1
|
Zhang L, Chen L, Jiang Y, Jin G, Yang J, Sun H, Liang J, Lv G, Yang Q, Yi S, Chen G, Liu W, Ou J, Yang Y. Cross-species metabolomic profiling reveals phosphocholine-mediated liver protection from cold and ischemia/reperfusion. Am J Transplant 2024; 24:1979-1993. [PMID: 38878865 DOI: 10.1016/j.ajt.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/15/2024] [Accepted: 05/29/2024] [Indexed: 07/11/2024]
Abstract
Cold and ischemia/reperfusion (IR)-associated injuries are seemingly inevitable during liver transplantation and hepatectomy. Because Syrian hamsters demonstrate intrinsic tolerance to transplantation-like stimuli, cross-species comparative metabolomic analyses were conducted with hamster, rat, and donor liver samples to seek hepatic cold and IR-adaptive mechanisms. Lower hepatic phosphocholine contents were found in recipients with early graft-dysfunction and with virus-caused cirrhosis or high model for end-stage liver disease scores (≥30). Choline/phosphocholine deficiency in cultured human THLE-2 hepatocytes and animal models weakened hepatocellular cold tolerance and recovery of glutathione and ATP production, which was rescued by phosphocholine supplements. Among the biological processes impacted by choline/phosphocholine deficiency, 3 lipid-related metabolic processes were downregulated, whereas phosphocholine elevated the expression of genes in methylation processes. Consistently, in THLE-2, phosphocholine enhanced the overall RNA m6A methylation, among which the transcript stability of fatty acid desaturase 6 (FADS6) was improved. FADS6 functioned as a key phosphocholine effector in the production of polyunsaturated fatty acids, which may facilitate the hepatocellular recovery of energy and redox homeostasis. Thus, our study reveals the choline-phosphocholine metabolism and its downstream FADS6 functions in hepatic adaptation to cold and IR, which may inspire new strategies to monitor donor liver quality and improve recipient recovery from the liver transplantation process.
Collapse
Affiliation(s)
- Lele Zhang
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liang Chen
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yong Jiang
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guanghui Jin
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jinghong Yang
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haobin Sun
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jinliang Liang
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guo Lv
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qing Yang
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuhong Yi
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guihua Chen
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Liu
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Jingxing Ou
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Longchamp A, Fontan FM, Aburawi MM, Eymard C, Karimian N, Detelich D, Pendexter C, Cronin S, Agius T, Nagpal S, Banik PD, Tessier SN, Ozer S, Delmonico FL, Uygun K, Yeh H, Markmann JF. Acellular Perfusate is an Adequate Alternative to Packed Red Blood Cells During Normothermic Human Kidney Perfusion. Transplant Direct 2024; 10:e1609. [PMID: 38481967 PMCID: PMC10936975 DOI: 10.1097/txd.0000000000001609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/26/2023] [Accepted: 01/06/2024] [Indexed: 03/17/2024] Open
Abstract
Background Brief normothermic machine perfusion is increasingly used to assess and recondition grafts before transplant. During normothermic machine perfusion, metabolic activity is typically maintained using red blood cell (RBC)-based solutions. However, the utilization of RBCs creates important logistical constraints. This study explored the feasibility of human kidney normothermic perfusion using William's E-based perfusate with no additional oxygen carrier. Methods Sixteen human kidneys declined for transplant were perfused with a perfusion solution containing packed RBCs or William's E medium only for 6 h using a pressure-controlled system. The temperature was set at 37 °C. Renal artery resistance, oxygen extraction, metabolic activity, energy metabolism, and histological features were evaluated. Results Baseline donor demographics were similar in both groups. Throughout perfusion, kidneys perfused with William's E exhibited improved renal flow (P = 0.041) but similar arterial resistance. Lactic acid levels remained higher in kidneys perfused with RBCs during the first 3 h of perfusion but were similar thereafter (P = 0.95 at 6 h). Throughout perfusion, kidneys from both groups exhibited comparable behavior regarding oxygen consumption (P = 0.41) and reconstitution of ATP tissue concentration (P = 0.55). Similarly, nicotinamide adenine dinucleotide levels were preserved during perfusion. There was no evidence of histological damage caused by either perfusate. Conclusions In human kidneys, William's E medium provides a logistically convenient, off-the-shelf alternative to packed RBCs for up to 6 h of normothermic machine perfusion.
Collapse
Affiliation(s)
- Alban Longchamp
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Fermin M. Fontan
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Mohamed M. Aburawi
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Corey Eymard
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Negin Karimian
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Danielle Detelich
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Casie Pendexter
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Stephanie Cronin
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Thomas Agius
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Sonal Nagpal
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Peony Dutta Banik
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Shannon N. Tessier
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Sinan Ozer
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Francis L. Delmonico
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- New England Donor Services, Waltham, MA
| | - Korkut Uygun
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Heidi Yeh
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - James F. Markmann
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
3
|
Longchamp A, Nakamura T, Uygun K, Markmann JF. Role of Machine Perfusion in Liver Transplantation. Surg Clin North Am 2024; 104:45-65. [PMID: 37953040 DOI: 10.1016/j.suc.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Given the current severe shortage of available livers for transplantation, there is an urgent need to maximize the utilization of donor organs. One of the strategies to increase the number of available livers for transplantation is to improve organ utilization through the use of elderly, overweight, or organs donated after circulatory death. However, the utilization of these "marginal" organs was associated with an increased risk of early allograft dysfunction, primary nonfunction, ischemic biliary complications, or even re-transplantation. Ischemia-reperfusion injury is a key mechanism in the pathogenesis of these complications.
Collapse
Affiliation(s)
- Alban Longchamp
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tsukasa Nakamura
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Korkut Uygun
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James F Markmann
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
CD73-Adenosinergic Axis Mediates the Protective Effect of Extracellular Vesicles Derived from Mesenchymal Stromal Cells on Ischemic Renal Damage in a Rat Model of Donation after Circulatory Death. Int J Mol Sci 2022; 23:ijms231810681. [PMID: 36142593 PMCID: PMC9501320 DOI: 10.3390/ijms231810681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/21/2022] Open
Abstract
We propose a new organ-conditioning strategy based on mesenchymal stromal cell (MSCs)/extracellular vesicle (EVs) delivery during hypothermic perfusion. MSCs/EVs marker CD73 is present on renal proximal tubular cells, and it protects against renal ischemia-reperfusion injury by converting adenosine monophosphate into adenosine (ADO). In this study, after checking if CD73-silenced EVs (EVsi) would impact in vitro tubular-cell proliferation, we perfused kidneys of a rat model of donation after circulatory death, with Belzer solution (BS) alone, BS supplemented with MSCs, EVs, or EVsi. The ADO and ATP levels were measured in the effluents and tissues. Global renal ischemic damage score (GRS), and tubular cell proliferation index (IPT) were evaluated in the tissue. EVsi did not induce cell proliferation in vitro. Ex vivo kidneys perfused with BS or BS + EVsi showed the worst GRS and higher effluent ADO levels than the MSC- and EV-perfused kidneys. In the EV-perfused kidneys, the tissue and effluent ATP levels and IPT were the highest, but not if CD73 was silenced. Tissue ATP content was positively correlated with tissue ADO content and negatively correlated with effluent ADO level in all groups. In conclusion, kidney conditioning with EVs protects against ischemic damage by activating the CD73/ADO system.
Collapse
|
5
|
Tessier SN, de Vries RJ, Pendexter CA, Cronin SEJ, Ozer S, Hafiz EOA, Raigani S, Oliveira-Costa JP, Wilks BT, Lopera Higuita M, van Gulik TM, Usta OB, Stott SL, Yeh H, Yarmush ML, Uygun K, Toner M. Partial freezing of rat livers extends preservation time by 5-fold. Nat Commun 2022; 13:4008. [PMID: 35840553 PMCID: PMC9287450 DOI: 10.1038/s41467-022-31490-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
The limited preservation duration of organs has contributed to the shortage of organs for transplantation. Recently, a tripling of the storage duration was achieved with supercooling, which relies on temperatures between -4 and -6 °C. However, to achieve deeper metabolic stasis, lower temperatures are required. Inspired by freeze-tolerant animals, we entered high-subzero temperatures (-10 to -15 °C) using ice nucleators to control ice and cryoprotective agents (CPAs) to maintain an unfrozen liquid fraction. We present this approach, termed partial freezing, by testing gradual (un)loading and different CPAs, holding temperatures, and storage durations. Results indicate that propylene glycol outperforms glycerol and injury is largely influenced by storage temperatures. Subsequently, we demonstrate that machine perfusion enhancements improve the recovery of livers after freezing. Ultimately, livers that were partially frozen for 5-fold longer showed favorable outcomes as compared to viable controls, although frozen livers had lower cumulative bile and higher liver enzymes.
Collapse
Affiliation(s)
- Shannon N. Tessier
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Reinier J. de Vries
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA ,grid.7177.60000000084992262Department of Surgery, Amsterdam University Medical Centers – location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Casie A. Pendexter
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA ,Present Address: Sylvatica Biotech Inc., North Charleston, SC USA
| | - Stephanie E. J. Cronin
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Sinan Ozer
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Ehab O. A. Hafiz
- grid.420091.e0000 0001 0165 571XDepartment of Electron Microscopy Research, Theodor Bilharz Research Institute, Giza, Egypt
| | - Siavash Raigani
- grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA ,grid.32224.350000 0004 0386 9924Department of Surgery, Division of Transplantation, Massachusetts General Hospital, Boston, MA USA
| | - Joao Paulo Oliveira-Costa
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Medicine and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA USA
| | - Benjamin T. Wilks
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Manuela Lopera Higuita
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Thomas M. van Gulik
- grid.7177.60000000084992262Department of Surgery, Amsterdam University Medical Centers – location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Osman Berk Usta
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Shannon L. Stott
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Medicine and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA USA
| | - Heidi Yeh
- grid.32224.350000 0004 0386 9924Department of Surgery, Division of Transplantation, Massachusetts General Hospital, Boston, MA USA
| | - Martin L. Yarmush
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA ,grid.430387.b0000 0004 1936 8796Department of Biomedical Engineering, Rutgers University, Piscataway, NJ USA
| | - Korkut Uygun
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Mehmet Toner
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| |
Collapse
|
6
|
Lucia A, Ferrarese E, Uygun K. Modeling energy depletion in rat livers using Nash equilibrium metabolic pathway analysis. Sci Rep 2022; 12:3496. [PMID: 35241684 PMCID: PMC8894355 DOI: 10.1038/s41598-022-06966-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
The current gold standard of Static Cold Storage (SCS), which is static cold storage on ice (about + 4 °C) in a specialized media such as the University of Wisconsin solution (UW), limits storage to few hours for vascular and metabolically active tissues such as the liver and the heart. The liver is arguably the pinnacle of metabolism in human body and therefore metabolic pathway analysis immediately becomes very relevant. In this article, a Nash Equilibrium (NE) approach, which is a first principles approach, is used to model and simulate the static cold storage and warm ischemia of a proposed model of liver cells. Simulations of energy depletion in the liver in static cold storage measured by ATP content and energy charge are presented along with comparisons to experimental data. In addition, conversion of Nash Equilibrium iterations to time are described along with an uncertainty analysis for the parameters in the model. Results in this work show that the Nash Equilibrium approach provides a good match to experimental data for energy depletion and that the uncertainty in model parameters is very small with percent variances less than 0.1%.
Collapse
Affiliation(s)
- Angelo Lucia
- Department of Chemical Engineering, University of Rhode Island, Kington, RI, 02881, USA.
| | - Emily Ferrarese
- Department of Chemical Engineering, University of Rhode Island, Kington, RI, 02881, USA
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| |
Collapse
|
7
|
Burlage LC, Lellouch AG, Taveau CB, Tratnig-Frankl P, Pendexter CA, Randolph MA, Porte RJ, Lantieri LA, Tessier SN, Cetrulo CL, Uygun K. Optimization of Ex Vivo Machine Perfusion and Transplantation of Vascularized Composite Allografts. J Surg Res 2022; 270:151-161. [PMID: 34670191 PMCID: PMC8712379 DOI: 10.1016/j.jss.2021.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/30/2021] [Accepted: 09/16/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Machine perfusion is gaining interest as an efficient method of tissue preservation of Vascularized Composite Allografts (VCA). The aim of this study was to develop a protocol for ex vivo subnormothermic oxygenated machine perfusion (SNMP) on rodent hindlimbs and to validate our protocol in a heterotopic hindlimb transplant model. METHODS In this optimization study we compared three different solutions during 6 h of SNMP (n = 4 per group). Ten control limbs were stored in a preservation solution on Static Cold Storage [SCS]). During SNMP we monitored arterial flowrate, lactate levels, and edema. After SNMP, muscle biopsies were taken for histology examination, and energy charge analysis. We validated the best perfusion protocol in a heterotopic limb transplantation model with 30-d follow up (n = 13). As controls, we transplanted untreated limbs (n = 5) and hindlimbs preserved with either 6 or 24 h of SCS (n = 4 and n = 5). RESULTS During SNMP, arterial outflow increased, and lactate clearance decreased in all groups. Total edema was significantly lower in the HBOC-201 group compared to the BSA group (P = 0.005), 4.9 (4.3-6.1) versus 48.8 (39.1-53.2) percentage, but not to the BSA + PEG group (P = 0.19). Energy charge levels of SCS controls decreased 4-fold compared to limbs perfused with acellular oxygen carrier HBOC-201, 0.10 (0.07-0.17) versus 0.46 (0.42-0.49) respectively (P = 0.002). CONCLUSIONS Six hours ex vivo SNMP of rodent hindlimbs using an acellular oxygen carrier HBOC-201 results in superior tissue preservation compared to conventional SCS.
Collapse
Affiliation(s)
- Laura C Burlage
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital/ Harvard Medical School, Boston, Massachusetts; Department of Surgery, University Medical Center Groningen, Groningen, Netherlands; Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts; Division of Plastic and Reconstructive Surgery within the Department of Surgery, Massachusetts General Hospital/ Harvard Medical School, Boston, Massachusetts; Shriners Hospitals for Children, Boston, Massachusetts.
| | - Alexandre G Lellouch
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts; Division of Plastic and Reconstructive Surgery within the Department of Surgery, Massachusetts General Hospital/ Harvard Medical School, Boston, Massachusetts; Shriners Hospitals for Children, Boston, Massachusetts; Division of Plastic and Reconstructive Surgery within the Department of Surgery, European George Pompidou Hospital, University of Paris, Paris, France
| | - Corentin B Taveau
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts; Division of Plastic and Reconstructive Surgery within the Department of Surgery, Massachusetts General Hospital/ Harvard Medical School, Boston, Massachusetts; Shriners Hospitals for Children, Boston, Massachusetts
| | - Philipp Tratnig-Frankl
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts; Division of Plastic and Reconstructive Surgery within the Department of Surgery, Massachusetts General Hospital/ Harvard Medical School, Boston, Massachusetts; Shriners Hospitals for Children, Boston, Massachusetts
| | - Casie A Pendexter
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital/ Harvard Medical School, Boston, Massachusetts; Shriners Hospitals for Children, Boston, Massachusetts
| | - Mark A Randolph
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts; Division of Plastic and Reconstructive Surgery within the Department of Surgery, Massachusetts General Hospital/ Harvard Medical School, Boston, Massachusetts; Shriners Hospitals for Children, Boston, Massachusetts
| | - Robert J Porte
- Department of Surgery, University Medical Center Groningen, Groningen, Netherlands
| | - Laurent A Lantieri
- Division of Plastic and Reconstructive Surgery within the Department of Surgery, European George Pompidou Hospital, University of Paris, Paris, France
| | - Shannon N Tessier
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital/ Harvard Medical School, Boston, Massachusetts; Shriners Hospitals for Children, Boston, Massachusetts
| | - Curtis L Cetrulo
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts; Division of Plastic and Reconstructive Surgery within the Department of Surgery, Massachusetts General Hospital/ Harvard Medical School, Boston, Massachusetts; Shriners Hospitals for Children, Boston, Massachusetts
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital/ Harvard Medical School, Boston, Massachusetts; Shriners Hospitals for Children, Boston, Massachusetts
| |
Collapse
|
8
|
William N, Acker JP. High Sub-Zero Organ Preservation: A Paradigm of Nature-Inspired Strategies. Cryobiology 2021; 102:15-26. [PMID: 33905707 DOI: 10.1016/j.cryobiol.2021.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/18/2021] [Accepted: 04/11/2021] [Indexed: 01/03/2023]
Abstract
The field of organ preservation is filled with advancements that have yet to see widespread clinical translation, with some of the more notable strategies deriving their inspiration from nature. While static cold storage (SCS) at 2 °C to 4 °C is the current state-of-the-art, it contributes to the current shortage of transplantable organs due to the limited preservation times it affords combined with the limited ability of marginal grafts (i.e. those at risk for post-transplant dysfunction or primary non-function) to tolerate SCS. The era of storage solution optimization to minimize SCS-induced hypothermic injury has plateaued in its improvements, resulting in a shift towards the use of machine perfusion systems to oxygenate organs at normothermic, sub-normothermic, or hypothermic temperatures, as well as the use of sub-zero storage temperatures to leverage the protection brought forth by a reduction in metabolic demand. Many of the rigors that organs are subjected to at low sub-zero temperatures (-80 °C to -196 °C) commonly used for mammalian cell preservation have yet to be surmounted. Therefore, this article focuses on an intermediate temperature range (0 °C to -20 °C), where much success has been seen in the past two decades. The mechanisms leveraged by organisms capable of withstanding prolonged periods at these temperatures through either avoiding or tolerating the formation of ice has provided a foundation for some of the more promising efforts. This article therefore aims to contextualize the translation of these strategies into the realm of mammalian organ preservation.
Collapse
Affiliation(s)
- Nishaka William
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| | - Jason P Acker
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2R3, Canada; Centre for Innovation, Canadian Blood Services, 8249 114th Street, Edmonton, AB, T6G 2R8, Canada.
| |
Collapse
|
9
|
Ghosh A, Onsager C, Mason A, Arriola L, Lee W, Mubayi A. The role of oxygen intake and liver enzyme on the dynamics of damaged hepatocytes: Implications to ischaemic liver injury via a mathematical model. PLoS One 2021; 16:e0230833. [PMID: 33886563 PMCID: PMC8061939 DOI: 10.1371/journal.pone.0230833] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Ischaemic Hepatitis (IH) or Hypoxic Hepatitis (HH) also known as centrilobular liver cell necrosis is an acute liver injury characterized by a rapid increase in serum aminotransferase. The liver injury typically results from different underlying medical conditions such as cardiac failure, respiratory failure and septic shock in which the liver becomes damaged due to deprivation of either blood or oxygen. IH is a potentially lethal condition that is often preventable if diagnosed timely. The role of mechanisms that cause IH is often not well understood, making it difficult to diagnose or accurately quantify the patterns of related biomarkers. In most patients, currently, the only way to determine a case of IH is to rule out all other possible conditions for liver injuries. A better understanding of the liver's response to IH is necessary to aid in its diagnosis, measurement, and improve outcomes. The goal of this study is to identify mechanisms that can alter associated biomarkers for reducing the density of damaged hepatocytes, and thus reduce the chances of IH. We develop a mathematical model capturing dynamics of hepatocytes in the liver through the rise and fall of associated liver enzymes aspartate transaminase (AST), alanine transaminase (ALT) and lactate dehydrogenase (LDH) related to the condition of IH. The model analysis provides a novel approach to predict the level of biomarkers given variations in the systemic oxygen in the body. Using IH patient data in the US, novel model parameters are described and then estimated for the first time to capture real-time dynamics of hepatocytes in the presence and absence of IH condition. The results may allow physicians to estimate the extent of liver damage in an IH patient based on their enzyme levels and receive faster treatment on a real-time basis.
Collapse
Affiliation(s)
- Aditi Ghosh
- Department of Mathematics, University of Wisconsin - Whitewater, Whitewater, WI, United States of America
- * E-mail:
| | - Claire Onsager
- Department of Mathematics, University of Wisconsin - Whitewater, Whitewater, WI, United States of America
| | - Andrew Mason
- Department of Mathematics, University of Wisconsin - Whitewater, Whitewater, WI, United States of America
| | - Leon Arriola
- Department of Mathematics, University of Wisconsin - Whitewater, Whitewater, WI, United States of America
| | - William Lee
- Department of Hepatology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Anuj Mubayi
- PRECESIONheor, Los Angeles, CA, United States of America
- Department of Mathematics, Illinois State State University, Normal, IL, United States of America
| |
Collapse
|
10
|
Ex Vivo Analysis of Kidney Graft Viability Using 31P Magnetic Resonance Imaging Spectroscopy. Transplantation 2020; 104:1825-1831. [PMID: 32675744 DOI: 10.1097/tp.0000000000003323] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND The lack of organs for kidney transplantation is a growing concern. Expansion in organ supply has been proposed through the use of organs after circulatory death (donation after circulatory death [DCD]). However, many DCD grafts are discarded because of long warm ischemia times, and the absence of reliable measure of kidney viability. P magnetic resonance imaging (pMRI) spectroscopy is a noninvasive method to detect high-energy phosphate metabolites, such as ATP. Thus, pMRI could predict kidney energy state, and its viability before transplantation. METHODS To mimic DCD, pig kidneys underwent 0, 30, or 60 min of warm ischemia, before hypothermic machine perfusion. During the ex vivo perfusion, we assessed energy metabolites using pMRI. In addition, we performed Gadolinium perfusion sequences. Each sample underwent histopathological analyzing and scoring. Energy status and kidney perfusion were correlated with kidney injury. RESULTS Using pMRI, we found that in pig kidney, ATP was rapidly generated in presence of oxygen (100 kPa), which remained stable up to 22 h. Warm ischemia (30 and 60 min) induced significant histological damages, delayed cortical and medullary Gadolinium elimination (perfusion), and reduced ATP levels, but not its precursors (AMP). Finally, ATP levels and kidney perfusion both inversely correlated with the severity of kidney histological injury. CONCLUSIONS ATP levels, and kidney perfusion measurements using pMRI, are biomarkers of kidney injury after warm ischemia. Future work will define the role of pMRI in predicting kidney graft and patient's survival.
Collapse
|
11
|
Nostedt JJ, Churchill T, Ghosh S, Thiesen A, Hopkins J, Lees MC, Adam B, Freed DH, Shapiro AMJ, Bigam DL. Avoiding initial hypothermia does not improve liver graft quality in a porcine donation after circulatory death (DCD) model of normothermic perfusion. PLoS One 2019; 14:e0220786. [PMID: 31386697 PMCID: PMC6684160 DOI: 10.1371/journal.pone.0220786] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/23/2019] [Indexed: 01/06/2023] Open
Abstract
Background Normothermic machine perfusion (NMP) of liver grafts donated after circulatory death (DCD) has shown promise in large animal and clinical trials. Following procurement, initial flush with a cold preservation solution is the standard of care. There is concern that initial cooling followed by warming may exacerbate liver injury, and the optimal initial flush temperature has yet to be identified. We hypothesize that avoidance of the initial cold flush will yield better quality liver grafts. Methods Twenty-four anaesthetized pigs were withdrawn from mechanical ventilation and allowed to arrest. After 60-minutes of warm ischemia to simulate a DCD procurement, livers were flushed with histidine-tryptophan-ketoglutarate (HTK) at 4°C, 25°C or 35°C (n = 4 per group). For comparison, an adenosine-lidocaine crystalloid solution (AD), shown to have benefit at warm temperatures in heart perfusions, was also used (n = 4 per group). During 12-hours of NMP, adenosine triphosphate (ATP), lactate, transaminase levels, and histological injury were determined. Bile production and hemodynamics were monitored continuously. Results ATP levels recovered substantially following 1-hour of NMP reaching pre-ischemic levels by the end of NMP with no difference between groups. There was no difference in peak aspartate aminotransferase (AST) or in lactate dehydrogenase (LDH). Portal vein resistance was lowest in the 4°C group reaching significance after 2 hours (0.13 CI -0.01,0.277, p = 0.025). Lactate levels recovered promptly with no difference between groups. Comparison to AD groups showed no statistical difference in the abovementioned parameters. On electron microscopy the HTK4°C group had the least edema with mean cell thickness of 2.92μm (p = 0.41) while also having the least sinusoidal dilatation with a mean diameter of 5.36μm (p = 0.04). For AD, the 25°C group had the lowest mean cell thickness at 3.14μm (p = 0.09). Conclusions Avoidance of the initial cold flush failed to demonstrate added benefit over standard 4°C HTK in this DCD model of liver perfusion.
Collapse
Affiliation(s)
- Jordan J. Nostedt
- Department of Surgery, Division of General Surgery, University of Alberta, Edmonton AB, Canada
- * E-mail: (JJN); (DLB)
| | - Tom Churchill
- Department of Surgery, Division of Surgical Research, University of Alberta, Edmonton AB, Canada
| | - Sunita Ghosh
- Department of Mathematics and Statistical Sciences, University of Alberta, Edmonton AB, Canada
| | - Aducio Thiesen
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton AB, Canada
| | - Jessica Hopkins
- Department of Surgery, Division of General Surgery, University of Alberta, Edmonton AB, Canada
| | - Mackenzie C. Lees
- Department of Surgery, Division of General Surgery, University of Alberta, Edmonton AB, Canada
| | - Benjamin Adam
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton AB, Canada
| | - Darren H. Freed
- Department of Physiology, University of Alberta, Edmonton AB, Canada
- Department of Biomedical Engineering, University of Alberta, Edmonton AB, Canada
- Department of Surgery, Division of Cardiac Surgery, University of Alberta, Edmonton AB, Canada
| | - A. M. James Shapiro
- Department of Surgery, Division of General Surgery, University of Alberta, Edmonton AB, Canada
| | - David L. Bigam
- Department of Surgery, Division of General Surgery, University of Alberta, Edmonton AB, Canada
- * E-mail: (JJN); (DLB)
| |
Collapse
|
12
|
Oxygenated UW Solution Decreases ATP Decay and Improves Survival After Transplantation of DCD Liver Grafts. Transplantation 2019; 103:363-370. [PMID: 30422952 DOI: 10.1097/tp.0000000000002530] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Donation after circulatory death (DCD) liver grafts are known to be predisposed to primary nonfunction and ischemic cholangiopathy. Many DCD grafts are discarded because of older donor age or long warm ischemia times. Thus, it is critical to improve the quality of DCD liver grafts. Here, we have tested whether an enriched oxygen carrier added to the preservation solution can prolong graft survival and reduce biliary damage. METHODS We assessed the adenosine triphosphate (ATP) content decay of mouse liver grafts after cold ischemia, warm ischemia, and combined warm+cold ischemia. In addition, we used a rat model of liver transplantation to compare survival of DCD grafts preserved in high-oxygen solution (preoxygenated perfluorocarbon [PFC] + University of Wisconsin [UW] solution) versus lower oxygen solution (preoxygenated UW solution). RESULTS Adenosine triphosphate levels under UW preservation fall to less than 10% after 30 minutes of warm ischemia. Preoxygenated UW solution with PFC reached a significantly higher PaO2. After 45 minutes of warm ischemia in oxygenated UW + PFC solution, grafts showed 63% higher levels of ATP (P = 0.011). In addition, this was associated with better preservation of morphology when compared to grafts stored in standard UW solution. Animals that received DCD grafts preserved in higher oxygenation solution showed improved survival: 4 out of 6 animals survived long-term whereas all control group animals died within 24 hours. CONCLUSIONS The additional oxygen provided by PFC during static cold preservation of DCD livers can better sustain ATP levels, and thereby reduce the severity of ischemic tissue damage. PFC-based preservation solution extends the tolerance to warm ischemia, and may reduce the rate of ischemic cholangiopathy.
Collapse
|
13
|
Pless-Petig G, Walter B, Bienholz A, Rauen U. Mitochondrial Impairment as a Key Factor for the Lack of Attachment after Cold Storage of Hepatocyte Suspensions. Cell Transplant 2018; 26:1855-1867. [PMID: 29390882 PMCID: PMC5802638 DOI: 10.1177/0963689717743254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Isolated primary hepatocytes, which are widely used for pharmacological and clinical purposes, usually undergo certain periods of cold storage in suspension during processing. While adherent hepatocytes were shown previously to suffer iron-dependent cell death during cold (4 °C) storage and early rewarming, we previously found little iron-dependent hepatocyte death in suspension but severely decreased attachment ability unless iron chelators were added. Here, we focus on the role of mitochondrial impairment in this nonattachment of hepatocyte suspensions. Rat hepatocyte suspensions were stored in a chloride-poor, glycine-containing cold storage solution with and without iron chelators at 4 °C. After 1 wk of cold storage in the basic cold storage solution, cell viability in suspension was unchanged, while cell attachment was decreased by >80%. In the stored cells, a loss of mitochondrial membrane potential (MMP), a decrease in adenosine triphosphate (ATP) content (2 ± 2 nmol/106 cells after cold storage, 5 ± 3 nmol/106 cells after rewarming vs. control 29 ± 6 nmol/106 cells), and a decrease in oxygen consumption (101 ± 59 pmol sec-1 per 106 cells after rewarming vs. control 232 ± 83 pmol sec-1 per 106 cells) were observed. Addition of iron chelators to the cold storage solution increased cell attachment to 53% ± 20% and protected against loss of MMP, and cells were able to partially regenerate ATP during rewarming (15 ± 10 nmol/106 cells). Increased attachment could also be achieved by addition of the inhibitor combination of mitochondrial permeability transition, trifluoperazine + fructose. Attached hepatocytes displayed normal MMP and mitochondrial morphology. Additional experiments with freshly isolated hepatocytes confirmed that impaired energy production-as elicited by an inhibitor of the respiratory chain, antimycin A-can decrease cell attachment without decreasing viability. Taken together, these results suggest that mitochondrial impairment with subsequent energy deficiency is a key factor for the lack of attachment of cold-stored hepatocyte suspensions.
Collapse
Affiliation(s)
- Gesine Pless-Petig
- 1 Institut für Physiologische Chemie, Universitätsklinikum Essen, Essen, Germany
| | - Björn Walter
- 1 Institut für Physiologische Chemie, Universitätsklinikum Essen, Essen, Germany
| | - Anja Bienholz
- 2 Klinik für Nephrologie, Universitätsklinikum Essen, Essen, Germany
| | - Ursula Rauen
- 1 Institut für Physiologische Chemie, Universitätsklinikum Essen, Essen, Germany
| |
Collapse
|
14
|
Ruoß M, Häussling V, Schügner F, Olde Damink LHH, Lee SML, Ge L, Ehnert S, Nussler AK. A Standardized Collagen-Based Scaffold Improves Human Hepatocyte Shipment and Allows Metabolic Studies over 10 Days. Bioengineering (Basel) 2018; 5:E86. [PMID: 30332824 PMCID: PMC6316810 DOI: 10.3390/bioengineering5040086] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 02/06/2023] Open
Abstract
Due to pronounced species differences, hepatotoxicity of new drugs often cannot be detected in animal studies. Alternatively, human hepatocytes could be used, but there are some limitations. The cells are not always available on demand or in sufficient amounts, so far there has been only limited success to allow the transport of freshly isolated hepatocytes without massive loss of function or their cultivation for a long time. Since it is well accepted that the cultivation of hepatocytes in 3D is related to an improved function, we here tested the Optimaix-3D Scaffold from Matricel for the transport and cultivation of hepatocytes. After characterization of the scaffold, we shipped cells on the scaffold and/or cultivated them over 10 days. With the evaluation of hepatocyte functions such as urea production, albumin synthesis, and CYP activity, we showed that the metabolic activity of the cells on the scaffold remained nearly constant over the culture time whereas a significant decrease in metabolic activity occurred in 2D cultures. In addition, we demonstrated that significantly fewer cells were lost during transport. In summary, the collagen-based scaffold allows the transport and cultivation of hepatocytes without loss of function over 10 days.
Collapse
Affiliation(s)
- Marc Ruoß
- Department of Traumatology, Siegfried Weller Institute, Eberhard Karls University, 72076 Tübingen, Germany.
| | - Victor Häussling
- Department of Traumatology, Siegfried Weller Institute, Eberhard Karls University, 72076 Tübingen, Germany.
| | | | | | - Serene M L Lee
- Hepacult GmbH, 82152 Martinsried/Planegg, Germany.
- Biobank of the Department of General, Visceral and Transplantation Surgery, Hospital of the LMU, 81377 Munich, Germany.
| | - Liming Ge
- Hepacult GmbH, 82152 Martinsried/Planegg, Germany.
| | - Sabrina Ehnert
- Department of Traumatology, Siegfried Weller Institute, Eberhard Karls University, 72076 Tübingen, Germany.
| | - Andreas K Nussler
- Department of Traumatology, Siegfried Weller Institute, Eberhard Karls University, 72076 Tübingen, Germany.
| |
Collapse
|
15
|
Knecht C, Balaban CL, Rodríguez JV, Ceccarelli EA, Guibert EE, Rosano GL. Proteome variation of the rat liver after static cold storage assayed in an ex vivo model. Cryobiology 2018; 85:47-55. [PMID: 30296410 DOI: 10.1016/j.cryobiol.2018.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 12/28/2022]
Abstract
Cold storage is a common procedure for liver preservation in a transplant setting. However, during cold ischemia, the liver suffers molecular alterations that can affect its performance. Also, deleterious mechanisms set forth in the storage phase are exacerbated during reperfusion. This study aimed to identify liver proteins associated with injury during cold storage and/or normothermic reperfusion using the isolated perfused rat liver model. Livers from male rats were subjected to either (1) cold storage for 24 h, (2) ex vivo normothermic reperfusion for 90 min or (3) cold storage for 24 h followed by ex vivo normothermic reperfusion for 90 min. Then, the livers were homogenized and proteins were extracted. Protein expression between each experimental group and the control (freshly resected livers) was compared by two-dimensional (2D) gel electrophoresis. Protein identification was carried out by matrix-assisted laser desorption/ionization time-of-flight spectrometry (MALDI-TOF/TOF) using MASCOT as the search engine. 23 proteins were detected with significantly altered levels of expression among the different treatments, including molecular chaperones, antioxidant enzymes, and proteins involved in energy metabolism. Some of them have been postulated as biomarkers for liver damage while others had been identified in other organs subjected to ischemia and reperfusion injury. The whole data set will be a useful resource for studying deleterious molecular mechanisms that result in diminished liver function during storage and subsequent reperfusion.
Collapse
Affiliation(s)
- Camila Knecht
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, 2000, Argentina; Centro Binacional (Argentina-Italia) de Investigaciones en Criobiología Clínica y Aplicada (CAIC), Universidad Nacional de Rosario, Rosario, 2000, Argentina.
| | - Cecilia L Balaban
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, 2000, Argentina; Centro Binacional (Argentina-Italia) de Investigaciones en Criobiología Clínica y Aplicada (CAIC), Universidad Nacional de Rosario, Rosario, 2000, Argentina.
| | - Joaquín V Rodríguez
- Centro Binacional (Argentina-Italia) de Investigaciones en Criobiología Clínica y Aplicada (CAIC), Universidad Nacional de Rosario, Rosario, 2000, Argentina.
| | - Eduardo A Ceccarelli
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, 2000, Argentina.
| | - Edgardo E Guibert
- Centro Binacional (Argentina-Italia) de Investigaciones en Criobiología Clínica y Aplicada (CAIC), Universidad Nacional de Rosario, Rosario, 2000, Argentina.
| | - Germán L Rosano
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, 2000, Argentina.
| |
Collapse
|
16
|
Hypothermic Oxygenated Machine Perfusion of the Human Donor Pancreas. Transplant Direct 2018; 4:e388. [PMID: 30498765 PMCID: PMC6233671 DOI: 10.1097/txd.0000000000000829] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/18/2018] [Indexed: 12/11/2022] Open
Abstract
Supplemental digital content is available in the text. Background Transplantation of beta cells by pancreas or islet transplantation is the treatment of choice for a selected group of patients suffering from type 1 diabetes mellitus. Pancreata are frequently not accepted for transplantation, because of the relatively high vulnerability of these organs to ischemic injury. In this study, we evaluated the effects of hypothermic machine perfusion (HMP) on the quality of human pancreas grafts. Methods Five pancreata derived from donation after circulatory death (DCD) and 5 from donation after brain death (DBD) donors were preserved by oxygenated HMP. Hypothermic machine perfusion was performed for 6 hours at 25 mm Hg by separate perfusion of the mesenteric superior artery and the splenic artery. Results were compared with those of 10 pancreata preserved by static cold storage. Results During HMP, homogeneous perfusion of the pancreas could be achieved. Adenosine 5′-triphosphate concentration increased 6,8-fold in DCD and 2,6-fold in DBD pancreata. No signs of cellular injury, edema or formation of reactive oxygen species were observed. Islets of Langerhans with good viability and in vitro function could be isolated after HMP. Conclusions Oxygenated HMP is a feasible and safe preservation method for the human pancreas that increases tissue viability.
Collapse
|
17
|
Avruch JH, Bruinsma BG, Weeder PD, Sridharan GV, Porte RJ, Yeh H, Markmann JF, Uygun K. A novel model for ex situ reperfusion of the human liver following subnormothermic machine perfusion. TECHNOLOGY 2017; 5:196-200. [PMID: 31106253 PMCID: PMC6524532 DOI: 10.1142/s2339547817500108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Machine perfusion-based organ preservation techniques are prudently transitioning into clinical practice. Although experimental data is compelling, the outcomes in the highly variable clinical donation-transplantation setting are unpredictable. Here, we offer an intermediate tool for pre-clinical assessment of human donor livers. We present a model for ex situ reperfusion of discarded human livers and report on its application in three human livers that have undergone subnormothermic (21°C) machine perfusion as an experimental preservation method. During reperfusion, the livers macroscopically reperfused in the first 15 minutes, and remained visually well-perfused for 3 hours of ex situ reperfusion. Bile production and oxygen consumption were observed throughout ex situ reperfusion. ATP levels increased 4.25-fold during SNMP. Between the end of SNMP and the end of reperfusion ATP levels dropped 45%. ALT levels in blood increased rapidly in the first 30 minutes and ALT release continued to taper off towards the end of perfusion. Release of CRP, TNF-α, IL-1β, and IL-12, IFN-γ was sustained during reperfusion. These findings support the use of this model for the evaluation of novel human liver preservation techniques.
Collapse
Affiliation(s)
- James H Avruch
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bote G Bruinsma
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Pepijn D Weeder
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gautham V Sridharan
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert J Porte
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Heidi Yeh
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James F Markmann
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Korkut Uygun
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Herein, we review the field of subzero organ preservation with a focus on recent developments in hepatic supercooling. RECENT FINDINGS Organ preservation is making a rapid shift from the decade old standard of storage on ice toward techniques that improve organ availability as well as preservation time. Long-term organ preservation would have tremendous benefits to the organ transplantation field, including better organ allocation, donor-recipient matching, as well as reduced preservation injury, and subsequent improvement of donor organ use. The formation of ice has proven an important limiting factor and novel techniques attempt to control or prevent freezing using cryoprotective agents, and highly controlled cooling regimens. Various techniques have been employed over the previous decades, including true organ freezing, vitrification, and subzero nonfreezing or supercooling. For most techniques, successful transplantation following long-term subzero preservation has remained elusive. Supercooling, however, recently delivered the first promising results, yielding survival after up to 4 days of supercooled preservation at -6°C. SUMMARY As the field of organ preservation undergoes significant development, the field of subzero preservation also receives renewed interest. Although many obstacles remain to be overcome to make subzero preservation feasible, novel techniques are beginning to show their potential in achieving long-term preservation.
Collapse
|
19
|
Miao H, Dong Y, Zhang Y, Zheng H, Shen Y, Crosby G, Culley DJ, Marcantonio ER, Xie Z. Anesthetic Isoflurane or Desflurane Plus Surgery Differently Affects Cognitive Function in Alzheimer's Disease Transgenic Mice. Mol Neurobiol 2017; 55:5623-5638. [PMID: 28986748 DOI: 10.1007/s12035-017-0787-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/22/2017] [Indexed: 02/06/2023]
Abstract
Anesthesia/surgery could be associated with cognitive impairment and Alzheimer's disease neuropathogenesis. However, whether surgery under different anesthetics has different effects on cognitive function remains largely unknown. We therefore set out to compare effects of anesthetic isoflurane or desflurane plus surgery on cognitive function and hippocampus levels of synaptic marker (postsynaptic density-95 and synaptophysin) and ATP. Five-month-old AD Transgenic (Tg) (FAD5X) and wild-type male mice received isoflurane or desflurane plus abdominal surgery. We assessed cognitive function in Barnes maze and measured hippocampus levels of postsynaptic density-95, synaptophysin, and ATP in the mice. We determined whether vitamin K2 could mitigate these anesthesia/surgery-induced changes. Isoflurane, but not desflurane, plus surgery increased escape latency and escape distance in Barnes maze probe test and reduced postsynaptic density-95, synaptophysin, and ATP levels as compared to control condition in AD Tg mice. Vitamin K2 attenuated the anesthesia/surgery-induced changes in the AD Tg mice. These findings suggest that isoflurane, but not desflurane, plus surgery might induce cognitive impairment via causing brain energy deficits. Pending confirmative studies in both animals and humans suggest desflurane could be a better choice for AD patients when surgery is needed. Moreover, vitamin K2 could treat cognitive deficiency associated with anesthesia and surgery.
Collapse
Affiliation(s)
- Huihui Miao
- Department of Anesthesia, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China.,Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Room 4310, Charlestown, MA, 02129-2060, USA
| | - Yuanlin Dong
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Room 4310, Charlestown, MA, 02129-2060, USA
| | - Yiying Zhang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Room 4310, Charlestown, MA, 02129-2060, USA
| | - Hui Zheng
- Massachusetts General Hospital Biostatistics Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Yuan Shen
- Department of Psychiatry, Tenth People's Hospital of Tongji University, Shanghai, 200072, People's Republic of China
| | - Gregory Crosby
- Department of Anesthesia, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Deborah J Culley
- Department of Anesthesia, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Edward R Marcantonio
- Divisions of General Medicine and Primary Care and Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Room 4310, Charlestown, MA, 02129-2060, USA.
| |
Collapse
|
20
|
Xu G, Lu H, Dong Y, Shapoval D, Soriano S, Liu X, Zhang Y, Xie Z. Coenzyme Q10 reduces sevoflurane-induced cognitive deficiency in young mice. Br J Anaesth 2017; 119:481-491. [DOI: 10.1093/bja/aex071] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2017] [Indexed: 12/26/2022] Open
|
21
|
Bruinsma BG, Avruch JH, Sridharan GV, Weeder PD, Jacobs ML, Crisalli K, Amundsen B, Porte RJ, Markmann JF, Uygun K, Yeh H. Peritransplant Energy Changes and Their Correlation to Outcome After Human Liver Transplantation. Transplantation 2017; 101:1637-1644. [PMID: 28230641 PMCID: PMC5481470 DOI: 10.1097/tp.0000000000001699] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The ongoing shortage of donor livers for transplantation and the increased use of marginal livers necessitate the development of accurate pretransplant tests of viability. Considering the importance energy status during transplantation, we aimed to correlate peritransplant energy cofactors to posttransplant outcome and subsequently model this in an ex vivo setting. METHODS Sequential biopsies were taken from 19 donor livers postpreservation, as well as 30 minutes after portal venous reperfusion and hepatic arterial reperfusion and analyzed by liquid chromatography-mass spectrometry for energetic cofactors (adenosine triphosphate [ATP]/adenosine diphosphate [ADP]/adenosine monophosphate [AMP], nicotinamide adenine dinucleotide /NAD, nicotinamide adenine dinucleotide phosphate / nicotinamide adenine dinucleotide phosphate , flavin adenine dinucleotide , glutathione disulfide/glutathione). Energy status was correlated to posttransplant outcome. In addition, 4 discarded human donation after circulatory death livers were subjected to ex vivo reperfusion, modeling reperfusion injury and were similarly analyzed for energetic cofactors. RESULTS A rapid shift toward higher energy adenine nucleotides was observed following clinical reperfusion, with a 2.45-, 3.17- and 2.12-fold increase in ATP:ADP, ATP:AMP and energy charge after portal venous reperfusion, respectively. Seven of the 19 grafts developed early allograft dysfunction. Correlation with peritransplant cofactors revealed a significant difference in EC between early allograft dysfunction and normal functioning grafts (0.09 vs 0.31, P < 0.05). In the simulated reperfusion model, a similar trend in adenine nucleotide changes was observed. CONCLUSIONS A preserved energy status appears critical in the peritransplant period. Levels of adenine nucleotides change rapidly after reperfusion and ratios of ATP/ADP/AMP after reperfusion are significantly correlated to graft function. Using these markers as a viability test in combination with ex vivo reperfusion may provide a useful predictor of outcome that incorporates donor, preservation, and reperfusion factors.
Collapse
Affiliation(s)
- Bote G. Bruinsma
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James H. Avruch
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gautham V. Sridharan
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Pepijn D. Weeder
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marie Louise Jacobs
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kerry Crisalli
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Beth Amundsen
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert J. Porte
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - James F. Markmann
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Korkut Uygun
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Heidi Yeh
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Abstract
BACKGROUND The high demand for livers for transplantation has led to organs of limited quality being accepted to expand the donor pool. This is associated with inferior outcomes due to more pronounced preservation injury. Accordingly, recent research has aimed to develop preservation modalities for improved preservation as well as strategies for liver viability assessment and liver reconditioning. METHODS The PubMed database was searched using the terms 'perfusion', 'liver', 'preservation', and 'reconditioning' in various combinations, and the according literature was reviewed. RESULTS Several perfusion techniques have been developed in recent years with the potential for liver reconditioning. Preclinical and first emerging clinical data suggest feasibility, safety, and superiority over the current gold standard of cold storage. CONCLUSION This review outlines current advances in the field of liver preservation with an emphasis on liver reconditioning methods.
Collapse
Affiliation(s)
- Dieter P Hoyer
- General, Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Thomas Minor
- General, Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| |
Collapse
|
23
|
Mahboub P, Bozorgzadeh A, Martins PN. Potential approaches to improve the outcomes of donation after cardiac death liver grafts. World J Transplant 2016; 6:314-320. [PMID: 27358776 PMCID: PMC4919735 DOI: 10.5500/wjt.v6.i2.314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 10/23/2015] [Accepted: 03/25/2016] [Indexed: 02/05/2023] Open
Abstract
There is a growing discrepancy between the supply and demand of livers for transplantation resulting in high mortality rates on the waiting list. One of the options to decrease the mortality on the waiting list is to optimize organs with inferior quality that otherwise would be discarded. Livers from donation after cardiac death (DCD) donors are frequently discarded because they are exposed to additional warm ischemia time, and this might lead to primary-non-function, delayed graft function, or severe biliary complications. In order to maximize the usage of DCD livers several new preservation approaches have been proposed. Here, we will review 3 innovative organ preservation methods: (1) different ex vivo perfusion techniques; (2) persufflation with oxygen; and (3) addition of thrombolytic therapy. Improvement of the quality of DCD liver grafts could increase the pool of liver graft’s for transplantation, improve the outcomes, and decrease the mortality on the waiting list.
Collapse
|
24
|
|
25
|
Bruinsma BG, Wu W, Ozer S, Farmer A, Markmann JF, Yeh H, Uygun K. Warm ischemic injury is reflected in the release of injury markers during cold preservation of the human liver. PLoS One 2015; 10:e0123421. [PMID: 25822248 PMCID: PMC4378972 DOI: 10.1371/journal.pone.0123421] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/23/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Liver transplantation plays a pivotal role in the treatment of patients with end-stage liver disease. Despite excellent outcomes, the field is strained by a severe shortage of viable liver grafts. To meet high demands, attempts are made to increase the use of suboptimal livers by both pretransplant recovery and assessment of donor livers. Here we aim to assess hepatic injury in the measurement of routine markers in the post-ischemic flush effluent of discarded human liver with a wide warm ischemic range. METHODS Six human livers discarded for transplantation with variable warm and cold ischemia times were flushed at the end of preservation. The liver grafts were flushed with NaCl or Lactated Ringer's, 2 L through the portal vein and 1 L through the hepatic artery. The vena caval effluent was sampled and analyzed for biochemical markers of injury; lactate dehydrogenase (LDH), alanine transaminase (ALT), and alkaline phosphatase (ALP). Liver tissue biopsies were analyzed for ATP content and histologically (H&E) examined. RESULTS The duration of warm ischemia in the six livers correlated significantly to the concentration of LDH, ALT, and ALP in the effluent from the portal vein flush. No correlation was found with cold ischemia time. Tissue ATP content at the end of preservation correlated very strongly with the concentration of ALP in the arterial effluent (P<0.0007, R2 = 0.96). CONCLUSION Biochemical injury markers released during the cold preservation period were reflective of the duration of warm ischemic injury sustained prior to release of the markers, as well as the hepatic energy status. As such, assessment of the flush effluent at the end of cold preservation may be a useful tool in evaluating suboptimal livers prior to transplantation, particularly in situations with undeterminable ischemic durations.
Collapse
Affiliation(s)
- Bote G. Bruinsma
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital/ Harvard Medical School, Boston, Massachusetts, United States
- Department of Surgery (Surgical Laboratory), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Wilson Wu
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital/ Harvard Medical School, Boston, Massachusetts, United States
| | - Sinan Ozer
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital/ Harvard Medical School, Boston, Massachusetts, United States
| | - Adam Farmer
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital/ Harvard Medical School, Boston, Massachusetts, United States
| | - James F. Markmann
- Transplant Center, Massachusetts General Hospital/ Harvard Medical School, Boston, Massachusetts, United States
| | - Heidi Yeh
- Transplant Center, Massachusetts General Hospital/ Harvard Medical School, Boston, Massachusetts, United States
| | - Korkut Uygun
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital/ Harvard Medical School, Boston, Massachusetts, United States
- * E-mail:
| |
Collapse
|
26
|
Abstract
The current standard for liver preservation involves cooling of the organ on ice (0-4 °C). Although it is successful for shorter durations, this method of preservation does not allow long-term storage of the liver. The gradual loss of hepatic viability during preservation puts pressure on organ sharing and allocation, may limit the use of suboptimal grafts and necessitates rushed transplantation to achieve desirable post-transplantation outcomes. In an attempt to improve and prolong liver viability during storage, alternative preservation methods are under investigation. For instance, ex vivo machine perfusion systems aim to sustain and even improve viability by supporting hepatic function at warm temperatures, rather than simply slowing down deterioration by cooling. Here we describe a novel subzero preservation technique that combines ex vivo machine perfusion with cryoprotectants to facilitate long-term supercooled preservation. The technique improves the preservation of rat livers to prolong storage times as much as threefold, which is validated by successful long-term recipient survival after orthotopic transplantation. This protocol describes how to load rat livers with cryoprotectants to prevent both intracellular and extracellular ice formation and to protect against hypothermic injury. Cryoprotectants are loaded ex vivo using subnormothermic machine perfusion (SNMP), after which livers can be cooled to -6 °C without freezing and kept viable for up to 96 h. Cooling to a supercooled state is controlled, followed by 3 h of SNMP recovery and orthotopic liver transplantation.
Collapse
|
27
|
Doi J, Teratani T, Kasahara N, Kikuchi T, Fujimoto Y, Uemoto S, Kobayashi E. Evaluation of liver preservation solutions by using rats transgenic for luciferase. Transplant Proc 2015; 46:63-5. [PMID: 24507027 DOI: 10.1016/j.transproceed.2013.07.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 07/09/2013] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The solution in which graft tissue is stored (that is, preservation solution) is an important component of liver transplantation technology. Its protective effect is induced by substances in the solution, including radical scavengers, buffers, and energy-giving substances. New preservation solutions have proven to be effective in preventing organ damage during cold ischemia and in extending the time limits for storage. AIM This study determined the relationship between luminescence intensity and content of adenosine triphosphate (ATP) in liver tissue and proposes a new ex vivo screening system that uses Lewis rats transgenic for luciferase for evaluating the effectiveness of preservation solutions. METHODS Samples (diameter, 2 mm) of liver were obtained from transgenic rats. The viability of these tissues after storage for as long as 6 hours in University of Wisconsin (UW) solution, extracellular trehalose solution of Kyoto, Euro-Collins (EC) solution, histidine-tryptophan-ketoflutarate solution, low potassium dextran solution, or normal saline was assessed by determining ATP content and luminescence intensity. RESULTS Luminescence had a linear relationship (R = 0.88) with ATP levels. Regardless of the preservation solution used, the luminescence intensities of the liver tissue chips decreased linearly with time especially through a short span of time (0 to 2 hours; R(2) = 0.58-1.0). The luminescence of liver chip tissues maintained long term (2 to 6 hours) in UW solution tended to be higher than those of tissues stored in other solutions (P < .05; 6 hours). On the basis of luminescence intensity, EC might be preferable to the other solutions tested for ultra-short-term storage (0.5 to 2 hours). CONCLUSION Our model, which combines the use of the bioimaging system and Lewis rats transgenic for luciferase, effectively assessed the viability of liver tissue samples. We believe that this ex vivo screening system will be an effective tool for evaluating preservation solutions for liver grafts.
Collapse
Affiliation(s)
- J Doi
- Division of Development of Advanced Therapy Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi, Japan
| | - T Teratani
- Division of Development of Advanced Therapy Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi, Japan.
| | - N Kasahara
- Division of Development of Advanced Therapy Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi, Japan
| | - T Kikuchi
- Division of Development of Advanced Therapy Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi, Japan
| | - Y Fujimoto
- Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - S Uemoto
- Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - E Kobayashi
- Division of Development of Advanced Therapy Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
28
|
Nativ NI, Yarmush G, So A, Barminko J, Maguire TJ, Schloss R, Berthiaume F, Yarmush ML. Elevated sensitivity of macrosteatotic hepatocytes to hypoxia/reoxygenation stress is reversed by a novel defatting protocol. Liver Transpl 2014; 20:1000-11. [PMID: 24802973 PMCID: PMC4117728 DOI: 10.1002/lt.23905] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 04/27/2014] [Indexed: 12/31/2022]
Abstract
Macrosteatotic livers exhibit elevated intrahepatic triglyceride (TG) levels in the form of large lipid droplets (LDs), reduced adenosine triphosphate (ATP) levels, and elevated reactive oxygen species (ROS) levels, and this contributes to their elevated sensitivity to ischemia/reperfusion injury during transplantation. Reducing macrosteatosis in living donors through dieting has been shown to improve transplant outcomes. Accomplishing the same feat for deceased donor grafts would require ex vivo exposure to potent defatting agents. Here we used a rat hepatocyte culture system exhibiting a macrosteatotic LD morphology, elevated TG levels, and an elevated sensitivity to hypoxia/reoxygenation (H/R) to test for such agents and ameliorate H/R sensitivity. Macrosteatotic hepatocyte preconditioning for 48 hours with a defatting cocktail that was previously developed to promote TG catabolism reduced the number of macrosteatotic LDs and intracellular TG levels by 82% and 27%, respectively, but it did not ameliorate sensitivity to H/R. Supplementation of this cocktail with l-carnitine, together with hyperoxic exposure, yielded a similar reduction in the number of macrosteatotic LDs and a 57% reduction in intrahepatic TG storage, likely by increasing the supply of acetyl coenzyme A to mitochondria, as indicated by a 70% increase in ketone body secretion. Furthermore, this treatment reduced ROS levels by 32%, increased ATP levels by 27% (to levels near those of lean controls), and completely abolished H/R sensitivity as indicated by approximately 85% viability after H/R and the reduction of cytosolic lactate dehydrogenase release to levels seen in lean controls. Cultures maintained for 48 hours after H/R were approximately 83% viable and exhibited superior urea secretion and bile canalicular transport in comparison with untreated macrosteatotic cultures. In conclusion, these findings show that the elevated sensitivity of macrosteatotic hepatocytes to H/R can be overcome by defatting agents, and they suggest a possible route for the recovery of discarded macrosteatotic grafts.
Collapse
Affiliation(s)
- Nir I. Nativ
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ
| | - Gabriel Yarmush
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ
| | - Ashley So
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ
| | - Jeffery Barminko
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ
| | - Timothy J. Maguire
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ
| | - Rene Schloss
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ
| | | | - Martin L. Yarmush
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ., Center for Engineering in Medicine/Surgical Services, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
29
|
Bruinsma B, Yeh H, Özer S, Martins P, Farmer A, Wu W, Saeidi N, op den Dries S, Berendsen T, Smith R, Markmann J, Porte R, Yarmush M, Uygun K, Izamis M. Subnormothermic machine perfusion for ex vivo preservation and recovery of the human liver for transplantation. Am J Transplant 2014; 14:1400-9. [PMID: 24758155 PMCID: PMC4470578 DOI: 10.1111/ajt.12727] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 01/25/2023]
Abstract
To reduce widespread shortages, attempts are made to use more marginal livers for transplantation. Many of these grafts are discarded for fear of inferior survival rates or biliary complications. Recent advances in organ preservation have shown that ex vivo subnormothermic machine perfusion has the potential to improve preservation and recover marginal livers pretransplantation. To determine the feasibility in human livers, we assessed the effect of 3 h of oxygenated subnormothermic machine perfusion (21°C) on seven livers discarded for transplantation. Biochemical and microscopic assessment revealed minimal injury sustained during perfusion. Improved oxygen uptake (1.30 [1.11-1.94] to 6.74 [4.15-8.16] mL O2 /min kg liver), lactate levels (4.04 [3.70-5.99] to 2.29 [1.20-3.43] mmol/L) and adenosine triphosphate content (45.0 [70.6-87.5] pmol/mg preperfusion to 167.5 [151.5-237.2] pmol/mg after perfusion) were observed. Liver function, reflected by urea, albumin and bile production, was seen during perfusion. Bile production increased and the composition of bile (bile salts/phospholipid ratio, pH and bicarbonate concentration) became more favorable. In conclusion, ex vivo subnormothermic machine perfusion effectively maintains liver function with minimal injury and sustains or improves various hepatobiliary parameters postischemia.
Collapse
Affiliation(s)
- B.G. Bruinsma
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA,Department of Surgery (Surgical Laboratory), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - H. Yeh
- Transplant Center, Massachusetts General Hospital, Boston, MA, USA
| | - S Özer
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - P.N. Martins
- Organ Transplant Surgery, UMass Memorial Medical Center, Boston, MA, USA
| | - A. Farmer
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - W. Wu
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - N. Saeidi
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - S. op den Dries
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - T.A. Berendsen
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - R.N. Smith
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - J.F. Markmann
- Transplant Center, Massachusetts General Hospital, Boston, MA, USA
| | - R. Porte
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - M.L. Yarmush
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA,Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - K. Uygun
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA,Corresponding authors Korkut Uygun, PhD , Maria-Louisa Izamis, PhD
| | - M.L. Izamis
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA,Corresponding authors Korkut Uygun, PhD , Maria-Louisa Izamis, PhD
| |
Collapse
|
30
|
Abstract
BACKGROUND Magnetic resonance imaging (MRI) gadolinium-perfusion was applied in simulated Donation after Cardiac Death (DCD) in porcine kidneys to measure intrarenal perfusion. Adenosine triphosphate (ATP) resynthesis during oxygenated hypothermic perfusion was compared to evaluate the "ex vivo organ viability". Adenine nucleotide (AN) was measured by P nuclear magnetic resonance (NMR) spectroscopy. Whereas this latter technique requires sophisticated hardware, gadolinium-perfusion can be realized using any standard proton-MRI scanner. The aim of this work was to establish a correlation between the two methods. METHODS Twenty-two porcine kidneys presenting up to 90 min warm ischemia were perfused with oxygenation at 4 °C using our magnetic resonance-compatible machine. During the perfusion, P NMR spectroscopy and gadolinium-perfusion sequences were performed. Measures obtained from the gadolinium-perfusion were the speed of elimination of the cortical gadolinium and the presence or absence of a corticomedullar shunt. For ATP resynthesis analysis, P chemical shift imaging was acquired and analyzed. All the kidneys have been submitted to histologic examination. RESULTS ATP resynthesis was observed in all organs presenting a cortical gadolinium elimination slope of (-) 23° or greater. In organs with lower gadolinium elimination, no AN or only precursors were detected. This study reveals a link between the two methods and demonstrates ex vivo viability in 93% of the analyzed kidneys. Benefits and side effects of both methods are discussed. CONCLUSION Oxygenated hypothermic perfusion enables the evaluation of kidneys in DCD simulated situation; gadolinium-perfusion can be introduced into any center equipped with a proton-MRI scanner allowing results superposable with ATP measurement.
Collapse
|
31
|
Burnstock G, Vaughn B, Robson SC. Purinergic signalling in the liver in health and disease. Purinergic Signal 2014; 10:51-70. [PMID: 24271096 PMCID: PMC3944046 DOI: 10.1007/s11302-013-9398-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/18/2022] Open
Abstract
Purinergic signalling is involved in both the physiology and pathophysiology of the liver. Hepatocytes, Kupffer cells, vascular endothelial cells and smooth muscle cells, stellate cells and cholangiocytes all express purinoceptor subtypes activated by adenosine, adenosine 5'-triphosphate, adenosine diphosphate, uridine 5'-triphosphate or UDP. Purinoceptors mediate bile secretion, glycogen and lipid metabolism and indirectly release of insulin. Mechanical stress results in release of ATP from hepatocytes and Kupffer cells and ATP is also released as a cotransmitter with noradrenaline from sympathetic nerves supplying the liver. Ecto-nucleotidases play important roles in the signalling process. Changes in purinergic signalling occur in vascular injury, inflammation, insulin resistance, hepatic fibrosis, cirrhosis, diabetes, hepatitis, liver regeneration following injury or transplantation and cancer. Purinergic therapeutic strategies for the treatment of these pathologies are being explored.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|
32
|
Nativ NI, Chen AI, Yarmush G, Henry SD, Lefkowitch JH, Klein KM, Maguire TJ, Schloss R, Guarrera JV, Berthiaume F, Yarmush ML. Automated image analysis method for detecting and quantifying macrovesicular steatosis in hematoxylin and eosin-stained histology images of human livers. Liver Transpl 2014; 20:228-36. [PMID: 24339411 PMCID: PMC3923430 DOI: 10.1002/lt.23782] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/21/2013] [Indexed: 12/05/2022]
Abstract
Large-droplet macrovesicular steatosis (ld-MaS) in more than 30% of liver graft hepatocytes is a major risk factor for liver transplantation. An accurate assessment of the ld-MaS percentage is crucial for determining liver graft transplantability, which is currently based on pathologists' evaluations of hematoxylin and eosin (H&E)-stained liver histology specimens, with the predominant criteria being the relative size of the lipid droplets (LDs) and their propensity to displace a hepatocyte's nucleus to the cell periphery. Automated image analysis systems aimed at objectively and reproducibly quantifying ld-MaS do not accurately differentiate large LDs from small-droplet macrovesicular steatosis and do not take into account LD-mediated nuclear displacement; this leads to a poor correlation with pathologists' assessments. Here we present an improved image analysis method that incorporates nuclear displacement as a key image feature for segmenting and classifying ld-MaS from H&E-stained liver histology slides. 52,000 LDs in 54 digital images from 9 patients were analyzed, and the performance of the proposed method was compared against the performance of current image analysis methods and the ld-MaS percentage evaluations of 2 trained pathologists from different centers. We show that combining nuclear displacement and LD size information significantly improves the separation between large and small macrovesicular LDs (specificity = 93.7%, sensitivity = 99.3%) and the correlation with pathologists' ld-MaS percentage assessments (linear regression coefficient of determination = 0.97). This performance vastly exceeds that of other automated image analyzers, which typically underestimate or overestimate pathologists' ld-MaS scores. This work demonstrates the potential of automated ld-MaS analysis in monitoring the steatotic state of livers. The image analysis principles demonstrated here may help to standardize ld-MaS scores among centers and ultimately help in the process of determining liver graft transplantability.
Collapse
Affiliation(s)
- Nir I. Nativ
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ
| | - Alvin I. Chen
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ
| | - Gabriel Yarmush
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ
| | - Scot D. Henry
- Center for Liver Disease and Transplantation, Department of Surgery, Columbia University Medical Center, New York, NY
| | - Jay H. Lefkowitch
- Department of Pathology, College of Physicians and Surgeons of Columbia University, New York, NY
| | - Kenneth M. Klein
- Department of Pathology & Laboratory Medicine, UMDNJ-New Jersey Medical School, Newark, NJ
| | - Timothy J. Maguire
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ
| | - Rene Schloss
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ
| | - James V. Guarrera
- Center for Liver Disease and Transplantation, Department of Surgery, Columbia University Medical Center, New York, NY
| | | | - Martin L. Yarmush
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ,Center for Engineering in Medicine/Surgical Services, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
33
|
Lundquist P, Lööf J, Sohlenius-Sternbeck AK, Floby E, Johansson J, Bylund J, Hoogstraate J, Afzelius L, Andersson TB. The impact of solute carrier (SLC) drug uptake transporter loss in human and rat cryopreserved hepatocytes on clearance predictions. Drug Metab Dispos 2014; 42:469-80. [PMID: 24396146 DOI: 10.1124/dmd.113.054676] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cryopreserved hepatocytes are often used as a convenient tool in studies of hepatic drug metabolism and disposition. In this study, the expression and activity of drug transporters in human and rat fresh and cryopreserved hepatocytes was investigated. In human cryopreserved hepatocytes, Western blot analysis indicated that protein expression of the drug uptake transporters [human Na(+)-taurocholate cotransporting polypeptide (NTCP), human organic anion transporting polypeptides (OATPs), human organic anion transporters, and human organic cation transporters (OCTs)] was considerably reduced compared with liver tissue. In rat cryopreserved cells, the same trend was observed but to a lesser extent. Several rat transporters were reduced as a result of both isolation and cryopreservation procedures. Immunofluorescence showed that a large portion of remaining human OATP1B1 and OATP1B3 transporters were internalized in human cryopreserved hepatocytes. Measuring uptake activity using known substrates of OATPs, OCTs, and NTCP showed decreased activity in cryopreserved as compared with fresh hepatocytes in both species. The reduced uptake in cryopreserved hepatocytes limited the in vitro metabolism of several AstraZeneca compounds. A retrospective analysis of clearance predictions of AstraZeneca compounds suggested systematic lower clearance predicted using metabolic stability data from human cryopreserved hepatocytes compared with human liver microsomes. This observation is consistent with a loss of drug uptake transporters in cryopreserved hepatocytes. In contrast, the predicted metabolic clearance from fresh rat hepatocytes was consistently higher than those predicted from liver microsomes, consistent with retention of uptake transporters. The uptake transporters, which are decreased in cryopreserved hepatocytes, may be rate-limiting for the metabolism of the compounds and thus be one explanation for underpredictions of in vivo metabolic clearance from cryopreserved hepatocytes.
Collapse
Affiliation(s)
- Patrik Lundquist
- CNS and Pain Innovative Medicines DMPK, AstraZeneca R&D, Södertälje, (P.L., J.L., A.-K.S.-S., E.F., J.J., J.B., J.H., L.A.); Cardiovascular and Metabolic Diseases Innovative Medicines DMPK, AstraZeneca R&D, Mölndal, (P.L., T.B.A.); Department of Pharmacy, Uppsala University, Uppsala, (P.L.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, (T.B.A.), Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Determination and extension of the limits to static cold storage using subnormothermic machine perfusion. Int J Artif Organs 2013; 36:775-80. [PMID: 24338652 DOI: 10.5301/ijao.5000250] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2013] [Indexed: 12/27/2022]
Abstract
BACKGROUND/AIMS Static cold storage (SCS) of the liver for transplantation is limited by time. Continuation of metabolic activity leads to depletion of energy stores and loss of cellular function, which results in poor post-transplant function. Machine perfusion (MP) applied at the end of preservation may improve the viability of marginal liver grafts and provides information on the quality of the organ. We attempt to define the limits to SCS in terms of easily measurable perfusion parameters and investigate whether MP can improve liver viability.
METHODS Rat livers were cold-stored for 0, 24, 48, 72, and 120 h, after which they were treated with subnormothermic machine perfusion (SNMP). Livers cold-stored for 48 and 72 h were transplanted orthotopically with or without SNMP. During SNMP easily measurable parameters were monitored and adenosine triphosphate (ATP) content was measured following preservation and SNMP.
RESULTS ATP increased significantly during SNMP, but the recovered ATP content deteriorated with increased duration of SCS, with minimal improvement after 72 h of SCS. Vascular resistance during SNMP increased with extended preservation. After 48 h of SCS, orthotopic transplantation survival increased significantly from 50% to 100% with SNMP, but did not improve after 72 h.
CONCLUSIONS Vascular resistance and ATP recovery suggest a decrease in viability after 48 h of SCS. Survival data confirms the loss of post-transplant graft function and supports the use of ATP and vascular resistance as useful indicators. Further, we show that the recoverability of a liver using SNMP is limited to 48 h of SCS.
Collapse
|
35
|
Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Böttger J, Braeuning A, Budinsky RA, Burkhardt B, Cameron NR, Camussi G, Cho CS, Choi YJ, Craig Rowlands J, Dahmen U, Damm G, Dirsch O, Donato MT, Dong J, Dooley S, Drasdo D, Eakins R, Ferreira KS, Fonsato V, Fraczek J, Gebhardt R, Gibson A, Glanemann M, Goldring CEP, Gómez-Lechón MJ, Groothuis GMM, Gustavsson L, Guyot C, Hallifax D, Hammad S, Hayward A, Häussinger D, Hellerbrand C, Hewitt P, Hoehme S, Holzhütter HG, Houston JB, Hrach J, Ito K, Jaeschke H, Keitel V, Kelm JM, Kevin Park B, Kordes C, Kullak-Ublick GA, LeCluyse EL, Lu P, Luebke-Wheeler J, Lutz A, Maltman DJ, Matz-Soja M, McMullen P, Merfort I, Messner S, Meyer C, Mwinyi J, Naisbitt DJ, Nussler AK, Olinga P, Pampaloni F, Pi J, Pluta L, Przyborski SA, Ramachandran A, Rogiers V, Rowe C, Schelcher C, Schmich K, Schwarz M, Singh B, Stelzer EHK, Stieger B, Stöber R, Sugiyama Y, Tetta C, Thasler WE, Vanhaecke T, Vinken M, Weiss TS, Widera A, Woods CG, Xu JJ, Yarborough KM, Hengstler JG. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 2013; 87:1315-530. [PMID: 23974980 PMCID: PMC3753504 DOI: 10.1007/s00204-013-1078-5] [Citation(s) in RCA: 1074] [Impact Index Per Article: 89.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 12/15/2022]
Abstract
This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4α, FXR, LXR, SHP, VDR and PPAR) and signaling pathways. When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4α), resulting in up- and downregulation of hundreds of genes. An understanding of these changes is crucial for a correct interpretation of in vitro data. The possibilities and limitations of the most useful liver in vitro systems are summarized, including three-dimensional culture techniques, co-cultures with non-parenchymal cells, hepatospheres, precision cut liver slices and the isolated perfused liver. Also discussed is how closely hepatoma, stem cell and iPS cell-derived hepatocyte-like-cells resemble real hepatocytes. Finally, a summary is given of the state of the art of liver in vitro and mathematical modeling systems that are currently used in the pharmaceutical industry with an emphasis on drug metabolism, prediction of clearance, drug interaction, transporter studies and hepatotoxicity. One key message is that despite our enthusiasm for in vitro systems, we must never lose sight of the in vivo situation. Although hepatocytes have been isolated for decades, the hunt for relevant alternative systems has only just begun.
Collapse
Affiliation(s)
- Patricio Godoy
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | | | - Ute Albrecht
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Melvin E. Andersen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Nariman Ansari
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Sudin Bhattacharya
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Johannes Georg Bode
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Jennifer Bolleyn
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Jan Böttger
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Albert Braeuning
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Robert A. Budinsky
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Britta Burkhardt
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Neil R. Cameron
- Department of Chemistry, Durham University, Durham, DH1 3LE UK
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - J. Craig Rowlands
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General Visceral, and Vascular Surgery, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - Georg Damm
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Olaf Dirsch
- Institute of Pathology, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - María Teresa Donato
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Jian Dong
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dirk Drasdo
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
- INRIA (French National Institute for Research in Computer Science and Control), Domaine de Voluceau-Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France
- UPMC University of Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, 4, pl. Jussieu, 75252 Paris cedex 05, France
| | - Rowena Eakins
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Karine Sá Ferreira
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
- GRK 1104 From Cells to Organs, Molecular Mechanisms of Organogenesis, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Valentina Fonsato
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Joanna Fraczek
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Andrew Gibson
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Matthias Glanemann
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Chris E. P. Goldring
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - María José Gómez-Lechón
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
| | - Geny M. M. Groothuis
- Department of Pharmacy, Pharmacokinetics Toxicology and Targeting, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lena Gustavsson
- Department of Laboratory Medicine (Malmö), Center for Molecular Pathology, Lund University, Jan Waldenströms gata 59, 205 02 Malmö, Sweden
| | - Christelle Guyot
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - David Hallifax
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - Seddik Hammad
- Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Adam Hayward
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Claus Hellerbrand
- Department of Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany
| | | | - Stefan Hoehme
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
| | - Hermann-Georg Holzhütter
- Institut für Biochemie Abteilung Mathematische Systembiochemie, Universitätsmedizin Berlin (Charité), Charitéplatz 1, 10117 Berlin, Germany
| | - J. Brian Houston
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | | | - Kiyomi Ito
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585 Japan
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | - B. Kevin Park
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Claus Kordes
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Gerd A. Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Edward L. LeCluyse
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Peng Lu
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | - Anna Lutz
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Daniel J. Maltman
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
| | - Madlen Matz-Soja
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Patrick McMullen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | | | - Christoph Meyer
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jessica Mwinyi
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Dean J. Naisbitt
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andreas K. Nussler
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Francesco Pampaloni
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Jingbo Pi
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Linda Pluta
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Stefan A. Przyborski
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Vera Rogiers
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Cliff Rowe
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Celine Schelcher
- Department of Surgery, Liver Regeneration, Core Facility, Human in Vitro Models of the Liver, Ludwig Maximilians University of Munich, Munich, Germany
| | - Kathrin Schmich
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Michael Schwarz
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Bijay Singh
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Ernst H. K. Stelzer
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Regina Stöber
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama Biopharmaceutical R&D Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Ciro Tetta
- Fresenius Medical Care, Bad Homburg, Germany
| | - Wolfgang E. Thasler
- Department of Surgery, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich, Germany
| | - Tamara Vanhaecke
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mathieu Vinken
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Thomas S. Weiss
- Department of Pediatrics and Juvenile Medicine, University of Regensburg Hospital, Regensburg, Germany
| | - Agata Widera
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Courtney G. Woods
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | | | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| |
Collapse
|
36
|
|
37
|
Izamis ML, Calhoun C, Uygun BE, Guzzardi MA, Price G, Luitje M, Saeidi N, Yarmush ML, Uygun K. SIMPLE MACHINE PERFUSION SIGNIFICANTLY ENHANCES HEPATOCYTE YIELDS OF ISCHEMIC AND FRESH RAT LIVERS. CELL MEDICINE 2013; 4:109-123. [PMID: 25431743 PMCID: PMC4243527 DOI: 10.3727/215517912x658927] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The scarcity of viable hepatocytes is a significant bottleneck in cell transplantation, drug discovery, toxicology, tissue engineering, and bioartificial assist devices, where trillions of high-functioning hepatocytes are needed annually. We took the novel approach of using machine perfusion to maximize cell recovery, specifically from uncontrolled cardiac death donors, the largest source of disqualified donor organs. In a rat model, we developed a simple 3 hour room temperature (20±2°C) machine perfusion protocol to treat non-premedicated livers exposed to 1 hour of warm (34°C) ischemia. Treated ischemic livers were compared to fresh, fresh-treated and untreated ischemic livers using viable hepatocyte yields and in vitro performance as quantitative endpoints. Perfusion treatment resulted in both a 25-fold increase in viable hepatocytes from ischemic livers, and a 40% increase from fresh livers. While cell morphology and function in suspension and plate cultures of untreated warm ischemic cells was significantly impaired, treated warm ischemic cells were indistinguishable from fresh hepatocytes. Further, a strong linear correlation between tissue ATP and cell yield enabled accurate evaluation of the extent of perfusion recovery. Maximal recovery of warm ischemic liver ATP content appears to be correlated with optimal flow through the microvasculature. These data demonstrate that the inclusion of a simple perfusion-preconditioning step can significantly increase the efficiency of functional hepatocyte yields and the number of donor livers that can be gainfully utilized.
Collapse
Affiliation(s)
- Maria-Louisa Izamis
- *Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA, USA
| | - Candice Calhoun
- *Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA, USA
| | - Basak E. Uygun
- *Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA, USA
| | - Maria Angela Guzzardi
- *Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA, USA
| | - Gavrielle Price
- *Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA, USA
| | - Martha Luitje
- *Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA, USA
| | - Nima Saeidi
- *Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA, USA
| | - Martin L. Yarmush
- *Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA, USA
- †Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Korkut Uygun
- *Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA, USA
| |
Collapse
|
38
|
Kondo Y, Ishitsuka Y, Kadowaki D, Fukumoto Y, Miyamoto Y, Irikura M, Hirata S, Sato K, Maruyama T, Hamasaki N, Irie T. Phosphoenolpyruvate, a glycolytic intermediate, as a cytoprotectant and antioxidant in ex-vivo cold-preserved mouse liver: a potential application for organ preservation. ACTA ACUST UNITED AC 2012; 65:390-401. [PMID: 23356848 DOI: 10.1111/j.2042-7158.2012.01602.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 09/21/2012] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The aim of this study was to examine the effect of phosphoenolpyruvate (PEP), a glycolytic intermediate, on organ damage during cold preservation of liver. METHODS An ex-vivo mouse liver cold-preservation model and an in-vitro liver injury model induced by hydrogen peroxide in HepG2 cells were leveraged. KEY FINDINGS PEP attenuated the elevation of aminotransferases and lactate dehydrogenase leakage during organ preservation, histological changes and changes in oxidative stress parameters (measured as thiobarbituric acid reactive substance and glutathione content) induced by 72 h of cold preservation of the liver. The effects were comparable with the University of Wisconsin solution, a gold standard organ preservation agent. The decrease in ATP content in liver during the cold preservation was attenuated by PEP treatment. PEP prevented the cellular injury and increases in intracellular reactive oxygen species in HepG2 cells. In addition, PEP scavenged hydroxyl radicals, but had no effect on superoxide anion as evaluated by an electron paramagnetic resonance spin-trapping technique. CONCLUSIONS PEP significantly attenuated the injury, oxidative stress and ATP depletion in liver during cold preservation. The antioxidative potential of PEP was confirmed by in-vitro examination. We suggest that PEP acts as a glycolytic intermediate and antioxidant, and is particularly useful as an organ preservation agent in clinical transplantation.
Collapse
Affiliation(s)
- Yuki Kondo
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Izamis ML, Berendsen T, Uygun K, Yarmush M. Addressing the Donor Liver Shortage withEX VIVOMachine Perfusion. JOURNAL OF HEALTHCARE ENGINEERING 2012. [DOI: 10.1260/2040-2295.3.2.279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
40
|
Is extracorporeal hypothermic machine perfusion of the liver better than the ‘good old icebox’? Curr Opin Organ Transplant 2012; 17:137-42. [DOI: 10.1097/mot.0b013e328351083d] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Perk S, Izamis ML, Tolboom H, Uygun B, Berthiaume F, Yarmush ML, Uygun K. A metabolic index of ischemic injury for perfusion-recovery of cadaveric rat livers. PLoS One 2011; 6:e28518. [PMID: 22194843 PMCID: PMC3237452 DOI: 10.1371/journal.pone.0028518] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 11/09/2011] [Indexed: 12/27/2022] Open
Abstract
With over 110,000 patients waiting for organ transplantation, the current crisis in organ transplantation is based on a lack of donors after brain-death (DBD). A very large alternative pool of donor organs that remain untapped are the donors after cardiac death (DCD), recovered after cardiac activity has ceased and therefore sustained some ischemic injury. Machine perfusion has been proposed as a novel modality of organ preservation and treatment to render such cadaveric organs, and in particular livers, transplantable. Two key issues that remain unaddressed are how to assess whether a DCD liver is damaged beyond repair, and whether machine perfusion has rendered an injured organ sufficiently viable for transplantation. In this work, we present a metabolic analysis of the transient responses of cadaveric rat livers during normothermic machine perfusion (NMP), and develop an index of ischemia that enables evaluation of the organ ischemic injury level. Further, we perform a discriminant analysis to construct a classification algorithm with >0.98 specificity to identify whether a given perfused liver is ischemic or fresh, in effect a precursor for an index of transplantability and a basis for the use of statistical process control measures for automated feedback control of treatment of ischemic injury in DCD livers. The analyses yield an index based on squared prediction error (SPE) as log(SPE) >1.35 indicating ischemia. The differences between metabolic functions of fresh and ischemic livers during perfusion are outlined and the metabolites that varied significantly for ischemic livers are identified as ornithine, arginine, albumin and tyrosine.
Collapse
Affiliation(s)
- Sinem Perk
- Center for Engineering in Medicine, Harvard Medical School, Massachusetts General Hospital, and the Shriners Hospitals for Children, Boston, Massachusetts, United States of America
| | - Maria-Louisa Izamis
- Center for Engineering in Medicine, Harvard Medical School, Massachusetts General Hospital, and the Shriners Hospitals for Children, Boston, Massachusetts, United States of America
| | - Herman Tolboom
- Division of Cardiac and Vascular Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Basak Uygun
- Center for Engineering in Medicine, Harvard Medical School, Massachusetts General Hospital, and the Shriners Hospitals for Children, Boston, Massachusetts, United States of America
| | - Francois Berthiaume
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, United States of America
| | - Martin L. Yarmush
- Center for Engineering in Medicine, Harvard Medical School, Massachusetts General Hospital, and the Shriners Hospitals for Children, Boston, Massachusetts, United States of America
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, United States of America
| | - Korkut Uygun
- Center for Engineering in Medicine, Harvard Medical School, Massachusetts General Hospital, and the Shriners Hospitals for Children, Boston, Massachusetts, United States of America
| |
Collapse
|
42
|
Xu H, Berendsen T, Kim K, Soto-Gutiérrez A, Bertheium F, Yarmush ML, Hertl M. Excorporeal normothermic machine perfusion resuscitates pig DCD livers with extended warm ischemia. J Surg Res 2011; 173:e83-8. [PMID: 22099594 DOI: 10.1016/j.jss.2011.09.057] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/26/2011] [Accepted: 09/29/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND The shortage in donor livers has led to increased use of allografts derived from donation after cardiac death (DCD). The compromised viability in these livers leads to inferior post-transplantation allograft function and survival compared with donation after brain death (DBD) donor grafts. In this study, we reconditioned DCD livers using an optimized normothermic machine perfusion system. METHODS Livers from 12 Yorkshire pigs (20-30 kg) were subjected to either 0 min (WI-0 group, n = 6) or 60 min (WI-60 group, n = 6) of warm ischemia and 2 h of cold storage in UW solution, followed by 4 h of oxygenated sanguineous normothermic machine perfusion. Liver viability and metabolic function were analyzed hourly. RESULTS Warm ischemic livers showed elevated transaminase levels and reduced ATP concentration. After the start of machine perfusion, transaminase levels stabilized and there was recovery of tissue ATP, coinciding with an increase in bile production. These parameters reached comparable levels to the control group after 1 h of machine perfusion. Histology and gross morphology confirmed recovery of the ischemic allografts. CONCLUSION Our data demonstrate that metabolic and functional parameters of livers with extended warm ischemic time (60 min) can be significantly improved using normothermic machine perfusion. We hereby compound the existing body of evidence that machine perfusion is a viable solution for reconditioning marginal organs.
Collapse
Affiliation(s)
- Hongzhi Xu
- Transplantation Unit, Surgery Department, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | | | | | | | | | |
Collapse
|