Raman scattering (SERS), spatially offset Raman spectroscopy (SORS), surface-enhanced spatially offset Raman spectroscopy (SESORS)), in view of their history and development, principles, design, and applications. In addition, future challenges and trends of these techniques are discussed regarding to food safety.
Collapse
Affiliation(s)
- Long Wu
- School of Food Science and Engineering, Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, PR China; College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, PR China.
| | - Xuemei Tang
- School of Food Science and Engineering, Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, PR China
| | - Ting Wu
- School of Food Science and Engineering, Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, PR China
| | - Wei Zeng
- School of Food Science and Engineering, Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, PR China
| | - Xiangwei Zhu
- College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, PR China
| | - Bing Hu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, PR China
| | - Sihang Zhang
- School of Food Science and Engineering, Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, PR China
| |
Collapse
|
12
|
Liang HW, Jia BZ, Zhang WF, Wang XX, Zhou K, Lei HT, Xu ZL, Luo L. Ratiometric Fluorescence Immunoassay Based on MnO 2 Nanoflakes for Sensitive and Accurate Detection of Tricaine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7575-7583. [PMID: 37057807 DOI: 10.1021/acs.jafc.3c00469] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Tricaine is a common anesthetic used in the long-distance transport of live fish. Recently, its negative impact on human health has aroused extensive concern. Thus, rapid and reliable techniques for tricaine residue analysis are essential to ensuring the quality of aquatic products. Herein, a specific anti-tricaine monoclonal antibody (Mab) was prepared. Then, a sensitive and robust ratiometric fluorescence ELISA (RF-ELISA) was constructed for detecting tricaine based on two MnO2 nanoflake-mediated (MnO2 NFs) fluorogenic reactions. In the RF-ELISA protocol, MnO2 NFs with oxidase-like activity can trigger the formation of fluorescent 2,3-diaminophenazine (oxOPD) with an emissive peak at 570 nm from non-fluorescent o-phenylenediamine (OPD), while ascorbic acid (AA) can decompose MnO2 NFs to lose their oxidase-mimicking activity, which is accompanied by the oxidation of AA into dehydroascorbic acid (DHAA). The subsequent reaction between the generated DHAA and OPD will result in the production of 3-(1,2-dihydroxy ethyl)furo[3,4-b]quinoxalin-1(3H)-on (DFQ), which has a potent emission peak at 445 nm. By virtue of the alkaline phosphatase (ALP) labeled on the antibody, which can catalyze the production of AA from ascorbic acid 2-phosphate (AAP), the concentration of tricaine can be linked to the variation of the RF signal (F445/F570) via a competitive immunoreaction. After optimization, RF-ELISA displayed a detection limit (LOD) of 0.28 ng/mL toward tricaine (in buffer solution), which was 376-fold lower than that of the traditional colorimetric ELISA. For practical application, the LODs of RF-ELISA for tricaine detection in shrimp and tilapia samples were determined to be 2.8 and 5.6 ng/g, respectively. Recoveries for spiked shrimp and tilapia samples, as well as the validation data from LC-MS/MS, showed that RF-ELISA exhibited good accuracy, precision, and reliability. This RF-ELISA protocol opened up new ways for tricaine and other-target analyses in food safety detection.
Collapse
Affiliation(s)
- Hong-Wei Liang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Bao-Zhu Jia
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, China
| | - Wen-Feng Zhang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center of Rapid Testing Instrument for Food Nutrition and Safety, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Xing-Xing Wang
- Shenzhen Total-Test Technology Co., Ltd., Shenzhen 518038, China
| | - Kai Zhou
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
- Shenzhen Total-Test Technology Co., Ltd., Shenzhen 518038, China
| | - Hong-Tao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China
| |
Collapse
|
13
|
Lomae A, Preechakasedkit P, Hanpanich O, Ozer T, Henry CS, Maruyama A, Pasomsub E, Phuphuakrat A, Rengpipat S, Vilaivan T, Chailapakul O, Ruecha N, Ngamrojanavanich N. Label free electrochemical DNA biosensor for COVID-19 diagnosis. Talanta 2023; 253:123992. [PMID: 36228554 PMCID: PMC9546783 DOI: 10.1016/j.talanta.2022.123992] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/31/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022]
Abstract
The COVID-19 pandemic has significantly increased the development of the development of point-of-care (POC) diagnostic tools because they can serve as useful tools for detecting and controlling spread of the disease. Most current methods require sophisticated laboratory instruments and specialists to provide reliable, cost-effective, specific, and sensitive POC testing for COVID-19 diagnosis. Here, a smartphone-assisted Sensit Smart potentiostat (PalmSens) was integrated with a paper-based electrochemical sensor to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A disposable paper-based device was fabricated, and the working electrode directly modified with a pyrrolidinyl peptide nucleic acid (acpcPNA) as the biological recognition element to capture the target complementary DNA (cDNA). In the presence of the target cDNA, hybridization with acpcPNA probe blocks the redox conversion of a redox reporter, leading to a decrease in electrochemical response correlating to SARS-CoV-2 concentration. Under optimal conditions, a linear range from 0.1 to 200 nM and a detection limit of 1.0 pM were obtained. The PNA-based electrochemical paper-based analytical device (PNA-based ePAD) offers high specificity toward SARS-CoV-2 N gene because of the highly selective PNA-DNA binding. The developed sensor was used for amplification-free SARS-CoV-2 detection in 10 nasopharyngeal swab samples (7 SARS-CoV-2 positive and 3 SARS-CoV-2 negative), giving a 100% agreement result with RT-PCR.
Collapse
Affiliation(s)
- Atchara Lomae
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Pattarachaya Preechakasedkit
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12 Phayathai Rd., Pathumwan, Bangkok, 10330, Thailand
| | - Orakan Hanpanich
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Tugba Ozer
- Department of Bioengineering, Faculty of Chemical-Metallurgical Engineering, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Charles S. Henry
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12 Phayathai Rd., Pathumwan, Bangkok, 10330, Thailand,Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Atsushi Maruyama
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259 B-57, Yokohama, 226-8501, Japan
| | - Ekawat Pasomsub
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Angsana Phuphuakrat
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sirirat Rengpipat
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand,Qualified Diagnostic Development Center, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Nipapan Ruecha
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand,Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12 Phayathai Rd., Pathumwan, Bangkok, 10330, Thailand,Corresponding author. Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12 Phayathai Rd., Pathumwan, Bangkok, 10330, Thailand
| | - Nattaya Ngamrojanavanich
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand,Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, 10330, Thailand,Corresponding author. Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
14
|
Zhang X, Fan L, Su Z, Xu Q, Xi L, Li L, Wu Y, Li G. Artificial clickase-triggered fluorescence "turn on" based on a click bio-conjugation strategy for the immunoassay of food allergenic protein. Food Chem 2023; 398:133882. [PMID: 35986996 DOI: 10.1016/j.foodchem.2022.133882] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/26/2022] [Accepted: 08/05/2022] [Indexed: 12/30/2022]
Abstract
Herein, based on an artificial clickase-catalyzed bio-conjugation strategy, we established a sensitive fluorescent clickase-linked immunosorbent assay (FCLISA) platform using an oligonucleotide-molecular beacon (Oligo-MB) hairpin structure as a fluorescence switch for detection of food allergenic protein. Firstly, a highly stable Cu(I)-containing nanocube was prepared for usage as an artificial clickase, which could catalyze the bio-conjugation of two short oligonucleotides (i.e., Oligo-A and Oligo-B labeled by a 5'-alkyne and a 3'-azide group, respectively) through clickase-catalyzed azide/alkyne cycloaddition reaction. Subsequently, the formed long-chain oligonucleotide (Oligo-A-B) could hybridize with Oligo-MB hairpin to open hairpin structure, leading to its fluorescence turn on. By using clickase as an alternative enzymatic label in conventional ELISAs, the established FCLISA showed high sensitivity and accuracy in detection of casein, achieving a limit of detection as low as 1.5 × 10-8 g/mL. Additionally, FCLISA has been challenged by detecting the casein in real samples, indicating a great potential in food safety assay.
Collapse
Affiliation(s)
- Xianlong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lihua Fan
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhuoqun Su
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qinfeng Xu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lingyi Xi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lin Li
- Animal-derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yongning Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
15
|
Li R, Zhang Y, Zhao J, Wang Y, Wang H, Zhang Z, Lin H, Li Z. Quantum-dot-based sandwich lateral flow immunoassay for the rapid detection of shrimp major allergen tropomyosin. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Liu Y, Li B, Liu B, Zhang K. Single-Particle Optical Imaging for Ultrasensitive Bioanalysis. BIOSENSORS 2022; 12:1105. [PMID: 36551072 PMCID: PMC9775667 DOI: 10.3390/bios12121105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The quantitative detection of critical biomolecules and in particular low-abundance biomarkers in biofluids is crucial for early-stage diagnosis and management but remains a challenge largely owing to the insufficient sensitivity of existing ensemble-sensing methods. The single-particle imaging technique has emerged as an important tool to analyze ultralow-abundance biomolecules by engineering and exploiting the distinct physical and chemical property of individual luminescent particles. In this review, we focus and survey the latest advances in single-particle optical imaging (OSPI) for ultrasensitive bioanalysis pertaining to basic biological studies and clinical applications. We first introduce state-of-the-art OSPI techniques, including fluorescence, surface-enhanced Raman scattering, electrochemiluminescence, and dark-field scattering, with emphasis on the contributions of various metal and nonmetal nano-labels to the improvement of the signal-to-noise ratio. During the discussion of individual techniques, we also highlight their applications in spatial-temporal measurement of key biomarkers such as proteins, nucleic acids and extracellular vesicles with single-entity sensitivity. To that end, we discuss the current challenges and prospective trends of single-particle optical-imaging-based bioanalysis.
Collapse
Affiliation(s)
- Yujie Liu
- Shanghai Institute of Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Binxiao Li
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Kun Zhang
- Shanghai Institute of Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
17
|
Wang X, Lu Z, Sun W, Ye S, Tao X. High-performance colorimetric immunoassay for determination of chloramphenicol using metal–organic framework-based hybrid composites with increased peroxidase activity. Mikrochim Acta 2022; 189:484. [DOI: 10.1007/s00604-022-05586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/20/2022] [Indexed: 12/05/2022]
|
18
|
Huang J, Wei F, Cui Y, Hou L, Lin T. Fluorescence immunosensor based on functional nanomaterials and its application in tumor biomarker detection. RSC Adv 2022; 12:31369-31379. [PMID: 36349017 PMCID: PMC9624183 DOI: 10.1039/d2ra04989a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/19/2022] [Indexed: 09/29/2023] Open
Abstract
An immunosensor is defined as an analytical device that detects the binding of an antigen to its specific antibody by coupling an immunochemical reaction to the surface of a device called a transducer. Fluorescence immunosensing is one of the most promising immunoassays at present, and has the advantages of simple operation, fast response and high stability. A traditional fluorescence immunosensor often uses an enzyme-labelled antibody as a recognition unit and an organic dye as a fluorescence probe, so it is easily affected by environmental factors with low sensitivity. Nanomaterials have unique photostability, catalytic properties and biocompatibility, which open up a new path for the construction of stable and sensitive fluorescence immunosensors. This paper briefly introduces different kinds of immunosensors and the role of nanomaterials in the construction of immunosensors. The significance of fluorescent immunosensors constructed from functional nanomaterials to detect tumor biomarkers was analyzed, and the strategies to further improve the performance of fluorescent immunosensors and their future development trend were summarized.
Collapse
Affiliation(s)
- Juanjuan Huang
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University Guilin 541004 P. R. China
| | - Fenghuang Wei
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University Guilin 541004 P. R. China
| | - Yuling Cui
- Jinan Center for Food and Drug Control Jinan 250102 Shandong China
| | - Li Hou
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University Guilin 541004 P. R. China
| | - Tianran Lin
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University Guilin 541004 P. R. China
| |
Collapse
|
19
|
Pan R, Liu J, Wang P, Wu D, Chen J, Wu Y, Li G. Ultrasensitive CRISPR/Cas12a-Driven SERS Biosensor for On-Site Nucleic Acid Detection and Its Application to Milk Authenticity Testing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4484-4491. [PMID: 35380812 DOI: 10.1021/acs.jafc.1c08262] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An ultrasensitive surface-enhanced Raman scattering (SERS) biosensor driven by CRISPR/Cas12a was proposed for on-site nucleic acid detection. We tactfully modified single-strand DNA (ssDNA) with a target-responsive Prussian blue (PB) nanolabel to form a probe and fastened it in the microplate. Attributed to the specific base pairing and highly efficient trans-cleavage ability of the CRISPR/Cas12a effector, precise target DNA recognition and signal amplification can be achieved, respectively. In the presence of target DNA, trans-cleavage towards the probe was activated, leading to the release of a certain number of PB nanoparticles (NPs). Then, these free PB NPs would be removed. Under alkali treatment, the breakdown of the remaining PB NPs in the microplate was triggered, producing massive ferricyanide anions (Fe(CN)64-), which could exhibit a unique characteristic Raman peak that was located in the "biological Raman-silent region". By mixing the alkali-treated solution with the SERS substrate, Au@Ag core-shell NP, the concentration of the target DNA was finally exhibited as SERS signals with undisturbed background, which can be detected by a portable Raman spectrometer. Importantly, this strategy could display an ultralow detection limit of 224 aM for target DNA. Furthermore, by targeting cow milk as the adulterated ingredient in goat milk, the proposed biosensor was successfully applied to milk authenticity detection.
Collapse
Affiliation(s)
- Ruiyuan Pan
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jianghua Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Panxue Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Chlorine Gardens, Belfast BT9 5DL, United Kingdom
| | - Jian Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yongning Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|