1
|
A scalable device-less biomaterial approach for subcutaneous islet transplantation. Biomaterials 2020; 269:120499. [PMID: 33168223 DOI: 10.1016/j.biomaterials.2020.120499] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/01/2020] [Accepted: 10/26/2020] [Indexed: 01/09/2023]
Abstract
The subcutaneous space has been shown to be a suitable site for islet transplantation, however an abundance of islets is required to achieve normoglycemia, often requiring multiple donors. The loss of islets is due to the hypoxic conditions islets experience during revascularization, resulting in apoptosis. Therefore, to reduce the therapeutic dosage required to achieve normoglycemia, pre-vascularization of the subcutaneous space has been pursued. In this study, we highlight a biomaterial-based approach using a methacrylic acid copolymer coating to generate a robust pre-vascularized subcutaneous cavity for islet transplantation. We also devised a simple, but not-trivial, procedure for filling the cavity with an islet suspension in collagen. We show that the pre-vascularized site can support a marginal mass of islets to rapidly return streptozotocin-induced diabetic SCID/bg mice to normoglycemia. Furthermore, immunocompetent Sprague Daley rats remained normoglycemia for up to 70 days until they experienced graft destabilization as they outgrew their implants. This work highlights methacrylic acid-based biomaterials as a suitable pre-vascularization strategy for the subcutaneous space that is scalable and doesn't require exogenous cells or growth factors.
Collapse
|
2
|
Abstract
Diabetes can be treated with β cell replacement therapy, where a patient is transplanted with cadaveric human islets to restore glycemic control. Despite this being an effective treatment, the process of isolating islets from the pancreas requires collagenase digestion which disrupts the islet extracellular matrix (ECM) and activates anoikis-mediated apoptosis. To improve islet survival in culture and after transplantation, the islet microenvironment may be enhanced with the addition of ECM components which are lost during isolation. Furthermore, novel β cell replacement strategies, such as stem cell-derived beta cell (SCβC) treatments or alternative transplant sites and devices, could benefit from a better understanding of how β cells interact with ECM. In this mini-review, we discuss the current understanding of the pancreas and islet ECM composition and review decellularization approaches to generate a native pancreatic ECM scaffold for use in both islet and SCβC culture and transplantation.
Collapse
Affiliation(s)
- Daniel M Tremmel
- a Division of Transplantation, Department of Surgery , University of Wisconsin-Madison School of Medicine and Public Health , Madison , Wisconsin , 53705 , USA
| | - Jon S Odorico
- a Division of Transplantation, Department of Surgery , University of Wisconsin-Madison School of Medicine and Public Health , Madison , Wisconsin , 53705 , USA
| |
Collapse
|
3
|
Llacua LA, de Haan BJ, de Vos P. Laminin and collagen IV inclusion in immunoisolating microcapsules reduces cytokine-mediated cell death in human pancreatic islets. J Tissue Eng Regen Med 2017; 12:460-467. [PMID: 28508555 DOI: 10.1002/term.2472] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 04/05/2017] [Accepted: 05/09/2017] [Indexed: 12/21/2022]
Abstract
Extracellular matrix (ECM) molecules have several functions in pancreatic islets, including provision of mechanical support and prevention of cytotoxicity during inflammation. During islet isolation, ECM connections are damaged, and are not restored after encapsulation and transplantation. Inclusion of specific combinations of collagen type IV and laminins in immunoisolating capsules can enhance survival of pancreatic islets. Here we investigated whether ECM can also enhance survival and lower susceptibility of human islets to cytokine-mediated cytotoxicity. To this end, human islets were encapsulated in alginate with collagen IV and either RGD, LRE or PDSGR, i.e. laminin sequences. Islets in capsules without ECM served as control. The encapsulated islets were exposed to IL-1β, IFN-γ and TNF-α for 24 and 72 h. All combinations of ECM improved the islet cell survival, and reduced necrosis and apoptosis after cytokine exposure (P < 0.01). Collagen IV-RGD and collagen IV-LRE reduced danger-associated molecular patterns (DAMPs) release from islets (P < 0.05). Moreover, collagen IV-RGD and collagen IV-PDSGR, but not collagen IV-LRE, reduced NO release from encapsulated human islets (P < 0.05). This reduction correlated with a higher oxygen consumption rate (OCR) of islets in capsules containing collagen IV-RGD and collagen IV-PDSGR. Islets in capsules with collagen IV-LRE showed more dysfunction, and OCR was not different from islets in control capsules without ECM. Our study demonstrates that incorporation of specific ECM molecules such as collagen type IV with the laminin sequences RGD and PDSGR in immunoisolated islets can protect against cytokine toxicity.
Collapse
Affiliation(s)
- L Alberto Llacua
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, RB, Groningen, The Netherlands
| | - Bart J de Haan
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, RB, Groningen, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, RB, Groningen, The Netherlands
| |
Collapse
|
4
|
Modular tissue engineering for the vascularization of subcutaneously transplanted pancreatic islets. Proc Natl Acad Sci U S A 2017; 114:9337-9342. [PMID: 28814629 DOI: 10.1073/pnas.1619216114] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The transplantation of pancreatic islets, following the Edmonton Protocol, is a promising treatment for type I diabetics. However, the need for multiple donors to achieve insulin independence reflects the large loss of islets that occurs when islets are infused into the portal vein. Finding a less hostile transplantation site that is both minimally invasive and able to support a large transplant volume is necessary to advance this approach. Although the s.c. site satisfies both these criteria, the site is poorly vascularized, precluding its utility. To address this problem, we demonstrate that modular tissue engineering results in an s.c. vascularized bed that enables the transplantation of pancreatic islets. In streptozotocin-induced diabetic SCID/beige mice, the injection of 750 rat islet equivalents embedded in endothelialized collagen modules was sufficient to restore and maintain normoglycemia for 21 days; the same number of free islets was unable to affect glucose levels. Furthermore, using CLARITY, we showed that embedded islets became revascularized and integrated with the host's vasculature, a feature not seen in other s.c. STUDIES Collagen-embedded islets drove a small (albeit not significant) shift toward a proangiogenic CD206+MHCII-(M2-like) macrophage response, which was a feature of module-associated vascularization. While these results open the potential for using s.c. islet delivery as a treatment option for type I diabetes, the more immediate benefit may be for the exploration of revascularized islet biology.
Collapse
|
5
|
Acarregui A, Ciriza J, Saenz del Burgo L, Gurruchaga Iribar H, Yeste J, Illa X, Orive G, Hernández RM, Villa R, Pedraz JL. Characterization of an encapsulated insulin secreting human pancreatic beta cell line in a modular microfluidic device. J Drug Target 2017; 26:36-44. [DOI: 10.1080/1061186x.2017.1334208] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Argia Acarregui
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz, Spain
| | - Jesús Ciriza
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz, Spain
| | - Laura Saenz del Burgo
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz, Spain
| | - Haritz Gurruchaga Iribar
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz, Spain
| | - José Yeste
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz, Spain
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Barcelona, Spain
| | - Xavi Illa
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz, Spain
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Barcelona, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz, Spain
| | - Rosa M. Hernández
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz, Spain
| | - Rosa Villa
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz, Spain
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Barcelona, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz, Spain
| |
Collapse
|
6
|
Pancreatic Islet Survival and Engraftment Is Promoted by Culture on Functionalized Spider Silk Matrices. PLoS One 2015; 10:e0130169. [PMID: 26090859 PMCID: PMC4474965 DOI: 10.1371/journal.pone.0130169] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 05/18/2015] [Indexed: 01/08/2023] Open
Abstract
Transplantation of pancreatic islets is one approach for treatment of diabetes, however, hampered by the low availability of viable islets. Islet isolation leads to disruption of the environment surrounding the endocrine cells, which contributes to eventual cell death. The reestablishment of this environment is vital, why we herein investigated the possibility of using recombinant spider silk to support islets in vitro after isolation. The spider silk protein 4RepCT was formulated into three different formats; 2D-film, fiber mesh and 3D-foam, in order to provide a matrix that can give the islets physical support in vitro. Moreover, cell-binding motifs from laminin were incorporated into the silk protein in order to create matrices that mimic the natural cell environment. Pancreatic mouse islets were thoroughly analyzed for adherence, necrosis and function after in vitro maintenance on the silk matrices. To investigate their suitability for transplantation, we utilized an eye model which allows in vivo imaging of engraftment. Interestingly, islets that had been maintained on silk foam during in vitro culture showed improved revascularization. This coincided with the observation of preserved islet architecture with endothelial cells present after in vitro culture on silk foam. Selected matrices were further evaluated for long-term preservation of human islets. Matrices with the cell-binding motif RGD improved human islet maintenance (from 36% to 79%) with preserved islets architecture and function for over 3 months in vitro. The islets established cell-matrix contacts and formed vessel-like structures along the silk. Moreover, RGD matrices promoted formation of new, insulin-positive islet-like clusters that were connected to the original islets via endothelial cells. On silk matrices with islets from younger donors (<35 year), the amount of newly formed islet-like clusters found after 1 month in culture were almost double compared to the initial number of islets added.
Collapse
|
7
|
François RA, Maeng K, Nawab A, Kaye FJ, Hochwald SN, Zajac-Kaye M. Targeting Focal Adhesion Kinase and Resistance to mTOR Inhibition in Pancreatic Neuroendocrine Tumors. J Natl Cancer Inst 2015; 107:djv123. [PMID: 25971297 DOI: 10.1093/jnci/djv123] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 04/08/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Focal adhesion kinase (FAK) mediates survival of normal pancreatic islets through activation of AKT. Upon malignant transformation of islet cells into pancreatic neuroendocrine tumors (PanNETs), AKT is frequently overexpressed and mutations in the AKT/mTOR pathway are detected. Because mTOR inhibitors rarely induce PanNET tumor regression, partly because of feedback activation of AKT, novel combination strategies are needed to target FAK/AKT/mTOR signaling. METHODS We characterized the activation of FAK in PanNETs using immunohistochemistry and Western blot analysis and tested the FAK inhibitor PF-04554878 in human PanNET cells in vitro and in vivo (at least three mice per group). In addition, we evaluated the effect of combined FAK and mTOR inhibition on PanNET viability and apoptosis. All statistical tests were two-sided. RESULTS We found that FAK is overexpressed and hyperphosphorylated in human PanNETs and that PF-04554878 strongly inhibited FAK (Tyr397) autophosphorylation in a dose-dependent manner. We found that PF-04554878 inhibited cell proliferation and clonogenicity and induced apoptosis in PanNET cells. Moreover, oral administration of PF-04554878 statistically significantly reduced tumor growth in a patient-derived xenograft model of PanNET (P = .02) and in a human PanNET xenograft model of peritoneal carcinomatosis (P = .03). Importantly, PF-04554878 synergized with the mTOR inhibitor everolimus by preventing feedback AKT activation. CONCLUSIONS We demonstrate for the first time that FAK is overexpressed in PanNETs and that inhibition of FAK activity induces apoptosis and inhibits PanNET proliferation. We found that the novel FAK inhibitor PF-04554878 synergizes with everolimus, a US Food and Drug Administration-approved agent for PanNETs. Our findings warrant the clinical investigation of combined FAK and mTOR inhibition in PanNETs.
Collapse
Affiliation(s)
- Rony A François
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL (RAF, KM, AN, MZK); Department of Medicine, University of Florida College of Medicine, Gainesville, FL (FJK); Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY (SNH)
| | - Kyungah Maeng
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL (RAF, KM, AN, MZK); Department of Medicine, University of Florida College of Medicine, Gainesville, FL (FJK); Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY (SNH)
| | - Akbar Nawab
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL (RAF, KM, AN, MZK); Department of Medicine, University of Florida College of Medicine, Gainesville, FL (FJK); Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY (SNH)
| | - Frederic J Kaye
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL (RAF, KM, AN, MZK); Department of Medicine, University of Florida College of Medicine, Gainesville, FL (FJK); Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY (SNH)
| | - Steven N Hochwald
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL (RAF, KM, AN, MZK); Department of Medicine, University of Florida College of Medicine, Gainesville, FL (FJK); Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY (SNH)
| | - Maria Zajac-Kaye
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL (RAF, KM, AN, MZK); Department of Medicine, University of Florida College of Medicine, Gainesville, FL (FJK); Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY (SNH)
| |
Collapse
|
8
|
Chhabra P, Brayman KL. Overcoming barriers in clinical islet transplantation: current limitations and future prospects. Curr Probl Surg 2014; 51:49-86. [PMID: 24411187 DOI: 10.1067/j.cpsurg.2013.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Auer VJ, Janas E, Ninichuk V, Eppler E, Weiss TS, Kirchner S, Otto AM, Stangl MJ. Extracellular factors and immunosuppressive drugs influencing insulin secretion of murine islets. Clin Exp Immunol 2013; 170:238-47. [PMID: 23039895 DOI: 10.1111/j.1365-2249.2012.04645.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Approximately 60% of transplanted islets undergo apoptosis within the first week post-transplantation into the liver attributed to poor engraftment, immune rejection and toxicity of immunosuppressive drugs. Understanding how extracellular matrix (ECM) components, immunosuppressive drugs and proinflammatory cytokines affect insulin secretion will contribute to an improved clinical outcome of islet transplantations. In this study, functional activity of isolated murine islets was measured by glucose-stimulated insulin secretion (GSIS) and by electrophysiological measurements using patch-clamp. Cultivating islets with soluble fibronectin or laminin, as opposed to with coated laminin, markedly increased GSIS. Addition of cyclosporin A reduced GSIS and suppressed glucose-induced spike activity. Tacrolimus affected neither GSIS nor spike activity, indicating a different mechanism. To evaluate the influence of proinflammatory cytokines, islets were incubated with interleukin (IL)-1β, tumour necrosis factor (TNF)-α or with supernatants from cultured Kupffer cells, the main mediators of inflammation in the hepatic sinusoids. IL-1β exerted a bimodal effect on insulin secretion, stimulating below 2 ng/ml and suppressing above 10 ng/ml. Soluble laminin in combination with a stimulatory IL-1β concentration further increased insulin secretion by 20% compared to IL-1β alone, while with high IL-1β concentrations soluble laminin slightly attenuated GSIS inhibition. TNF-α alone did not affect GSIS, but with stimulatory IL-1β concentrations completely abolished it. Similarly, supernatants derived from Kupffer cells exerted a bimodal effect on GSIS. Our data suggest that improved insulin secretion of transplanted islets could be achieved by including soluble laminin and low IL-1β concentrations in the islet cultivation medium, and by a simultaneous inhibition of cytokine secretion from Kupffer cells.
Collapse
Affiliation(s)
- V J Auer
- Institute of Medical Engineering, Technische Universität München (IMETUM), Garching Center for Liver Cell Research, Department of Pediatrics and Adolescent Medicine, University of Regensburg Hospital Hepacult GmbH, Biopark Regensburg, Regensburg, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Maintenance of islet morphology is beneficial for transplantation outcome in diabetic mice. PLoS One 2013; 8:e57844. [PMID: 23451276 PMCID: PMC3581500 DOI: 10.1371/journal.pone.0057844] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 01/27/2013] [Indexed: 11/26/2022] Open
Abstract
We have previously shown that co-transplantation of islets and Mesenchymal Stem Cells (MSCs) improves islet graft function and revascularisation, which was associated with the maintenance of normal islet morphology. The aim of the current study was to determine whether maintaining islet morphology in the absence of additional islet-helper cells would improve transplantation outcome in diabetic mice. Islets were isolated from C57BL/6 mice. Recipient streptozotocin-diabetic C57BL/6 mice were transplanted with a minimal mass of 150 islets as a single pellet or islets that were either manually dispersed or dispersed within a matrigel plug beneath the kidney capsule. Blood glucose concentrations were monitored for one month. Islet graft morphology and vascularisation were analysed by histology. Islets dispersed either alone or within matrigel plugs maintained near normal morphology, in contrast to pelleted islets, where individual islets fused to form large endocrine aggregates. The vascularisation of manually dispersed islets and islets dispersed within matrigel plugs was increased relative to respective control pelleted islet grafts. After one month 1/6 mice transplanted with pelleted islets cured compared to 5/6 mice transplanted with manually dispersed islets. The curative capacity of islets dispersed in matrigel was also better than that of pelleted islets (5/8 islet-matrigel implanted mice vs. 1/7 mice transplanted with pelleted islets cured by one month). Therefore, this study demonstrates that the maintenance of islet morphology is associated with improved graft function and revascularisation in diabetic mice.
Collapse
|
11
|
Jin S, Yao H, Krisanarungson P, Haukas A, Ye K. Porous membrane substrates offer better niches to enhance the Wnt signaling and promote human embryonic stem cell growth and differentiation. Tissue Eng Part A 2012; 18:1419-30. [PMID: 22429220 DOI: 10.1089/ten.tea.2011.0474] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human embryonic stem cells (hESCs) require specific niches for adhesion, expansion, and lineage-specific differentiation. In this study, we showed that a membrane substrate offers better tissue niches for hESC attachment, spreading, proliferation, and differentiation. The cell doubling time was shortened from 46.3±5.7 h for hESCs grown on solid substrates to 25.6±2.6 h for those on polyester (PE) membrane substrates with pore size of 0.4 μm. In addition, we observed an increase of approximately five- to ninefold of definitive endoderm marker gene expression in hESCs differentiated on PE or polyethylene terephthalate membrane substrates. Global gene expression analysis revealed upregulated expressions of a number of extracellular matrix and cell adhesion molecules in hESCs grown on membrane substrates. Further, an enhanced nuclear translocation of β-catenin was detected in these cells. These observations suggested the augmentation of Wnt signaling in hESCs grown on membrane substrates. These results also demonstrated that a membrane substrate can offer better physicochemical cues for enhancing in vitro hESC attachment, proliferation, and differentiation.
Collapse
Affiliation(s)
- Sha Jin
- Biomedical Engineering Program, College of Engineering, University of Arkansas, 700 Research Center Blvd., Fayetteville, AR 72701, USA.
| | | | | | | | | |
Collapse
|
12
|
Xu J, Miao G, Zhao Y, Wei J. Subcutaneous Transplantation May Not Be an Appropriate Approach for the Islets Embedded in the Collagen Gel Scaffolds. Transplant Proc 2011; 43:3205-8. [DOI: 10.1016/j.transproceed.2011.09.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Chhabra P, Brayman KL. Current status of immunomodulatory and cellular therapies in preclinical and clinical islet transplantation. J Transplant 2011; 2011:637692. [PMID: 22046502 PMCID: PMC3199196 DOI: 10.1155/2011/637692] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Accepted: 07/11/2011] [Indexed: 02/08/2023] Open
Abstract
Clinical islet transplantation is a β-cell replacement strategy that represents a possible definitive intervention for patients with type 1 diabetes, offering substantial benefits in terms of lowering daily insulin requirements and reducing incidences of debilitating hypoglycemic episodes and unawareness. Despite impressive advances in this field, a limiting supply of islets, inadequate means for preventing islet rejection, and the deleterious diabetogenic and nephrotoxic side effects associated with chronic immunosuppressive therapy preclude its wide-spread applicability. Islet transplantation however allows a window of opportunity for attempting various therapeutic manipulations of islets prior to transplantation aimed at achieving superior transplant outcomes. In this paper, we will focus on the current status of various immunosuppressive and cellular therapies that promote graft function and survival in preclinical and clinical islet transplantation with special emphasis on the tolerance-inducing capacity of regulatory T cells as well as the β-cells regenerative capacity of stem cells.
Collapse
Affiliation(s)
- Preeti Chhabra
- Department of Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Kenneth L. Brayman
- Department of Surgery, University of Virginia, Charlottesville, VA 22908, USA
- Division of Transplantation, Department of Surgery, University of Virginia, Charlottesville, VA 22908, USA
- The Center for Cellular Transplantation and Therapeutics, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|