1
|
Huang T, Leung B, Huang Y, Price L, Gui J, Lau BW. A murine model to evaluate immunotherapy effectiveness for human Fanconi anemia-mutated acute myeloid leukemia. PLoS One 2024; 19:e0292375. [PMID: 38289944 PMCID: PMC10826936 DOI: 10.1371/journal.pone.0292375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/19/2023] [Indexed: 02/01/2024] Open
Abstract
Fanconi anemia (FA)-mutated acute myeloid leukemia (AML) is a secondary AML with very poor prognosis and limited therapeutic options due to increased sensitivity to DNA-damaging agents. PD-1 immune checkpoint inhibitors upregulate T-cell killing of cancer cells and is a class of promising treatment for FA-AML. Here, we developed a novel FA-AML murine model that allows the study of human AML with a humanized immune system in order to investigate immunotherapeutic treatments in vivo. FA-AML1 cells and non-FA-mutated Kasumi-1 cells were injected into 8-10 week old NSG mice. Once leukemic engraftment was confirmed by HLA-DR expression in the peripheral blood, human peripheral blood mononuclear cells (hPBMCs) were injected into the mice. One week post-hPBMCs injection, Nivolumab (PD-1 inhibitor) or PBS vehicle control was administered to the mice bi-weekly. In our Nivolumab treated mice, FA-AML1, but not Kasumi-1-engrafted mice, had significantly prolonged overall survival. Both FA-AML1 and Kasumi-1 engrafted mice had decreased spleen weights. Higher leukemic infiltration into vital organs was observed in FA-AML1 engrafted mice compared to Kasumi-1 engrafted mice. In conclusion, our novel humanized murine model of FA-mutated AML is an attractive tool for supporting further studies and clinical trials using PD-1 inhibitors to treat FA-mutated AML.
Collapse
Affiliation(s)
- Tingting Huang
- Dartmouth Health Cancer Center, Department of Pediatrics, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States of America
| | - Bernice Leung
- Dartmouth Health Cancer Center, Department of Pediatrics, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States of America
| | - Yuyang Huang
- Dartmouth Health Cancer Center, Department of Pediatrics, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States of America
| | - Laura Price
- Dartmouth Health Cancer Center, Department of Pediatrics, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States of America
| | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine, Lebanon, NH, United States of America
| | - Bonnie W. Lau
- Dartmouth Health Cancer Center, Department of Pediatrics, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States of America
| |
Collapse
|
2
|
Karnik I, Her Z, Neo SH, Liu WN, Chen Q. Emerging Preclinical Applications of Humanized Mouse Models in the Discovery and Validation of Novel Immunotherapeutics and Their Mechanisms of Action for Improved Cancer Treatment. Pharmaceutics 2023; 15:1600. [PMID: 37376049 DOI: 10.3390/pharmaceutics15061600] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Cancer therapeutics have undergone immense research over the past decade. While chemotherapies remain the mainstay treatments for many cancers, the advent of new molecular techniques has opened doors for more targeted modalities towards cancer cells. Although immune checkpoint inhibitors (ICIs) have demonstrated therapeutic efficacy in treating cancer, adverse side effects related to excessive inflammation are often reported. There is a lack of clinically relevant animal models to probe the human immune response towards ICI-based interventions. Humanized mouse models have emerged as valuable tools for pre-clinical research to evaluate the efficacy and safety of immunotherapy. This review focuses on the establishment of humanized mouse models, highlighting the challenges and recent advances in these models for targeted drug discovery and the validation of therapeutic strategies in cancer treatment. Furthermore, the potential of these models in the process of uncovering novel disease mechanisms is discussed.
Collapse
Affiliation(s)
- Isha Karnik
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Zhisheng Her
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Shu Hui Neo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Wai Nam Liu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| |
Collapse
|
3
|
Recent Developments in NSG and NRG Humanized Mouse Models for Their Use in Viral and Immune Research. Viruses 2023; 15:v15020478. [PMID: 36851692 PMCID: PMC9962986 DOI: 10.3390/v15020478] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Humanized mouse models have been widely used in virology, immunology, and oncology in the last decade. With advances in the generation of knockout mouse strains, it is now possible to generate animals in which human immune cells or human tissue can be engrafted. These models have been used for the study of human infectious diseases, cancers, and autoimmune diseases. In recent years, there has been an increase in the use of humanized mice to model human-specific viral infections. A human immune system in these models is crucial to understand the pathogenesis observed in human patients, which allows for better treatment design and vaccine development. Recent advances in our knowledge about viral pathogenicity and immune response using NSG and NRG mice are reviewed in this paper.
Collapse
|
4
|
Chandra VM, Wilkins LR, Brautigan DL. Animal Models of Hepatocellular Carcinoma for Local-Regional Intraarterial Therapies. Radiol Imaging Cancer 2022; 4:e210098. [PMID: 35838531 PMCID: PMC9358488 DOI: 10.1148/rycan.210098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 05/10/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Animal models play a crucial role in developing and testing new therapies for hepatocellular carcinoma (HCC), providing preclinical evidence prior to exploring human safety and efficacy outcomes. The interventional radiologist must weigh the advantages and disadvantages of various animal models available when testing a new local-regional therapy. This review highlights the currently available animal models for testing local-regional therapies for HCC and details the importance of considering animal genetics, tumor biology, and molecular mechanisms when ultimately choosing an animal model. Keywords: Animal Studies, Interventional-Vascular, Molecular Imaging-Clinical Translation, Molecular Imaging-Cancer, Chemoembolization, Liver © RSNA, 2022.
Collapse
|
5
|
Beserra AO, Estevan EC, Bezerra SM, Torrezan GT, Ikegami A, Dellê H, Cunha IW, Meira IT, Carraro DM, Lara PN, Zequi SC, Martins VR, Santos TG. Patient-Derived Renal Cell Carcinoma Xenografts Capture Tumor Genetic Profiles and Aggressive Behaviors. KIDNEY CANCER 2022. [DOI: 10.3233/kca-210011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Patient-derived xenografts (PDX) have emerged as one of the most promising model systems to study cancer biology and to develop new antineoplastic drugs. Renal cell carcinoma (RCC) represents up to 90% of all kidney tumors, exhibits aggressive behavior, and has a propensity for metastasis. At diagnosis, 30% of patients with RCC have metastases, while up to 50% of those with localized disease treated with curative protocols experience recurrence. OBJECTIVE: This study aimed to establish an RCC PDX platform to identify novel clinical and molecular biomarkers of recurrence risk in order to facilitate precision medicine. METHODS: Tumor samples were obtained from surgical specimens of 87 RCC patients; fragments were implanted in immunodeficient NOD/SCID/gamma (NSG) mice. Seventeen fragments were implanted subcutaneously in an initial group while a second group of 70 samples were implanted orthotopically in the subcapsular space. RESULTS: A total of 19 PDX developed only after orthotopic implantation, and included 15 cases of clear cell RCC subtype, 3 cases of papillary subtype, and one unclassifiable tumor. One PDX of clear cell RCC recapitulated the phenotype of vena caval tumor thrombus extension that had been diagnosed in the source patient. PDX characterization by immunohistochemistry and targeted sequencing indicated that all PDXs preserved RCC identity and major molecular alterations. Moreover, the capacity of tumor engraftment was a strong prognostic indicator for patients with locally advanced disease. CONCLUSION: Taken together, these results suggest that the orthotopic xenograft model of RCC represents a suitable tool to study RCC biology, identify biomarkers, and to test therapeutic candidates.
Collapse
Affiliation(s)
- Adriano O. Beserra
- International Research Center, A.C. Camargo Cancer Center, São Paulo – Brazil
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo – Brazil
| | - Ethiene C. Estevan
- International Research Center, A.C. Camargo Cancer Center, São Paulo – Brazil
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo – Brazil
| | | | - Giovana T. Torrezan
- International Research Center, A.C. Camargo Cancer Center, São Paulo – Brazil
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo – Brazil
| | - Amanda Ikegami
- International Research Center, A.C. Camargo Cancer Center, São Paulo – Brazil
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo – Brazil
| | - Humberto Dellê
- Graduate Program in Medicine, Universidade Nove de Julho, São Paulo – Brazil
| | - Isabela W. Cunha
- Institute of Pathology, Rede D’OR-São Luiz and D’Or Institute for Research and Education (IDOR), São Paulo – Brazil
| | - Isabella T. Meira
- International Research Center, A.C. Camargo Cancer Center, São Paulo – Brazil
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo – Brazil
| | - Dirce M. Carraro
- International Research Center, A.C. Camargo Cancer Center, São Paulo – Brazil
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo – Brazil
| | - Primo N. Lara
- University of California Davis Comprehensive Cancer Center, Sacramento, CA – USA
| | - Stenio C. Zequi
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo – Brazil
- Reference Center of Urology, A.C. Camargo Cancer Center, São Paulo – Brazil
- LARCG -Latin American Renal Cancer Group
| | - Vilma R. Martins
- International Research Center, A.C. Camargo Cancer Center, São Paulo – Brazil
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo – Brazil
| | - Tiago G. Santos
- International Research Center, A.C. Camargo Cancer Center, São Paulo – Brazil
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo – Brazil
| |
Collapse
|
6
|
Abstract
As medical and pharmacological technology advances, new and complex modalities of disease treatment that are more personalized and targeted are being developed. Often these modalities must be validated in the presence of critical components of the human biological system. Given the incongruencies between murine and human biology, as well as the human-tropism of certain drugs and pathogens, the selection of animal models that accurately recapitulate the intricacies of the human biological system becomes more salient for disease modeling and preclinical testing. Immunodeficient mice engrafted with functional human tissues (so-called humanized mice), which allow for the study of physiologically relevant disease mechanisms, have thus become an integral aspect of biomedical research. This review discusses the recent advancements and applications of humanized mouse models on human immune system and liver humanization in modeling human diseases, as well as how they can facilitate translational medicine.
Collapse
Affiliation(s)
- Weijian Ye
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; ,
| |
Collapse
|
7
|
Sepporta MV, Praz V, Balmas Bourloud K, Joseph JM, Jauquier N, Riggi N, Nardou-Auderset K, Petit A, Scoazec JY, Sartelet H, Renella R, Mühlethaler-Mottet A. TWIST1 expression is associated with high-risk neuroblastoma and promotes primary and metastatic tumor growth. Commun Biol 2022; 5:42. [PMID: 35022561 PMCID: PMC8755726 DOI: 10.1038/s42003-021-02958-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 12/09/2021] [Indexed: 11/09/2022] Open
Abstract
The embryonic transcription factors TWIST1/2 are frequently overexpressed in cancer, acting as multifunctional oncogenes. Here we investigate their role in neuroblastoma (NB), a heterogeneous childhood malignancy ranging from spontaneous regression to dismal outcomes despite multimodal therapy. We first reveal the association of TWIST1 expression with poor survival and metastasis in primary NB, while TWIST2 correlates with good prognosis. Secondly, suppression of TWIST1 by CRISPR/Cas9 results in a reduction of tumor growth and metastasis colonization in immunocompromised mice. Moreover, TWIST1 knockout tumors display a less aggressive cellular morphology and a reduced disruption of the extracellular matrix (ECM) reticulin network. Additionally, we identify a TWIST1-mediated transcriptional program associated with dismal outcome in NB and involved in the control of pathways mainly linked to the signaling, migration, adhesion, the organization of the ECM, and the tumor cells versus tumor stroma crosstalk. Taken together, our findings confirm TWIST1 as promising therapeutic target in NB.
Collapse
Affiliation(s)
- Maria-Vittoria Sepporta
- Pediatric Hematology-Oncology Research Laboratory, Woman-Mother-Child Department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Viviane Praz
- Pediatric Hematology-Oncology Research Laboratory, Woman-Mother-Child Department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Experimental Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Katia Balmas Bourloud
- Pediatric Hematology-Oncology Research Laboratory, Woman-Mother-Child Department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jean-Marc Joseph
- Pediatric Surgery, Woman-Mother-Child Department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nicolas Jauquier
- Pediatric Surgery, Woman-Mother-Child Department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nicolò Riggi
- Experimental Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Katya Nardou-Auderset
- Pediatric Hematology-Oncology Research Laboratory, Woman-Mother-Child Department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Ophthalmic Hospital Jules-Gonin - Fondation Asile Des Aveugles, Lausanne, Switzerland
| | - Audrey Petit
- Department of Pathology, Medical University of Grenoble, Grenoble, France
- Pediatric Hematology Oncology Department, CHU de la Timone, Marseille, France
| | - Jean-Yves Scoazec
- Department of Biology and Medical Pathology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Hervé Sartelet
- Department of Pathology, Medical University of Grenoble, Grenoble, France
- Department of Biopathology, CHRU de Nancy, University of Lorraine, Nancy, France
| | - Raffaele Renella
- Pediatric Hematology-Oncology Research Laboratory, Woman-Mother-Child Department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Annick Mühlethaler-Mottet
- Pediatric Hematology-Oncology Research Laboratory, Woman-Mother-Child Department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
8
|
Gu CY, Lee TKW. Preclinical mouse models of hepatocellular carcinoma: An overview and update. Exp Cell Res 2022; 412:113042. [DOI: 10.1016/j.yexcr.2022.113042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 11/29/2022]
|
9
|
Hope A, Wade SJ, Aghmesheh M, Vine KL. Localized delivery of immunotherapy via implantable scaffolds for breast cancer treatment. J Control Release 2021; 341:399-413. [PMID: 34863842 DOI: 10.1016/j.jconrel.2021.11.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/12/2022]
Abstract
Breast cancer remains a leading global cause of morbidity and mortality. While the field of immunotherapy is a promising avenue of investigation and has revolutionized the standard of care for melanoma and lung cancer, modest response rates and a high incidence of immune-related adverse events often necessitate the administration of a sub-therapeutic dose or treatment cessation. Injectable and implantable drug delivery devices present a novel strategy to achieve sustained delivery of potent concentrations of drug directly to the tumor site and minimize systemic toxicity. This review will address the current limitations with conventional immunotherapy for breast cancer treatment, and the recent developments and future prospects in localized delivery strategies. We describe implantable scaffolds and injectable biomaterials for the localized delivery of immunotherapy, which can improve the safety and efficacy of immunotherapies. We discuss the limitations of these delivery systems, such as the influence of shape and material type on drug release and tumor uptake. The challenges of clinical translation, such as the availability of appropriate preclinical animal models and accurate reporting are also discussed. Considerations of these issues will pave the way for effective new therapies that will improve treatment response, patient survival and quality of life for breast cancer patients.
Collapse
Affiliation(s)
- Ashleigh Hope
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, NSW, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Samantha J Wade
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, NSW, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Morteza Aghmesheh
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Illawarra Cancer Care Centre, Illawarra Shoalhaven Local Health District, Wollongong Hospital, Wollongong, NSW, Australia
| | - Kara L Vine
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, NSW, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.
| |
Collapse
|
10
|
Teijeira Crespo A, Burnell S, Capitani L, Bayliss R, Moses E, Mason GH, Davies JA, Godkin AJ, Gallimore AM, Parker AL. Pouring petrol on the flames: Using oncolytic virotherapies to enhance tumour immunogenicity. Immunology 2021; 163:389-398. [PMID: 33638871 PMCID: PMC8274202 DOI: 10.1111/imm.13323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Oncolytic viruses possess the ability to infect, replicate and lyse malignantly transformed tumour cells. This oncolytic activity amplifies the therapeutic advantage and induces a form of immunogenic cell death, characterized by increased CD8 + T-cell infiltration into the tumour microenvironment. This important feature of oncolytic viruses can result in the warming up of immunologically 'cold' tumour types, presenting the enticing possibility that oncolytic virus treatment combined with immunotherapies may enhance efficacy. In this review, we assess some of the most promising candidates that might be used for oncolytic virotherapy: immunotherapy combinations. We assess their potential as separate agents or as agents combined into a single therapy, where the immunotherapy is encoded within the genome of the oncolytic virus. The development of such advanced agents will require increasingly sophisticated model systems for their preclinical assessment and evaluation. In vivo rodent model systems are fraught with limitations in this regard. Oncolytic viruses replicate selectively within human cells and therefore require human xenografts in immune-deficient mice for their evaluation. However, the use of immune-deficient rodent models hinders the ability to study immune responses against any immunomodulatory transgenes engineered within the viral genome and expressed within the tumour microenvironment. There has therefore been a shift towards the use of more sophisticated ex vivo patient-derived model systems based on organoids and explant co-cultures with immune cells, which may be more predictive of efficacy than contrived and artificial animal models. We review the best of those model systems here.
Collapse
Affiliation(s)
- Alicia Teijeira Crespo
- Division of Cancer and
GeneticsCardiff University School of Medicine
Cardiff UniversityCardiffUK
| | - Stephanie Burnell
- Division of Infection and Immunity
Cardiff University School of MedicineCardiff UniversityCardiffUK
| | - Lorenzo Capitani
- Division of Infection and Immunity
Cardiff University School of MedicineCardiff UniversityCardiffUK
| | - Rebecca Bayliss
- Division of Cancer and
GeneticsCardiff University School of Medicine
Cardiff UniversityCardiffUK
| | - Elise Moses
- Division of Cancer and
GeneticsCardiff University School of Medicine
Cardiff UniversityCardiffUK
| | - Georgina H. Mason
- Division of Infection and Immunity
Cardiff University School of MedicineCardiff UniversityCardiffUK
| | - James A. Davies
- Division of Cancer and
GeneticsCardiff University School of Medicine
Cardiff UniversityCardiffUK
| | - Andrew J. Godkin
- Division of Infection and Immunity
Cardiff University School of MedicineCardiff UniversityCardiffUK
| | - Awen M. Gallimore
- Division of Infection and Immunity
Cardiff University School of MedicineCardiff UniversityCardiffUK
| | - Alan L. Parker
- Division of Cancer and
GeneticsCardiff University School of Medicine
Cardiff UniversityCardiffUK
| |
Collapse
|
11
|
Tang LJW, Zaseela A, Toh CCM, Adine C, Aydar AO, Iyer NG, Fong ELS. Engineering stromal heterogeneity in cancer. Adv Drug Deliv Rev 2021; 175:113817. [PMID: 34087326 DOI: 10.1016/j.addr.2021.05.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/19/2021] [Accepted: 05/29/2021] [Indexed: 02/09/2023]
Abstract
Based on our exponentially increasing knowledge of stromal heterogeneity from advances in single-cell technologies, the notion that stromal cell types exist as a spectrum of unique subpopulations that have specific functions and spatial distributions in the tumor microenvironment has significant impact on tumor modeling for drug development and personalized drug testing. In this Review, we discuss the importance of incorporating stromal heterogeneity and tumor architecture, and propose an overall approach to guide the reconstruction of stromal heterogeneity in vitro for tumor modeling. These next-generation tumor models may support the development of more precise drugs targeting specific stromal cell subpopulations, as well as enable improved recapitulation of patient tumors in vitro for personalized drug testing.
Collapse
Affiliation(s)
- Leon Jia Wei Tang
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Ayshath Zaseela
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | | | - Christabella Adine
- Department of Biomedical Engineering, National University of Singapore, Singapore; The N.1 Institute for Health, National University of Singapore, Singapore
| | - Abdullah Omer Aydar
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - N Gopalakrishna Iyer
- National Cancer Centre Singapore, Singapore; Duke-NUS Medical School, Singapore.
| | - Eliza Li Shan Fong
- Department of Biomedical Engineering, National University of Singapore, Singapore; The N.1 Institute for Health, National University of Singapore, Singapore.
| |
Collapse
|
12
|
Blidisel A, Marcovici I, Coricovac D, Hut F, Dehelean CA, Cretu OM. Experimental Models of Hepatocellular Carcinoma-A Preclinical Perspective. Cancers (Basel) 2021; 13:3651. [PMID: 34359553 PMCID: PMC8344976 DOI: 10.3390/cancers13153651] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the most frequent form of primary liver carcinoma, is a heterogenous and complex tumor type with increased incidence, poor prognosis, and high mortality. The actual therapeutic arsenal is narrow and poorly effective, rendering this disease a global health concern. Although considerable progress has been made in terms of understanding the pathogenesis, molecular mechanisms, genetics, and therapeutical approaches, several facets of human HCC remain undiscovered. A valuable and prompt approach to acquire further knowledge about the unrevealed aspects of HCC and novel therapeutic candidates is represented by the application of experimental models. Experimental models (in vivo and in vitro 2D and 3D models) are considered reliable tools to gather data for clinical usability. This review offers an overview of the currently available preclinical models frequently applied for the study of hepatocellular carcinoma in terms of initiation, development, and progression, as well as for the discovery of efficient treatments, highlighting the advantages and the limitations of each model. Furthermore, we also focus on the role played by computational studies (in silico models and artificial intelligence-based prediction models) as promising novel tools in liver cancer research.
Collapse
Affiliation(s)
- Alexandru Blidisel
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (A.B.); (F.H.); (O.M.C.)
| | - Iasmina Marcovici
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Dorina Coricovac
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Florin Hut
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (A.B.); (F.H.); (O.M.C.)
| | - Cristina Adriana Dehelean
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Octavian Marius Cretu
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (A.B.); (F.H.); (O.M.C.)
| |
Collapse
|
13
|
Zhang Y, Li Y, Chen K, Qian L, Wang P. Oncolytic virotherapy reverses the immunosuppressive tumor microenvironment and its potential in combination with immunotherapy. Cancer Cell Int 2021; 21:262. [PMID: 33985527 PMCID: PMC8120729 DOI: 10.1186/s12935-021-01972-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
It has been intensively reported that the immunosuppressive tumor microenvironment (TME) results in tumor resistance to immunotherapy, especially immune checkpoint blockade and chimeric T cell antigen therapy. As an emerging therapeutic agent, oncolytic viruses (OVs) can specifically kill malignant cells and modify immune and non-immune TME components through their intrinsic properties or genetically incorporated with TME regulators. Strategies of manipulating OVs against the immunosuppressive TME include serving as a cancer vaccine, expressing proinflammatory factors and immune checkpoint inhibitors, and regulating nonimmune stromal constituents. In this review, we summarized the mechanisms and applications of OVs against the immunosuppressive TME, and strategies of OVs in combination with immunotherapy. We also introduced future directions to achieve efficient clinical translation including optimization of preclinical models that simulate the human TME and achieving systemic delivery of OVs.
Collapse
Affiliation(s)
- Yalei Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ye Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China
| | - Kun Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ling Qian
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Peng Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
14
|
Preclinical models and technologies to advance nanovaccine development. Adv Drug Deliv Rev 2021; 172:148-182. [PMID: 33711401 DOI: 10.1016/j.addr.2021.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
The remarkable success of targeted immunotherapies is revolutionizing cancer treatment. However, tumor heterogeneity and low immunogenicity, in addition to several tumor-associated immunosuppression mechanisms are among the major factors that have precluded the success of cancer vaccines as targeted cancer immunotherapies. The exciting outcomes obtained in patients upon the injection of tumor-specific antigens and adjuvants intratumorally, reinvigorated interest in the use of nanotechnology to foster the delivery of vaccines to address cancer unmet needs. Thus, bridging nano-based vaccine platform development and predicted clinical outcomes the selection of the proper preclinical model will be fundamental. Preclinical models have revealed promising outcomes for cancer vaccines. However, only few cases were associated with clinical responses. This review addresses the major challenges related to the translation of cancer nano-based vaccines to the clinic, discussing the requirements for ex vivo and in vivo models of cancer to ensure the translation of preclinical success to patients.
Collapse
|
15
|
Dhandapani H, Seetharaman A, Jayakumar H, Ganeshrajah S, Singh SS, Thangarajan R, Ramanathan P. Autologous cervical tumor lysate pulsed dendritic cell stimulation followed by cisplatin treatment abrogates FOXP3+ cells in vitro. J Gynecol Oncol 2021; 32:e59. [PMID: 33908712 PMCID: PMC8192235 DOI: 10.3802/jgo.2021.32.e59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/08/2021] [Accepted: 03/13/2021] [Indexed: 11/30/2022] Open
Abstract
Objective Dendritic cells (DCs) are administered as immunotherapeutic adjuvants after the completion of standard treatment in most settings. However, our Phase I trial indicated that one patient out of four, who received autologous tumor lysate-pulsed dendritic cell (TLDC) also received cisplatin chemotherapy and experienced complete regression of her lung lesion, continuing to be disease free till date. Hence, the objective of our current study is to evaluate the sustenance or augmentation of immune responses when autologous human papillomavirus positive cervical tumor lysate pulsed DC- are combined with cisplatin, using co-culture assays in vitro. Methods Before treatment, peripheral blood and punch biopsy samples were collected from 23 cervical cancer patients after obtaining an informed consent. DC functionality was confirmed through phenotypic and functional assays using autologous peripheral blood mononuclear cells as responders. For cisplatin experiments, the drug was added at 150, 200 (clinical dose equivalent), and 400 µM concentrations to DCs alone or DC-T cell co-cultures. Phenotypic assessment and functional characterization of DCs was done using flow cytometry. Cytokine enzyme-linked immunosorbent assay and interferon (IFN)-γ enzyme-linked immune absorbent spot assays were also performed. Results The functionality of TLDCs was not compromised upon cisplatin treatment in vitro even at the highest (400 μM) concentration. Even though cisplatin treatment reduced the secretion of IFN-γ and interleukin (IL)-12p40 in co-cultures stimulated with TLDCs, this effect was not significant (p>0.05). A doubling of IFN-γ secretion following cisplatin treatment was observed in at least one of three independent experiments. Additional experiments showed a reduction in both FOXP3+ regulatory T cells and IL-10 levels. Conclusion Our results provide evidence that cisplatin treatment may be given after autologous TLDC administration to maintain or improve a productive anti-tumor response in vaccinated patients.
Collapse
Affiliation(s)
- Hemavathi Dhandapani
- Department of Molecular Oncology, Cancer Institute (WIA), Dr. Krishnamurthy Campus, Chennai 600036, India
| | - Abirami Seetharaman
- Department of Molecular Oncology, Cancer Institute (WIA), Dr. Krishnamurthy Campus, Chennai 600036, India
| | - Hascitha Jayakumar
- Department of Molecular Oncology, Cancer Institute (WIA), Dr. Krishnamurthy Campus, Chennai 600036, India
| | - Selvaluxmy Ganeshrajah
- Department of Radiation Oncology, Cancer Institute (WIA), Dr. Krishnamurthy Campus, Chennai 600036, India
| | - Shirley Sunder Singh
- Department of Oncopathology, Cancer Institute (WIA), Dr. Krishnamurthy Campus, Chennai 600036, India
| | - Rajkumar Thangarajan
- Department of Molecular Oncology, Cancer Institute (WIA), Dr. Krishnamurthy Campus, Chennai 600036, India
| | - Priya Ramanathan
- Department of Molecular Oncology, Cancer Institute (WIA), Dr. Krishnamurthy Campus, Chennai 600036, India.
| |
Collapse
|
16
|
Aaes TL, Vandenabeele P. The intrinsic immunogenic properties of cancer cell lines, immunogenic cell death, and how these influence host antitumor immune responses. Cell Death Differ 2021; 28:843-860. [PMID: 33214663 PMCID: PMC7937679 DOI: 10.1038/s41418-020-00658-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 01/30/2023] Open
Abstract
Modern cancer therapies often involve the combination of tumor-directed cytotoxic strategies and generation of a host antitumor immune response. The latter is unleashed by immunotherapies that activate the immune system generating a more immunostimulatory tumor microenvironment and a stronger tumor antigen-specific immune response. Studying the interaction between antitumor cytotoxic therapies, dying cancer cells, and the innate and adaptive immune system requires appropriate experimental tumor models in mice. In this review, we discuss the immunostimulatory and immunosuppressive properties of cancer cell lines commonly used in immunogenic cell death (ICD) studies being apoptosis or necroptosis. We will especially focus on the antigenic component of immunogenicity. While in several cancer cell lines the epitopes of endogenously expressed tumor antigens are known, these intrinsic epitopes are rarely determined in experimental apoptotic or necroptotic ICD settings. Instead by far the most ICD research studies investigate the antigenic response against exogenously expressed model antigens such as ovalbumin or retroviral epitopes (e.g., AH1). In this review, we will argue that the immune response against endogenous tumor antigens and the immunopeptidome profile of cancer cell lines affect the eventual biological readouts in the typical prophylactic tumor vaccination type of experiments used in ICD research, and we will propose additional methods involving immunopeptidome profiling, major histocompatibility complex molecule expression, and identification of tumor-infiltrating immune cells to document intrinsic immunogenicity following different cell death modalities.
Collapse
Affiliation(s)
- Tania Løve Aaes
- grid.11486.3a0000000104788040Unit for Cell Clearance in Health and Disease, VIB Center for Inflammation Research, Ghent, Belgium ,grid.5342.00000 0001 2069 7798Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium ,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Peter Vandenabeele
- grid.5342.00000 0001 2069 7798Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium ,Cancer Research Institute Ghent (CRIG), Ghent, Belgium ,grid.11486.3a0000000104788040Unit of Molecular Signaling and Cell Death, VIB Center for Inflammation Research, Ghent, Belgium
| |
Collapse
|
17
|
Lopes N, Correia VG, Palma AS, Brito C. Cracking the Breast Cancer Glyco-Code through Glycan-Lectin Interactions: Targeting Immunosuppressive Macrophages. Int J Mol Sci 2021; 22:1972. [PMID: 33671245 PMCID: PMC7922062 DOI: 10.3390/ijms22041972] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
The immune microenvironment of breast cancer (BC) is composed by high macrophage infiltrates, correlated with the most aggressive subtypes. Tumour-associated macrophages (TAM) within the BC microenvironment are key regulators of immune suppression and BC progression. Nevertheless, several key questions regarding TAM polarisation by BC are still not fully understood. Recently, the modulation of the immune microenvironment has been described via the recognition of abnormal glycosylation patterns at BC cell surface. These patterns rise as a resource to identify potential targets on TAM in the BC context, leading to the development of novel immunotherapies. Herein, we will summarize recent studies describing advances in identifying altered glycan structures in BC cells. We will focus on BC-specific glycosylation patterns known to modulate the phenotype and function of macrophages recruited to the tumour site, such as structures with sialylated or N-acetylgalactosamine epitopes. Moreover, the lectins present at the surface of macrophages reported to bind to such antigens, inducing tumour-prone TAM phenotypes, will also be highlighted. Finally, we will discuss and give our view on the potential and current challenges of targeting these glycan-lectin interactions to reshape the immunosuppressive landscape of BC.
Collapse
Affiliation(s)
- Nuno Lopes
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal;
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Viviana G. Correia
- UCIBIO, Departamento de Química, NOVA School of Science and Technology, FCT-NOVA, 2829-516 Caparica, Portugal;
| | - Angelina S. Palma
- UCIBIO, Departamento de Química, NOVA School of Science and Technology, FCT-NOVA, 2829-516 Caparica, Portugal;
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal;
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
18
|
Blanco‐Fernandez B, Gaspar VM, Engel E, Mano JF. Proteinaceous Hydrogels for Bioengineering Advanced 3D Tumor Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003129. [PMID: 33643799 PMCID: PMC7887602 DOI: 10.1002/advs.202003129] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/13/2020] [Indexed: 05/14/2023]
Abstract
The establishment of tumor microenvironment using biomimetic in vitro models that recapitulate key tumor hallmarks including the tumor supporting extracellular matrix (ECM) is in high demand for accelerating the discovery and preclinical validation of more effective anticancer therapeutics. To date, ECM-mimetic hydrogels have been widely explored for 3D in vitro disease modeling owing to their bioactive properties that can be further adapted to the biochemical and biophysical properties of native tumors. Gathering on this momentum, herein the current landscape of intrinsically bioactive protein and peptide hydrogels that have been employed for 3D tumor modeling are discussed. Initially, the importance of recreating such microenvironment and the main considerations for generating ECM-mimetic 3D hydrogel in vitro tumor models are showcased. A comprehensive discussion focusing protein, peptide, or hybrid ECM-mimetic platforms employed for modeling cancer cells/stroma cross-talk and for the preclinical evaluation of candidate anticancer therapies is also provided. Further development of tumor-tunable, proteinaceous or peptide 3D microtesting platforms with microenvironment-specific biophysical and biomolecular cues will contribute to better mimic the in vivo scenario, and improve the predictability of preclinical screening of generalized or personalized therapeutics.
Collapse
Affiliation(s)
- Barbara Blanco‐Fernandez
- Department of Chemistry, CICECO – Aveiro Institute of Materials, University of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute of Science and TechnologyBaldiri Reixac 10–12Barcelona08028Spain
| | - Vítor M. Gaspar
- Department of Chemistry, CICECO – Aveiro Institute of Materials, University of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - Elisabeth Engel
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute of Science and TechnologyBaldiri Reixac 10–12Barcelona08028Spain
- Materials Science and Metallurgical EngineeringPolytechnical University of Catalonia (UPC)Eduard Maristany 16Barcelona08019Spain
- CIBER en BioingenieríaBiomateriales y NanomedicinaCIBER‐BBNMadrid28029Spain
| | - João F. Mano
- Department of Chemistry, CICECO – Aveiro Institute of Materials, University of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| |
Collapse
|
19
|
Finch A, Solomou G, Wykes V, Pohl U, Bardella C, Watts C. Advances in Research of Adult Gliomas. Int J Mol Sci 2021; 22:ijms22020924. [PMID: 33477674 PMCID: PMC7831916 DOI: 10.3390/ijms22020924] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 01/03/2023] Open
Abstract
Diffuse gliomas are the most frequent brain tumours, representing 75% of all primary malignant brain tumours in adults. Because of their locally aggressive behaviour and the fact that they cannot be cured by current therapies, they represent one of the most devastating cancers. The present review summarises recent advances in our understanding of glioma development and progression by use of various in vitro and in vivo models, as well as more complex techniques including cultures of 3D organoids and organotypic slices. We discuss the progress that has been made in understanding glioma heterogeneity, alteration in gene expression and DNA methylation, as well as advances in various in silico models. Lastly current treatment options and future clinical trials, which aim to improve early diagnosis and disease monitoring, are also discussed.
Collapse
Affiliation(s)
- Alina Finch
- Institute of Cancer Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.F.); (G.S.); (V.W.)
| | - Georgios Solomou
- Institute of Cancer Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.F.); (G.S.); (V.W.)
- School of Medicine, Keele University, Staffordshire ST5 5NL, UK
| | - Victoria Wykes
- Institute of Cancer Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.F.); (G.S.); (V.W.)
- Department of Neurosurgery, University Hospital Birmingham, Birmingham B15 2WB, UK
| | - Ute Pohl
- Department of Cellular Pathology, University Hospital Birmingham, Birmingham B15 2WB, UK;
| | - Chiara Bardella
- Institute of Cancer Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.F.); (G.S.); (V.W.)
- Correspondence: (C.B.); (C.W.)
| | - Colin Watts
- Institute of Cancer Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.F.); (G.S.); (V.W.)
- Department of Neurosurgery, University Hospital Birmingham, Birmingham B15 2WB, UK
- Correspondence: (C.B.); (C.W.)
| |
Collapse
|
20
|
Onaciu A, Munteanu R, Munteanu VC, Gulei D, Raduly L, Feder RI, Pirlog R, Atanasov AG, Korban SS, Irimie A, Berindan-Neagoe I. Spontaneous and Induced Animal Models for Cancer Research. Diagnostics (Basel) 2020; 10:E660. [PMID: 32878340 PMCID: PMC7555044 DOI: 10.3390/diagnostics10090660] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Considering the complexity of the current framework in oncology, the relevance of animal models in biomedical research is critical in light of the capacity to produce valuable data with clinical translation. The laboratory mouse is the most common animal model used in cancer research due to its high adaptation to different environments, genetic variability, and physiological similarities with humans. Beginning with spontaneous mutations arising in mice colonies that allow for pursuing studies of specific pathological conditions, this area of in vivo research has significantly evolved, now capable of generating humanized mice models encompassing the human immune system in biological correlation with human tumor xenografts. Moreover, the era of genetic engineering, especially of the hijacking CRISPR/Cas9 technique, offers powerful tools in designing and developing various mouse strains. Within this article, we will cover the principal mouse models used in oncology research, beginning with behavioral science of animals vs. humans, and continuing on with genetically engineered mice, microsurgical-induced cancer models, and avatar mouse models for personalized cancer therapy. Moreover, the area of spontaneous large animal models for cancer research will be briefly presented.
Collapse
Affiliation(s)
- Anca Onaciu
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Raluca Munteanu
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Vlad Cristian Munteanu
- Department of Urology, The Oncology Institute “Prof Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania;
- Department of Anatomy and Embryology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Diana Gulei
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (L.R.); (R.P.)
| | - Richard-Ionut Feder
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (L.R.); (R.P.)
- Department of Morphological Sciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Atanas G. Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria;
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria
| | - Schuyler S. Korban
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Alexandru Irimie
- 11th Department of Surgical Oncology and Gynaecological Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania;
- Department of Surgery, The Oncology Institute Prof. Dr. Ion Chiricuta, 34–36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (L.R.); (R.P.)
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| |
Collapse
|
21
|
Wege AK, Kirchhammer N, Kazandjian LV, Prassl S, Brandt M, Piendl G, Ortmann O, Fischer S, Brockhoff G. A novel rabbit derived anti-HER2 antibody with pronounced therapeutic effectiveness on HER2-positive breast cancer cells in vitro and in humanized tumor mice (HTM). J Transl Med 2020; 18:316. [PMID: 32799890 PMCID: PMC7429704 DOI: 10.1186/s12967-020-02484-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/08/2020] [Indexed: 01/05/2023] Open
Abstract
Background Antibody based cancer therapies have achieved convincing success rates combining enhanced tumor specificity and reduced side effects in patients. Trastuzumab that targets the human epidermal growth factor related receptor 2 (HER2) is one of the greatest success stories in this field. For decades, trastuzumab based treatment regimens are significantly improving the prognosis of HER2-positive breast cancer patients both in the metastatic and the (neo-) adjuvant setting. Nevertheless, ≥ 50% of trastuzumab treated patients experience de-novo or acquired resistance. Therefore, an enhanced anti-HER2 targeting with improved treatment efficiency is still aspired. Methods Here, we determined cellular and molecular mechanisms involved in the treatment of HER2-positive BC cells with a new rabbit derived HER2 specific chimeric monoclonal antibody called “B100″. We evaluated the B100 treatment efficiency of HER2-positive BC cells with different sensitivity to trastuzumab both in vitro and in the presence of a human immune system in humanized tumor mice. Results B100 not only efficiently blocks cell proliferation but more importantly induces apoptotic tumor cell death. Detailed in vitro analyses of B100 in comparison to trastuzumab (and pertuzumab) revealed equivalent HER2 internalization and recycling capacity, similar Fc receptor signaling, but different HER2 epitope recognition with high binding and treatment efficiency. In trastuzumab resistant SK-BR-3 based humanized tumor mice the B100 treatment eliminated the primary tumor but even more importantly eradicated metastasized tumor cells in lung, liver, brain, and bone marrow. Conclusion Overall, B100 demonstrated an enhanced anti-tumor activity both in vitro and in an enhanced preclinical HTM in vivo model compared to trastuzumab or pertuzumab. Thus, the use of B100 is a promising option to complement and to enhance established treatment regimens for HER2-positive (breast) cancer and to overcome trastuzumab resistance. Extended preclinical analyses using appropriate models and clinical investigations are warranted.
Collapse
Affiliation(s)
- Anja Kathrin Wege
- Clinic of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany.
| | - Nicole Kirchhammer
- Clinic of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | | | | | - Gerhard Piendl
- Clinic of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
| | - Olaf Ortmann
- Clinic of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
| | | | - Gero Brockhoff
- Clinic of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
| |
Collapse
|
22
|
Rational Cancer Treatment Combinations: An Urgent Clinical Need. Mol Cell 2020; 78:1002-1018. [DOI: 10.1016/j.molcel.2020.05.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023]
|
23
|
Pyo DH, Hong HK, Lee WY, Cho YB. Patient-derived cancer modeling for precision medicine in colorectal cancer: beyond the cancer cell line. Cancer Biol Ther 2020; 21:495-502. [PMID: 32208894 DOI: 10.1080/15384047.2020.1738907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Since effective immunotherapeutic agents such as immune checkpoint blockade to treat cancer have emerged, the need for reliable preclinical cancer models that can evaluate and discover such drugs became stronger than ever before. The traditional preclinical cancer model using a cancer cell line has several limitations to recapitulate intra-tumor heterogeneity and in-vivo tumor activity including interactions between tumor-microenvironment. In this review, we will go over various preclinical cancer models recently discovered including patient-derived xenografts, humanized mice, organoids, organotypic-tumor spheroids, and organ-on-a-chip models. Moreover, we will discuss the future directions of preclinical cancer research.
Collapse
Affiliation(s)
- Dae Hee Pyo
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye Kyung Hong
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Woo Yong Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Yong Beom Cho
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
24
|
Modeling clear cell renal cell carcinoma and therapeutic implications. Oncogene 2020; 39:3413-3426. [PMID: 32123314 PMCID: PMC7194123 DOI: 10.1038/s41388-020-1234-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023]
Abstract
Renal cell carcinoma (RCC) comprises a diverse group of malignancies arising from the nephron. The most prevalent type, clear cell renal cell carcinoma (ccRCC), is characterized by genetic mutations in factors governing the hypoxia signaling pathway, resulting in metabolic dysregulation, heightened angiogenesis, intratumoral heterogeneity, and deleterious tumor microenvironmental (TME) crosstalk. Identification of specific genetic variances has led to therapeutic innovation and improved survival for patients with ccRCC. Current barriers to effective long-term therapeutic success highlight the need for continued drug development using improved modeling systems. ccRCC preclinical models can be grouped into three broad categories: cell line, mouse, and 3D models. Yet, the breadth of important unanswered questions in ccRCC research far exceeds the accessibility of model systems capable of carrying them out. Accordingly, we review the strengths, weaknesses, and therapeutic implications of each model system that are relied upon today.
Collapse
|
25
|
Sui JSY, Martin P, Gray SG. Pre-clinical models of small cell lung cancer and the validation of therapeutic targets. Expert Opin Ther Targets 2020; 24:187-204. [PMID: 32068452 DOI: 10.1080/14728222.2020.1732353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Small-cell lung cancer (SCLC) is an aggressive form of lung cancer that has a dismal prognosis. One of the factors hindering therapeutic developments for SCLC is that most SCLC is not surgically resected resulting in a paucity of material for analysis. To address this, significant efforts have been made by investigators to develop pre-clinical models of SCLC allowing for downstream target identification in this difficult to treat cancer.Areas covered: In this review, we describe the current pre-clinical models that have been developed to interrogate SCLC, and outline the benefits and limitations associated with each. Using examples we show how each has been used to (i) improve our knowledge of this intractable cancer, and (ii) identify and validate potential therapeutic targets that (iii) are currently under development and testing within the clinic.Expert opinion: The large numbers of preclinical models that have been developed have dramatically improved the ways in which we can examine SCLC and test therapeutic targets/interventions. The newer models are rapidly providing novel avenues for the design and testing of new therapeutics. Despite this many of these models have inherent flaws that limit the possibility of their use for individualized therapy decision-making for SCLC.
Collapse
Affiliation(s)
- Jane S Y Sui
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James's Hospital, Dublin, Ireland.,Department of Medical Oncology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Petra Martin
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James's Hospital, Dublin, Ireland
| | - Steven G Gray
- Thoracic Oncology Research Group, Laboratory Medicine and Molecular Pathology, Central Pathology Laboratory, St. James's Hospital, Dublin, Ireland.,Labmed Directorate, St. James's Hospital, Dublin, Ireland.,School of Biological Sciences, Dublin Institute of Technology, Dublin, Ireland
| |
Collapse
|
26
|
Tracey AT, Murray KS, Coleman JA, Kim K. Patient-Derived Xenograft Models in Urological Malignancies: Urothelial Cell Carcinoma and Renal Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12020439. [PMID: 32069881 PMCID: PMC7072311 DOI: 10.3390/cancers12020439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
The engraftment of human tumor tissues into immunodeficient host mice to generate patient-derived xenograft (PDX) models has become increasingly utilized for many types of cancers. By capturing the unique genomic and molecular properties of the parental tumor, PDX models enable analysis of patient-specific clinical responses. PDX models are an important platform to address the contribution of inter-tumoral heterogeneity to therapeutic sensitivity, tumor evolution, and the mechanisms of treatment resistance. With the increasingly important role played by targeted therapies in urological malignancies, the establishment of representative PDX models can contribute to improved facilitation and adoption of precision medicine. In this review of the evolving role of the PDX in urothelial cancer and kidney cancer, we discuss the essential elements of successful graft development, effective translational application, and future directions for clinical models.
Collapse
Affiliation(s)
- Andrew T. Tracey
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.T.T.); (J.A.C.)
| | - Katie S. Murray
- Department of Surgery, Division of Urology, University of Missouri, Columbia, MO 65211, USA;
| | - Jonathan A. Coleman
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.T.T.); (J.A.C.)
| | - Kwanghee Kim
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Correspondence: ; Tel.: +1-646-422-4432
| |
Collapse
|
27
|
Nolan JC, Frawley T, Tighe J, Soh H, Curtin C, Piskareva O. Preclinical models for neuroblastoma: Advances and challenges. Cancer Lett 2020; 474:53-62. [PMID: 31962141 DOI: 10.1016/j.canlet.2020.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/12/2022]
Abstract
Neuroblastoma is a paediatric cancer of the sympathetic nervous system and the most common solid tumour of infancy, contributing to 15% of paediatric oncology deaths. Current therapies are not effective in the long-term treatment of almost 80% of patients with this clinically aggressive disease. The primary challenge in the identification and validation of new agents for paediatric drug development is the accurate representation of tumour biology and diversity. In addition to this limitation, the low incidence of neuroblastoma makes the recruitment of eligible patients for early phase clinical trials highly challenging and highlights the need for robust preclinical testing to ensure that the best treatments are selected. The research field requires new preclinical models, technologies, and concepts to tackle these problems. Tissue engineering offers attractive tools to assist in the development of three-dimensional (3D) cell models using various biomaterials and manufacturing approaches that recreate the geometry, mechanics, heterogeneity, metabolic gradients, and cell communication of the native tumour microenvironment. In this review, we discuss current experimental models and assess their abilities to reflect the structural organisation and physiological conditions of the human body, in addition to current and new techniques to recapitulate the tumour niche using tissue-engineered platforms. Finally, we will discuss the possible use of novel 3D in vitro culture systems to address open questions in neuroblastoma biology.
Collapse
Affiliation(s)
- J C Nolan
- Cancer Bio-Engineering Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland; National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - T Frawley
- Cancer Bio-Engineering Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland; National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - J Tighe
- Cancer Bio-Engineering Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - H Soh
- Cancer Bio-Engineering Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - C Curtin
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - O Piskareva
- Cancer Bio-Engineering Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland; National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland.
| |
Collapse
|
28
|
Humanized Mice as an Effective Evaluation System for Peptide Vaccines and Immune Checkpoint Inhibitors. Int J Mol Sci 2019; 20:ijms20246337. [PMID: 31888191 PMCID: PMC6940818 DOI: 10.3390/ijms20246337] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 12/16/2022] Open
Abstract
Peptide vaccination was developed for the prevention and therapy of acute and chronic infectious diseases and cancer. However, vaccine development is challenging, because the patient immune system requires the appropriate human leukocyte antigen (HLA) recognition with the peptide. Moreover, antigens sometimes induce a low response, even if the peptide is presented by antigen-presenting cells and T cells recognize it. This is because the patient immunity is dampened or restricted by environmental factors. Even if the immune system responds appropriately, newly-developed immune checkpoint inhibitors (ICIs), which are used to increase the immune response against cancer, make the immune environment more complex. The ICIs may activate T cells, although the ratio of responsive patients is not high. However, the vaccine may induce some immune adverse effects in the presence of ICIs. Therefore, a system is needed to predict such risks. Humanized mouse systems possessing human immune cells have been developed to examine human immunity in vivo. One of the systems which uses transplanted human peripheral blood mononuclear cells (PBMCs) may become a new diagnosis strategy. Various humanized mouse systems are being developed and will become good tools for the prediction of antibody response and immune adverse effects.
Collapse
|
29
|
Lamichhane P, Deshmukh R, Brown JA, Jakubski S, Parajuli P, Nolan T, Raja D, Badawy M, Yoon T, Zmiyiwsky M, Lamichhane N. Novel Delivery Systems for Checkpoint Inhibitors. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E74. [PMID: 31373327 PMCID: PMC6789831 DOI: 10.3390/medicines6030074] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 12/16/2022]
Abstract
Checkpoint inhibition (CPI) therapies have been proven to be powerful clinical tools in treating cancers. FDA approvals and ongoing clinical development of checkpoint inhibitors for treatment of various cancers highlight the immense potential of checkpoint inhibitors as anti-cancer therapeutics. The occurrence of immune-related adverse events, however, is a major hindrance to the efficacy and use of checkpoint inhibitors as systemic therapies in a wide range of patients. Hence, methods of sustained and tumor-targeted delivery of checkpoint inhibitors are likely to improve efficacy while also decreasing toxic side effects. In this review, we summarize the findings of the studies that evaluated methods of tumor-targeted delivery of checkpoint inhibitors, review their strengths and weaknesses, and discuss the outlook for therapeutic use of these delivery methods.
Collapse
Affiliation(s)
- Purushottam Lamichhane
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, 4800 Lakewood Ranch Blvd, Bradenton, FL 34211, USA
| | - Rahul Deshmukh
- School of Pharmacy, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Blvd, Bradenton, FL 34211, USA
| | - Julie A Brown
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, 4800 Lakewood Ranch Blvd, Bradenton, FL 34211, USA
| | - Silvia Jakubski
- Department of Biostatistics, University of Florida, Gainesville, FL 32611, USA
| | - Priyanka Parajuli
- Department of Internal Medicine, Southern Illinois University, Springfield, IL 62702, USA
| | - Todd Nolan
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, 4800 Lakewood Ranch Blvd, Bradenton, FL 34211, USA
| | - Dewan Raja
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, 4800 Lakewood Ranch Blvd, Bradenton, FL 34211, USA
| | - Mary Badawy
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, 4800 Lakewood Ranch Blvd, Bradenton, FL 34211, USA
| | - Thomas Yoon
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, 4800 Lakewood Ranch Blvd, Bradenton, FL 34211, USA
| | - Mark Zmiyiwsky
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, 4800 Lakewood Ranch Blvd, Bradenton, FL 34211, USA
| | - Narottam Lamichhane
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|