1
|
Elmorsy EA, Saber S, Hamad RS, Abdel-Reheim MA, El-Kott AF, AlShehri MA, Morsy K, Salama SA, Youssef ME. Advances in understanding cisplatin-induced toxicity: Molecular mechanisms and protective strategies. Eur J Pharm Sci 2024; 203:106939. [PMID: 39423903 DOI: 10.1016/j.ejps.2024.106939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/30/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Cisplatin, a widely used chemotherapeutic agent, has proven efficacy against various malignancies. However, its clinical utility is hampered by its dose-limiting toxicities, including nephrotoxicity, ototoxicity, neurotoxicity, and myelosuppression. This review aims to provide a comprehensive overview of cisplatin toxicity, encompassing its underlying mechanisms, risk factors, and emerging therapeutic strategies. The mechanisms of cisplatin toxicity are multifactorial and involve oxidative stress, inflammation, DNA damage, and cellular apoptosis. Various risk factors contribute to the interindividual variability in susceptibility to cisplatin toxicity. The risk of developing cisplatin-induced toxicity could be related to pre-existing conditions, including kidney disease, hearing impairment, neuropathy, impaired liver function, and other comorbidities. Additionally, this review highlights the emerging therapeutic strategies that could be applied to minimize cisplatin-induced toxicities and aid in optimizing cisplatin treatment regimens, improving patient outcomes, and enhancing the overall quality of cancer care.
Collapse
Affiliation(s)
- Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, 51452, Saudi Arabia.
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia; Central Laboratory, Theodor Bilharz Research Institute, Giza 12411, Egypt.
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, Faculty of Science, Damanhour University, Egypt
| | - Mohammed A AlShehri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Kareem Morsy
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Salama A Salama
- Department of Zoology, Faculty of Science, Damanhour University, Egypt; Department of Biology, College of Science, Jazan University, Jazan 45142, Saudi Arabia
| | - Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| |
Collapse
|
2
|
Chu C, Liu S, He Z, Wu M, Xia J, Zeng H, Xie W, Cheng R, Zhao X, Li X. HADH suppresses clear cell renal cell carcinoma progression through reduced NRF2-dependent glutathione synthesis. Transl Oncol 2024; 49:102112. [PMID: 39226735 PMCID: PMC11402447 DOI: 10.1016/j.tranon.2024.102112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is a serious threat to human life. It is very important to clarify the pathogenesis of ccRCC. In this study we evaluated the clinical value of HADH and explored its role and mechanism in the malignant progression of ccRCC. METHODS HADH expression and its relationship with prognosis were analyzed using bioinformatics database. RT-PCR, Western blot and immunohistochemistry were used to examine the expression of HADH in ccRCC tissues and tissue microarrays. To examine the cell proliferation, apoptosis, migration and invasion ability, ccRCC cells with HADH overexpressed were constructed. Xenograft experiments were performed to determine the role of HADH. Non-target metabolomics was applied to explore the potential metabolic pathway by which HADH inhibited ccRCC progression. Plasmid pcDNA3.1-NRF2 was used to confirm whether HADH inhibited the process of ccRCC cells through NRF2-related glutathione (GSH) synthesis. RESULTS Bioinformatics database analysis showed that HADH expression was significantly decreased in ccRCC tissues, and its low expression predicted a poor prognosis. Both ccRCC tissues and tissue microarrays exhibited a significantly decreased HADH level compared with adjacent normal renal tissues. HADH overexpression inhibited the malignant behaviors of ccRCC cells. Furthermore, HADH overexpression attenuated GSH synthesis and induced oxidative stress damage. Exogenously increased NRF2 effectively attenuated the inhibitive effect of HADH overexpression on ccRCC cells. CONCLUSION Our data revealed that HADH suppressed the malignant behaviors of ccRCC cells by attenuating GSH synthesis through inhibition of NRF2 nuclear translocation, and HADH might be a novel therapeutic target for ccRCC treatment.
Collapse
Affiliation(s)
- Changbin Chu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China; Department of Urology, Chongqing Red Cross Hospital (People's Hospital of Jiangbei District), Chongqing, 400020, China
| | - Shangjing Liu
- School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Zhiting He
- School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Mingjun Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jing Xia
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hongxiang Zeng
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Wenhua Xie
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Rui Cheng
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Xueya Zhao
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Xi Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
3
|
Korkola NC, Ostertag AL, Toswell E, Stillman MJ. Bi(III) Binding Stoichiometry and Domain-Specificity Differences Between Apo and Zn(II)-bound Human Metallothionein 1a. Chemistry 2024; 30:e202304216. [PMID: 38356034 DOI: 10.1002/chem.202304216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2024]
Abstract
Bismuth is a xenobiotic metal with a high affinity to sulfur that is used in a variety of therapeutic applications. Bi(III) induces the cysteine-rich metallothionein (MT), a protein known to form two-domain cluster structures with certain metals such as Zn(II), Cd(II), or Cu(I). The binding of Bi(III) to MTs has been previously studied, but there are conflicting reports on the stoichiometry and binding pathway, which appear to be highly dependent on pH and initial metal-loading status of the MT. Additionally, domain specificity has not been thoroughly investigated. In this paper, ESI-MS was used to determine the binding constants of [Bi(EDTA)]- binding to apo-MT1a and its individual αMT fragment. The results were compared to previous experiments using βMT1a and βαMT3. Domain specificity was investigated using proteolysis methods and the initial cooperatively formed Bi2MT was found to bind to cysteines that spanned across the traditional metal binding domain regions. Titrations of [Bi(EDTA)]- into Zn7MT were performed and were found to result in a maximum stoichiometry of Bi7MT, contrasting the Bi6MT formed when [Bi(EDTA)]- was added to apo-MT. These results show that the initial structure of the apo-MT determines the stoichiometry of new incoming metals and explains the previously observed differences in stoichiometry.
Collapse
Affiliation(s)
- Natalie C Korkola
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, ON, Canada, N6A 5B7
| | - Anne-Lena Ostertag
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, ON, Canada, N6A 5B7
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Alle 114-116, 14558, Nuthetal, Germany
| | - Emily Toswell
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, ON, Canada, N6A 5B7
| | - Martin J Stillman
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, ON, Canada, N6A 5B7
| |
Collapse
|
4
|
Gonçalves Â, Matias M, Salvador JAR, Silvestre S. Bioactive Bismuth Compounds: Is Their Toxicity a Barrier to Therapeutic Use? Int J Mol Sci 2024; 25:1600. [PMID: 38338879 PMCID: PMC10855265 DOI: 10.3390/ijms25031600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Bismuth compounds are considered relatively non-toxic, with their low solubility in aqueous solutions (e.g., biological fluids) being the major contributing factor to this property. Bismuth derivatives are widely used for the treatment of peptic ulcers, functional dyspepsia, and chronic gastritis. Moreover, the properties of bismuth compounds have also been extensively explored in two main fields of action: antimicrobial and anticancer. Despite the clinical interest of bismuth-based drugs, several side effects have also been reported. In fact, excessive acute ingestion of bismuth, or abuse for an extended period of time, can lead to toxicity. However, evidence has demonstrated that the discontinuation of these compounds usually reverses their toxic effects. Notwithstanding, the continuously growing use of bismuth products suggests that it is indeed part of our environment and our daily lives, which urges a more in-depth review and investigation into its possible undesired activities. Therefore, this review aims to update the pharmaco-toxicological properties of bismuth compounds. A special focus will be given to in vitro, in vivo, and clinical studies exploring their toxicity.
Collapse
Affiliation(s)
- Ângela Gonçalves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (Â.G.); (M.M.)
| | - Mariana Matias
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (Â.G.); (M.M.)
| | - Jorge A. R. Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- CNC—Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Samuel Silvestre
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (Â.G.); (M.M.)
- CNC—Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|
5
|
Razmara Z, Delarami HS, Eigner V, Dusek M. Single crystal structure feature and quantum mechanical studies of a new binuclear Bi (III) complex and its activity against Helicobacter pylori. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Sisin NNT, Mat NFC, Rashid RA, Dollah N, Razak KA, Geso M, Algethami M, Rahman WN. Natural Baicalein-Rich Fraction as Radiosensitizer in Combination with Bismuth Oxide Nanoparticles and Cisplatin for Clinical Radiotherapy. Int J Nanomedicine 2022; 17:3853-3874. [PMID: 36081572 PMCID: PMC9448000 DOI: 10.2147/ijn.s370478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/19/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
| | - Nor Fazila Che Mat
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | | | - Norhayati Dollah
- Department of Nuclear Medicine, Radiotherapy and Oncology, Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Khairunisak Abdul Razak
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - Moshi Geso
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Merfat Algethami
- Faculty of Science, Taif University, Al Hawiyah, Taif, Saudi Arabia
| | - Wan Nordiana Rahman
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Correspondence: Wan Nordiana Rahman, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia, Tel +6097677811, Email
| |
Collapse
|
7
|
Xin Y, Wang Z, Yao C, Shen H, Miao Y. Bismuth, a Previously Less‐studied Element, Is Bursting into New Hotspots. ChemistrySelect 2022. [DOI: 10.1002/slct.202201220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yanmei Xin
- Institute of Bismuth Science School of Materials and Chemistry University of Shanghai for Science and Technology Jungong Rd 334# Shanghai 200093 China
| | - Zhuo Wang
- Institute of Bismuth Science School of Materials and Chemistry University of Shanghai for Science and Technology Jungong Rd 334# Shanghai 200093 China
| | - Congfei Yao
- Institute of Bismuth Science School of Materials and Chemistry University of Shanghai for Science and Technology Jungong Rd 334# Shanghai 200093 China
| | - Haocheng Shen
- Institute of Bismuth Science School of Materials and Chemistry University of Shanghai for Science and Technology Jungong Rd 334# Shanghai 200093 China
| | - Yuqing Miao
- Institute of Bismuth Science School of Materials and Chemistry University of Shanghai for Science and Technology Jungong Rd 334# Shanghai 200093 China
| |
Collapse
|
8
|
Pellei M, Del Bello F, Porchia M, Santini C. Zinc coordination complexes as anticancer agents. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214088] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Korkola NC, Hudson E, Stillman MJ. Structurally restricted Bi(III) metallation of apo-βMT1a: metal-induced tangling. Metallomics 2021; 13:6253221. [PMID: 33899918 DOI: 10.1093/mtomcs/mfab023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/13/2022]
Abstract
Non-toxic bismuth salts are used in anti-ulcer medications and to protect against nephrotoxicity from anticancer drugs. Bismuth salts also induce metallothionein (MT), a metal-binding protein that lacks a formal secondary structure. We report the impact on the metallation properties of Bi(III) to the 9-cysteine β fragment of MT as a function of cysteine accessibility using electrospray ionization mass spectrometry. At pH 7.4, Bi2βMT formed cooperatively. Cysteine modification shows that each Bi(III) was terminally bound to three cysteinyl thiolates. Non-cooperative Bi(III) binding was observed at pH 2.3, where cysteine accessibility is increased. However, competition from H4EDTA inhibited Bi(III) binding. When GdmCl, a well-known denaturing agent, was used to increase cysteine accessibility of the apoβMT at pH 7.4, a greater fraction of Bi3βMT formed using all nine cysteines. The change in binding profile and equilibrium of Bi2βMT was determined as a function of acidification, which changed as a result of competition with H4EDTA. There was no Bi(III) transfer between Bi2βMT, Cd3βMT, and Zn3βMT. This lack of metal exchange and the resistance towards binding the third Bi(III) suggest a rigidity in the Bi2βMT binding sites that inhibits Bi(III) mobility. These experiments emphasize the conformational control of metallation that results in substantially different metallated products: at pH 7.4 (many cysteines buried) Bi2βMT, whereas at pH 7.4 (all cysteines accessible) enhanced formation of Bi3βMT. These data suggest that the addition of the first two Bi(III) crosslinks the protein, blocking access to the remaining three cysteines for the third Bi(III), as a result of tangle formation.
Collapse
Affiliation(s)
- Natalie C Korkola
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 3K7, Canada
| | - Elyse Hudson
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 3K7, Canada
| | - Martin J Stillman
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 3K7, Canada
| |
Collapse
|
10
|
Wang R, Wang S, Chan S, Wang Y, Zhang Y, Zuo Z, Chi-Fung Chan G, Li H, Sun H. Bismuth Porphyrin Antagonizes Cisplatin-Induced Nephrotoxicity via Unexpected Metallothionein-Independent Mechanisms. iScience 2020; 23:101054. [PMID: 32353763 PMCID: PMC7191608 DOI: 10.1016/j.isci.2020.101054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/10/2020] [Accepted: 04/06/2020] [Indexed: 12/29/2022] Open
Abstract
Cisplatin (CDDP) has been a highly successful anticancer drug in cancer therapy; however, its further application suffers severe nephrotoxicity. Herein, we identify bismuth tetraphenylporphyrinate [Bi(TPP)] as a potent protective agent against CDDP-induced nephrotoxicity. Bi(TPP) attenuates CDDP-induced acute kidney injury and prevents the death of mice exposed to a lethal dose of CDDP. The protective potency of bismuth porphyrin complexes could be optimized by varying lipophilic TPP ligands with ideal ClogP values of 8–14. Unexpectedly, Bi(TPP) exhibited a protective role via metallothionein-independent pathways, i.e., maintenance of redox homeostasis and energy supplement, elimination of accumulated platinum in the kidney, and inactivation of caspases cascade in apoptotic pathway. Significantly, Bi(TPP) does not compromise the antitumor activity of CDDP in the orthotopic tumor xenograft mouse model. These findings suggest that Bi(TPP) could be incorporated into current CDDP-based cancer therapy as a nephroprotective agent. Bi(TPP), a potent nephroprotectant against cisplatin-induced toxicity, is disclosed Protective potency of Bi(TPP) could be modulated by varying lipophilic TPP ligands Bi(TPP) ameliorates cisplatin-induced renal damage via multiple mechanisms Combined therapy with Bi(TPP) does not compromise the antitumor efficacy of cisplatin
Collapse
Affiliation(s)
- Runming Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong S.A.R., P.R. China
| | - Suyu Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong S.A.R., P.R. China
| | - Shing Chan
- Department of Paediatrics & Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong S.A.R., P.R. China
| | - Yuchuan Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong S.A.R., P.R. China
| | - Yufeng Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong S.A.R., P.R. China
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong S.A.R., P.R. China
| | - Godfrey Chi-Fung Chan
- Department of Paediatrics & Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong S.A.R., P.R. China
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong S.A.R., P.R. China
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong S.A.R., P.R. China.
| |
Collapse
|
11
|
Merlos Rodrigo MA, Jimenez Jimemez AM, Haddad Y, Bodoor K, Adam P, Krizkova S, Heger Z, Adam V. Metallothionein isoforms as double agents - Their roles in carcinogenesis, cancer progression and chemoresistance. Drug Resist Updat 2020; 52:100691. [PMID: 32615524 DOI: 10.1016/j.drup.2020.100691] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 02/06/2023]
Abstract
Metallothioneins (MTs) are small cysteine-rich intracellular proteins with four major isoforms identified in mammals, designated MT-1 through MT-4. The best known biological functions of MTs are their ability to bind and sequester metal ions as well as their active role in redox homeostasis. Despite these protective roles, numerous studies have demonstrated that changes in MT expression could be associated with the process of carcinogenesis and participation in cell differentiation, proliferation, migration, and angiogenesis. Hence, MTs have the role of double agents, i.e., working with and against cancer. In view of their rich biochemical properties, it is not surprising that MTs participate in the emergence of chemoresistance in tumor cells. Many studies have demonstrated that MT overexpression is involved in the acquisition of resistance to anticancer drugs including cisplatin, anthracyclines, tyrosine kinase inhibitors and mitomycin. The evidence is gradually increasing for a cellular switch in MT functions, showing that they indeed have two faces: protector and saboteur. Initially, MTs display anti-oncogenic and protective roles; however, once the oncogenic process was launched, MTs are utilized by cancer cells for progression, survival, and contribution to chemoresistance. The duality of MTs can serve as a potential prognostic/diagnostic biomarker and can therefore pave the way towards the development of new cancer treatment strategies. Herein, we review and discuss MTs as tumor disease markers and describe their role in chemoresistance to distinct anticancer drugs.
Collapse
Affiliation(s)
- Miguel Angel Merlos Rodrigo
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
| | - Ana Maria Jimenez Jimemez
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Yazan Haddad
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Khaldon Bodoor
- Department of Applied Biology, Jordan University of Science and Technology, 3030, Irbid, Jordan
| | - Pavlina Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Sona Krizkova
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Zbynek Heger
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Vojtech Adam
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
12
|
Korkola NC, Scarrow PM, Stillman MJ. pH dependence of the non-cooperative binding of Bi3+ to human apo-metallothionein 1A: kinetics, speciation, and stoichiometry. Metallomics 2020; 12:435-448. [DOI: 10.1039/c9mt00285e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
ESI-MS along with cysteine modification show that the binding of Bi3+ to apo-metallothionein is non-cooperative with a coordination of BiS(cys)3 up to Bi6MT. Stopped flow kinetics reveal that the rate of binding depends on the pH and the Bi3+ anion.
Collapse
Affiliation(s)
| | - Patti M. Scarrow
- Department of Chemistry
- The University of Western Ontario
- London
- USA
| | | |
Collapse
|
13
|
Abstract
Although it has been used for centuries, bismuth remains one of the least understood elements in the periodic table. Metallic bismuth and bismuth compounds have been widely used in the manufacture of alloys, pigments, cosmetics, and pharmaceuticals. As a “green” heavy metal, the substitution of lead with bismuth in some industries may partially resolve the environmental problems related to heavy metal pollution. In health care, as bismuth has low toxicity to humans, bismuth-based drugs such as colloidal bismuth subcitrate (CBS), ranitidine bismuth citrate (RBC), bismuth subsalicylate (BSS), bismuth iodoform and radioactive bismuth (212Bi/213Bi) complexes have been developed and used in clinics to treat various diseases. In most cases, bismuth therapies exhibit high therapeutic efficacies and little side effects; nevertheless, there are still reported cases of bismuth toxicity caused by bismuth over-dosage.
Collapse
|