1
|
Chen W, Zhang X, Chi M, Zheng Q. Enhanced photocurrents for photoelectrochemical immunoassay of alpha-fetoprotein with Pt-functionalized Bi 2O 2S nanoflowers. Anal Chim Acta 2024; 1330:343281. [PMID: 39489964 DOI: 10.1016/j.aca.2024.343281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/07/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Designing heterojunctions with efficient electron-hole separation holds great promise for improving photoelectric response. RESULTS Herein, we reported a multifunctional Pt co-catalyst-modified Bi2O2S nanoflowers (BOS NFs) photocatalytic component for achieving an efficient photoelectric chemistry (PEC) immunosensor for alpha-fetoprotein (AFP). Briefly, the Pt co-catalyst improved the intrinsic band gap structure of BOS on the one hand, and on the other hand, it was able to achieve a rapid decomposition of hydrogen peroxide to hydroxyl radicals, which led to the improvement of electrochemical half-responses during the amplification of target immunosignals. In addition, Pt-functionalized BOS NFs (BOS-Pt) exhibited peroxidase-like enzymatic reaction activity and related properties. By enzyme-linked immunosorbent assay, a sandwich immuno-model in the presence of AFP catalyzed the production of hydrogen peroxide from the substrate glucose and the conversion of a sizable photoelectrochemical signal catalyzed by BOS-Pt. Following condition optimization, it was determined that the developed sensor exhibited a specific response to AFP over a wide linear range of 0.05-50 ng mL-1. SIGNIFICANCE This work provides a new strategy for developing efficient immunosensors from the perspective of modulating photoelectrochemical half-reactions.
Collapse
Affiliation(s)
- Wei Chen
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian Province, China; Department of Hepatology, National Regional Medical Center, Binhai Campus of the First Affiliated hospital, Fujian Medical University, Fuzhou 350212, Fujian Province, China; Clinical Research Center for Liver and Intestinal Diseases of Fujian Province, Fuzhou, 350005, Fujian Province, China
| | - Xiang Zhang
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian Province, China; Department of Hepatology, National Regional Medical Center, Binhai Campus of the First Affiliated hospital, Fujian Medical University, Fuzhou 350212, Fujian Province, China; Clinical Research Center for Liver and Intestinal Diseases of Fujian Province, Fuzhou, 350005, Fujian Province, China
| | - Minhui Chi
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian Province, China; Department of Hepatology, National Regional Medical Center, Binhai Campus of the First Affiliated hospital, Fujian Medical University, Fuzhou 350212, Fujian Province, China; Clinical Research Center for Liver and Intestinal Diseases of Fujian Province, Fuzhou, 350005, Fujian Province, China.
| | - Qi Zheng
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian Province, China; Department of Hepatology, National Regional Medical Center, Binhai Campus of the First Affiliated hospital, Fujian Medical University, Fuzhou 350212, Fujian Province, China; Clinical Research Center for Liver and Intestinal Diseases of Fujian Province, Fuzhou, 350005, Fujian Province, China.
| |
Collapse
|
2
|
Gao L, Qu X, Meng S, Chen M, He Y, Zhao F, Chu H, Qin S, Jin F. TpBD/UiO-66-NH 2 micro-mesoporous hybrid material as a stationary phase for open tubular capillary electrochromatography. RSC Adv 2024; 14:28148-28159. [PMID: 39228753 PMCID: PMC11369885 DOI: 10.1039/d4ra05097e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
The excellent stability of covalent organic frameworks (COFs) and the diversity of metal organic frameworks (MOFs) make MOF/COF hybrid materials promising candidates for chromatographic stationary phases. In this paper, a TpBD/UiO-66-NH2 hybrid material was synthesized through a Schiff-base reaction between TpBD COFs and UiO-66-NH2 MOFs; characterized using Fourier-transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy; and bonded to a capillary to prepare a TpBD/UiO-66-NH2-bonded open tubular capillary electrochromatography (OT-CEC) column. Results suggested that the hybrid material had the crystal morphology of a single COF and MOF, a micro-mesoporous structure, and good thermal stability. The inner surface of the OT-CEC column was tightly and uniformly distributed with the stationary phase (∼1.5 μm). The baseline separation of 13 amino acids and three families (4 acidic antibiotics, 4 preservatives and 6 sulfonamides) of emerging pollutant mixtures was achieved due to the synergistic effect of TpBD and UiO-66-NH2 in the stationary phase. The OT-CEC column showed good reproducibility and stability with relative standard deviations of migration time and resolutions in the range of 1.17-3.93% and 1.79-4.31%, respectively.
Collapse
Affiliation(s)
- Lidi Gao
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar 161006 China
- Heilongjiang Industrial Hemp Processing Technology Innovation Center, Qiqihar University Qiqihar 161006 China
| | - Xinran Qu
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar 161006 China
| | - Shuang Meng
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar 161006 China
| | - Mo Chen
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar 161006 China
| | - Yuxin He
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar 161006 China
| | - Fuquan Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar 161006 China
| | - Hongtao Chu
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar 161006 China
- Heilongjiang Industrial Hemp Processing Technology Innovation Center, Qiqihar University Qiqihar 161006 China
| | - Shili Qin
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar 161006 China
- Heilongjiang Industrial Hemp Processing Technology Innovation Center, Qiqihar University Qiqihar 161006 China
| | - Fenglong Jin
- Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar University Qiqihar 161006 China
| |
Collapse
|
3
|
Monsalve Y, Cruz-Pacheco AF, Orozco J. Red and near-infrared light-activated photoelectrochemical nanobiosensors for biomedical target detection. Mikrochim Acta 2024; 191:535. [PMID: 39141139 PMCID: PMC11324696 DOI: 10.1007/s00604-024-06592-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/28/2024] [Indexed: 08/15/2024]
Abstract
Photoelectrochemical (PEC) nanobiosensors integrate molecular (bio)recognition elements with semiconductor/plasmonic photoactive nanomaterials to produce measurable signals after light-induced reactions. Recent advancements in PEC nanobiosensors, using light-matter interactions, have significantly improved sensitivity, specificity, and signal-to-noise ratio in detecting (bio)analytes. Tunable nanomaterials activated by a wide spectral radiation window coupled to electrochemical transduction platforms have further improved detection by stabilizing and amplifying electrical signals. This work reviews PEC biosensors based on nanomaterials like metal oxides, carbon nitrides, quantum dots, and transition metal chalcogenides (TMCs), showing their superior optoelectronic properties and analytical performance for the detection of clinically relevant biomarkers. Furthermore, it highlights the innovative role of red light and NIR-activated PEC nanobiosensors in enhancing charge transfer processes, protecting them from biomolecule photodamage in vitro and in vivo applications. Overall, advances in PEC detection systems have the potential to revolutionize rapid and accurate measurements in clinical diagnostic applications. Their integration into miniaturized devices also supports the development of portable, easy-to-use diagnostic tools, facilitating point-of-care (POC) testing solutions and real-time monitoring.
Collapse
Affiliation(s)
- Yeison Monsalve
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, 050010, Medellín, Colombia
| | - Andrés F Cruz-Pacheco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, 050010, Medellín, Colombia
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, 050010, Medellín, Colombia.
| |
Collapse
|
4
|
Zhang JB, Tian YB, Gu ZG, Zhang J. Metal-Organic Framework-Based Photodetectors. NANO-MICRO LETTERS 2024; 16:253. [PMID: 39048856 PMCID: PMC11269560 DOI: 10.1007/s40820-024-01465-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/16/2024] [Indexed: 07/27/2024]
Abstract
The unique and interesting physical and chemical properties of metal-organic framework (MOF) materials have recently attracted extensive attention in a new generation of photoelectric applications. In this review, we summarized and discussed the research progress on MOF-based photodetectors. The methods of preparing MOF-based photodetectors and various types of MOF single crystals and thin film as well as MOF composites are introduced in details. Additionally, the photodetectors applications for X-ray, ultraviolet and infrared light, biological detectors, and circularly polarized light photodetectors are discussed. Furthermore, summaries and challenges are provided for this important research field.
Collapse
Affiliation(s)
- Jin-Biao Zhang
- State Key Laboratory of Structural Chemistry, Structure of Matter, Fujian Institute of Research, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, People's Republic of China
- University of Chinese Academy of Science, Beijing, 100049, People's Republic of China
| | - Yi-Bo Tian
- State Key Laboratory of Structural Chemistry, Structure of Matter, Fujian Institute of Research, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, People's Republic of China
| | - Zhi-Gang Gu
- State Key Laboratory of Structural Chemistry, Structure of Matter, Fujian Institute of Research, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, People's Republic of China.
- College of Chemistry and Materials Science, Fujian Nornal University, Fuzhou, 350007, Fujian, People's Republic of China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, Fujian, People's Republic of China.
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Structure of Matter, Fujian Institute of Research, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, People's Republic of China
- College of Chemistry and Materials Science, Fujian Nornal University, Fuzhou, 350007, Fujian, People's Republic of China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, Fujian, People's Republic of China
| |
Collapse
|
5
|
Zhao J, Chen L, Liu F, Liu Y, Ji J, Chen G, Yang G, Dong X, Qu LL. Porous organic polymers assisted aptamer signal amplification for enhanced photoeletrochemical detection of MUC1. Anal Chim Acta 2024; 1312:342762. [PMID: 38834277 DOI: 10.1016/j.aca.2024.342762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/11/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
Mucin1 (MUC1) is an extensively glycosylated transmembrane protein that is widely distributed and overexpressed on the surface of cancer cells, playing an important role in tumor occurrence and metastasis. Therefore, highly sensitive detection of MUC1 is of great significance for early diagnosis, treatment monitoring, and prognosis of cancer. Here, an ultra-sensitive photoelectrochemical (PEC) sensing platform was developed based on an aptamer amplification strategy for highly selective and sensitive detection of MUC1 overexpressed in serum and on cancer cell surfaces. The sensing platform utilized copper phthalocyanine to fabricate porous organic polymers (CuPc POPs), and was effectively integrated with g-C3N4/MXene to form a ternary heterojunction material (g-C3N4/MXene/CuPc POPs). This material effectively improved electron transfer capability, significantly enhanced light utilization, and greatly enhanced photoelectric conversion efficiency, resulting in a dramatic increase in photocurrent response. MUC1 aptamer 1 was immobilized on a chitosan-modified photoelectrode for the selective capture of MUC1 or MCF-7 cancer cells. When the target substance was present, MUC1 aptamer 2 labeled with methylene blue (MB) was specifically adsorbed on the electrode surface, leading to enhanced photocurrent. The concentration of MUC1 directly correlated with the number of MB molecules attracted to the electrode surface, establishing a linear relationship between photocurrent intensity and MUC1 concentration. The PEC biosensor exhibited excellent sensitivity for MUC1 detection with a wide detection range from 1 × 10-7 to 10 ng/mL and a detection limit of 8.1 ag/mL. The detection range for MCF-7 cells was from 2 × 101 to 2 × 106 cells/mL, with the capability for detecting single MCF-7 cells. The aptamer amplification strategy significantly enhanced PEC performance, and open up a promising platform to establish high selectivity, stability, and ultrasensitive analytical techniques.
Collapse
Affiliation(s)
- Jiayi Zhao
- School of Chemistry & Materials Science, Jiangsu Normal University, 221116, Xuzhou, China
| | - Luqing Chen
- School of Chemistry & Materials Science, Jiangsu Normal University, 221116, Xuzhou, China
| | - Fanglei Liu
- School of Chemistry & Materials Science, Jiangsu Normal University, 221116, Xuzhou, China
| | - Yan Liu
- School of Chemistry & Materials Science, Jiangsu Normal University, 221116, Xuzhou, China
| | - Jianing Ji
- School of Chemistry & Materials Science, Jiangsu Normal University, 221116, Xuzhou, China
| | - Guojian Chen
- School of Chemistry & Materials Science, Jiangsu Normal University, 221116, Xuzhou, China
| | - Guohai Yang
- School of Chemistry & Materials Science, Jiangsu Normal University, 221116, Xuzhou, China.
| | - Xiaochen Dong
- School of Chemistry & Materials Science, Jiangsu Normal University, 221116, Xuzhou, China.
| | - Lu-Lu Qu
- School of Chemistry & Materials Science, Jiangsu Normal University, 221116, Xuzhou, China.
| |
Collapse
|
6
|
Qin QJ, Xiang G, Xu J, Li W, Huang Q, Liu F, Zhang C, Zhang Z, Huang W, Peng J. Visible-light-driven photoelectrochemical sensor based on conjugated microporous polymer-grafted graphene for o-aminophenol detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3895-3906. [PMID: 38828983 DOI: 10.1039/d4ay00600c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The pollutant o-aminophenol (o-AP) presents considerable risk to environmental safety, and its detection is therefore critical. Although various optical and electrochemical methods have been proposed for the detection of o-AP, there are a limited number of detection methods based on photoelectrochemical (PEC) sensors. In this study, a sensitive visible-light-driven PEC sensor was developed for o-AP detection in water. A conjugated microporous polymer (CMP)-coated graphene heterostructure (CMP-rGO) was synthesized and used to develop a PEC sensor. Under optimal conditions, the proposed sensor exhibited a high sensitivity of 0.03 μM with a wide linear range of 0.0034-37.6 μM. The PEC sensor also displayed acceptable repeatability and reproducibility, good long-term stability, and excellent recovery (98-102%). In addition, the binding patterns of CMP to o-AP and o-AP analog molecules were analyzed by molecular docking. Therefore, this study provides a new and feasible PEC sensor-based detection scheme for o-AP detection.
Collapse
Affiliation(s)
- Qiu Jing Qin
- College of Chemical and Biological Engineering, Guangxi Minzu Normal University, Chongzuo 532200, China.
| | - Gang Xiang
- College of Chemical and Biological Engineering, Guangxi Minzu Normal University, Chongzuo 532200, China.
- Photochemical Sensing and Regional Environmental Analysis Laboratory, Guangxi Minzu Normal University, Chongzuo 532200, China
| | - Jiangfen Xu
- Guangxi Institute for Drug Contyol, Nanning 530022, China
| | - Wenzhuo Li
- Institute for Food and Drug Control of Chongzuo, Chongzuo 532200, China
| | - Qinying Huang
- College of Chemical and Biological Engineering, Guangxi Minzu Normal University, Chongzuo 532200, China.
| | - Fengping Liu
- College of Chemical and Biological Engineering, Guangxi Minzu Normal University, Chongzuo 532200, China.
- Photochemical Sensing and Regional Environmental Analysis Laboratory, Guangxi Minzu Normal University, Chongzuo 532200, China
| | - Cuizhong Zhang
- College of Chemical and Biological Engineering, Guangxi Minzu Normal University, Chongzuo 532200, China.
- Photochemical Sensing and Regional Environmental Analysis Laboratory, Guangxi Minzu Normal University, Chongzuo 532200, China
| | - Zhengfa Zhang
- College of Chemical and Biological Engineering, Guangxi Minzu Normal University, Chongzuo 532200, China.
- Photochemical Sensing and Regional Environmental Analysis Laboratory, Guangxi Minzu Normal University, Chongzuo 532200, China
| | - Wei Huang
- College of Chemical and Biological Engineering, Guangxi Minzu Normal University, Chongzuo 532200, China.
- Photochemical Sensing and Regional Environmental Analysis Laboratory, Guangxi Minzu Normal University, Chongzuo 532200, China
| | - Jinyun Peng
- College of Chemical and Biological Engineering, Guangxi Minzu Normal University, Chongzuo 532200, China.
- Photochemical Sensing and Regional Environmental Analysis Laboratory, Guangxi Minzu Normal University, Chongzuo 532200, China
| |
Collapse
|
7
|
Ding L, Guo J, Chen S, Wang Y. Electrochemical sensing mechanisms of neonicotinoid pesticides and recent progress in utilizing functional materials for electrochemical detection platforms. Talanta 2024; 273:125937. [PMID: 38503124 DOI: 10.1016/j.talanta.2024.125937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
The excessive residue of neonicotinoid pesticides in the environment and food poses a severe threat to human health, necessitating the urgent development of a sensitive and efficient method for detecting trace amounts of these pesticides. Electrochemical sensors, characterized by their simplicity of operation, rapid response, low cost, strong selectivity, and high feasibility, have garnered significant attention for their immense potential in swiftly detecting trace target molecules. The detection capability of electrochemical sensors primarily relies on the catalytic activity of electrode materials towards the target analyte, efficient loading of biomolecular functionalities, and the effective conversion of interactions between the target analyte and its receptor into electrical signals. Electrode materials with superior performance play a crucial role in enhancing the detection capability of electrochemical sensors. With the continuous advancement of nanotechnology, particularly the widespread application of novel functional materials, there is paramount significance in broadening the applicability and expanding the detection range of pesticide sensors. This comprehensive review encapsulates the electrochemical detection mechanisms of neonicotinoid pesticides, providing detailed insights into the outstanding roles, advantages, and limitations of functional materials such as carbon-based materials, metal-organic framework materials, supramolecular materials, metal-based nanomaterials, as well as molecular imprinted materials, antibodies/antigens, and aptamers as molecular recognition elements in the construction of electrochemical sensors for neonicotinoid pesticides. Furthermore, prospects and challenges facing various electrochemical sensors based on functional materials for neonicotinoid pesticides are discussed, providing valuable insights for the future development and application of biosensors for simplified on-site detection of agricultural residues.
Collapse
Affiliation(s)
- Longhua Ding
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Jiawei Guo
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Shu Chen
- School of Bioengineering, Shandong Polytechnic, Jinan, 250104, PR China
| | - Yawen Wang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| |
Collapse
|
8
|
Li J, Sun D, Wen Y, Chen X, Wang H, Li S, Song Z, Liu H, Ma J, Chen L. Molecularly imprinted polymers and porous organic frameworks based analytical methods for disinfection by-products in water and wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124249. [PMID: 38810677 DOI: 10.1016/j.envpol.2024.124249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/16/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Disinfection by-products (DBPs) with heritage toxicity, mutagenicity and carcinogenicity are one kind of important new pollutants, and their detection and removal in water and wastewater has become a common challenge facing mankind. Advanced functional materials with ideal selectivity, adsorption capacity and regeneration capacity provide hope for the determination of DBPs with low concentration levels and inherent molecular structural similarity. Among them, molecularly imprinted polymers (MIPs) are favored, owing to their predictable structure, specific recognition and wide applicability. Also, metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs) with unique pore structure, large specific surface area and easy functionalization, attract increasing interest. Herein, we review recent advances in analytical methods based on the above-mentioned three functional materials for DBPs in water and wastewater. Firstly, MIPs, MOFs and COFs are briefly introduced. Secondly, MIPs, MOFs and COFs as extractants, recognition element and adsorbents, are comprehensively discussed. Combining the latest research progress of solid-phase extraction (SPE), sensor, adsorption and nanofiltration, typical examples on MIPs and MOFs/COFs based analytical and removal applications in water and wastewater are summarized. Finally, the application prospects and challenges of the three functional materials in DBPs analysis are proposed to promote the development of corresponding analytical methods.
Collapse
Affiliation(s)
- Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Dani Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Yuhao Wen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Xuan Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Hongdan Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Shuang Li
- School of Environmental & Municipal Engineering, State-Local Joint Engineering Research Center of Urban Sewage Treatment and Resource Recovery, Qingdao University of Technology, Qingdao, 266033, China
| | - Zhihua Song
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Huitao Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Jiping Ma
- School of Environmental & Municipal Engineering, State-Local Joint Engineering Research Center of Urban Sewage Treatment and Resource Recovery, Qingdao University of Technology, Qingdao, 266033, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| |
Collapse
|
9
|
Shen Q, Zhang Q, Yang Y, Yu X, Zang L, Zhang W, Shen D. Wavelength-dependent photoelectrochemical response demonstrated by the determination of acetaminophen and rutin in differential molecularly imprinted polymers strategy. Talanta 2024; 270:125640. [PMID: 38211357 DOI: 10.1016/j.talanta.2024.125640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/23/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Herein, the excitation wavelength-dependent responses of the molecularly imprinted polymer (MIP) photoelectrochemical (PEC) sensors were investigated, using acetaminophen (AP), rutin (RT) and perfluorooctanoate (PFOA) as the model templates, pyrrole as functional monomer, CuInS2@ZnS/TiO2 NTs as the basic photoelectrode. With wavelength λ > 240 nm, the photocurrent of MIPPFOA enhanced at higher concentrations of PFOA. With increasing AP concentration, the photocurrents of MIPAP could decline with λ < 271 nm, not change at λ = 270 nm, or increase with λ > 270 nm. As RT concentration increased, the photocurrents of MIPRT could decrease (λ < 431 nm), not change (λ = 431 nm) or increase (λ > 431 nm). The PEC responses depend on the comprehensive interaction of two contrary mechanisms from the template molecules within the MIP membrane. The photocurrent is enhanced by the role of the electron donor for photo-generated holes but attenuated due to the steric hindrance effect and the excitation light intensity loss via absorption or scattering. The apparent molar absorption coefficient of AP and RT within MIP membranes are 9.1-19.4 folds of those measured from dilute solutions. By using a routine UV lamp as the light source, the photocurrents of MIPRT at 254 nm and MIPAP at 365 nm were used to determine RT and AP, with the detection limits of 5.3 and 16 nM, respectively. The interference from the non-specific adsorption of interferents on the surfaces of MIPAP and MIPRT was reduced by one order of magnitude via a differential strategy.
Collapse
Affiliation(s)
- Qirui Shen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China
| | - Qiao Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China
| | - Yan Yang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China
| | - Xifeng Yu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China
| | - Lixin Zang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China
| | - Dazhong Shen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
10
|
Ma X, Kang J, Cao W, Wu Y, Pang C, Li S, Yi Z, Xiong Y, Li C, Wang M, Xu Z, Li J. Anthracene-based dual channel donor-acceptor triazine-containing covalent organic frameworks for superior photoelectrochemical sensing. J Colloid Interface Sci 2024; 659:665-675. [PMID: 38211484 DOI: 10.1016/j.jcis.2024.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/28/2023] [Accepted: 01/07/2024] [Indexed: 01/13/2024]
Abstract
Covalent organic frameworks (COFs) exhibit excellent photoelectrically active structures and serve as channels for photon capture and charge carrier transport. However, their relatively high charge-carrier recombination rates and lack of specific recognition sites limit their application in photoelectrochemical sensing. This paper reports a functionalized donor-acceptor (D-A) COF comprising electron-rich polycyclic aromatic moieties and electron-deficient triazines (Tz) incorporating boronic acid through ligand exchange. The number of aromatic rings in the polycyclic aromatic moiety is crucial for establishing an efficient D-A system within COF. In the absence of an external electron donor, the anthracene-based COF exhibited a five-fold enhancement in photocurrent compared to the naphthalene-based COF. The resulting anthracene-based D-A COF exhibited enhanced orbital overlap and electron push-pull interactions, facilitating more effective charge separation. Furthermore, introducing boronic acid enabled the selective enrichment of low-concentration external electron donors, such as dopamine, in the inner Helmholtz plane. This ingenious approach establishes a unique dual-channel D-A system that allows direct measurement of dopamine in serum. Under optimized conditions, the test platform achieves good correspondence for dopamine at 1 to 100 nM and 0.5 to 100 μM with a detecting limit of 0.36 nM (3σ/S, n = 11). This strategy introduces a novel dimension to photoelectrochemical sensing, focusing on the effect of spatial separation between the external electron donor and the photoelectrode interface that intricately shapes the behavior and enhances the performance of the photoelectric system.
Collapse
Affiliation(s)
- Xionghui Ma
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 571101, China.
| | - Jinsheng Kang
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 571101, China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Wenwen Cao
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Yuwei Wu
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 571101, China
| | - Chaohai Pang
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 571101, China
| | - Shuhuai Li
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 571101, China.
| | - Zhongsheng Yi
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Yuhao Xiong
- College of Food and Bioengineering, Hezhou University, Hezhou 542899, China
| | - Chunli Li
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 571101, China
| | - Mingyue Wang
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 571101, China
| | - Zhi Xu
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 571101, China
| | - Jianping Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
11
|
Mao M, Zu Y, Zhang Y, Qiu Y, Lin Y, Luo F, Weng Z, Lin C, Qiu B, Lin Z. Photoelectrochemical Sensor for H 2S Based on a Lead-Free Perovskite/Metal-Organic Framework Composite. Anal Chem 2024; 96:4290-4298. [PMID: 38427621 DOI: 10.1021/acs.analchem.4c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Halide perovskites have emerged as a highly promising class of photoelectric materials. However, the application of lead-based perovskites has been hindered by their toxicity and relatively weak stability. In this work, a composite material comprising a lead-free perovskite cesium copper iodide (CsCu2I3) nanocrystal and a metal-organic framework (MOF-801) has been synthesized through an in situ growth approach. The resulting composite material, denoted as CsCu2I3/MOF-801, demonstrates outstanding stability and exceptional optoelectronic characteristics. MOF-801 may serve a dual role by acting as a protective barrier between CsCu2I3 nanocrystals and the external environment, as well as promoting the efficient transfer of photogenerated charge carriers, thereby mitigating their recombination. Consequently, CsCu2I3/MOF-801 demonstrates its utility by providing both stability and a notably high initial photocurrent. Leveraging the inherent reactivity between H2S and the composite material, which results in the formation of Cu2S and structural alteration, an exceptionally sensitive photoelectrochemical sensor for H2S detection has been designed. This sensor exhibits a linear detection range spanning from 0.005 to 100 μM with a remarkable detection limit of 1.67 nM, rendering it highly suitable for precise quantification of H2S in rat brains. This eco-friendly sensor significantly broadens the application horizon of perovskite materials and lays a robust foundation for their future commercialization.
Collapse
Affiliation(s)
- Mengfan Mao
- MOE Key Laboratory of Analysis and Detection for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Yexin Zu
- MOE Key Laboratory of Analysis and Detection for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Yating Zhang
- MOE Key Laboratory of Analysis and Detection for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Yongzhen Qiu
- MOE Key Laboratory of Analysis and Detection for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Yue Lin
- MOE Key Laboratory of Analysis and Detection for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Fang Luo
- MOE Key Laboratory of Analysis and Detection for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Zuquan Weng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Cuiying Lin
- MOE Key Laboratory of Analysis and Detection for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Bin Qiu
- MOE Key Laboratory of Analysis and Detection for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Zhenyu Lin
- MOE Key Laboratory of Analysis and Detection for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| |
Collapse
|
12
|
Liu S, Zhan J, Cai B. Recent advances in photoelectrochemical platforms based on porous materials for environmental pollutant detection. RSC Adv 2024; 14:7940-7963. [PMID: 38454947 PMCID: PMC10915833 DOI: 10.1039/d4ra00503a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
Human health and ecology are seriously threatened by harmful environmental contaminants. It is essential to develop efficient and simple methods for their detection. Environmental pollutants can be detected using photoelectrochemical (PEC) detection technologies. The key ingredient in the PEC sensing system is the photoactive material. Due to the unique characteristics, such as a large surface area, enhanced exposure of active sites, and effective mass capture and diffusion, porous materials have been regarded as ideal sensing materials for the construction of PEC sensors. Extensive efforts have been devoted to the development and modification of PEC sensors based on porous materials. However, a review of the relationship between detection performance and the structure of porous materials is still lacking. In this work, we present an overview of PEC sensors based on porous materials. A number of typical porous materials are introduced separately, and their applications in PEC detection of different types of environmental pollutants are also discussed. More importantly, special attention has been paid to how the porous material's structure affects aspects like sensitivity, selectivity, and detection limits of the associated PEC sensor. In addition, future research perspectives in the area of PEC sensors based on porous materials are presented.
Collapse
Affiliation(s)
- Shiben Liu
- School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan China
| | - Jinhua Zhan
- School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan China
| | - Bin Cai
- School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan China
| |
Collapse
|
13
|
Yin SH, Lan BL, Yang YL, Tong YQ, Feng YF, Zhang Z. Multi-analyte fluorescence sensing based on a post-synthetically functionalized two-dimensional Zn-MOF nanosheets featuring excited-state proton transfer process. J Colloid Interface Sci 2024; 657:880-892. [PMID: 38091911 DOI: 10.1016/j.jcis.2023.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/25/2023] [Accepted: 12/07/2023] [Indexed: 01/02/2024]
Abstract
Covalent post-synthetic modification of metal-organic frameworks (MOFs) represents an underexplored but promising avenue for allowing the addition of specific fluorescent recognition elements to produce the novel MOF-based sensory materials with multiple-analyte detection capability. Here, an excited-state proton transfer (ESPT) active sensor 2D-Zn-NS-P was designed and constructed by covalent post-synthetic incorporation of the excited-state tautomeric 2-hydroxypyridine moiety into the ultrasonically exfoliated amino-tagged 2D Zn-MOF nanosheets (2D-Zn-NS). The water-mediated ESPT process facilitates the highly accessible active sites incorporated on the surface of 2D-Zn-NS-P to specifically respond to the presence of water in common organic solvents via fluorescence turn-on behavior, and accurate quantification of trace amount of water in acetonitrile, acetone and ethanol was established using the as-synthesized nanosheet sensor with the detection sensitivity (<0.01% v/v) superior to the conventional Karl Fischer titration. Upon exposure to Fe3+ or Cr2O72-, the intense blue emission of the aqueous colloidal dispersion of 2D-Zn-NS-P was selectively quenched even in the coexistence of common inorganic interferents. The prohibition of the water-mediated ESPT process and local emission, induced by the coordination of ESPT fluorophore with Fe3+ or by Cr2O72- competitively absorbs the excitation energy, was proposed to responsible for the fluorescence turn-off sensing of the respective analytes. The present study offers the attractive prospect to develop the ESPT-based fluorescent MOF nanosheets by covalent post-synthetic modification strategy as multi-functional sensors for detection of target analytes.
Collapse
Affiliation(s)
- Shu-Hui Yin
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Bi-Liu Lan
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Ya-Li Yang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Yu-Qing Tong
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Yan-Fang Feng
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China; College of Pharmacy, Guilin Medical University, Guilin 541199, PR China.
| | - Zhong Zhang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
14
|
Hu C, Wang L, Liu S, Sheng X, Yin L. Recent Development of Implantable Chemical Sensors Utilizing Flexible and Biodegradable Materials for Biomedical Applications. ACS NANO 2024; 18:3969-3995. [PMID: 38271679 DOI: 10.1021/acsnano.3c11832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Implantable chemical sensors built with flexible and biodegradable materials exhibit immense potential for seamless integration with biological systems by matching the mechanical properties of soft tissues and eliminating device retraction procedures. Compared with conventional hospital-based blood tests, implantable chemical sensors have the capability to achieve real-time monitoring with high accuracy of important biomarkers such as metabolites, neurotransmitters, and proteins, offering valuable insights for clinical applications. These innovative sensors could provide essential information for preventive diagnosis and effective intervention. To date, despite extensive research on flexible and bioresorbable materials for implantable electronics, the development of chemical sensors has faced several challenges related to materials and device design, resulting in only a limited number of successful accomplishments. This review highlights recent advancements in implantable chemical sensors based on flexible and biodegradable materials, encompassing their sensing strategies, materials strategies, and geometric configurations. The following discussions focus on demonstrated detection of various objects including ions, small molecules, and a few examples of macromolecules using flexible and/or bioresorbable implantable chemical sensors. Finally, we will present current challenges and explore potential future directions.
Collapse
Affiliation(s)
- Chen Hu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Liu Wang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P. R. China
| | - Shangbin Liu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, P. R. China
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
15
|
Song J, Chen Y, Li L, Tan M, Su W. Recent Progress in Photoelectrochemical Sensing of Pesticides in Food and Environmental Samples: Photoactive Materials and Signaling Mechanisms. Molecules 2024; 29:560. [PMID: 38338305 PMCID: PMC10856573 DOI: 10.3390/molecules29030560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/13/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Pesticides have become an integral part of modern agricultural practices, but their widespread use poses a significant threat to human health. As such, there is a pressing need to develop effective methods for detecting pesticides in food and environmental samples. Traditional chromatography methods and common rapid detection methods cannot satisfy accuracy, portability, long storage time, and solution stability at the same time. In recent years, photoelectrochemical (PEC) sensing technology has gained attention as a promising approach for detecting various pesticides due to its salient advantages, including high sensitivity, low cost, simple operation, fast response, and easy miniaturization, thus becoming a competitive candidate for real-time and on-site monitoring of pesticide levels. This review provides an overview of the recent advancements in PEC methods for pesticide detection and their applications in ensuring food and environmental safety, with a focus on the categories of photoactive materials, from single semiconductor to semiconductor-semiconductor heterojunction, and signaling mechanisms of PEC sensing platforms, including oxidation of pesticides, steric hindrance, generation/decrease in sacrificial agents, and introduction/release of photoactive materials. Additionally, this review will offer insights into future prospects and confrontations, thereby contributing novel perspectives to this evolving domain.
Collapse
Affiliation(s)
- Jie Song
- State Key Laboratory of Marine Food Processing & Safety Control, Qingdao 266400, China;
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| | - Yuqi Chen
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| | - Ling Li
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| | - Wentao Su
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| |
Collapse
|
16
|
Meng X, Wang J, Diao L, Li C. Construction of Multi-Mode Photoelectrochemical Immunoassays for Accurate Detection of Cancer Markers: Assisted with MOF-Confined Plasmonic Nanozyme. Anal Chem 2024; 96:1336-1344. [PMID: 38205816 DOI: 10.1021/acs.analchem.3c04952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
In clinical diagnostics, sensitive and accurate biomarker monitoring is greatly challenged by the limitations of false positive/negative errors in single-modal photoelectrochemical analysis. Herein, we propose a multimode immunoassay by integrating photoelectrochemical, colorimetric, and photothermal imaging analysis into one electrode. The immunosensors could simultaneously achieve three detection modes at one electrode, which provided a new pathway for the accurate detection of the target prostate-specific antigen (PSA) and circumvented false-positive or negative errors during the detection process. To this end, an integrated multifunctional chip (TiO2/ZIF-8/Cu(II)) was first constructed via in situ embedding of Cu(II) in the Metal-organic framework growth process. Then, an alkaline phosphatase-labeled magnetic probe was designed to achieve split-type detection for PSA. In a sodium thiophosphate solution, the in situ generated H2S could react with Cu(II) to form small-size CuS due to the nanoconfinement of ZIF-8 and thus result in the formation of p-n heterojunctions (TiO2/ZIF-8/CuS). The TiO2/ZIF-8/CuS could efficiently improve the light-harvesting ability and facilitate the charge separation efficiency, thus finally resulting in an increased photocurrent in the PEC mode. Furthermore, by constructing the portable colorimetric and photothermal sensors based on the Arduino microcontroller and photothermal imager, the TiO2/ZIF-8/CuS also provided point-of-care and visual detection modes, as the in situ-formed CuS exhibited peroxidase-mimicking activity and outstanding photothermal properties. The work had important prospects for establishing multimode immunoassays for the accurate detection of cancer markers in early disease diagnosis.
Collapse
Affiliation(s)
- Xingxing Meng
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Jing Wang
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Leilei Diao
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Chuanping Li
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| |
Collapse
|
17
|
Yue Y, Ji D, Liu Y, Wei D. Chemical Sensors Based on Covalent Organic Frameworks. Chemistry 2024; 30:e202302474. [PMID: 37843045 DOI: 10.1002/chem.202302474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Covalent organic frameworks (COFs) are a type of crystalline porous polymer composed of light elements through strong covalent bonds. COFs have attracted considerable attention due to their unique designable structures and excellent material properties. Currently, COFs have shown outstanding potential in various fields, including gas storage, pollutant removal, catalysis, adsorption, optoelectronics, and their research in the sensing field is also increasingly flourishing. In this review, we focus on COF-based sensors. Firstly, we elucidate the fundamental principles of COF-based sensors. Then, we present the primary application areas of COF-based sensors and their recent advancements, encompassing gas, ions, organic compounds, and biomolecules sensing. Finally, we discuss the future trends and challenges faced by COF-based sensors, outlining their promising prospects in the field of sensing.
Collapse
Affiliation(s)
- Yang Yue
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Daizong Ji
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
18
|
Huang YT, Xu KX, Liu XS, Li Z, Hu J, Zhang L, Zhu YC, Zhao WW, Chen HY, Xu JJ. Chemical Redox Cycling in an Organic Photoelectrochemical Transistor: Toward Dual Chemical and Electronic Amplification for Bioanalysis. Anal Chem 2023; 95:17912-17919. [PMID: 37972240 DOI: 10.1021/acs.analchem.3c04263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The organic photoelectrochemical transistor (OPECT) has been proven to be a promising platform to study the rich light-matter-bio interplay toward advanced biomolecular detection, yet current OPECT is highly restrained to its intrinsic electronic amplification. Herein, this work first combines chemical amplification with electronic amplification in OPECT for dual-amplified bioanalytics with high current gain, which is exemplified by human immunoglobulin G (HIgG)-dependent sandwich immunorecognition and subsequent alkaline phosphatase (ALP)-mediated chemical redox cycling (CRC) on a metal-organic framework (MOF)-derived BiVO4/WO3 gate. The target-dependent redox cycling of ascorbic acid (AA) acting as an effective electron donor could lead to an amplified modulation against the polymer channel, as indicated by the channel current. The as-developed bioanalysis could achieve sensitive HIgG detection with a good analytical performance. This work features the dual chemical and electronic amplification for OPECT bioanalysis and is expected to stimulate further interest in the design of CRC-assisted OPECT bioassays.
Collapse
Affiliation(s)
- Yu-Ting Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ke-Xin Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xing-Shi Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zheng Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ling Zhang
- School of Electronic and Information Engineering, Jinling Institute of Technology, Nanjing 211169, China
| | - Yuan-Cheng Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
19
|
Jia Y, Cui L, Li D, Yang Y, Qie S, Su S, Hu M, Gao R. Achiral Sm(III)-Based Metal-Organic Framework as a Luminescence Sensor for Enantiodiscrimination of Quinine and Quinidine. Inorg Chem 2023; 62:16288-16293. [PMID: 37767924 DOI: 10.1021/acs.inorgchem.3c02333] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
The effective discrimination and determination of the chiral antimalarial drugs quinine (QN) and quinidine (QD) are extremely important for human health. Herein, a 2D achiral Sm-based metal-organic framework (IMU-MOF1 = [Sm(tpba)(L)]n, where Htpba = 4-(2,2':6″,2'-terpyridin)-4'-ylbenzioc acid and H2L = 2,2'-biquinoline-4,4'-dicarboxylic acid) was successfully prepared by the solvothermal method. More importantly, IMU-MOF1 was designed as an ultrasensitive fluorescent probe for the identification of chiral enantiomer drugs. The limits of detection for QN and QD are 4.24 × 10-11 and 7.54 × 10-12 M, respectively. Furthermore, it was demonstrated that the stronger hydrogen-bonding interactions between IMU-MOF1 and quinine furnish a more efficient energy transfer to the ligands in the sensing process, resulting in a significant fluorescence enhancement of IMU-MOF1.
Collapse
Affiliation(s)
- Yuejiao Jia
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Linxia Cui
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Dechao Li
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Yefang Yang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Shaowen Qie
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Shuai Su
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Ming Hu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Rui Gao
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
20
|
Zheng Z, Ma L, Li B, Zhang X. Dual-Modal Biosensor for Staphylococcus aureus Detection Based on a Porphyrin-Based Porous Organic Polymer FePor-TPA with Excellent Peroxidase-like, Catalase-like, and Photoelectrochemical Properties. Anal Chem 2023; 95:13855-13863. [PMID: 37672712 DOI: 10.1021/acs.analchem.3c01950] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Bacterial infections seriously harm human health and cause many severe diseases, which triggered urgent demands to exploit specific and sensitive biosensor strategies for Staphylococcus aureus detection. Here, a colorimetric and photoelectrochemical dual-mode biosensor for S. aureus assay based on FePor-TPA was constructed. 2D FePor-TPA thin film and its bulk powder (FePor-TPA) were synthesized by in situ growth on ITO and a solvothermal condition, respectively, both of which exhibited excellent peroxidase-like and catalase-like activity, originating from their metalloporphyrin linkers. Benefiting from the in situ growth on ITO electrodes, the 2D FePor-TPA thin film also possessed a more ordered stacking mode and in turn exhibited good electrical conductivity, stable initial photocurrent, and high sensitivity to O2. As for bulk FePor-TPA, its porous structure and high specific surface area make it a possible scaffold to load an amount of AuNPs, the rabbit anti-Staphylococcus aureus Rosenbach tropina antibody (Ab2), and GOx for constructing the signal probe (GOx/Ab2@Au@FePor-TPA) and realizing catalytic amplification. With these satisfactory features in mind, the 2D FePor-TPA thin film and its bulk powder (FePor-TPA) were utilized to construct a dual and signal-on bioplatform for sensitively and selectively detecting S. aureus, which, as far as we know, has not been reported.
Collapse
Affiliation(s)
- Zekun Zheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Long Ma
- Test center of Shandong Bureau, China Metallurgical Geology Bureau, Jinan 250014, China
| | - Baoyu Li
- Test center of Shandong Bureau, China Metallurgical Geology Bureau, Jinan 250014, China
| | - Xiaomei Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
21
|
Pei F, Feng S, Hu W, Hao Q, Liu B, Mu X, Lei W, Tong Z. A signal-off photoelectrochemical sandwich-type immunosensor based on WO 3/TiO 2 Z-scheme heterojunction. Mikrochim Acta 2023; 190:384. [PMID: 37698718 DOI: 10.1007/s00604-023-05954-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/13/2023] [Indexed: 09/13/2023]
Abstract
A sandwich "signal-off" type photoelectrochemical (PEC) immunosensor was fabricated based on a composite heterojunction of tungsten oxide/titanium oxide microspheres (WO3/TiO2) acting as signal amplification platform and carbon microspheres loaded by gold nanoparticles (Cs@Au NPs) utilized as the label for detecting antibody. WO3/TiO2 had excellent photoelectric performance, and the results of Mott-Schottky plots, open-circuit voltage, and electron spin resonance spectroscopy indicated that it belonged to the Z-scheme heterojunction transfer mechanism of photogenerated carriers. To achieve the sensitization of PEC immunosensor, Cs@Au NP-labeled immunocomplex can effectively reduce the photocurrent signal. The PEC immunosensors were fabricated under the optimal conditions of 1:1 WO3/TiO2 (molar ratio), 2.0 mg mL-1 WO3/TiO2, and 1.5 mg mL-1 Cs@Au NPs. Through comparison of the detection results of label-free and sandwich-type PEC immunosensors for nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we found that the sensitivity of the sandwich type was 2.53 times the label-free type, and the limit of detection was 0.006 ng mL-1, i.e., 3.17 times lower than the label-free type. This demonstrates that the developed sandwich-type PEC immunosensor will have a brighter application prospect.
Collapse
Affiliation(s)
- Fubin Pei
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Shasha Feng
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Wei Hu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Qingli Hao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Bing Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Xihui Mu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Wu Lei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China.
| | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| |
Collapse
|
22
|
Ma X, Kang J, Wu Y, Pang C, Li S, Li J, Xiong Y, Luo J, Wang M, Xu Z. A bifunctional polycentric-affinity MOF/MXene heterojunction-based molecularly imprinted photoelectrochemical organophosphorus-sensing platform. CHEMICAL ENGINEERING JOURNAL 2023; 469:143888. [DOI: 10.1016/j.cej.2023.143888] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
|
23
|
Pan M, Li H, Yang J, Wang Y, Wang Y, Han X, Wang S. Review: Synthesis of metal organic framework-based composites for application as immunosensors in food safety. Anal Chim Acta 2023; 1266:341331. [PMID: 37244661 DOI: 10.1016/j.aca.2023.341331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/29/2023]
Abstract
Ensuring food safety continues to be one of the major global challenges. For effective food safety monitoring, fast, sensitive, portable, and efficient food safety detection strategies must be devised. Metal organic frameworks (MOFs) are porous crystalline materials that have attracted attention for use in high-performance sensors for food safety detection owing to their advantages such as high porosity, large specific surface area, adjustable structure, and easy surface functional modification. Immunoassay strategies based on antigen-antibody specific binding are one of the important means for accurate and rapid detection of trace contaminants in food. Emerging MOFs and their composites with excellent properties are being synthesized, providing new ideas for immunoassays. This article summarizes the synthesis strategies of MOFs and MOF-based composites and their applications in the immunoassays of food contaminants. The challenges and prospects of the preparation and immunoassay applications of MOF-based composites are also presented. The findings of this study will contribute to the development and application of novel MOF-based composites with excellent properties and provide insights into advanced and efficient strategies for developing immunoassays.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Huilin Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yixin Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yueyao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Xintong Han
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China.
| |
Collapse
|
24
|
Bakhshandeh F, Saha S, Sen P, Sakib S, MacLachlan R, Kanji F, Osman E, Soleymani L. A universal bacterial sensor created by integrating a light modulating aptamer complex with photoelectrochemical signal readout. Biosens Bioelectron 2023; 235:115359. [PMID: 37187062 DOI: 10.1016/j.bios.2023.115359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/05/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023]
Abstract
Photoelectrochemical (PEC) signal transduction is of great interest for ultrasensitive biosensing; however, signal-on PEC assays that do not require target labeling remain elusive. In this work, we developed a signal-on biosensor that uses nucleic acids to modulate PEC currents upon target capture. Target presence removes a biorecognition probe from a DNA duplex carrying a gold nanoparticle, bringing the gold nanoparticle in direct contact to the photoelectrode and increasing the PEC current. This assay was used to develop a universal bacterial detector by targeting peptidoglycan using an aptamer, demonstrating a limit-of-detection of 82 pg/mL (13 pM) in buffer and 239 pg/mL (37 pM) in urine for peptidoglycan and 1913 CFU/mL forEscherichia coliin urine. When challenged with a panel of unknown targets, the sensor identified samples with bacterial contamination versus fungi. The versatility of the assay was further demonstrated by analyzing DNA targets, which yielded a limit-of-detection of 372 fM.
Collapse
Affiliation(s)
- Fatemeh Bakhshandeh
- Department of Engineering Physics, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
| | - Sudip Saha
- School of Biomedical Engineering, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
| | - Payel Sen
- Department of Engineering Physics, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
| | - Sadman Sakib
- Department of Engineering Physics, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
| | - Roderick MacLachlan
- Department of Engineering Physics, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
| | - Farhaan Kanji
- Department of Engineering Physics, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
| | - Enas Osman
- School of Biomedical Engineering, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
| | - Leyla Soleymani
- Department of Engineering Physics, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada; School of Biomedical Engineering, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada; Michael G. DeGroote Institute for Infectious Disease Research, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada.
| |
Collapse
|
25
|
Liu C, Quan K, Chen J, Shi X, Qiu H. Chiral metal-organic frameworks and their composites as stationary phases for liquid chromatography chiral separation: A minireview. J Chromatogr A 2023; 1700:464032. [PMID: 37148566 DOI: 10.1016/j.chroma.2023.464032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/16/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
Chiral metal organic frameworks (CMOFs) are a kind of crystal porous framework material that has attracted increasing attention due to the customizable combination of metal nodes and organic ligands. In particular, the highly ordered crystal structure and rich adjustable chiral structure make it a promising material for developing new chiral separation material systems. In this review, the progress of CMOFs and their different types of composites used as chiral stationary phases (CSPs) in liquid chromatography for enantioseparation are discussed. The characteristics of CMOFs and their composites are summarized, aiming to provide new ideas for the development of CMOFs with better performance and further promote the application of CMOFs materials in enantioselective high-performance liquid chromatography (HPLC).
Collapse
Affiliation(s)
- Chunqiang Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaijun Quan
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofeng Shi
- Institute of Materia Medica, Gansu Provincial Cancer Hospital, Lanzhou 730050, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
26
|
Mohan B, Kumari R, Singh G, Singh K, Pombeiro AJL, Yang X, Ren P. Covalent organic frameworks (COFs) and metal-organic frameworks (MOFs) as electrochemical sensors for the efficient detection of pharmaceutical residues. ENVIRONMENT INTERNATIONAL 2023; 175:107928. [PMID: 37094512 DOI: 10.1016/j.envint.2023.107928] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/21/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
Pharmaceutical residues are the undecomposed remains from drugs used in the medical and food industries. Due to their potential adverse effects on human health and natural ecosystems, they are of increasing worldwide concern. The acute detection of pharmaceutical residues can give a rapid examination of their quantity and then prevent them from further contamination. Herein, this study summarizes and discusses the most recent porous covalent-organic frameworks (COFs) and metal-organic frameworks (MOFs) for the electrochemical detection of various pharmaceutical residues. The review first introduces a brief overview of drug toxicity and its effects on living organisms. Subsequently, different porous materials and drug detection techniques are discussed with materials' properties and applications. Then the development of COFs and MOFs has been addressed with their structural properties and sensing applications. Further, the stability, reusability, and sustainability of MOFs/COFs are reviewed and discussed. Besides, COFs and MOFs' detection limits, linear ranges, the role of functionalities, and immobilized nanoparticles are analyzed and discussed. Lastly, this review summarized and discussed the MOF@COF composite as sensors, the fabrication strategies to enhance detection potential, and the current challenges in this area.
Collapse
Affiliation(s)
- Brij Mohan
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ritu Kumari
- Department of Chemistry, Kurukshetra University Kurukshetra -136119, India
| | - Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh-160014, India
| | - Kamal Singh
- Department of Physics, Chaudhary Bansi Lal University, Bhiwani, Haryana-127021, India
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Xuemei Yang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Peng Ren
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
27
|
Liu Y, Chang G, Zheng F, Chen L, Yang Q, Ren Q, Bao Z. Hybrid Hydrogen-Bonded Organic Frameworks: Structures and Functional Applications. Chemistry 2023; 29:e202202655. [PMID: 36414543 DOI: 10.1002/chem.202202655] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
As a new class of porous crystalline materials, hydrogen-bonded organic frameworks (HOFs) assembled from building blocks by hydrogen bonds have gained increasing attention. HOFs benefit from advantages including mild synthesis, easy purification, and good recyclability. However, some HOFs transform into unstable frameworks after desolvation, which hinders their further applications. Nowadays, the main challenges of developing HOFs lie in stability improvement, porosity establishment, and functionalization. Recently, more and more stable and permanently porous HOFs have been reported. Of all these design strategies, stronger charge-assisted hydrogen bonds and coordination bonds have been proven to be effective for developing stable, porous, and functional solids called hybrid HOFs, including ionic and metallized HOFs. This Review discusses the rational design synthesis principles of hybrid HOFs and their cutting-edge applications in selective inclusion, proton conduction, gas separation, catalysis and so forth.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Biomass Chemical Engineering of, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P.R. China
| | - Ganggang Chang
- State Key Laboratory of Advanced Technology for, Materials Synthesis and Processing, School of Chemistry Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei Province, 430070, P.R. China
| | - Fang Zheng
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| | - Lihang Chen
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P.R. China.,Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P.R. China.,Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P.R. China.,Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| |
Collapse
|
28
|
Chi L, Wang X, Chen H, Tang D, Xue F. Ultrasensitive photoelectrochemical biosensing platform based target-triggered biocatalytic precipitation reactions on a flower-like Bi 2O 2S super-structured photoanode. J Mater Chem B 2022; 10:10018-10026. [PMID: 36458849 DOI: 10.1039/d2tb02283d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Herein, we reported a novel photoelectrochemical immunoassay method based on a target-triggered on/off signal of the ultra-structured Bi2O2S (BOS) photoanode system for the sensitive testing of carcinoembryonic antigens (CEAs) in serum samples. Well-defined three-dimensional sheet-like self-assembled flower-like Bi2O2S superstructures were obtained using a time-controlled hydrothermal method. Such well-shaped multifaceted surfaces were considered to be good laser cavity mirror surfaces for multifaceted reflection and refraction of excitation light in the material. An elegant enzyme biocatalytic strategy was introduced into the constructed detection model to sensitively detect CEAs. The substrate 4-chloro-1-naphthol (4-CN) was oxidized to 4-chloro-hexadienone (4-CD) under the formation of target-triggered immune complexes against mAb1 and peroxidase-modified mAb2. Subsequently, 4-CD produced by the biocatalytic precipitation reaction was transferred to the photoanodes of Bi2O2S nanoflowers (BOS NFs) to burst their photoelectric signals, thus achieving the quantification of CEAs. Through optimization of the conditions of the immunization protocol, a good negative photocurrent response to the target CEA was found in the wide range of 0.02-50 ng mL-1 with a detection limit of 11.2 pg mL-1. Impressively, the reported biocatalytic PEC sensing strategy on superstructures is comparable, or superior, to the gold standard ELISA kit in terms of sensitivity and the target response range. This study presents a target-mediated PEC immunoassay for biocatalytic precipitation based on a self-assembled superstructure of Bi2O2S, providing a fresh scheme for the analysis of disease-related markers.
Collapse
Affiliation(s)
- Liangjie Chi
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, P. R. China. .,Clinical Medical Center for Digestive Diseases of Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, P. R. China
| | - Xiangyu Wang
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, P. R. China. .,Clinical Medical Center for Digestive Diseases of Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, P. R. China
| | - Hongyuan Chen
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, P. R. China. .,Clinical Medical Center for Digestive Diseases of Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, P. R. China
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Fangqin Xue
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, P. R. China. .,Clinical Medical Center for Digestive Diseases of Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, P. R. China
| |
Collapse
|
29
|
Nam NN, Do HDK, Trinh KTL, Lee NY. Recent Progress in Nanotechnology-Based Approaches for Food Monitoring. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4116. [PMID: 36500739 PMCID: PMC9740597 DOI: 10.3390/nano12234116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 05/10/2023]
Abstract
Throughout the food supply chain, including production, storage, and distribution, food can be contaminated by harmful chemicals and microorganisms, resulting in a severe threat to human health. In recent years, the rapid advancement and development of nanotechnology proposed revolutionary solutions to solve several problems in scientific and industrial areas, including food monitoring. Nanotechnology can be incorporated into chemical and biological sensors to improve analytical performance, such as response time, sensitivity, selectivity, reliability, and accuracy. Based on the characteristics of the contaminants and the detection methods, nanotechnology can be applied in different ways in order to improve conventional techniques. Nanomaterials such as nanoparticles, nanorods, nanosheets, nanocomposites, nanotubes, and nanowires provide various functions for the immobilization and labeling of contaminants in electrochemical and optical detection. This review summarizes the recent advances in nanotechnology for detecting chemical and biological contaminations in the food supply chain.
Collapse
Affiliation(s)
- Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 70000, Vietnam
| | - Kieu The Loan Trinh
- Department of Industrial Environmental Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|