1
|
Wang M, Xue L, Fei Z, Luo L, Zhang K, Gao Y, Liu X, Liu C. Characterization of mitochondrial metabolism related molecular subtypes and immune infiltration in colorectal adenocarcinoma. Sci Rep 2024; 14:24326. [PMID: 39414905 PMCID: PMC11484867 DOI: 10.1038/s41598-024-75482-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024] Open
Abstract
Colorectal adenocarcinoma (COAD) is the most common subtype of colorectal cancer. Due to the imperfect prognosis of COAD, related prognostic factors and possible mechanisms need to be further investigated. During tumor development, mitochondria help tumor cells survive in a variety of ways, so that further screening of mitochondrial metabolism related targets has positive implications for COAD. We screened the mitochondrial metabolism-related genes (MMRG) associated with the COAD prognosis and explored the MMRG-related molecular subtype characteristics of by unsupervised consensus clustering analysis. Using ESTIMATE and ssGSEA algorithms, we evaluated the immunoinfiltration characteristic landscape of different molecular subtypes defined by MMRG. Combining the expression profiles of differentially expressed genes associated with the MMRG subgroup and the survival characteristics of COAD, we constructed an MMRG prognostic model using LASSO-univariate Cox analysis and successfully validated its impact on independently predicting risk stratification of COAD. The potential clinical value of the MMRG score was subsequently evaluated by subgroup immunoinfiltration characteristics and drug susceptibility prediction analysis. We also offer SEC11A as a new potential target for COAD by single-cell sequencing analysis. The effect of SEC11A on the proliferation, invasion abilities and mitochondrial dysfunction of COAD cells was confirmed through in vitro experiments. Our study provides new insights into the role of MMRG and new target for COAD potential intervention.
Collapse
Affiliation(s)
- Meng Wang
- Department of Gastrointestinal Surgery, Central Hospital of Zibo, Zibo, China
| | - Lingkai Xue
- Department of Gastrointestinal Surgery, Central Hospital of Zibo, Zibo, China
| | - Zhenyue Fei
- Department of Gastrointestinal Surgery, Central Hospital of Zibo, Zibo, China
| | - Lei Luo
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kai Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuxi Gao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaolei Liu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Chengkui Liu
- Department of Gastrointestinal Surgery, Central Hospital of Zibo, Zibo, China.
| |
Collapse
|
2
|
Chen Z, Chen L, Lyu TD, Weng S, Xie Y, Jin Y, Wu O, Jones M, Kwan K, Makvnadi P, Li B, Sharopov F, Ma C, Li H, Wu A. Targeted mitochondrial nanomaterials in biomedicine: Advances in therapeutic strategies and imaging modalities. Acta Biomater 2024; 186:1-29. [PMID: 39151665 DOI: 10.1016/j.actbio.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/15/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Mitochondria, pivotal organelles crucial for energy generation, apoptosis regulation, and cellular metabolism, have spurred remarkable advancements in targeted material development. This review surveys recent breakthroughs in targeted mitochondrial nanomaterials, illuminating their potential in drug delivery, disease management, and biomedical imaging. This review approaches from various application perspectives, introducing the specific applications of mitochondria-targeted materials in cancer treatment, probes and imaging, and diseases treated with mitochondria as a therapeutic target. Addressing extant challenges and elucidating potential therapeutic mechanisms, it also outlines future development trajectories and obstacles. By comprehensively exploring the diverse applications of targeted mitochondrial nanomaterials, this review aims to catalyze innovative treatment modalities and diagnostic approaches in medical research. STATEMENT OF SIGNIFICANCE: This review presents the latest advancements in mitochondria-targeted nanomaterials for biomedical applications, covering diverse fields such as cancer therapy, bioprobes, imaging, and the treatment of various systemic diseases. The novelty and significance of this work lie in its systematic analysis of the intricate relationship between mitochondria and different diseases, as well as the ingenious design strategies employed to harness the therapeutic potential of nanomaterials. By providing crucial insights into the development of mitochondria-targeted nanomaterials and their applications, this review offers a valuable resource for researchers working on innovative treatment modalities and diagnostic approaches. The scientific impact and interest to the readership lie in the identification of promising avenues for future research and the potential for clinical translation of these cutting-edge technologies.
Collapse
Affiliation(s)
- Zhihua Chen
- Department of Orthopaedics Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou, Zhejiang Province 325035, PR China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, PR China
| | - Linjie Chen
- Department of Orthopaedics Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou, Zhejiang Province 325035, PR China
| | - Tai Dong Lyu
- Department of Orthopaedics Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou, Zhejiang Province 325035, PR China
| | - Shoutao Weng
- Department of Orthopaedics Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou, Zhejiang Province 325035, PR China
| | - Yihao Xie
- Department of Orthopaedics Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou, Zhejiang Province 325035, PR China
| | - Yuxin Jin
- Department of Orthopaedics Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou, Zhejiang Province 325035, PR China
| | - Ouqiang Wu
- Department of Orthopaedics Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou, Zhejiang Province 325035, PR China
| | - Morgan Jones
- Spine Unit, The Royal Orthopaedic Hospital, Bristol Road South, Northfield, Birmingham B31 2AP, UK
| | - Kenny Kwan
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Pooyan Makvnadi
- University Centre for Research & Development, Chandigarh University, Mohali, Punjab 140413, India; Centre of Research Impact and Outreach, Chitkara University, Rajpura, Punjab 140417, India
| | - Bin Li
- Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College Soochow University, PR China
| | - Farukh Sharopov
- V.I. Nikitin Chemistry Institute of Tajikistan National Academy of Sciences, Dushanbe 734063, Tajikistan
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Huaqiong Li
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, PR China.
| | - Aimin Wu
- Department of Orthopaedics Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou, Zhejiang Province 325035, PR China.
| |
Collapse
|
3
|
Xi Z, Yao H, Zhang T, Su Z, Wang B, Feng W, Pu Q, Zhao L. Quantitative Three-Dimensional Imaging Analysis of HfO 2 Nanoparticles in Single Cells via Deep Learning Aided X-ray Nano-Computed Tomography. ACS NANO 2024; 18:22378-22389. [PMID: 39115329 PMCID: PMC11342356 DOI: 10.1021/acsnano.4c06953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024]
Abstract
It is crucial for understanding mechanisms of drug action to quantify the three-dimensional (3D) drug distribution within a single cell at nanoscale resolution. Yet it remains a great challenge due to limited lateral resolution, detection sensitivities, and reconstruction problems. The preferable method is using X-ray nano-computed tomography (Nano-CT) to observe and analyze drug distribution within cells, but it is time-consuming, requiring specialized expertise, and often subjective, particularly with ultrasmall metal nanoparticles (NPs). Furthermore, the accuracy of batch data analysis through conventional processing methods remains uncertain. In this study, we used radioenhancer ultrasmall HfO2 nanoparticles as a model to develop a modular and automated deep learning aided Nano-CT method for the localization quantitative analysis of ultrasmall metal NPs uptake in cancer cells. We have established an ultrasmall objects segmentation method for 3D Nano-CT images in single cells, which can highly sensitively analyze minute NPs and even ultrasmall NPs in single cells. We also constructed a localization quantitative analysis method, which may accurately segment the intracellularly bioavailable particles from those of the extracellular space and intracellular components and NPs. The high bioavailability of HfO2 NPs in tumor cells from deeper penetration in tumor tissue and higher tumor intracellular uptake provide mechanistic insight into HfO2 NPs as advanced radioenhancers in the combination of quantitative subcellular image analysis with the therapeutic effects of NPs on 3D tumor spheroids and breast cancer. Our findings unveil the substantial uptake rate and subcellular quantification of HfO2 NPs by the human breast cancer cell line (MCF-7). This revelation explicates the notable efficacy and safety profile of HfO2 NPs in tumor treatment. These findings demonstrate that this 3D imaging technique promoted by the deep learning algorithm has the potential to provide localization quantitative information about the 3D distributions of specific molecules at the nanoscale level. This study provides an approach for exploring the subcellular quantitative analysis of NPs in single cells, offering a valuable quantitative imaging tool for minute amounts or ultrasmall NPs.
Collapse
Affiliation(s)
- Zuoxin Xi
- Multi-disciplinary
Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School
of Information Engineering, Minzu University
of China, Beijing 100081, China
| | - Haodong Yao
- Multi-disciplinary
Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingfeng Zhang
- Multi-disciplinary
Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongyi Su
- Multi-disciplinary
Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Wang
- Multi-disciplinary
Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyue Feng
- Multi-disciplinary
Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiumei Pu
- School
of Information Engineering, Minzu University
of China, Beijing 100081, China
| | - Lina Zhao
- Multi-disciplinary
Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Peng G, Feng Y, Wang X, Huang W, Li Y. The mitochondria-related gene risk mode revealed p66Shc as a prognostic mitochondria-related gene of glioblastoma. Sci Rep 2024; 14:11418. [PMID: 38763954 PMCID: PMC11102912 DOI: 10.1038/s41598-024-62083-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/13/2024] [Indexed: 05/21/2024] Open
Abstract
Numerous studies have highlighted the pivotal role of mitochondria-related genes (MRGs) in the initiation and progression of glioblastoma (GBM). However, the specific contributions of MRGs coding proteins to GBM pathology remain incompletely elucidated. The identification of prognostic MRGs in GBM holds promise for the development of personalized targeted therapies and the enhancement of patient prognosis. We combined differential expression with univariate Cox regression analysis to screen prognosis-associated MRGs in GBM. Based on the nine MRGs, the hazard ratio model was conducted using a multivariate Cox regression algorithm. SHC-related survival, pathway, and immune analyses in GBM cohorts were obtained from the Biomarker Exploration of the Solid Tumor database. The proliferation and migration of U87 cells were measured by CCK-8 and transwell assay. Apoptosis in U87 cells was evaluated using flow cytometry. Confocal microscopy was employed to measure mitochondrial reactive oxygen species (ROS) levels and morphology. The expression levels of SHC1 and other relevant proteins were examined via western blotting. We screened 15 prognosis-associated MRGs and constructed a 9 MRGs-based model. Validation of the model's risk score confirmed its efficacy in predicting the prognosis of patients with GBM. Furthermore, analysis revealed that SHC1, a constituent MRG of the prognostic model, was upregulated and implicated in the progression, migration, and immune infiltration of GBM. In vitro experiments elucidated that p66Shc, the longest isoform of SHC1, modulates mitochondrial ROS production and morphology, consequently promoting the proliferation and migration of U87 cells. The 9 MRGs-based prognostic model could predict the prognosis of GBM. SHC1 was upregulated and correlated with the prognosis of patients by involvement in immune infiltration. Furthermore, in vitro experiments demonstrated that p66Shc promotes U87 cell proliferation and migration by mediating mitochondrial ROS production. Thus, p66Shc may serve as a promising biomarker and therapeutic target for GBM.
Collapse
Affiliation(s)
- Gang Peng
- Department of Phamacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Yabo Feng
- PET-CT Center, Chenzhou First People's Hospital, Chenzhou, 423000, Hunan, People's Republic of China
| | - Xiangyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Weicheng Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Yang Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
5
|
Li G, Lin X, Wang X, Cai L, Liu J, Zhu Y, Fu Z. Enhancing radiosensitivity in triple-negative breast cancer through targeting ELOB. Breast Cancer 2024; 31:426-439. [PMID: 38472737 DOI: 10.1007/s12282-024-01554-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/11/2024] [Indexed: 03/14/2024]
Abstract
Enhancing radiotherapy sensitivity is crucial for improving treatment outcomes in triple-negative breast cancer (TNBC) patients. In this study, we investigated the potential of targeting Elongin B (ELOB) to enhance radiotherapy efficacy in TNBC. Analysis of TNBC patient cohorts revealed a significant association between high ELOB expression and poor prognosis in patients who received radiation therapy. Mechanistically, we found that ELOB plays a pivotal role in regulating mitochondrial function via modulating mitochondrial DNA expression and activities of respiratory chain complexes. Targeting ELOB effectively modulated mitochondrial function, leading to enhanced radiosensitivity in TNBC cells. Our findings highlight the importance of ELOB as a potential therapeutic target for improving radiotherapy outcomes in TNBC. Further exploration of ELOB's role in enhancing radiotherapy efficacy may provide valuable insights for developing novel treatment strategies for TNBC patients.
Collapse
Affiliation(s)
- Guo Li
- Department of Radiotherapy, Fuzong Clinical Medical College of Fujian Medical University (900th Hospital), Fuzhou, Fujian, China
| | - Xinyue Lin
- Department of Radiotherapy, Fuzong Clinical Medical College of Fujian Medical University (900th Hospital), Fuzhou, Fujian, China
| | - Xinpeng Wang
- Department of Radiotherapy, Fuzong Clinical Medical College of Fujian Medical University (900th Hospital), Fuzhou, Fujian, China
| | - Lvjuan Cai
- Department of Radiotherapy, Fuzong Clinical Medical College of Fujian Medical University (900th Hospital), Fuzhou, Fujian, China
| | - Jianren Liu
- Department of Radiotherapy, Fuzong Clinical Medical College of Fujian Medical University (900th Hospital), Fuzhou, Fujian, China
| | - Yunyun Zhu
- Department of Radiotherapy, Fuzong Clinical Medical College of Fujian Medical University (900th Hospital), Fuzhou, Fujian, China
| | - Zhichao Fu
- Department of Radiotherapy, Fuzong Clinical Medical College of Fujian Medical University (900th Hospital), Fuzhou, Fujian, China.
| |
Collapse
|
6
|
Yang Y, Chen Y, Tang H, Zhang Z, Zhou X, Xu W. DTTZ suppresses ferroptosis and reverses mitochondrial dysfunction in normal tissues affected by chemotherapy. Biomed Pharmacother 2024; 172:116227. [PMID: 38335570 DOI: 10.1016/j.biopha.2024.116227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Conventional antineoplastic therapies cause severe normal tissue damage and existing cytoprotectants with acute toxicities or potential tumor protection limit their clinical application. We evaluated the selective cytoprotection of 2,2-dimethylthiazolidine hydrochloride in this study, which could protect normal tissue toxicity without interfering antineoplastic therapies. By using diverse cell lines and A549 xenograft model, we discovered a synthetic aminothiol 2,2-dimethylthiazolidine hydrochloride selectively diminished normal cellular ferroptosis via SystemXc-/Glutathione Peroxidase 4 pathway upon antineoplastic therapies without interfering the anticancer efficacy. We revealed the malignant and non-malignant tissues presenting different energy metabolism patterns. And cisplatin induces disparate replicative stress, contributing to the distinguishable cytoprotection of 2,2-dimethylthiazolidine in normal and tumor cells. The compound pre-application could mitigate cisplatin-induced normal cellular mitochondrial oxidative phosphorylation (OXPHOS) dysfunction. Pharmacologic ablation of mitochondria reversed 2,2-dimethylthiazolidine chemoprotection against cisplatin in the normal cell line. Combined, these results provide a potential therapeutic adjuvant to selectively diminish normal tissue damages retaining antineoplastic efficacy.
Collapse
Affiliation(s)
- Yuwei Yang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Yuanfang Chen
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Haikang Tang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Ziqi Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Xiaoliang Zhou
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China.
| | - Wenqing Xu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China.
| |
Collapse
|
7
|
Jiang W, Huang G, Pan S, Chen X, Liu T, Yang Z, Chen T, Zhu X. TRAIL-driven targeting and reversing cervical cancer radioresistance by seleno-nanotherapeutics through regulating cell metabolism. Drug Resist Updat 2024; 72:101033. [PMID: 38157648 DOI: 10.1016/j.drup.2023.101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Recently, radioresistance has become a major obstacle in the radiotherapy of cervical cancer. To demonstrate enhanced radiosensitization against radioresistant cervical cancer, radioresistant cervical cancer cell line was developed and the mechanism of radioresistance was explored. Due to the overexpression of (death receptor 5, DR5) in cervical cancer, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-overexpressed cervical cancer cell membrane-camouflaged Cu2-xSe nanomedicine (CCMT) was designed. Since the CCMT was encapsulated with TRAIL-modified cell membrane, it represented high target to cervical cancer cell and immune evasion. Furthermore, Cu2-xSe had the ability to scavenge glutathione (GSH) and produce ·OH with excess H2O2 in the tumor microenvironment. The presence of CCMT combined with radiation therapy could effectively increase the 1O2 produced by X-rays. In vitro and in vivo studies elaborated that CCMT exhibited excellent radiosensitization properties to reverse radiotolerance by scavenging GSH and promoting DNA damage, apoptosis, mitochondrial membrane potential damage and metabolic disruption. Collectively, this study suggested that the development of TRAIL-overexpressed cell membrane-camouflaged Cu2-xSe nanomedicine could advance future cervical cancer treatment and minimize the disadvantages associated with radiation treatment.
Collapse
Affiliation(s)
- Wenxiao Jiang
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Guanning Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Shuya Pan
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xin Chen
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ting Liu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ziyi Yang
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Tianfeng Chen
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Xueqiong Zhu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
8
|
Yang Y, Feng T, Fan X, Wang C, Jiang Y, Zhou X, Bao W, Zhang D, Wang S, Yu J, Tao Y, Song G, Bao H, Yan J, Wu X, Shao Y, Qiu G, Su D, Chen Q. Genomic and Transcriptomic Remodeling by Neoadjuvant Chemoradiotherapy (nCRT) and the Indicative Role of Acquired INDEL Percentage for nCRT Efficacy in Esophageal Squamous Cell Carcinoma. Int J Radiat Oncol Biol Phys 2023; 117:979-993. [PMID: 37339686 DOI: 10.1016/j.ijrobp.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/30/2023] [Accepted: 06/11/2023] [Indexed: 06/22/2023]
Abstract
PURPOSE The effect of genomic factors on the response of patients with esophageal squamous cell carcinoma (ESCC) to neoadjuvant chemoradiotherapy (nCRT), as well as how nCRT influences the genome and transcriptome of ESCC, remain largely unknown. METHODS AND MATERIALS In total, 137 samples from 57 patients with ESCC undergoing nCRT were collected and subjected to whole-exome sequencing and RNA sequencing analysis. Genetic and clinicopathologic factors were compared between the patients achieving pathologic complete response and patients not achieving pathologic complete response. Genomic and transcriptomic profiles before and after nCRT were analyzed. RESULTS Codeficiency of the DNA damage repair and HIPPO pathways synergistically sensitized ESCC to nCRT. nCRT induced small INDELs and focal chromosomal loss concurrently. Acquired INDEL% exhibited a decreasing trend with the increase of tumor regression grade (P = .06, Jonckheere's test). Multivariable Cox analysis indicated that higher acquired INDEL% was associated with better survival (adjusted hazard ratio [aHR], 0.93; 95% CI, 0.86-1.01; P = .067 for recurrence-free survival [RFS]; aHR, 0.86; 95% CI, 0.76-0.98; P = .028 for overall survival [OS], with 1% of acquired INDEL% as unit). The prognostic value of acquired INDEL% was confirmed by the Glioma Longitudinal AnalySiS data set (aHR, 0.95; 95% CI, 0.902-0.997; P = .037 for RFS; aHR, 0.96; 95% CI, 0.917-1.004; P = .076 for OS). Additionally, clonal expansion degree was negatively associated with patient survival (aHR, 5.87; 95% CI, 1.10-31.39; P = .038 for RFS; aHR, 9.09; 95% CI, 1.10-75.36; P = .041 for OS, with low clonal expression group as reference) and also negatively correlated with acquired INDEL% (Spearman ρ = -0.45; P = .02). The expression profile was changed after nCRT. The DNA replication gene set was downregulated, while the cell adhesion gene set was upregulated after nCRT. Acquired INDEL% was negatively correlated with the enrichment of the DNA replication gene set (Spearman ρ = -0.56; P = .003) but was positively correlated with the enrichment of the cell adhesion gene set (Spearman ρ = 0.40; P = .05) in posttreatment samples. CONCLUSIONS nCRT remodels the genome and transcriptome of ESCC. Acquired INDEL% is a potential biomarker to indicate the effectiveness of nCRT and radiation sensitivity.
Collapse
Affiliation(s)
- Yang Yang
- Department of Thoracic Radiotherapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China
| | - TingTing Feng
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xiaojun Fan
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc, Nanjing, China
| | - Changchun Wang
- Department of Thoracic Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Youhua Jiang
- Department of Thoracic Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xia Zhou
- Department of Thoracic Radiotherapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China
| | - Wu'an Bao
- Department of Thoracic Radiotherapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China
| | - Danhong Zhang
- Department of Thoracic Radiotherapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China
| | - Shi Wang
- Endoscopy Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jiangping Yu
- Endoscopy Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yali Tao
- Endoscopy Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Ge Song
- Department of Radiology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Hua Bao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc, Nanjing, China
| | - Junrong Yan
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc, Nanjing, China
| | - Xue Wu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc, Nanjing, China
| | - Yang Shao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc, Nanjing, China
| | - Guoqin Qiu
- Department of Thoracic Radiotherapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China.
| | - Dan Su
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Qixun Chen
- Department of Thoracic Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Zhu Z, Gong M, Gong W, Wang B, Li C, Hou Q, Guo H, Chai J, Guan J, Jia Y. SHF confers radioresistance in colorectal cancer by the regulation of mitochondrial DNA copy number. Clin Exp Med 2023; 23:2457-2471. [PMID: 36527512 DOI: 10.1007/s10238-022-00969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Altered mitochondrial function contributes greatly to pathogenesis and progression of colorectal cancer. In this study, we report a functional pool of Src homology 2 domain-containing F (SHF) in mitochondria controlling the response of colorectal cancer cells to radiation therapy. We found that elevated expression of SHF in cancer cells is essential for promoting mitochondrial function by increasing mitochondrial DNA copy number, thus reducing the sensitivity of colorectal cancer cells to radiation. Mechanistically, SHF binds to mitochondrial DNA and promotes POLG/SSBP1-mediated mitochondrial DNA synthesis. Importantly, SHF loss-mediated radiosensitization was phenocopied by depletion of mitochondrial DNA. Thus, our data demonstrate that mitochondrial SHF is an important regulator of radioresistance in colorectal cancer cells, identifying SHF as a promising therapeutic target to enhance radiotherapy efficacy in colorectal cancer.
Collapse
Affiliation(s)
- Zhenyu Zhu
- Gastrointestinal Surgery Ward II, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Meihua Gong
- Thoracic Surgery Ward II, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Weipeng Gong
- Gastrointestinal Surgery Ward II, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Bishi Wang
- Gastrointestinal Surgery Ward II, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Changhao Li
- Gastrointestinal Surgery Ward II, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qingsheng Hou
- Gastrointestinal Surgery Ward II, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hongliang Guo
- Gastrointestinal Surgery Ward II, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jie Chai
- Gastrointestinal Surgery Ward I, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jie Guan
- Gastrointestinal Surgery Ward II, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| | - Yanhan Jia
- Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
10
|
Behnam B, Taghizadeh-Hesary F. Mitochondrial Metabolism: A New Dimension of Personalized Oncology. Cancers (Basel) 2023; 15:4058. [PMID: 37627086 PMCID: PMC10452105 DOI: 10.3390/cancers15164058] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Energy is needed by cancer cells to stay alive and communicate with their surroundings. The primary organelles for cellular metabolism and energy synthesis are mitochondria. Researchers recently proved that cancer cells can steal immune cells' mitochondria using nanoscale tubes. This finding demonstrates the dependence of cancer cells on normal cells for their living and function. It also denotes the importance of mitochondria in cancer cells' biology. Emerging evidence has demonstrated how mitochondria are essential for cancer cells to survive in the harsh tumor microenvironments, evade the immune system, obtain more aggressive features, and resist treatments. For instance, functional mitochondria can improve cancer resistance against radiotherapy by scavenging the released reactive oxygen species. Therefore, targeting mitochondria can potentially enhance oncological outcomes, according to this notion. The tumors' responses to anticancer treatments vary, ranging from a complete response to even cancer progression during treatment. Therefore, personalized cancer treatment is of crucial importance. So far, personalized cancer treatment has been based on genomic analysis. Evidence shows that tumors with high mitochondrial content are more resistant to treatment. This paper illustrates how mitochondrial metabolism can participate in cancer resistance to chemotherapy, immunotherapy, and radiotherapy. Pretreatment evaluation of mitochondrial metabolism can provide additional information to genomic analysis and can help to improve personalized oncological treatments. This article outlines the importance of mitochondrial metabolism in cancer biology and personalized treatments.
Collapse
Affiliation(s)
- Babak Behnam
- Department of Regulatory Affairs, Amarex Clinical Research, NSF International, Germantown, MD 20874, USA
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran 1445613131, Iran
- Department of Radiation Oncology, Iran University of Medical Sciences, Tehran 1445613131, Iran
| |
Collapse
|
11
|
Buckley CE, O’Brien RM, Nugent TS, Donlon NE, O’Connell F, Reynolds JV, Hafeez A, O’Ríordáin DS, Hannon RA, Neary P, Kalbassi R, Mehigan BJ, McCormick PH, Dunne C, Kelly ME, Larkin JO, O’Sullivan J, Lynam-Lennon N. Metformin is a metabolic modulator and radiosensitiser in rectal cancer. Front Oncol 2023; 13:1216911. [PMID: 37601689 PMCID: PMC10435980 DOI: 10.3389/fonc.2023.1216911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Resistance to neoadjuvant chemoradiation therapy, is a major challenge in the management of rectal cancer. Increasing evidence supports a role for altered energy metabolism in the resistance of tumours to anti-cancer therapy, suggesting that targeting tumour metabolism may have potential as a novel therapeutic strategy to boost treatment response. In this study, the impact of metformin on the radiosensitivity of colorectal cancer cells, and the potential mechanisms of action of metformin-mediated radiosensitisation were investigated. Metformin treatment was demonstrated to significantly radiosensitise both radiosensitive and radioresistant colorectal cancer cells in vitro. Transcriptomic and functional analysis demonstrated metformin-mediated alterations to energy metabolism, mitochondrial function, cell cycle distribution and progression, cell death and antioxidant levels in colorectal cancer cells. Using ex vivo models, metformin treatment significantly inhibited oxidative phosphorylation and glycolysis in treatment naïve rectal cancer biopsies, without affecting the real-time metabolic profile of non-cancer rectal tissue. Importantly, metformin treatment differentially altered the protein secretome of rectal cancer tissue when compared to non-cancer rectal tissue. Together these data highlight the potential utility of metformin as an anti-metabolic radiosensitiser in rectal cancer.
Collapse
Affiliation(s)
- Croí E. Buckley
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
| | - Rebecca M. O’Brien
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
| | - Timothy S. Nugent
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
- Department of Surgery, Beacon Hospital, Dublin, Ireland
| | - Noel E. Donlon
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
- Department of Surgery, Beacon Hospital, Dublin, Ireland
- Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James’s Hospital, Dublin, Ireland
| | - Fiona O’Connell
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
| | - John V. Reynolds
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
| | - Adnan Hafeez
- Department of Surgery, Beacon Hospital, Dublin, Ireland
| | | | | | - Paul Neary
- Department of Surgery, Beacon Hospital, Dublin, Ireland
| | - Reza Kalbassi
- Department of Surgery, Beacon Hospital, Dublin, Ireland
| | - Brian J. Mehigan
- Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
- Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James’s Hospital, Dublin, Ireland
| | - Paul H. McCormick
- Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
- Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James’s Hospital, Dublin, Ireland
| | - Cara Dunne
- Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
- Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James’s Hospital, Dublin, Ireland
| | - Michael E. Kelly
- Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
- Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James’s Hospital, Dublin, Ireland
| | - John O. Larkin
- Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
- Gastrointestinal Medicine and Surgery (GEMS) Directorate, St. James’s Hospital, Dublin, Ireland
| | - Jacintha O’Sullivan
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
| | - Niamh Lynam-Lennon
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Taghizadeh-Hesary F, Houshyari M, Farhadi M. Mitochondrial metabolism: a predictive biomarker of radiotherapy efficacy and toxicity. J Cancer Res Clin Oncol 2023; 149:6719-6741. [PMID: 36719474 DOI: 10.1007/s00432-023-04592-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Radiotherapy is a mainstay of cancer treatment. Clinical studies revealed a heterogenous response to radiotherapy, from a complete response to even disease progression. To that end, finding the relative prognostic factors of disease outcomes and predictive factors of treatment efficacy and toxicity is essential. It has been demonstrated that radiation response depends on DNA damage response, cell cycle phase, oxygen concentration, and growth rate. Emerging evidence suggests that altered mitochondrial metabolism is associated with radioresistance. METHODS This article provides a comprehensive evaluation of the role of mitochondria in radiotherapy efficacy and toxicity. In addition, it demonstrates how mitochondria might be involved in the famous 6Rs of radiobiology. RESULTS In terms of this idea, decreasing the mitochondrial metabolism of cancer cells may increase radiation response, and enhancing the mitochondrial metabolism of normal cells may reduce radiation toxicity. Enhancing the normal cells (including immune cells) mitochondrial metabolism can potentially improve the tumor response by enhancing immune reactivation. Future studies are invited to examine the impacts of mitochondrial metabolism on radiation efficacy and toxicity. Improving radiotherapy response with diminishing cancer cells' mitochondrial metabolism, and reducing radiotherapy toxicity with enhancing normal cells' mitochondrial metabolism.
Collapse
Affiliation(s)
- Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Clinical Oncology Department, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Houshyari
- Clinical Oncology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Averbeck D. Low-Dose Non-Targeted Effects and Mitochondrial Control. Int J Mol Sci 2023; 24:11460. [PMID: 37511215 PMCID: PMC10380638 DOI: 10.3390/ijms241411460] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Non-targeted effects (NTE) have been generally regarded as a low-dose ionizing radiation (IR) phenomenon. Recently, regarding long distant abscopal effects have also been observed at high doses of IR) relevant to antitumor radiation therapy. IR is inducing NTE involving intracellular and extracellular signaling, which may lead to short-ranging bystander effects and distant long-ranging extracellular signaling abscopal effects. Internal and "spontaneous" cellular stress is mostly due to metabolic oxidative stress involving mitochondrial energy production (ATP) through oxidative phosphorylation and/or anaerobic pathways accompanied by the leakage of O2- and other radicals from mitochondria during normal or increased cellular energy requirements or to mitochondrial dysfunction. Among external stressors, ionizing radiation (IR) has been shown to very rapidly perturb mitochondrial functions, leading to increased energy supply demands and to ROS/NOS production. Depending on the dose, this affects all types of cell constituents, including DNA, RNA, amino acids, proteins, and membranes, perturbing normal inner cell organization and function, and forcing cells to reorganize the intracellular metabolism and the network of organelles. The reorganization implies intracellular cytoplasmic-nuclear shuttling of important proteins, activation of autophagy, and mitophagy, as well as induction of cell cycle arrest, DNA repair, apoptosis, and senescence. It also includes reprogramming of mitochondrial metabolism as well as genetic and epigenetic control of the expression of genes and proteins in order to ensure cell and tissue survival. At low doses of IR, directly irradiated cells may already exert non-targeted effects (NTE) involving the release of molecular mediators, such as radicals, cytokines, DNA fragments, small RNAs, and proteins (sometimes in the form of extracellular vehicles or exosomes), which can induce damage of unirradiated neighboring bystander or distant (abscopal) cells as well as immune responses. Such non-targeted effects (NTE) are contributing to low-dose phenomena, such as hormesis, adaptive responses, low-dose hypersensitivity, and genomic instability, and they are also promoting suppression and/or activation of immune cells. All of these are parts of the main defense systems of cells and tissues, including IR-induced innate and adaptive immune responses. The present review is focused on the prominent role of mitochondria in these processes, which are determinants of cell survival and anti-tumor RT.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France
| |
Collapse
|
14
|
Yap SZ, Mohd Tahir AR, Shakespeare TP. A Case Report of Kearns-Sayre Syndrome: Not an Absolute Contraindication for Radiotherapy. Cureus 2023; 15:e42229. [PMID: 37605674 PMCID: PMC10440007 DOI: 10.7759/cureus.42229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2023] [Indexed: 08/23/2023] Open
Abstract
Kearns-Sayre syndrome (KSS) is a rare mitochondrial disorder, and the effects of radiotherapy on such a population group are unknown. A 60-year-old male with a history of KSS was diagnosed with locally advanced basal cell carcinoma along the left inner canthus. He was treated at our institution with curative intent radiotherapy alone and tolerated it well with no major acute or late toxicities. There was a complete clinical and radiological response of the tumor, with no evidence of recurrence 2.5 years after treatment. Further research is needed to explore the effects of ionizing radiation on patients with mitochondrial DNA defects.
Collapse
Affiliation(s)
- Shaun Z Yap
- Radiation Oncology, Mid North Coast Cancer Institute Coffs Harbour, New South Wales, AUS
| | - Abdul Rahim Mohd Tahir
- Radiation Oncology, Mid North Coast Cancer Institute Coffs Harbour, New South Wales, AUS
| | - Thomas P Shakespeare
- Radiation Oncology, Mid North Coast Cancer Institute Coffs Harbour, New South Wales, AUS
| |
Collapse
|
15
|
Cui W, Xie N, Lam EWF, Hahn-Stromberg V, Liu N, Zhang H, Sun XF. High expression of cytoplasmic FOXO3 protein associated with poor prognosis of rectal cancer patients: A study from Swedish clinical trial of preoperative radiotherapy to big database analysis. Heliyon 2023; 9:e15342. [PMID: 37131452 PMCID: PMC10149220 DOI: 10.1016/j.heliyon.2023.e15342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 05/04/2023] Open
Abstract
Introduction Accumulating evidence has implicated a pivotal role for FOXO3, FOXM1 and SIRT6 in cancer progression. The majority of researches focused on the functions of these proteins in drug resistance, but their relationships with radiotherapy (RT) response remain unclear. In this study, we examined protein expression of FOXO3, FOXM1 and SIRT6 and their clinical significance in a Swedish rectal cancer trial of preoperative RT. Methods Expression of FOXO3, FOXM1 and SIRT6 protein was examined by immunohistochemistry in patient samples. Genetic analysis of FOXO3, FOXM1 and SIRT6 were performed by cBioportal and MEXPRESS database. Gene-gene network analysis was conducted using GeneMANIA. Functional enrichment analysis was performed based on LinkedOmics and Metascape online software. Results FOXO3 and FOXM1were mainly expressed in the cytoplasm in both normal and tumour tissues, and SIRT6 in both the cytoplasm and nucleus in normal and tumour tissues. FOXO3 and FOXM1 expression increased from normal mucosa to primary cancer (P < 0.001), while SIRT6 expression decreased from normal mucosa to primary cancer (P < 0.001). High FOXO3 expression correlated with late TNM stage (P = 0.040), distant metastasis (P = 0.032) and independently with disease free survival (DFS) in the RT patients (HR = 7.948; P = 0.049; 95% CI = 1.002-63.032) but not in non-RT patients (P > 0.05). Genetic analysis indicated that DNA methylation status contributed to FOXO3 overexpression. Functional enrichment analysis demonstrated that FOXO3 was closely related to metabolism-related signalling pathway which in turn associated with cancer radioresistance. Moreover, there were strong gene-gene interactions between FOXO3 and metabolism-related signalling. Conclusions Our findings suggest that FOXO3 may be a prognostic factor in rectal cancer patients with RT.
Collapse
Affiliation(s)
- Weiyingqi Cui
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ning Xie
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Eric W.-F. Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, W12 0NN, United Kingdom
| | | | - Na Liu
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Corresponding author.Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| | - Hong Zhang
- School of Medicine, Institute of Medical Sciences, Örebro University, Örebro, Sweden
- Corresponding author.
| | - Xiao-Feng Sun
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Corresponding author. ;
| |
Collapse
|
16
|
Buckley CE, Yin X, Meltzer S, Ree AH, Redalen KR, Brennan L, O'Sullivan J, Lynam-Lennon N. Energy Metabolism Is Altered in Radioresistant Rectal Cancer. Int J Mol Sci 2023; 24:ijms24087082. [PMID: 37108244 PMCID: PMC10138551 DOI: 10.3390/ijms24087082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Resistance to neoadjuvant chemoradiation therapy is a significant clinical challenge in the management of rectal cancer. There is an unmet need to identify the underlying mechanisms of treatment resistance to enable the development of biomarkers predictive of response and novel treatment strategies to improve therapeutic response. In this study, an in vitro model of inherently radioresistant rectal cancer was identified and characterized to identify mechanisms underlying radioresistance in rectal cancer. Transcriptomic and functional analysis demonstrated significant alterations in multiple molecular pathways, including the cell cycle, DNA repair efficiency and upregulation of oxidative phosphorylation-related genes in radioresistant SW837 rectal cancer cells. Real-time metabolic profiling demonstrated decreased reliance on glycolysis and enhanced mitochondrial spare respiratory capacity in radioresistant SW837 cells when compared to radiosensitive HCT116 cells. Metabolomic profiling of pre-treatment serum samples from rectal cancer patients (n = 52) identified 16 metabolites significantly associated with subsequent pathological response to neoadjuvant chemoradiation therapy. Thirteen of these metabolites were also significantly associated with overall survival. This study demonstrates, for the first time, a role for metabolic reprograming in the radioresistance of rectal cancer in vitro and highlights a potential role for altered metabolites as novel circulating predictive markers of treatment response in rectal cancer patients.
Collapse
Affiliation(s)
- Croí E Buckley
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity St James's Cancer Institute, Trinity College Dublin, D08 NHY1 Dublin, Ireland
| | - Xiaofei Yin
- UCD School of Agriculture and Food Science, UCD Institute of Food and Health, Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Sebastian Meltzer
- Department of Oncology, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Anne Hansen Ree
- Department of Oncology, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Kathrine Røe Redalen
- Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Lorraine Brennan
- UCD School of Agriculture and Food Science, UCD Institute of Food and Health, Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Jacintha O'Sullivan
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity St James's Cancer Institute, Trinity College Dublin, D08 NHY1 Dublin, Ireland
| | - Niamh Lynam-Lennon
- Department of Surgery, School of Medicine, Trinity Translational Medicine Institute, Trinity St James's Cancer Institute, Trinity College Dublin, D08 NHY1 Dublin, Ireland
| |
Collapse
|
17
|
Shimura T. Mitochondrial Signaling Pathways Associated with DNA Damage Responses. Int J Mol Sci 2023; 24:ijms24076128. [PMID: 37047099 PMCID: PMC10094106 DOI: 10.3390/ijms24076128] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/14/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
Under physiological and stress conditions, mitochondria act as a signaling platform to initiate biological events, establishing communication from the mitochondria to the rest of the cell. Mitochondrial adenosine triphosphate (ATP), reactive oxygen species, cytochrome C, and damage-associated molecular patterns act as messengers in metabolism, oxidative stress response, bystander response, apoptosis, cellular senescence, and inflammation response. In this review paper, the mitochondrial signaling in response to DNA damage was summarized. Mitochondrial clearance via fusion, fission, and mitophagy regulates mitochondrial quality control under oxidative stress conditions. On the other hand, damaged mitochondria release their contents into the cytoplasm and then mediate various signaling pathways. The role of mitochondrial dysfunction in radiation carcinogenesis was discussed, and the recent findings on radiation-induced mitochondrial signaling and radioprotective agents that targeted mitochondria were presented. The analysis of the mitochondrial radiation effect, as hypothesized, is critical in assessing radiation risks to human health.
Collapse
Affiliation(s)
- Tsutomu Shimura
- Department of Environmental Health, National Institute of Public Health, Wako 351-0197, Saitama, Japan
| |
Collapse
|
18
|
Zhang X, Sun C, Wan J, Zhang X, Jia Y, Zhou C. Compartmentalized activities of HMGCS1 control cervical cancer radiosensitivity. Cell Signal 2023; 101:110507. [PMID: 36328117 DOI: 10.1016/j.cellsig.2022.110507] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
Abstract
The underlying mechanisms by which cellular metabolism affects cervical cancer cell radiosensitivity remain poorly understood. Here, we found that loss of 3-hydroxy-3-methylglutaryl coenzyme A synthase 1 (HMGCS1), a key enzyme catalyzing the conversion of acetoacetyl-CoA to HMG-CoA in the cholesterol biosynthesis pathway, sensitizes the cervical cancer cells to radiation. We observed a compartmentalized cellular distribution of HMGCS1 in nuclei, cytosol, and mitochondria of cervical cancer cells and found that cytosolic HMGCS1 and mitochondrial HMGCS1 contribute together to the regulation of radiosensitivity. Mechanistically, we show that cytosolic HMGCS1 regulates radiosensitivity via manipulating the cholesterol metabolism, while mitochondrial HMGCS1 controls mitochondrial gene expression, thereby sustaining the mitochondrial function of cervical cancer cells. Together, our study identifies HMGCS1 as a novel regulator of radiosensitivty in cervical cancer cells, providing a molecular link between altered cholesterol metabolism, mitochondrial respiration, and radiosensitivity. Thus, targeting HMGCS1 may improve the therapeutic outcome of cervical cancer radiotherapy.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Department of Obstetrics and Gynecology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, PR China
| | - Congcong Sun
- Department of Obstetrics and Gynecology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, PR China
| | - Jinliang Wan
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, PR China
| | - Xiaoxue Zhang
- Department of Obstetrics and Gynecology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, PR China
| | - Yanhan Jia
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China.
| | - Chao Zhou
- Department of Obstetrics and Gynecology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, PR China.
| |
Collapse
|
19
|
Yu Y, Yu J, Ge S, Su Y, Fan X. Novel insight into metabolic reprogrammming in cancer radioresistance: A promising therapeutic target in radiotherapy. Int J Biol Sci 2023; 19:811-828. [PMID: 36778122 PMCID: PMC9910008 DOI: 10.7150/ijbs.79928] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/09/2022] [Indexed: 01/12/2023] Open
Abstract
Currently, cancer treatment mainly consists of surgery, radiotherapy, chemotherapy, immunotherapy, and molecular targeted therapy, of which radiotherapy is one of the major pillars. However, the occurrence of radioresistance largely limits its therapeutic effect. Metabolic reprogramming is an important hallmark in cancer progression and treatment resistance. In radiotherapy, DNA breakage is the major mechanism of cell damage, and in turn, cancer cells are prone to increase the metabolic flux of glucose, glutamine, serine, arginine, fatty acids etc., thus providing sufficient substrates and energy for DNA damage repair. Therefore, studying the linkage between metabolic reprogramming and cancer radioresistance may provide new ideas for improving the efficacy of tumor therapy. This review mainly focuses on the role of metabolic alterations, including glucose, amino acid, lipid, nucleotide and other ion metabolism, in radioresistance, and proposes possible therapeutic targets to improve the efficacy of cancer radiotherapy.
Collapse
Affiliation(s)
- Yilin Yu
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Jie Yu
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Yun Su
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
20
|
Heuser C, Renner K, Kreutz M, Gattinoni L. Targeting lactate metabolism for cancer immunotherapy - a matter of precision. Semin Cancer Biol 2023; 88:32-45. [PMID: 36496155 DOI: 10.1016/j.semcancer.2022.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Immune checkpoint inhibitors and adoptive T cell therapies have been valuable additions to the toolbox in the fight against cancer. These treatments have profoundly increased the number of patients with a realistic perspective toward a return to a cancer-free life. Yet, in a number of patients and tumor entities, cancer immunotherapies have been ineffective so far. In solid tumors, immune exclusion and the immunosuppressive tumor microenvironment represent substantial roadblocks to successful therapeutic outcomes. A major contributing factor to the depressed anti-tumor activity of immune cells in tumors is the harsh metabolic environment. Hypoxia, nutrient competition with tumor and stromal cells, and accumulating noxious waste products, including lactic acid, pose massive constraints to anti-tumor immune cells. Numerous strategies are being developed to exploit the metabolic vulnerabilities of tumor cells in the hope that these would also alleviate metabolism-inflicted immune suppression. While promising in principle, especially in combination with immunotherapies, these strategies need to be scrutinized for their effect on tumor-fighting immune cells, which share some of their key metabolic properties with tumor cells. Here, we provide an overview of strategies that seek to tackle lactate metabolism in tumor or immune cells to unleash anti-tumor immune responses, thereby opening therapeutic options for patients whose tumors are currently not treatable.
Collapse
Affiliation(s)
- Christoph Heuser
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy (LIT), 93053 Regensburg, Germany.
| | - Kathrin Renner
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany; Department of Otorhinolaryngology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany; Clinical Cooperation Group Immunometabolomics, Leibniz Institute for Immunotherapy (LIT), 93053 Regensburg, Germany; Center for Immunomedicine in Transplantation and Oncology (CITO), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Luca Gattinoni
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy (LIT), 93053 Regensburg, Germany; Center for Immunomedicine in Transplantation and Oncology (CITO), University Hospital Regensburg, 93053 Regensburg, Germany; University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
21
|
Bian C, Zheng Z, Su J, Wang H, Chang S, Xin Y, Jiang X. Targeting Mitochondrial Metabolism to Reverse Radioresistance: An Alternative to Glucose Metabolism. Antioxidants (Basel) 2022; 11:2202. [PMID: 36358574 PMCID: PMC9686736 DOI: 10.3390/antiox11112202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 07/30/2023] Open
Abstract
Radiotherapy failure and poor tumor prognosis are primarily attributed to radioresistance. Improving the curative effect of radiotherapy and delaying cancer progression have become difficult problems for clinicians. Glucose metabolism has long been regarded as the main metabolic process by which tumor cells meet their bioenergetic and anabolic needs, with the complex interactions between the mitochondria and tumors being ignored. This misconception was not dispelled until the early 2000s; however, the cellular molecules and signaling pathways involved in radioresistance remain incompletely defined. In addition to being a key metabolic site that regulates tumorigenesis, mitochondria can influence the radiation effects of malignancies by controlling redox reactions, participating in oxidative phosphorylation, producing oncometabolites, and triggering apoptosis. Therefore, the mitochondria are promising targets for the development of novel anticancer drugs. In this review, we summarize the internal relationship and related mechanisms between mitochondrial metabolism and cancer radioresistance, thus exploring the possibility of targeting mitochondrial signaling pathways to reverse radiation insensitivity. We suggest that attention should be paid to the potential value of mitochondria in prolonging the survival of cancer patients.
Collapse
Affiliation(s)
- Chenbin Bian
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Jing Su
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Huanhuan Wang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Sitong Chang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| |
Collapse
|
22
|
Varzandeh M, Labbaf S, Varshosaz J, Laurent S. An overview of the intracellular localization of high-Z nanoradiosensitizers. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:14-30. [PMID: 36029849 DOI: 10.1016/j.pbiomolbio.2022.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/17/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Radiation therapy (RT) is a method commonly used for cancer treatment worldwide. Commonly, RT utilizes two routes for combating cancers: 1) high-energy radiation to generate toxic reactive oxygen species (ROS) (through the dissociation of water molecules) for damaging the deoxyribonucleic acid (DNA) inside the nucleus 2) direct degradation of the DNA. However, cancer cells have mechanisms to survive under intense RT, which can considerably decrease its therapeutic efficacy. Excessive radiation energy damages healthy tissues, and hence, low doses are applied for cancer treatment. Additionally, different radiosensitizers were used to sensitize cancer cells towards RT through individual mechanisms. Following this route, nanoparticle-based radiosensitizers (herein called nanoradiosensitizers) have recently gained attention owing to their ability to produce massive electrons which leads to the production of a huge amount of ROS. The success of the nanoradiosensitizer effect is closely correlated to its interaction with cells and its localization within the cells. In other words, tumor treatment is affected from the chain of events which is started from cell-nanoparticle interaction followed by the nanoparticles direction and homing inside the cell. Therefore, passive or active targeting of the nanoradiosensitizers in the subcellular level and the cell-nano interaction would determine the efficacy of the radiation therapy. The importance of the nanoradiosensitizer's targeting is increased while the organelles beyond nucleus are recently recognized as the mediators of the cancer cell death or resistance under RT. In this review, the principals of cell-nanomaterial interactions and which dominate nanoradiosensitizer efficiency in cancer therapy, are thoroughly discussed.
Collapse
Affiliation(s)
- Mohammad Varzandeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center and Department of Pharmaceutics, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sophie Laurent
- Laboratory of NMR and Molecular Imaging, Department of General, Organic Chemistry and Biomedical, University of Mons, Mons, Belgium.
| |
Collapse
|
23
|
Hydrogen Peroxide Promotes the Production of Radiation-Derived EVs Containing Mitochondrial Proteins. Antioxidants (Basel) 2022; 11:antiox11112119. [PMID: 36358489 PMCID: PMC9686922 DOI: 10.3390/antiox11112119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 12/01/2022] Open
Abstract
In spite of extensive successes, cancer recurrence after radiation treatment (RT) remains one of the significant challenges in the cure of localized prostate cancer (PCa). This study focuses on elucidating a novel adaptive response to RT that could contribute to cancer recurrence. Here, we used PC3 cell line, an adenocarcinoma from a bone metastasis and radio-resistant clone 695 cell line, which survived after total radiation dose of 66 Gy (2 Gy × 33) and subsequently regrew in nude mice after exposure to fractionated radiation at 10 Gy (2 Gy × 5). Clone 695 cells not only showed an increase in surviving fraction post-radiation but also an increase in hydrogen peroxide (H2O2) production when compared to PC3 cells. At the single cell level, confocal microscope images coupled with IMARIS rendering software demonstrate an increase in mitochondrial mass and membrane potential in clone 695 cells. Utilizing the Seahorse XF96 instrument to investigate mitochondrial respiration, clone 695 cells demonstrated a higher basal Oxygen Consumption Rate (OCR), ATP-linked OCR, and proton leak compared to PC3 cells. The elevation of mitochondrial function in clone 695 cells is accompanied by an increase in mitochondrial H2O2 production. These data suggest that H2O2 could reprogram PCa’s mitochondrial homeostasis, which allows the cancer to survive and regrow after RT. Upon exposure to RT, in addition to ROS production, we found that RT induces the release of extracellular vesicles (EVs) from PC3 cells (p < 0.05). Importantly, adding H2O2 to PC3 cells promotes EVs production in a dose-dependent manner and pre-treatment with polyethylene glycol-Catalase mitigates H2O2-mediated EV production. Both RT-derived EVs and H2O2-derived EVs carried higher levels of mitochondrial antioxidant proteins including, Peroxiredoxin 3, Glutathione Peroxidase 4 as well as mitochondrial-associated oxidative phosphorylation proteins. Significantly, adding isolated functional mitochondria 24 h prior to RT shows a significant increase in surviving fractions of PC3 cells (p < 0.05). Together, our findings reveal that H2O2 promotes the production of EVs carrying mitochondrial proteins and that functional mitochondria enhance cancer survival after RT.
Collapse
|
24
|
Moss DY, McCann C, Kerr EM. Rerouting the drug response: Overcoming metabolic adaptation in KRAS-mutant cancers. Sci Signal 2022; 15:eabj3490. [PMID: 36256706 DOI: 10.1126/scisignal.abj3490] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mutations in guanosine triphosphatase KRAS are common in lung, colorectal, and pancreatic cancers. The constitutive activity of mutant KRAS and its downstream signaling pathways induces metabolic rewiring in tumor cells that can promote resistance to existing therapeutics. In this review, we discuss the metabolic pathways that are altered in response to treatment and those that can, in turn, alter treatment efficacy, as well as the role of metabolism in the tumor microenvironment (TME) in dictating the therapeutic response in KRAS-driven cancers. We highlight metabolic targets that may provide clinical opportunities to overcome therapeutic resistance and improve survival in patients with these aggressive cancers.
Collapse
Affiliation(s)
- Deborah Y Moss
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE Northern Ireland, UK
| | - Christopher McCann
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE Northern Ireland, UK
| | - Emma M Kerr
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE Northern Ireland, UK
| |
Collapse
|
25
|
Unraveling Mitochondrial Determinants of Tumor Response to Radiation Therapy. Int J Mol Sci 2022; 23:ijms231911343. [PMID: 36232638 PMCID: PMC9569617 DOI: 10.3390/ijms231911343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
Radiotherapy represents a highly targeted and efficient treatment choice in many cancer types, both with curative and palliative intents. Nevertheless, radioresistance, consisting in the adaptive response of the tumor to radiation-induced damage, represents a major clinical problem. A growing body of the literature suggests that mechanisms related to mitochondrial changes and metabolic remodeling might play a major role in radioresistance development. In this work, the main contributors to the acquired cellular radioresistance and their relation with mitochondrial changes in terms of reactive oxygen species, hypoxia, and epigenetic alterations have been discussed. We focused on recent findings pointing to a major role of mitochondria in response to radiotherapy, along with their implication in the mechanisms underlying radioresistance and radiosensitivity, and briefly summarized some of the recently proposed mitochondria-targeting strategies to overcome the radioresistant phenotype in cancer.
Collapse
|
26
|
Biological Mechanisms to Reduce Radioresistance and Increase the Efficacy of Radiotherapy: State of the Art. Int J Mol Sci 2022; 23:ijms231810211. [PMID: 36142122 PMCID: PMC9499172 DOI: 10.3390/ijms231810211] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Cancer treatment with ionizing radiation (IR) is a well-established and effective clinical method to fight different types of tumors and is a palliative treatment to cure metastatic stages. Approximately half of all cancer patients undergo radiotherapy (RT) according to clinical protocols that employ two types of ionizing radiation: sparsely IR (i.e., X-rays) and densely IR (i.e., protons). Most cancer cells irradiated with therapeutic doses exhibit radio-induced cytotoxicity in terms of cell proliferation arrest and cell death by apoptosis. Nevertheless, despite the more tailored advances in RT protocols in the last few years, several tumors show a relatively high percentage of RT failure and tumor relapse due to their radioresistance. To counteract this extremely complex phenomenon and improve clinical protocols, several factors associated with radioresistance, of both a molecular and cellular nature, must be considered. Tumor genetics/epigenetics, tumor microenvironment, tumor metabolism, and the presence of non-malignant cells (i.e., fibroblast-associated cancer cells, macrophage-associated cancer cells, tumor-infiltrating lymphocytes, endothelial cells, cancer stem cells) are the main factors important in determining the tumor response to IR. Here, we attempt to provide an overview of how such factors can be taken advantage of in clinical strategies targeting radioresistant tumors.
Collapse
|
27
|
Li Z, Huang H, Wang C, Zhao Z, Ma W, Wang D, Mao H, Liu F, Yang Y, Pan W, Lu Z. DCE-MRI radiomics models predicting the expression of radioresistant-related factors of LRP-1 and survivin in locally advanced rectal cancer. Front Oncol 2022; 12:881341. [PMID: 36106114 PMCID: PMC9465298 DOI: 10.3389/fonc.2022.881341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Objective Low-density lipoprotein receptor-related protein-1 (LRP-1) and survivin are associated with radiotherapy resistance in patients with locally advanced rectal cancer (LARC). This study aimed to evaluate the value of a radiomics model based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for the preoperative assessment of LRP-1 and survivin expressions in these patients. Methods One hundred patients with pathologically confirmed LARC who underwent DCE-MRI before surgery between February 2017 and September 2021 were included in this retrospective study. DCE-MRI perfusion histogram parameters were calculated for the entire lesion using post-processing software (Omni Kinetics, G.E. Healthcare, China), with three quantitative parameter maps. LRP-1 and survivin expressions were assessed by immunohistochemical methods and patients were classified into low- and high-expression groups. Results Four radiomics features were selected to construct the LRP-1 discrimination model. The LRP-1 predictive model achieved excellent diagnostic performance, with areas under the receiver operating curve (AUCs) of 0.853 and 0.747 in the training and validation cohorts, respectively. The other four radiomics characteristics were screened to construct the survivin predictive model, with AUCs of 0.780 and 0.800 in the training and validation cohorts, respectively. Decision curve analysis confirmed the clinical usefulness of the radiomics models. Conclusion DCE-MRI radiomics models are particularly useful for evaluating LRP-1 and survivin expressions in patients with LARC. Our model has significant potential for the preoperative identification of patients with radiotherapy resistance and can serve as an essential reference for treatment planning.
Collapse
Affiliation(s)
- Zhiheng Li
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Huizhen Huang
- Shaoxing University School of Medicine, Shaoxing, China
| | - Chuchu Wang
- Shaoxing University School of Medicine, Shaoxing, China
| | - Zhenhua Zhao
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Weili Ma
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Dandan Wang
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Haijia Mao
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Fang Liu
- Department of Pathology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Ye Yang
- Department of Pathology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Weihuo Pan
- Department of Colon and Rectal Surgery, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Zengxin Lu
- Department of Radiology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
- *Correspondence: Zengxin Lu,
| |
Collapse
|
28
|
Pacifico S, Bláha P, Faramarzi S, Fede F, Michaličková K, Piccolella S, Ricciardi V, Manti L. Differential Radiomodulating Action of Olea europaea L. cv. Caiazzana Leaf Extract on Human Normal and Cancer Cells: A Joint Chemical and Radiobiological Approach. Antioxidants (Basel) 2022; 11:1603. [PMID: 36009322 PMCID: PMC9404970 DOI: 10.3390/antiox11081603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
The identification of a natural compound with selectively differential radiomodulating activity would arguably represent a valuable asset in the striving quest for widening the therapeutic window in cancer radiotherapy (RT). To this end, we fully characterized the chemical profile of olive tree leaf polyphenols from the Caiazzana cultivar (OLC), autochthonous to the Campania region (Italy), by ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HR-MS). Oleacein was the most abundant molecule in the OLC. Two normal and two cancer cells lines were X-ray-irradiated following 24-h treatment with the same concentration of the obtained crude extract and were assessed for their radioresponse in terms of micronucleus (MN) induction and, for one of the normal cell lines, of premature senescence (PS). Irradiation of pre-treated normal cells in the presence of the OLC reduced the frequency of radiation-induced MN and the onset of PS. Conversely, the genotoxic action of ionising radiation was exacerbated in cancer cells under the same experimental conditions. To our knowledge, this is the first report on the dual action of a polyphenol-rich olive leaf extract on radiation-induced damage. If further confirmed, these findings may be pre-clinically relevant and point to a substance that may potentially counteract cancer radioresistance while reducing RT-associated normal tissue toxicity.
Collapse
Affiliation(s)
- Severina Pacifico
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
- Istituto Nazionale di Fisica Nucleare-Sezione di Napoli, 80126 Napoli, Italy
| | - Pavel Bláha
- Istituto Nazionale di Fisica Nucleare-Sezione di Napoli, 80126 Napoli, Italy
| | - Shadab Faramarzi
- Department of Plant Production and Genetics, Faculty of Agriculture, Razi University, Kermanshah 67149-67346, Iran
| | - Francesca Fede
- Dipartimento di Fisica “E. Pancini”, Università degli Studi di Napoli Federico II, 80126 Napoli, Italy
| | - Katarina Michaličková
- Istituto Nazionale di Fisica Nucleare-Sezione di Napoli, 80126 Napoli, Italy
- Dipartimento di Fisica “E. Pancini”, Università degli Studi di Napoli Federico II, 80126 Napoli, Italy
| | - Simona Piccolella
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
- Istituto Nazionale di Fisica Nucleare-Sezione di Napoli, 80126 Napoli, Italy
| | - Valerio Ricciardi
- Istituto Nazionale di Fisica Nucleare-Sezione di Napoli, 80126 Napoli, Italy
| | - Lorenzo Manti
- Istituto Nazionale di Fisica Nucleare-Sezione di Napoli, 80126 Napoli, Italy
- Dipartimento di Fisica “E. Pancini”, Università degli Studi di Napoli Federico II, 80126 Napoli, Italy
| |
Collapse
|
29
|
Jin P, Jiang J, Zhou L, Huang Z, Nice EC, Huang C, Fu L. Mitochondrial adaptation in cancer drug resistance: prevalence, mechanisms, and management. J Hematol Oncol 2022; 15:97. [PMID: 35851420 PMCID: PMC9290242 DOI: 10.1186/s13045-022-01313-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 02/08/2023] Open
Abstract
Drug resistance represents a major obstacle in cancer management, and the mechanisms underlying stress adaptation of cancer cells in response to therapy-induced hostile environment are largely unknown. As the central organelle for cellular energy supply, mitochondria can rapidly undergo dynamic changes and integrate cellular signaling pathways to provide bioenergetic and biosynthetic flexibility for cancer cells, which contributes to multiple aspects of tumor characteristics, including drug resistance. Therefore, targeting mitochondria for cancer therapy and overcoming drug resistance has attracted increasing attention for various types of cancer. Multiple mitochondrial adaptation processes, including mitochondrial dynamics, mitochondrial metabolism, and mitochondrial apoptotic regulatory machinery, have been demonstrated to be potential targets. However, recent increasing insights into mitochondria have revealed the complexity of mitochondrial structure and functions, the elusive functions of mitochondria in tumor biology, and the targeting inaccessibility of mitochondria, which have posed challenges for the clinical application of mitochondrial-based cancer therapeutic strategies. Therefore, discovery of both novel mitochondria-targeting agents and innovative mitochondria-targeting approaches is urgently required. Here, we review the most recent literature to summarize the molecular mechanisms underlying mitochondrial stress adaptation and their intricate connection with cancer drug resistance. In addition, an overview of the emerging strategies to target mitochondria for effectively overcoming chemoresistance is highlighted, with an emphasis on drug repositioning and mitochondrial drug delivery approaches, which may accelerate the application of mitochondria-targeting compounds for cancer therapy.
Collapse
Affiliation(s)
- Ping Jin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060, Guangdong, People's Republic of China.
| |
Collapse
|
30
|
Exploring hypoxic biology to improve radiotherapy outcomes. Expert Rev Mol Med 2022; 24:e21. [DOI: 10.1017/erm.2022.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Feng D, Shi X, Zhang F, Xiong Q, Wei Q, Yang L. Mitochondria Dysfunction-Mediated Molecular Subtypes and Gene Prognostic Index for Prostate Cancer Patients Undergoing Radical Prostatectomy or Radiotherapy. Front Oncol 2022; 12:858479. [PMID: 35463369 PMCID: PMC9019359 DOI: 10.3389/fonc.2022.858479] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/08/2022] [Indexed: 02/05/2023] Open
Abstract
Background Given the age relevance of prostate cancer (PCa) and the role of mitochondrial dysfunction (MIDS) in aging, we orchestrated molecular subtypes and identified key genes for PCa from the perspective of MIDS. Methods Cluster analysis, COX regression analysis, function analysis, and tumor immune environment were conducted. We performed all analyses using software R 3.6.3 and its suitable packages. Results CXCL14, SFRP4, and CD38 were eventually identified to classify the PCa patients in The Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) dataset into two distinct clusters. Patients in the cluster 2 had shorter BCR-free survival than those in the cluster 1 in terms of both TCGA database and GEO dataset. We divided the patients from the TCGA database and the GEO dataset into high- and low-risk groups according to the median of MIDS-related genetic prognostic index. For patients in the TCGA database, the biochemical recurrence (BCR) risk in high-risk group was 2.34 times higher than that in low-risk group. Similarly, for patients in the GEO dataset, the risk of BCR and metastasis in high-risk group was 2.35 and 3.04 times higher than that in low-risk group, respectively. Cluster 2 was closely associated with advanced T stage and higher Gleason score for patients undergoing radical prostatectomy or radiotherapy. For patients undergoing radical prostatectomy, the number of CD8+ T cells was significantly lower in cluster 2 than in cluster 1, while cluster 2 had significantly higher stromal score than cluster 1. For patients undergoing radical radiotherapy, cluster 2 had significantly higher level of CD8+ T cells, neutrophils, macrophages, dendritic cells, stromal score, immune score, and estimate score, but showed lower level of tumor purity than cluster 1. Conclusions We proposed distinctly prognosis-related molecular subtypes at genetic level and related formula for PCa patients undergoing radical prostatectomy or radiotherapy, mainly to provide a roadmap for precision medicine.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xu Shi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Facai Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiao Xiong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Shih PC. The role of the STAT3 signaling transduction pathways in radioresistance. Pharmacol Ther 2022; 234:108118. [PMID: 35085605 DOI: 10.1016/j.pharmthera.2022.108118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/25/2021] [Accepted: 01/18/2022] [Indexed: 12/11/2022]
Abstract
The efficacy of radiotherapy has long known to be limited by the emergence of resistance. The four Rs of radiotherapy (DNA damage repair, reoxygenation, redistribution of the cell cycle, and repopulation) are generally accepted concepts in radiobioolgy. Recent studies have strongly linked signal transducer and activator of transcription 3 (STAT3) to the regulation of cancer stemness and radioresistance. In particular, a STAT3 pathway inhibitor napabucasin, claimed to be the first cancer stemness antagonist in clinical trials, strengthens the link. However, no reviews connect STAT3 with the four Rs of radiotherapy. Herein, the evidence-based role of STAT3 in radioresistance is discussed in relation to the four Rs of radiotherapy. The proposed mechanisms include upstream and downstream effector proteins of STAT3, including FOXM1, MELK, NEK2, AKT, EZH2, and HIF1α. Downstream transcriptional products of the mechanistically-related proteins are involved in cancer stemness, anti-apoptosis, and the four Rs of radiotherapy. Utilizing selective inhibitors of the mechanistically-related proteins has shown promising antagonism of radioresistance, suggesting that the expression levels of these proteins may be biomarkers for the prediction of radiotherapeutic outcomes, and that this molecular mechanism may provide a rational axis through which to treat radioresistance.
Collapse
Affiliation(s)
- Po-Chang Shih
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London WC1N 1AX, UK; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
33
|
Xu HG, Reshetnikov V, Wondrak M, Eckhardt L, Kunz-Schughart LA, Janko C, Tietze R, Alexiou C, Borchardt H, Aigner A, Gong W, Schmitt M, Sellner L, Daum S, Özkan HG, Mokhir A. Intracellular Amplifiers of Reactive Oxygen Species Affecting Mitochondria as Radiosensitizers. Cancers (Basel) 2021; 14:208. [PMID: 35008371 PMCID: PMC8750417 DOI: 10.3390/cancers14010208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy (RT) efficacy can be improved by using radiosensitizers, i.e., drugs enhancing the effect of ionizing radiation (IR). One of the side effects of RT includes damage of normal tissue in close proximity to the treated tumor. This problem can be solved by applying cancer specific radiosensitizers. N-Alkylaminoferrocene-based (NAAF) prodrugs produce reactive oxygen species (ROS) in cancer cells, but not in normal cells. Therefore, they can potentially act as cancer specific radiosensitizers. However, early NAAF prodrugs did not exhibit this property. Since functional mitochondria are important for RT resistance, we assumed that NAAF prodrugs affecting mitochondria in parallel with increasing intracellular ROS can potentially exhibit synergy with RT. We applied sequential Cu+-catalyzed alkyne-azide cycloadditions (CuAAC) to obtain a series of NAAF derivatives with the goal of improving anticancer efficacies over already existing compounds. One of the obtained prodrugs (2c) exhibited high anticancer activity with IC50 values in the range of 5-7.1 µM in human ovarian carcinoma, Burkitt's lymphoma, pancreatic carcinoma and T-cell leukemia cells retained moderate water solubility and showed cancer specificity. 2c strongly affects mitochondria of cancer cells, leading to the amplification of mitochondrial and total ROS production and thus causing cell death via necrosis and apoptosis. We observed that 2c acts as a radiosensitizer in human head and neck squamous carcinoma cells. This is the first demonstration of a synergy between the radiotherapy and NAAF-based ROS amplifiers.
Collapse
Affiliation(s)
- Hong-Gui Xu
- Organic Chemistry Chair II, Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany; (H.-G.X.); (V.R.); (S.D.); (H.G.Ö.)
| | - Viktor Reshetnikov
- Organic Chemistry Chair II, Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany; (H.-G.X.); (V.R.); (S.D.); (H.G.Ö.)
| | - Marit Wondrak
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (M.W.); (L.E.); (L.A.K.-S.)
| | - Lisa Eckhardt
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (M.W.); (L.E.); (L.A.K.-S.)
| | - Leoni A. Kunz-Schughart
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (M.W.); (L.E.); (L.A.K.-S.)
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (C.J.); (R.T.); (C.A.)
| | - Rainer Tietze
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (C.J.); (R.T.); (C.A.)
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (C.J.); (R.T.); (C.A.)
| | - Hannes Borchardt
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, 04107 Leipzig, Germany; (H.B.); (A.A.)
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, 04107 Leipzig, Germany; (H.B.); (A.A.)
| | - Wenjie Gong
- Department of Medicine V, Heidelberg University Hospital, 69120 Heidelberg, Germany; (W.G.); (M.S.); (L.S.)
- Department of Hematology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Michael Schmitt
- Department of Medicine V, Heidelberg University Hospital, 69120 Heidelberg, Germany; (W.G.); (M.S.); (L.S.)
| | - Leopold Sellner
- Department of Medicine V, Heidelberg University Hospital, 69120 Heidelberg, Germany; (W.G.); (M.S.); (L.S.)
- Takeda Pharmaceuticals, Cambridge, MA 02139, USA
| | - Steffen Daum
- Organic Chemistry Chair II, Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany; (H.-G.X.); (V.R.); (S.D.); (H.G.Ö.)
- Merck, Im Laternenacker 5, 8200 Schaffhausen, Switzerland
| | - Hülya Gizem Özkan
- Organic Chemistry Chair II, Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany; (H.-G.X.); (V.R.); (S.D.); (H.G.Ö.)
| | - Andriy Mokhir
- Organic Chemistry Chair II, Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany; (H.-G.X.); (V.R.); (S.D.); (H.G.Ö.)
| |
Collapse
|
34
|
de Mey S, Dufait I, De Ridder M. Radioresistance of Human Cancers: Clinical Implications of Genetic Expression Signatures. Front Oncol 2021; 11:761901. [PMID: 34778082 PMCID: PMC8579106 DOI: 10.3389/fonc.2021.761901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Although radiotherapy is given to more than 50% of cancer patients, little progress has been made in identifying optimal radiotherapy - drug combinations to improve treatment efficacy. Using molecular data from The Cancer Genome Atlas (TCGA), we extracted a total of 1016 cancer patients that received radiotherapy. The patients were diagnosed with head-and-neck (HNSC - 294 patients), cervical (CESC - 166 patients) and breast (BRCA - 549 patients) cancer. We analyzed mRNA expression patterns of 50 hallmark gene sets of the MSigDB collection, which we divided in eight categories based on a shared biological or functional process. Tumor samples were split into upregulated, neutral or downregulated mRNA expression for all gene sets using a gene set analysis (GSEA) pre-ranked analysis and assessed for their clinical relevance. We found a prognostic association between three of the eight gene set categories (Radiobiological, Metabolism and Proliferation) and overall survival in all three cancer types. Furthermore, multiple single associations were revealed in the other categories considered. To the best of our knowledge, our study is the first report suggesting clinical relevance of molecular characterization based on hallmark gene sets to refine radiation strategies.
Collapse
Affiliation(s)
- Sven de Mey
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Inès Dufait
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mark De Ridder
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
35
|
Yu S, Li L, Fan K, Li Y, Gao Y. A Genome-Scale CRISPR Knock-Out Screen Identifies MicroRNA-5197-5p as a Promising Radiosensitive Biomarker in Colorectal Cancer. Front Oncol 2021; 11:696713. [PMID: 34395263 PMCID: PMC8362832 DOI: 10.3389/fonc.2021.696713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023] Open
Abstract
Radioresistance is one of the main reasons causing unsatisfactory curative effects of ionizing radiation (IR) against colorectal cancer (CRC). However, its underlying mechanisms remain unclear yet. In the present study, we applied a genome-scale CRISPR knockout screen in combination of NGS sequencing upon CRC cell lines to explore regulatory factors involved radioresistance of CRC, and 3 candidate genes were identified. Cytotoxicity of IR was determined by Cell Counting Kit-8 (CCK-8) assay, colony formation assay and apoptosis assay, and microRNA-5197-5p (miR-5197) was found to significantly enhance the cytotoxicity of IR to CRC cells. By further mechanistic investigation, we demonstrated that miR-5197 directly targeted CDK6 and inhibited its expression in RKO cells, which induced cell cycle arrest at G1/S phase and inhibited cell division, thereby radiosensitivity was enhanced by miR-5197. Our findings revealed that miR-5197 might be a critical factor regulating CRC cell radiosensitivity and provided novel insights into the development of therapeutic strategies for CRC patients who are resistant to IR.
Collapse
Affiliation(s)
- Shijun Yu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kailing Fan
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yandong Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
McCann C, Kerr EM. Metabolic Reprogramming: A Friend or Foe to Cancer Therapy? Cancers (Basel) 2021; 13:3351. [PMID: 34283054 PMCID: PMC8267696 DOI: 10.3390/cancers13133351] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
Drug resistance is a major cause of cancer treatment failure, effectively driven by processes that promote escape from therapy-induced cell death. The mechanisms driving evasion of apoptosis have been widely studied across multiple cancer types, and have facilitated new and exciting therapeutic discoveries with the potential to improve cancer patient care. However, an increasing understanding of the crosstalk between cancer hallmarks has highlighted the complexity of the mechanisms of drug resistance, co-opting pathways outside of the canonical "cell death" machinery to facilitate cell survival in the face of cytotoxic stress. Rewiring of cellular metabolism is vital to drive and support increased proliferative demands in cancer cells, and recent discoveries in the field of cancer metabolism have uncovered a novel role for these programs in facilitating drug resistance. As a key organelle in both metabolic and apoptotic homeostasis, the mitochondria are at the forefront of these mechanisms of resistance, coordinating crosstalk in the event of cellular stress, and promoting cellular survival. Importantly, the appreciation of this role metabolism plays in the cytotoxic response to therapy, and the ability to profile metabolic adaptions in response to treatment, has encouraged new avenues of investigation into the potential of exploiting metabolic addictions to improve therapeutic efficacy and overcome drug resistance in cancer. Here, we review the role cancer metabolism can play in mediating drug resistance, and the exciting opportunities presented by imposed metabolic vulnerabilities.
Collapse
Affiliation(s)
| | - Emma M. Kerr
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, 97 Lisburn Rd, BT9 7AE Belfast, Ireland;
| |
Collapse
|
37
|
Mortezaee K. Normalization in tumor ecosystem: Opportunities and challenges. Cell Biol Int 2021; 45:2017-2030. [PMID: 34189798 DOI: 10.1002/cbin.11655] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/24/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022]
Abstract
Current research in cancer therapy aims to exploit efficient strategies to have long-lasting effects on tumors and to reduce or even revoke the chance of recurrence. Within the tumor stroma, O2 and nutrients are abnormally distributed between various cells (preferentially for supplying cancer cells), the immune contexture is abnormally positioned (permissive essentially for cells exhibiting tumor-promoting capacity), the fibroblast and fibrotic content is abnormally distributed (presence of both extracellular matrix [ECM] stiffening and ECM-degrading factors both for tumor-promoting purposes), and the tumor vasculature is abnormally orchestrated (for hindering drug delivery and increasing the chance of tumor metastasis). Resistance is actually an adaptive response to an imbalance in the tumor ecosystem; thus, the key consideration for effective cancer therapy is to bring back the normal status in this ecosystem so as to reach the desired durable outcome. Vascular normalization, metabolic modulation (glucose delivery in particular), balancing cellular dispersion, and balancing the pH rate and O2 delivery within the tumor microenvironment are suggested strategies to reverse abnormality within the tumor stroma.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
38
|
Mack N, Mazzio E, Badisa R, Soliman KFA. Metabolic Response to the Mitochondrial Toxin 1-Methyl-4-phenylpyridinium (MPP+) in LDH-A/B Double-knockout LS174T Colon Cancer Cells. Cancer Genomics Proteomics 2021; 18:385-405. [PMID: 33994363 DOI: 10.21873/cgp.20267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/15/2021] [Accepted: 04/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM Rapid glycolytic substrate-level phosphorylation (SLP) and accumulation of lactic acid are characteristics of diverse cancers. Recent advances in drug discovery have included the use of glycolytic inhibitors with mitochondrial targeting drugs to attempt to invoke an energy crisis in aggressive metabolically active chemo-resistant cancers. In this work, we examine the consequences of inhibiting mitochondrial oxidative phosphorylation (OXPHOS) with 1-methyl-4-phenylpyridinium (MPP+) in LS14T colon cancer cells containing a genetic double knock out (DKO) of lactic acid dehydrogenase (LDHA and LDHB). MATERIALS AND METHODS Several metabolic parameters were evaluated concomitant to whole transcriptomic (WT) mRNA, microRNA, and long intergenic non-coding RNAs using Affymetrix 2.1 human ST arrays. RESULTS MPP+ effectively blocked OXPHOS where a compensatory shift toward anaerobic SLP was only observed in the control vector (CV), and not observed in the LDH-A/B DKOs (lacking the ability to produce lactic acid). Despite this, there was an unexpected resilience to MPP+ in the latter in terms of energy, which displayed significantly higher resting baseline respiratory OXPHOS capacity relative to controls. At the transcriptome level, MPP+ invoked 1738 differential expressed genes (DEGs) out of 48,226; LDH-A/B DKO resulted in 855 DEGs while 349 DEGs were found to be overlapping in both groups versus respective controls, including loss of mitochondrial complex I (subunits 3 and 6), cell cycle transcripts and fluctuations in epigenetic chromatin remodeling systems. In terms of energy, the effects of MPP+ in the CV transcripts reflect the funneling of carbon intermediates toward glycolysis. The LDH-A/B DKO transcripts reflect a flow of carbons away from glycolysis toward the production of acetyl-CoA. CONCLUSION The findings from this study suggest a metabolic resilience to MPP+ in cancer cells devoid of LDH-A/B, explainable in-part by higher baseline OXPHOS respiratory ATP production, necessitating more toxin to suppress the electron transport chain.
Collapse
Affiliation(s)
- Nzinga Mack
- Pharmaceutical Sciences Division, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Elizabeth Mazzio
- Pharmaceutical Sciences Division, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Ramesh Badisa
- Pharmaceutical Sciences Division, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Karam F A Soliman
- Pharmaceutical Sciences Division, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A.
| |
Collapse
|
39
|
Yang Y, Chong Y, Chen M, Dai W, Zhou X, Ji Y, Qiu G, Du X. Targeting lactate dehydrogenase a improves radiotherapy efficacy in non-small cell lung cancer: from bedside to bench. J Transl Med 2021; 19:170. [PMID: 33902615 PMCID: PMC8074241 DOI: 10.1186/s12967-021-02825-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Lactate dehydrogenase A (LDHA) is overexpressed and associated with poor prognosis in many kinds of cancer. In the current study, we evaluated the prognostic value of LDHA expression in non-small cell lung cancer (NSCLC), and tested whether LDHA inhibition might improve radiotherapy efficacy in NSCLC. METHODS LDHA expression was investigated in NSCLC patients, using online database and further verified by immunohistochemistry. The prognostic value of LDHA was evaluated using Kaplan-Meier plotter database. In vitro, two NSCLC cell lines were pretreated with oxamate, an inhibitor of LDHA, and colony formation method was performed to determine cellular radiosensitivity. Comet assay was used to detect DNA damage after irradiation. Flow cytometry was applied to test cell cycle progression and apoptosis, and monodansylcadaverine (MDC) staining was used to examine cell autophagy. RESULTS Both mRNA and protein levels of LDHA expression were up-regulated in NSCLC tissues. High LDHA expression was a poor prognostic factor and associated with radioresistance in NSCLC patients. LDHA inhibition by oxamate remarkably increased radiosensitivity in both A549 and H1975 cancer cells, and enhanced ionizing radiation (IR)-induced apoptosis and autophagy, accompanied by cell cycle distribution alternations. Furthermore, LDHA inhibition induced reactive oxygen species (ROS) accumulation and cellular ATP depletion, which might increase DNA injury and hinder DNA repair activity. CONCLUSIONS Our study suggests that inhibition of LDHA may be a potential strategy to improve radiotherapy efficacy in NSCLC patients, which needs to be further tested by clinical trials.
Collapse
Affiliation(s)
- Yang Yang
- Department of Thoracic Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, China. .,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China. .,Zhejiang Key Laboratory of Radiation Oncology, No 1, East Banshan Road, Gongshu District, Hangzhou, 310022, People's Republic of China.
| | - Yu Chong
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Mengyuan Chen
- Department of Thoracic Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Wumin Dai
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China.,Department of Clinical Lab, Cancer Hospital of University of Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Xia Zhou
- Department of Thoracic Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yongling Ji
- Department of Thoracic Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Guoqin Qiu
- Department of Thoracic Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Xianghui Du
- Department of Thoracic Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, China. .,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
40
|
Bonora M, Missiroli S, Perrone M, Fiorica F, Pinton P, Giorgi C. Mitochondrial Control of Genomic Instability in Cancer. Cancers (Basel) 2021; 13:cancers13081914. [PMID: 33921106 PMCID: PMC8071454 DOI: 10.3390/cancers13081914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Cancer cells display among its hallmark genomic instability. This is a progressive tendency in accumulate genome alteration which contributes to the damage of genes regulating cell division and tumor suppression. Genomic instability favors the appearance of survival-promoting mutations, increasing the likelihood that those mutations will propagate into daughter cells and have a significant impact on cancer progression. Among the many factor influencing this phenomenon, mitochondrial physiology is emerging. Mitochondria are bound to genomic instability by responding to DNA alteration to trigger cell death programs and as a source for DNA damage. Mitochondrial alterations prototypical of cancer can desensitize the mitochondrial route of cell death, facilitating the survival of cell acquiring new mutations, or can stimulate mitochondrial mediated DNA damage, boosting the mutation rate and genomic instability itself. Abstract Mitochondria are well known to participate in multiple aspects of tumor formation and progression. They indeed can alter the susceptibility of cells to engage regulated cell death, regulate pro-survival signal transduction pathways and confer metabolic plasticity that adapts to specific tumor cell demands. Interestingly, a relatively poorly explored aspect of mitochondria in neoplastic disease is their contribution to the characteristic genomic instability that underlies the evolution of the disease. In this review, we summarize the known mechanisms by which mitochondrial alterations in cancer tolerate and support the accumulation of DNA mutations which leads to genomic instability. We describe recent studies elucidating mitochondrial responses to DNA damage as well as the direct contribution of mitochondria to favor the accumulation of DNA alterations.
Collapse
Affiliation(s)
- Massimo Bonora
- Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.B.); (S.M.); (M.P.); (P.P.)
| | - Sonia Missiroli
- Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.B.); (S.M.); (M.P.); (P.P.)
| | - Mariasole Perrone
- Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.B.); (S.M.); (M.P.); (P.P.)
| | - Francesco Fiorica
- Department of Radiation Oncology and Nuclear Medicine, AULSS 9 Scaligera, 37100 Verona, Italy;
| | - Paolo Pinton
- Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.B.); (S.M.); (M.P.); (P.P.)
| | - Carlotta Giorgi
- Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.B.); (S.M.); (M.P.); (P.P.)
- Correspondence:
| |
Collapse
|
41
|
Linking Serine/Glycine Metabolism to Radiotherapy Resistance. Cancers (Basel) 2021; 13:cancers13061191. [PMID: 33801846 PMCID: PMC8002185 DOI: 10.3390/cancers13061191] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Hyperactivation of the de novo serine/glycine biosynthesis across different cancer types and its critical contribution in tumor initiation, progression, and therapy resistance indicate the relevance of serine/glycine metabolism-targeted therapies as therapeutic intervention in cancer. In this review, we specifically focus on the contribution of the de novo serine/glycine biosynthesis pathway to radioresistance. We provide a future perspective on how de novo serine/glycine biosynthesis inhibition and serine-free diets may improve the outcome of radiotherapy. Future research in this field is needed to better understand serine/glycine metabolic reprogramming of cancer cells in response to radiation and the influence of this pathway in the tumor microenvironment, which may provide the rationale for the optimal combination therapies. Abstract The activation of de novo serine/glycine biosynthesis in a subset of tumors has been described as a major contributor to tumor pathogenesis, poor outcome, and treatment resistance. Amplifications and mutations of de novo serine/glycine biosynthesis enzymes can trigger pathway activation; however, a large group of cancers displays serine/glycine pathway overexpression induced by oncogenic drivers and unknown regulatory mechanisms. A better understanding of the regulatory network of de novo serine/glycine biosynthesis activation in cancer might be essential to unveil opportunities to target tumor heterogeneity and therapy resistance. In the current review, we describe how the activation of de novo serine/glycine biosynthesis in cancer is linked to treatment resistance and its implications in the clinic. To our knowledge, only a few studies have identified this pathway as metabolic reprogramming of cancer cells in response to radiation therapy. We propose an important contribution of de novo serine/glycine biosynthesis pathway activation to radioresistance by being involved in cancer cell viability and proliferation, maintenance of cancer stem cells (CSCs), and redox homeostasis under hypoxia and nutrient-deprived conditions. Current approaches for inhibition of the de novo serine/glycine biosynthesis pathway provide new opportunities for therapeutic intervention, which in combination with radiotherapy might be a promising strategy for tumor control and ultimately eradication. Further research is needed to gain molecular and mechanistic insight into the activation of this pathway in response to radiation therapy and to design sophisticated stratification methods to select patients that might benefit from serine/glycine metabolism-targeted therapies in combination with radiotherapy.
Collapse
|
42
|
Rakotomalala A, Escande A, Furlan A, Meignan S, Lartigau E. Hypoxia in Solid Tumors: How Low Oxygenation Impacts the "Six Rs" of Radiotherapy. Front Endocrinol (Lausanne) 2021; 12:742215. [PMID: 34539584 PMCID: PMC8445158 DOI: 10.3389/fendo.2021.742215] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/13/2021] [Indexed: 12/11/2022] Open
Abstract
Radiotherapy is an important component of cancer treatment, with approximately 50% of all cancer patients receiving radiation therapy during their course of illness. Nevertheless, solid tumors frequently exhibit hypoxic areas, which can hinder therapies efficacy, especially radiotherapy one. Indeed, hypoxia impacts the six parameters governing the radiotherapy response, called the « six Rs of radiation biology » (for Radiosensitivity, Repair, Repopulation, Redistribution, Reoxygenation, and Reactivation of anti-tumor immune response), by inducing pleiotropic cellular adaptions, such as cell metabolism rewiring, epigenetic landscape remodeling, and cell death weakening, with significant clinical repercussions. In this review, according to the six Rs, we detail how hypoxia, and associated mechanisms and pathways, impact the radiotherapy response of solid tumors and the resulting clinical implications. We finally illustrate it in hypoxic endocrine cancers through a focus on anaplastic thyroid carcinomas.
Collapse
Affiliation(s)
- Andria Rakotomalala
- Oscar Lambret center, Tumorigenesis and Resistance to Treatment Unit, Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Alexandre Escande
- Oscar Lambret Center, Academic Radiation Oncology Department, Lille, France
- University of Lille, H. Warembourg School of Medicine, Lille, France
- CRIStAL UMR CNRS 9189, University of Lille, Villeneuve-d’Ascq, France
| | - Alessandro Furlan
- Oscar Lambret center, Tumorigenesis and Resistance to Treatment Unit, Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Samuel Meignan
- Oscar Lambret center, Tumorigenesis and Resistance to Treatment Unit, Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
- *Correspondence: Samuel Meignan,
| | - Eric Lartigau
- Oscar Lambret Center, Academic Radiation Oncology Department, Lille, France
- University of Lille, H. Warembourg School of Medicine, Lille, France
- CRIStAL UMR CNRS 9189, University of Lille, Villeneuve-d’Ascq, France
| |
Collapse
|