1
|
de Vries LE, Huitinga I, Kessels HW, Swaab DF, Verhaagen J. The concept of resilience to Alzheimer's Disease: current definitions and cellular and molecular mechanisms. Mol Neurodegener 2024; 19:33. [PMID: 38589893 PMCID: PMC11003087 DOI: 10.1186/s13024-024-00719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Some individuals are able to maintain their cognitive abilities despite the presence of significant Alzheimer's Disease (AD) neuropathological changes. This discrepancy between cognition and pathology has been labeled as resilience and has evolved into a widely debated concept. External factors such as cognitive stimulation are associated with resilience to AD, but the exact cellular and molecular underpinnings are not completely understood. In this review, we discuss the current definitions used in the field, highlight the translational approaches used to investigate resilience to AD and summarize the underlying cellular and molecular substrates of resilience that have been derived from human and animal studies, which have received more and more attention in the last few years. From these studies the picture emerges that resilient individuals are different from AD patients in terms of specific pathological species and their cellular reaction to AD pathology, which possibly helps to maintain cognition up to a certain tipping point. Studying these rare resilient individuals can be of great importance as it could pave the way to novel therapeutic avenues for AD.
Collapse
Affiliation(s)
- Luuk E de Vries
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands.
| | - Inge Huitinga
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Helmut W Kessels
- Swammerdam Institute for Life Sciences, Amsterdam Neuroscience, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - Dick F Swaab
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, Netherlands
| | - Joost Verhaagen
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Collins JM, Bindoff AD, Roccati E, Alty JE, Vickers JC, King AE. Does serum neurofilament light help predict accelerated cognitive ageing in unimpaired older adults? Front Neurosci 2023; 17:1237284. [PMID: 37638317 PMCID: PMC10448959 DOI: 10.3389/fnins.2023.1237284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/20/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Neurofilament light (NfL) is a blood biomarker of neurodegeneration. While serum NfL levels have been demonstrated to increase with normal ageing, the relationship between serum NfL levels and normal age-related changes in cognitive functions is less well understood. Methods The current study investigated whether cross-sectional serum NfL levels measured by single molecule array technology (Simoa®) mediated the effect of age on cognition, measured by a battery of neuropsychological tests administered biannually for 8 years, in a cohort of 174 unimpaired older adults (≥50 years) from the Tasmanian Healthy Brain Project. Mediation analysis was conducted using latent variables representing cognitive test performance on three cognitive domains - episodic memory, executive function, and language (vocabulary, comprehension, naming). Cognitive test scores for the three domains were estimated for each participant, coincident with blood collection in 2018 using linear Bayesian hierarchical models. Results Higher serum NfL levels were significantly positively associated with age (p < 0.001 for all domains). Cognitive test scores were significantly negatively associated with age across the domains of executive function (p < 0.001), episodic memory (p < 0.001) and language (p < 0.05). However, serum NfL levels did not significantly mediate the relationship between age and cognitive test scores across any of the domains. Discussion This study adds to the literature on the relationship between serum NfL levels and cognition in unimpaired older adults and suggests that serum NfL is not a pre-clinical biomarker of ensuing cognitive decline in unimpaired older adults.
Collapse
Affiliation(s)
- Jessica M. Collins
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - Aidan D. Bindoff
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - Eddy Roccati
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - Jane E. Alty
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
- Royal Hobart Hospital, Hobart, TAS, Australia
| | - James C. Vickers
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - Anna E. King
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
3
|
Parrado Fernandez C, Juric S, Backlund M, Dahlström M, Madjid N, Lidell V, Rasti A, Sandin J, Nordvall G, Forsell P. Neuroprotective and Disease-Modifying Effects of the Triazinetrione ACD856, a Positive Allosteric Modulator of Trk-Receptors for the Treatment of Cognitive Dysfunction in Alzheimer's Disease. Int J Mol Sci 2023; 24:11159. [PMID: 37446337 DOI: 10.3390/ijms241311159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The introduction of anti-amyloid monoclonal antibodies against Alzheimer's disease (AD) is of high importance. However, even though treated patients show very little amyloid pathology, there is only a modest effect on the rate of cognitive decline. Although this effect can possibly increase over time, there is still a need for alternative treatments that will improve cognitive function in patients with AD. Therefore, the purpose of this study was to characterize the triazinetrione ACD856, a novel pan-Trk positive allosteric modulator, in multiple models to address its neuroprotective and potential disease-modifying effects. The pharmacological effect of ACD856 was tested in recombinant cell lines, primary cortical neurons, or animals. We demonstrate that ACD856 enhanced NGF-induced neurite outgrowth, increased the levels of the pre-synaptic protein SNAP25 in PC12 cells, and increased the degree of phosphorylated TrkB in SH-SY5Y cells. In primary cortical neurons, ACD856 led to increased levels of phospho-ERK1/2, showed a neuroprotective effect against amyloid-beta or energy-deprivation-induced neurotoxicity, and increased the levels of brain-derived neurotrophic factor (BDNF). Consequently, administration of ACD856 resulted in a significant increase in BDNF in the brains of 21 months old mice. Furthermore, repeated administration of ACD856 resulted in a sustained anti-depressant effect, which lasted up to seven days, suggesting effects that go beyond merely symptomatic effects. In conclusion, the results confirm ACD856 as a cognitive enhancer, but more importantly, they provide substantial in vitro and in vivo evidence of neuroprotective and long-term effects that contribute to neurotrophic support and increased neuroplasticity. Presumably, the described effects of ACD856 may improve cognition, increase resilience, and promote neurorestorative processes, thereby leading to a healthier brain in patients with AD.
Collapse
Affiliation(s)
- Cristina Parrado Fernandez
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden
- Division of Neuroscience, Care and Society, Department of Neurogeriatrics, Karolinska Institutet, 171 77 Solna, Sweden
| | - Sanja Juric
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden
| | - Maria Backlund
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden
| | | | - Nather Madjid
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden
| | | | - Azita Rasti
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden
| | - Johan Sandin
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden
- Division of Neuroscience, Care and Society, Department of Neurogeriatrics, Karolinska Institutet, 171 77 Solna, Sweden
| | - Gunnar Nordvall
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden
- Division of Neuroscience, Care and Society, Department of Neurogeriatrics, Karolinska Institutet, 171 77 Solna, Sweden
| | - Pontus Forsell
- AlzeCure Pharma AB, Hälsovägen 7, 141 57 Huddinge, Sweden
- Division of Neuroscience, Care and Society, Department of Neurogeriatrics, Karolinska Institutet, 171 77 Solna, Sweden
| |
Collapse
|
4
|
Papoutsi M, Flower M, Hensman Moss DJ, Holmans P, Estevez-Fraga C, Johnson EB, Scahill RI, Rees G, Langbehn D, Tabrizi SJ. Intellectual enrichment and genetic modifiers of cognition and brain volume in Huntington's disease. Brain Commun 2022; 4:fcac279. [PMID: 36519153 PMCID: PMC9732861 DOI: 10.1093/braincomms/fcac279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/22/2022] [Accepted: 10/27/2022] [Indexed: 12/14/2022] Open
Abstract
An important step towards the development of treatments for cognitive impairment in ageing and neurodegenerative diseases is to identify genetic and environmental modifiers of cognitive function and understand the mechanism by which they exert an effect. In Huntington's disease, the most common autosomal dominant dementia, a small number of studies have identified intellectual enrichment, i.e. a cognitively stimulating lifestyle and genetic polymorphisms as potential modifiers of cognitive function. The aim of our study was to further investigate the relationship and interaction between genetic factors and intellectual enrichment on cognitive function and brain atrophy in Huntington's disease. For this purpose, we analysed data from Track-HD, a multi-centre longitudinal study in Huntington's disease gene carriers and focused on the role of intellectual enrichment (estimated at baseline) and the genes FAN1, MSH3, BDNF, COMT and MAPT in predicting cognitive decline and brain atrophy. We found that carrying the 3a allele in the MSH3 gene had a positive effect on global cognitive function and brain atrophy in multiple cortical regions, such that 3a allele carriers had a slower rate of cognitive decline and atrophy compared with non-carriers, in agreement with its role in somatic instability. No other genetic predictor had a significant effect on cognitive function and the effect of MSH3 was independent of intellectual enrichment. Intellectual enrichment also had a positive effect on cognitive function; participants with higher intellectual enrichment, i.e. those who were better educated, had higher verbal intelligence and performed an occupation that was intellectually engaging, had better cognitive function overall, in agreement with previous studies in Huntington's disease and other dementias. We also found that intellectual enrichment interacted with the BDNF gene, such that the positive effect of intellectual enrichment was greater in Met66 allele carriers than non-carriers. A similar relationship was also identified for changes in whole brain and caudate volume; the positive effect of intellectual enrichment was greater for Met66 allele carriers, rather than for non-carriers. In summary, our study provides additional evidence for the beneficial role of intellectual enrichment and carrying the 3a allele in MSH3 in cognitive function in Huntington's disease and their effect on brain structure.
Collapse
Affiliation(s)
- Marina Papoutsi
- UCL Huntington’s Disease Centre, Queen Square Institute of Neurology, University College London, London, UK
- Ixico plc, London, UK
| | - Michael Flower
- UCL Huntington’s Disease Centre, Queen Square Institute of Neurology, University College London, London, UK
| | - Davina J Hensman Moss
- UCL Huntington’s Disease Centre, Queen Square Institute of Neurology, University College London, London, UK
| | - Peter Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Carlos Estevez-Fraga
- UCL Huntington’s Disease Centre, Queen Square Institute of Neurology, University College London, London, UK
| | - Eileanoir B Johnson
- UCL Huntington’s Disease Centre, Queen Square Institute of Neurology, University College London, London, UK
| | - Rachael I Scahill
- UCL Huntington’s Disease Centre, Queen Square Institute of Neurology, University College London, London, UK
| | - Geraint Rees
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Douglas Langbehn
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Sarah J Tabrizi
- UCL Huntington’s Disease Centre, Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute at University College London, London, UK
| |
Collapse
|
5
|
Bindoff AD, Summers MJ, Hill E, Alty J, Vickers JC. Studying at university in later life slows cognitive decline: A long-term prospective study. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12207. [PMID: 34522765 PMCID: PMC8424760 DOI: 10.1002/trc2.12207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/07/2021] [Accepted: 07/28/2021] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Declining cognition in later life is associated with loss of independence and quality of life. This decline in cognition may potentially be reduced or reversed through engaging in cognitively stimulating activities. This study examined the potential for university attendance in later life to enhance cognitive function in older adults. METHODS Cognitively unimpaired adults (n = 485, 69% female, median age 60 years) were given the opportunity to undertake free university study. Repeated neurocognitive assessment was performed over 7 years. RESULTS Participants in the university education group (n = 383) improved z = .02 SD (.01, .03) per year of the study compared to controls (P = .001; averaged across a battery of cognitive tests). The largest improvements were observed on tests of language and verbal learning, memory, and episodic memory. DISCUSSION Later-life university study was associated with improved cognitive trajectories. Later-life education may preserve cognitive function, specifically for functions associated with communication, social interaction, and maintaining independence.
Collapse
Affiliation(s)
- Aidan D. Bindoff
- Wicking Dementia Research & Education CentreCollege of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| | - Mathew J. Summers
- School of Health and Behavioural SciencesUniversity of the Sunshine CoastSippy DownsQueenslandAustralia
| | - Edward Hill
- Wicking Dementia Research & Education CentreCollege of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| | - Jane Alty
- Wicking Dementia Research & Education CentreCollege of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| | - James C. Vickers
- Wicking Dementia Research & Education CentreCollege of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
- School of MedicineCollege of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| |
Collapse
|
6
|
Collins JM, Hill E, Bindoff A, King AE, Alty J, Summers MJ, Vickers JC. Association Between Components of Cognitive Reserve and Serum BDNF in Healthy Older Adults. Front Aging Neurosci 2021; 13:725914. [PMID: 34408648 PMCID: PMC8365170 DOI: 10.3389/fnagi.2021.725914] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/13/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The brain-derived neurotrophic factor (BDNF) protein has been shown to have a prominent role in neuron survival, growth, and function in experimental models, and the BDNF Val66Met polymorphism which regulates its expression has been linked to resilience toward the effects of aging on cognition. Cognitively stimulating activity is linked to both increased levels of BDNF in the brain, and protection against age-related cognitive decline. The aim of this study was to investigate the associations between serum BDNF levels, the BDNF Val66Met genotype, and components of cognitive reserve in early and mid-life, measured with the Lifetime of Experiences Questionnaire (LEQ). Methods: Serum BDNF levels were measured cross-sectionally in 156 participants from the Tasmanian Healthy Brain Project (THBP) cohort, a study examining the potential benefits of older adults engaging in a university-level education intervention. Multiple linear regression was used to estimate serum BDNF's association with age, education, gender, BDNF Val66Met genotype, later-life university-level study, and cognitively stimulating activities measured by the LEQ. Results: Serum BDNF in older adults was associated with early life education and training, increasing 0.007 log(pg/ml) [95%CI 0.001, 0.012] per unit on the LEQ subscale. Conversely, education and training in mid-life were associated with a -0.007 log(pg/ml) [-0.012, -0.001] decrease per unit on the LEQ subscale. Serum BDNF decreased with age (-0.008 log(pg/ml) [-0.015, -0.001] per year), and male gender (-0.109 log(pg/ml) [-0.203, -0.015]), but mean differences between the BDNF Val66Met polymorphisms were not significant (p = 0.066). All effect sizes were small, with mid-life education and training having the largest effect size ( η p 2 = 0.044). Conclusion: Education in both early and mid-life explained small but significant amounts of variance in serum BDNF levels, more than age or gender. These effects were opposed and independent, suggesting that education at different stages of life may be associated with different cognitive and neural demands. Education at different stages of life may be important covariates when estimating associations between other exposures and serum BDNF.
Collapse
Affiliation(s)
- Jessica M Collins
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - Edward Hill
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - Aidan Bindoff
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - Anna E King
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - Jane Alty
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - Mathew J Summers
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia.,School of Health and Behavioral Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - James C Vickers
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
7
|
Belbin O, Morgan K, Medway C, Warden D, Cortina-Borja M, van Duijn CM, Adams HHH, Frank-Garcia A, Brookes K, Sánchez-Juan P, Alvarez V, Heun R, Kölsch H, Coto E, Kehoe PG, Rodriguez-Rodriguez E, Bullido MJ, Ikram MA, Smith AD, Lehmann DJ. The Epistasis Project: A Multi-Cohort Study of the Effects of BDNF, DBH, and SORT1 Epistasis on Alzheimer's Disease Risk. J Alzheimers Dis 2020; 68:1535-1547. [PMID: 30909233 DOI: 10.3233/jad-181116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pre-synaptic secretion of brain-derived neurotrophic factor (BDNF) from noradrenergic neurons may protect the Alzheimer's disease (AD) brain from amyloid pathology. While the BDNF polymorphism (rs6265) is associated with faster cognitive decline and increased hippocampal atrophy, a replicable genetic association of BDNF with AD risk has yet to be demonstrated. This could be due to masking by underlying epistatic interactions between BDNF and other loci that encode proteins involved in moderating BDNF secretion (DBH and Sortilin). We performed a multi-cohort case-control association study of the BDNF, DBH, and SORT1 loci comprising 5,682 controls and 2,454 AD patients from Northern Europe (87% of samples) and Spain (13%). The BDNF locus was associated with increased AD risk (odds ratios; OR = 1.1-1.2, p = 0.005-0.3), an effect size that was consistent in the Northern European (OR = 1.1-1.2, p = 0.002-0.8) but not the smaller Spanish (OR = 0.8-1.6, p = 0.4-1.0) subset. A synergistic interaction between BDNF and sex (synergy factor; SF = 1.3-1.5 p = 0.002-0.02) translated to a greater risk of AD associated with BDNF in women (OR = 1.2-1.3, p = 0.007-0.00008) than men (OR = 0.9-1.0, p = 0.3-0.6). While the DBH polymorphism (rs1611115) was also associated with increased AD risk (OR = 1.1, p = 0.04) the synergistic interaction (SF = 2.2, p = 0.007) between BDNF (rs6265) and DBH (rs1611115) contributed greater AD risk than either gene alone, an effect that was greater in women (SF = 2.4, p = 0.04) than men (SF = 2.0, p = 0.2). These data support a complex genetic interaction at loci encoding proteins implicated in the DBH-BDNF inflammatory pathway that modifies AD risk, particularly in women.
Collapse
Affiliation(s)
- Olivia Belbin
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Kevin Morgan
- Human Genetics School of Life Sciences, University of Nottingham, UK
| | - Chris Medway
- Institute of Medical Genetics, University Hospital Wales, Cardiff, UK
| | - Donald Warden
- Oxford Project to Investigate Memory and Ageing (OPTIMA), University Department of Pharmacology, Oxford, UK
| | - Mario Cortina-Borja
- Clinical Epidemiology, Nutrition and Biostatistics, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Hieab H H Adams
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Ana Frank-Garcia
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.,Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Madrid, Spain
| | - Keeley Brookes
- Human Genetics School of Life Sciences, University of Nottingham, UK
| | - Pascual Sánchez-Juan
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.,Neurology Service, Marqués de Valdecilla University Hospital (University of Cantabria and IDIVAL), Santander, Spain
| | - Victoria Alvarez
- Laboratorio de Genética, AGC Laboratorio de Medicina, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Reinhard Heun
- Department of Psychiatry, University of Bonn, Bonn, Germany
| | - Heike Kölsch
- Department of Psychiatry, University of Bonn, Bonn, Germany
| | - Eliecer Coto
- Laboratorio de Genética, AGC Laboratorio de Medicina, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Patrick G Kehoe
- Dementia Research Group, Bristol Medical School Translational Health Sciences, University of Bristol, Southmead Hospital, Bristol, UK
| | - Eloy Rodriguez-Rodriguez
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.,Neurology Service, Marqués de Valdecilla University Hospital (University of Cantabria and IDIVAL), Santander, Spain
| | - Maria J Bullido
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.,Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Madrid, Spain
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - A David Smith
- Oxford Project to Investigate Memory and Ageing (OPTIMA), University Department of Pharmacology, Oxford, UK
| | - Donald J Lehmann
- Oxford Project to Investigate Memory and Ageing (OPTIMA), University Department of Pharmacology, Oxford, UK
| |
Collapse
|
8
|
The BDNF Val66Met Polymorphism Modulates Resilience of Neurological Functioning to Brain Ageing and Dementia: A Narrative Review. Brain Sci 2020; 10:brainsci10040195. [PMID: 32218234 PMCID: PMC7226504 DOI: 10.3390/brainsci10040195] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023] Open
Abstract
Brain-derived neurotropic factor (BDNF) is an abundant and multi-function neurotrophin in the brain. It is released following neuronal activity and is believed to be particularly important in strengthening neural networks. A common variation in the BDNF gene, a valine to methionine substitution at codon 66 (Val66Met), has been linked to differential expression of BDNF associated with experience-dependent plasticity. The Met allele has been associated with reduced production of BDNF following neuronal stimulation, which suggests a potential role of this variation with respect to how the nervous system may respond to challenges, such as brain ageing and related neurodegenerative conditions (e.g., dementia and Alzheimer’s disease). The current review examines the potential of the BDNF Val66Met variation to modulate an individual’s susceptibility and trajectory through cognitive changes associated with ageing and dementia. On balance, research to date indicates that the BDNF Met allele at this codon is potentially associated with a detrimental influence on the level of cognitive functioning in older adults and may also impart increased risk of progression to dementia. Furthermore, recent studies also show that this genetic variation may modulate an individual’s response to interventions targeted at building cognitive resilience to conditions that cause dementia.
Collapse
|
9
|
Michael H, Mpofana T, Ramlall S, Oosthuizen F. The Role of Brain Derived Neurotrophic Factor in HIV-Associated Neurocognitive Disorder: From the Bench-Top to the Bedside. Neuropsychiatr Dis Treat 2020; 16:355-367. [PMID: 32099373 PMCID: PMC6999762 DOI: 10.2147/ndt.s232836] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorder (HAND) remains prevalent in the anti-retroviral (ART) era. While there is a complex interplay of many factors in the neuropathogenesis of HAND, decreased neurotrophic synthesis has been shown to contribute to synaptic degeneration which is a hallmark of HAND neuropathology. Brain derived neurotrophic factor (BDNF) is the most abundant and synaptic-promoting neurotrophic factor in the brain and plays a critical role in both learning and memory. Reduced BDNF levels can worsen neurocognitive impairment in HIV-positive individuals across several domains. In this paper, we review the evidence from pre-clinical and clinical studies showing the neuroprotective roles of BDNF against viral proteins, effect on co-morbid mental health disorders, altered human microbiome and ART in HAND management. Potential applications of BDNF modulation in pharmacotherapeutic, cognitive and behavioral interventions in HAND are also discussed. Finally, research gaps and future research direction are identified with the aim of helping researchers to direct efforts to make these BDNF driven interventions improve the quality of life of patients living with HAND.
Collapse
Affiliation(s)
- Henry Michael
- Discipline of Pharmaceutical Sciences, School of Health Science, University of KwaZulu-Natal, Durban, South Africa
| | - Thabisile Mpofana
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Suvira Ramlall
- Department of Psychiatry, University of KwaZulu-Natal, Durban, South Africa
| | - Frasia Oosthuizen
- Discipline of Pharmaceutical Sciences, School of Health Science, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
10
|
Pietzuch M, King AE, Ward DD, Vickers JC. The Influence of Genetic Factors and Cognitive Reserve on Structural and Functional Resting-State Brain Networks in Aging and Alzheimer's Disease. Front Aging Neurosci 2019; 11:30. [PMID: 30894813 PMCID: PMC6414800 DOI: 10.3389/fnagi.2019.00030] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/01/2019] [Indexed: 01/22/2023] Open
Abstract
Magnetic resonance imaging (MRI) offers significant insight into the complex organization of neural networks within the human brain. Using resting-state functional MRI data, topological maps can be created to visualize changes in brain activity, as well as to represent and assess the structural and functional connections between different brain regions. Crucially, Alzheimer's disease (AD) is associated with progressive loss in this connectivity, which is particularly evident within the default mode network. In this paper, we review the recent literature on how factors that are associated with risk of dementia may influence the organization of the brain network structures. In particular, we focus on cognitive reserve and the common genetic polymorphisms of APOE and BDNF Val66Met.
Collapse
Affiliation(s)
- Manuela Pietzuch
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Anna E. King
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - David D. Ward
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - James C. Vickers
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
11
|
Rodríguez-Rojo IC, Cuesta P, López ME, de Frutos-Lucas J, Bruña R, Pereda E, Barabash A, Montejo P, Montenegro-Peña M, Marcos A, López-Higes R, Fernández A, Maestú F. BDNF Val66Met Polymorphism and Gamma Band Disruption in Resting State Brain Functional Connectivity: A Magnetoencephalography Study in Cognitively Intact Older Females. Front Neurosci 2018; 12:684. [PMID: 30333719 PMCID: PMC6176075 DOI: 10.3389/fnins.2018.00684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/11/2018] [Indexed: 11/13/2022] Open
Abstract
The pathophysiological processes undermining brain functioning decades before the onset of the clinical symptoms associated with dementia are still not well understood. Several heritability studies have reported that the Brain Derived Neurotrophic Factor (BDNF) Val66Met genetic polymorphism could contribute to the acceleration of cognitive decline in aging. This mutation may affect brain functional connectivity (FC), especially in those who are carriers of the BDNF Met allele. The aim of this work was to explore the influence of the BDNF Val66Met polymorphism in whole brain eyes-closed, resting-state magnetoencephalography (MEG) FC in a sample of 36 cognitively intact (CI) older females. All of them were ε3ε3 homozygotes for the apolipoprotein E (APOE) gene and were divided into two subgroups according to the presence of the Met allele: Val/Met group (n = 16) and Val/Val group (n = 20). They did not differ in age, years of education, Mini-Mental State Examination scores, or normalized hippocampal volumes. Our results showed reduced antero-posterior gamma band FC within the Val/Met genetic risk group, which may be caused by a GABAergic network impairment. Despite the lack of cognitive decline, these results might suggest a selective brain network vulnerability due to the carriage of the BDNF Met allele, which is linked to a potential progression to dementia. This neurophysiological signature, as tracked with MEG FC, indicates that age-related brain functioning changes could be mediated by the influence of particular genetic risk factors.
Collapse
Affiliation(s)
- Inmaculada C Rodríguez-Rojo
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Universidad Complutense and Universidad Politécnica de Madrid, Madrid, Spain.,Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, Spain
| | - Pablo Cuesta
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Universidad Complutense and Universidad Politécnica de Madrid, Madrid, Spain.,Electrical Engineering and Bioengineering Lab, Department of Industrial Engineering and IUNE, Universidad de La Laguna, Tenerife, Spain
| | - María Eugenia López
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Universidad Complutense and Universidad Politécnica de Madrid, Madrid, Spain.,Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, Spain
| | - Jaisalmer de Frutos-Lucas
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Universidad Complutense and Universidad Politécnica de Madrid, Madrid, Spain.,Biological and Health Psychology Department, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ricardo Bruña
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Universidad Complutense and Universidad Politécnica de Madrid, Madrid, Spain.,Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Ernesto Pereda
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Universidad Complutense and Universidad Politécnica de Madrid, Madrid, Spain.,Electrical Engineering and Bioengineering Lab, Department of Industrial Engineering and IUNE, Universidad de La Laguna, Tenerife, Spain
| | - Ana Barabash
- Laboratory of Psychoneuroendocrinology and Genetics, Hospital Clínico San Carlos, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Pedro Montejo
- Center for the Prevention of Cognitive Impairment, Public Health Institute, Madrid-Salud, Madrid, Spain
| | - Mercedes Montenegro-Peña
- Center for the Prevention of Cognitive Impairment, Public Health Institute, Madrid-Salud, Madrid, Spain
| | - Alberto Marcos
- Neurology Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Ramón López-Higes
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, Spain
| | - Alberto Fernández
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Universidad Complutense and Universidad Politécnica de Madrid, Madrid, Spain.,Department of Legal Medicine, Psychiatry, and Pathology, Universidad Complutense de Madrid, Madrid, Spain
| | - Fernando Maestú
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Universidad Complutense and Universidad Politécnica de Madrid, Madrid, Spain.,Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
12
|
Balkaya M, Cho S. Genetics of stroke recovery: BDNF val66met polymorphism in stroke recovery and its interaction with aging. Neurobiol Dis 2018; 126:36-46. [PMID: 30118755 DOI: 10.1016/j.nbd.2018.08.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/24/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
Stroke leads to long term sensory, motor and cognitive impairments. Most patients experience some degree of spontaneous recovery which is mostly incomplete and varying greatly among individuals. The variation in recovery outcomes has been attributed to numerous factors including lesion size, corticospinal tract integrity, age, gender and race. It is well accepted that genetics play a crucial role in stroke incidence and accumulating evidence suggests that it is also a significant determinant in recovery. Among the number of genes and variations implicated in stroke recovery the val66met single nucleotide polymorphism (SNP) in the BDNF gene influences post-stroke plasticity in the most significant ways. Val66met is the most well characterized BDNF SNP and is common (40-50 % in Asian and 25-32% in Caucasian populations) in humans. It reduces activity-dependent BDNF release, dampens cortical plasticity and is implicated in numerous diseases. Earlier studies on the effects of val66met on stroke outcome and recovery presented primarily a maladaptive role. Novel findings however indicate a much more intricate interaction between val66met and stroke recovery which appears to be influenced by lesion location, post-stroke stage and age. This review will focus on the role of BDNF and val66met SNP in relation to stroke recovery and try to identify potential pathophysiologic mechanisms involved. The effects of age on val66met associated alterations in plasticity and potential consequences in terms of stroke are also discussed.
Collapse
Affiliation(s)
- Mustafa Balkaya
- Burke-Cornell Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine at Burke Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA
| | - Sunghee Cho
- Burke-Cornell Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine at Burke Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA.
| |
Collapse
|