1
|
Deceuninck P, Gastaldello A, Mennecozzi M, Pistollato F. Exploring the connection between EU-funded research and methodological approaches: insights from a retrospective analysis. J Transl Med 2024; 22:891. [PMID: 39363357 PMCID: PMC11447993 DOI: 10.1186/s12967-024-05557-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/29/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Over the last two decades, substantial investments have been directed towards supporting fundamental and applied research in Alzheimer's disease (AD), breast cancer (BC), and prostate cancer (PC), which continue to pose significant health challenges. Recently, the Joint Research Centre (JRC) of the European Commission (EC) conducted a retrospective analysis to examine the major scientific advancements resulting from EU-funded research in these disease areas and their impact on society. METHODS Building upon this analysis, our subsequent investigation delves into the methodological approaches-both animal and non-animal models and methods-employed in AD, BC, and PC research funded under past EU framework programs (FP5, FP6, FP7, and H2020), and explored the notable research outputs associated with these approaches. RESULTS Our findings indicate a prevalent use of animal-based methodologies in AD research, particularly evident in projects funded under H2020. Notably, projects focused on drug development, testing, or repurposing heavily relied on animal models. Conversely, research aimed at clinical trial design, patient stratification, diagnosis and diagnostic tool development, lifestyle interventions, and prevention-outputs with potential societal impact-more frequently utilised non-animal methods. Advanced investigations leveraging imaging, computational tools, biomarker discovery and organ/tissue chip technologies predominantly favoured non-animal strategies. CONCLUSIONS These insights highlight a correlation between methodological choices and the translational potential of research outcomes, suggesting the need for a reconsideration of research strategy planning in future framework programs.
Collapse
|
2
|
Arnold SE, Hyman BT, Betensky RA, Dodge HH. Pathways to personalized medicine-Embracing heterogeneity for progress in clinical therapeutics research in Alzheimer's disease. Alzheimers Dement 2024; 20:7384-7394. [PMID: 39240044 PMCID: PMC11485305 DOI: 10.1002/alz.14063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/27/2024] [Accepted: 05/20/2024] [Indexed: 09/07/2024]
Abstract
Biological and clinical heterogeneity is a major challenge in research for developing new treatments for Alzheimer's disease (AD). AD may be defined by its amyloid beta and tau pathologies, but we recognize that mixed pathologies are common, and that diverse genetics, central nervous system (CNS) and systemic pathophysiological processes, and environmental/experiential factors contribute to AD's diverse clinical and neuropathological features. All these factors are rational targets for therapeutic development; indeed, there are hundreds of candidate pharmacological, dietary, neurostimulation, and lifestyle interventions that show benefits in homogeneous laboratory models. Conventional clinical trial designs accommodate heterogeneity poorly, and this may be one reason that progress in translating candidate interventions has been so difficult. We review the challenges of AD's heterogeneity for the clinical trials enterprise. We then discuss how advances in repeatable biomarkers and digital phenotyping enable novel "single-case" and adaptive trial designs to accelerate therapeutics development, moving us closer to personalized research and medicine for AD. HIGHLIGHTS: Alzheimer's disease is diverse in its clinical features, course, risks, and biology. Typical randomized controlled trials are exclusive and necessarily large to attain arm comparability with broad outcomes. Repeated blood biomarkers and digital tracking can improve outcome measure precision and sensitivity. This enables the use of novel "single-case" and adaptive trial designs for inclusivity, rigor, and efficiency.
Collapse
Affiliation(s)
- Steven E. Arnold
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Bradley T. Hyman
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Rebecca A. Betensky
- Department of BiostatisticsNew York University School of Global Public HealthNew YorkNew YorkUSA
| | - Hiroko H. Dodge
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
3
|
Pistollato F, Burkhart G, Deceuninck P, Bernasconi C, Di Virgilio S, Emili L, Fauvel AC, Ferreira Bastos L, Gastaldello A, Gerardi C, Habermann JK, Hanes I, Kyriakopoulou C, Lanka U, Lauriola P, Laverty H, Maisonneuve BGC, Mennecozzi M, Pappalardo F, Pastorino R, Radvilaite V, Roggen EL, Constantino H. What public health challenges and unmet medical needs would benefit from interdisciplinary collaboration in the EU? A survey and multi-stakeholder debate. Front Public Health 2024; 12:1417684. [PMID: 39104886 PMCID: PMC11298480 DOI: 10.3389/fpubh.2024.1417684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
In the past decade, significant European calls for research proposals have supported translational collaborative research on non-communicable and infectious diseases within the biomedical life sciences by bringing together interdisciplinary and multinational consortia. This research has advanced our understanding of disease pathophysiology, marking considerable scientific progress. Yet, it is crucial to retrospectively evaluate these efforts' societal impact. Research proposals should be thoughtfully designed to ensure that the research findings can be effectively translated into actionable policies. In addition, the choice of scientific methods plays a pivotal role in shaping the societal impact of research discoveries. Understanding the factors responsible for current unmet public health issues and medical needs is crucial for crafting innovative strategies for research policy interventions. A multistakeholder survey and a roundtable helped identify potential needs for consideration in the EU research and policy agenda. Based on survey findings, mental health disorders, metabolic syndrome, cancer, antimicrobial resistance, environmental pollution, and cardiovascular diseases were considered the public health challenges deserving prioritisation. In addition, early diagnosis, primary prevention, the impact of environmental pollution on disease onset and personalised medicine approaches were the most selected unmet medical needs. Survey findings enabled the formulation of some research-policies interventions (RPIs), which were further discussed during a multistakeholder online roundtable. The discussion underscored recent EU-level activities aligned with the survey-derived RPIs and facilitated an exchange of perspectives on public health and biomedical research topics ripe for interdisciplinary collaboration and warranting attention within the EU's research and policy agenda. Actionable recommendations aimed at facilitating the translation of knowledge into transformative, science-based policies are also provided.
Collapse
Affiliation(s)
| | - Gregor Burkhart
- European Monitoring Centre for Drugs and Drug Addiction (EMCDDA), Lisbon, Portugal
| | | | | | | | - Luca Emili
- InSilicoTrials Technologies, Milan, Italy
| | | | | | | | - Chiara Gerardi
- Center for Health Regulatory Policies, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| | - Jens K. Habermann
- BBMRI-ERIC, Biobanking and Biomolecular Resources Research Infrastructure Consortium, Graz, Austria
| | - Ioan Hanes
- European Lifestyle Medicine Organization, Geneva, Switzerland
| | | | - Uma Lanka
- Research and Toxicology, Humane Society International, London, United Kingdom
| | - Paolo Lauriola
- International Society of Doctors for the Environment, Modena, Italy
| | | | | | | | | | - Roberta Pastorino
- Section of Hygiene, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Erwin L. Roggen
- ToxGenSolutions and 3Rs Management & Consulting ApS, Maastricht, Netherlands
| | - Helder Constantino
- Research and Toxicology, Humane Society International, Brussels, Belgium
| |
Collapse
|
4
|
Tang Y, Wang Y, Gao Z, Li J, Zhang L, Shi H, Dong J, Song S, Qian C. sAPPα Peptide Promotes Damaged Microglia to Clear Alzheimer's Amyloid-β via Restoring Mitochondrial Function. Chemistry 2024; 30:e202400870. [PMID: 38736169 DOI: 10.1002/chem.202400870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease with amyloid-β (Aβ) deposition as the main pathological feature. It's an important challenge to find new ways to clear Aβ from the brain. The soluble amyloid precursor protein α (sAPPα) is a neuroprotective protein and can attenuate neuronal damage, including toxic Aβ. However, the regulatory role of sAPPα in non-neuronal cells, such as microglia, is less reported and controversial. Here, we showed that sAPPα promoted the phagocytosis and degradation of Aβ in both normal and damaged microglia. Moreover, the function of damaged microglia was improved by the sAPPα through normalizing mitochondrial function. Furthermore, the results of molecular docking simulation showed that sAPPα had a good affinity with Aβ. We preliminarily reveal that sAPPα is similar to antibodies and can participate in the regulation of microglia phagocytosis and degradation of Aβ after binding to Aβ. sAPPα is expected to be a mild and safe peptide drug or drug carrier for AD.
Collapse
Affiliation(s)
- Yingqi Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, School of Pharmacy, China Pharmaceutical University, Jiangsu, Nanjing, 210009, P.R. China
| | - Yangang Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, School of Pharmacy, China Pharmaceutical University, Jiangsu, Nanjing, 210009, P.R. China
| | - Ziran Gao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, School of Pharmacy, China Pharmaceutical University, Jiangsu, Nanjing, 210009, P.R. China
| | - Jiayi Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, School of Pharmacy, China Pharmaceutical University, Jiangsu, Nanjing, 210009, P.R. China
| | - Lijia Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, School of Pharmacy, China Pharmaceutical University, Jiangsu, Nanjing, 210009, P.R. China
| | - Haoting Shi
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, School of Pharmacy, China Pharmaceutical University, Jiangsu, Nanjing, 210009, P.R. China
| | - Jingwen Dong
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, School of Pharmacy, China Pharmaceutical University, Jiangsu, Nanjing, 210009, P.R. China
| | - Shipeng Song
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, School of Pharmacy, China Pharmaceutical University, Jiangsu, Nanjing, 210009, P.R. China
| | - Chenggen Qian
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, School of Pharmacy, China Pharmaceutical University, Jiangsu, Nanjing, 210009, P.R. China
| |
Collapse
|
5
|
Kuhn AJ, Chan K, Sajimon M, Yoo S, Balasco Serrão VH, Lee J, Abrams B, Nowick JS, Uversky VN, Wheeler C, Raskatov JA. Amyloid-α Peptide Formed through Alternative Processing of the Amyloid Precursor Protein Attenuates Alzheimer's Amyloid-β Toxicity via Cross-Chaperoning. J Am Chem Soc 2024; 146:2634-2645. [PMID: 38236059 DOI: 10.1021/jacs.3c11511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Amyloid aggregation is a key feature of Alzheimer's disease (AD) and a primary target for past and present therapeutic efforts. Recent research is making it increasingly clear that the heterogeneity of amyloid deposits, extending past the commonly targeted amyloid-β (Aβ), must be considered for successful therapy. We recently demonstrated that amyloid-α (Aα or p3), a C-terminal peptidic fragment of Aβ, aggregates rapidly to form amyloids and can expedite the aggregation of Aβ through seeding. Here, we advance the understanding of Aα biophysics and biology in several important ways. We report the first cryogenic electron microscopy (cryo-EM) structure of an Aα amyloid fibril, proving unambiguously that the peptide is fibrillogenic. We demonstrate that Aα induces Aβ to form amyloid aggregates that are less toxic than pure Aβ aggregates and use nuclear magnetic resonance spectroscopy (NMR) to provide insights into specific interactions between Aα and Aβ in solution. This is the first evidence that Aα can coassemble with Aβ and alter its biological effects at relatively low concentrations. Based on the above, we urge researchers in the field to re-examine the significance of Aα in AD.
Collapse
Affiliation(s)
- Ariel J Kuhn
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Ka Chan
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Maria Sajimon
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Stan Yoo
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Vitor Hugo Balasco Serrão
- Biomolecular Cryoelectron Microscopy Facility, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Jack Lee
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Benjamin Abrams
- Department of Biomolecular Engineering, Life Sciences Microscopy Center, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - James S Nowick
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, MDC07, Tampa, Florida 33612, United States
| | - Christopher Wheeler
- World Brain Mapping Foundation, Society for Brain Mapping & Therapeutics, 860 Via De La Paz, Suite E-1, Pacific Palisades, California 90272-3668, United States
- StemVax Therapeutics (Subsidiary of NovAccess Global), 8584 E. Washington Street #127, Chagrin Falls, Ohio 44023, United States
- StemVax Therapeutics (Subsidiary of NovAccess Global), 2265 E. Foothill Boulevard, Pasadena, California 91107, United States
- T-Neuro Pharma, 1451 Innovation Parkway SE, Suite 600, Albuquerque, New Mexico 87123, United States
- T-Neuro Pharma, P.O. Box 781, Aptos, California 95003, United States
| | - Jevgenij A Raskatov
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| |
Collapse
|
6
|
Yang J, Ding W, Zhu B, Zhen S, Kuang S, Yang J, Zhang C, Wang P, Yang F, Yang L, Yin W, Tanzi RE, Shen S, Ran C. Bioluminescence Imaging with Functional Amyloid Reservoirs in Alzheimer's Disease Models. Anal Chem 2023; 95:14261-14270. [PMID: 37712902 DOI: 10.1021/acs.analchem.3c02358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Bioluminescence imaging has changed the daily practice of preclinical research on cancer and other diseases over the last few decades; however, it has rarely been applied in preclinical research on Alzheimer's disease (AD). In this Article, we demonstrated that bioluminescence imaging could be used to report the levels of amyloid beta (Aβ) species in vivo. We hypothesized that AkaLumine, a newly discovered substrate for luciferase, could bind to Aβ aggregates and plaques. We further speculated that the Aβ aggregates/fibrils/plaques could be considered as "functional amyloids", which have a reservoir function to sequester and release AkaLumine to control the bioluminescence intensity, which could be used to report the levels of Aβs. Our hypotheses have been validated via in vitro solution tests, mimic studies with brain tissues and mice, two-photon imaging with AD mice, and in vivo bioluminescence imaging using transgenic AD mice that were virally transduced with AkaLuciferase (AkaLuc), a new luciferase that generates bioluminescence in the near-infrared window. As expected, compared to the control group, we observed that the Aβ group showed lower bioluminescence intensity due to AkaLumine sequestering at early time points, while higher intensity was due to AkaLumine releasing at later time points. Lastly, we demonstrated that this method could be used to monitor AD progression and the therapeutic effectiveness of avagacestat, a well-studied gamma-secretase inhibitor. Importantly, a good correlation (R2 = 0.81) was established between in vivo bioluminescence signals and Aβ burdens of the tested AD mice. We believe that our approach can be easily implemented into daily imaging experiments and has tremendous potential to change the daily practice of preclinical AD research.
Collapse
Affiliation(s)
- Jing Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129,United States
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Weihua Ding
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Biyue Zhu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129,United States
| | - Sherri Zhen
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Shi Kuang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129,United States
| | - Jun Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129,United States
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Peng Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129,United States
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Fan Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129,United States
| | - Liuyue Yang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Wei Yin
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129,United States
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Shiqian Shen
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129,United States
| |
Collapse
|
7
|
Llibre-Guerra JJ, Heavener A, Brucki SMD, Marante JPD, Pintado-Caipa M, Chen Y, Behrens MI, Hardi A, Admirall-Sanchez A, Akinyemi R, Alladi S, Dorsman KA, Rodriguez-Salgado AM, Solorzano J, Babulal GM. A call for clinical trial globalization in Alzheimer's disease and related dementia. Alzheimers Dement 2023; 19:3210-3221. [PMID: 36840622 PMCID: PMC10450094 DOI: 10.1002/alz.12995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND The burden of Alzheimer's disease and related dementia (ADRD) is projected to disproportionally impact low-middle-income countries (LMICs). However, there is a systematic under-representation of LMICs in ADRD clinical trial platforms. METHODS We aimed to determine the global distribution of ADRD clinical trials and identify existing barriers for conducting clinical trials in LMICs. Primary data sources to identify trial distribution in LMICs included ClinicalTrials.gov and the International Trials Registry Platform. An additional systematic review and expert consensus interviews were conducted to identify barriers for conducting clinical trials in LMICs. FINDINGS Among 1237 disease-modifying therapies tested in ADRD clinical trials, only 11.6% have been or are conducted in emerging economies (upper-middle income [9.6%] and low-middle income [2.0%]). We identified several limitations for trial implementation including a lack of financial resources, low industry presence, regulatory obstacles, and operational barriers INTERPRETATION: Although LMICs bear the greatest burden of ADRD globally, substantial development of clinical trial platforms to address this inequity and health disparity is lacking.
Collapse
Affiliation(s)
- Jorge J Llibre-Guerra
- Department of Neurology, Washington University, School of Medicine, St. Louis, Missouri, USA
- Dominantly Inherited Alzheimer's Network Trial Unit, St. Louis, Missouri, USA
- Institute of Public Health, Washington University, St. Louis, Missouri, USA
| | - Anika Heavener
- Department of Global Health and Social Medicine, Harvard Medical School, St. Louis, Missouri, USA
| | - Sonia Maria Dozzi Brucki
- Cognitive and Behavioral Neurology Unit, Department of Neurology, University of Sao Paulo, São Paulo, Brazil
| | | | | | - Yaohua Chen
- Department of Geriatrics, Lille Neurosciences & Cognition, University of Lille, Lille, France
| | - María Isabel Behrens
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Independencia, Santiago, Chile
| | - Angela Hardi
- Becker Medical Library, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Rufus Akinyemi
- Centre for Genomic and Precision Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Suvarna Alladi
- National Institute of Mental Health and Neuroscience, Bangalore, India
| | - Karen A Dorsman
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Joel Solorzano
- Department of Medicine, Hospital Antonio Luaces Iralola, Ciego de Avila, Cuba
| | - Ganesh M Babulal
- Department of Neurology, Washington University, School of Medicine, St. Louis, Missouri, USA
- Institute of Public Health, Washington University, St. Louis, Missouri, USA
- Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Department of Psychology, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
8
|
Pistollato F, Campia I, Daskalopoulos EP, Bernasconi C, Desaintes C, Di Virgilio S, Kyriakopoulou C, Whelan M, Deceuninck P. Gauging innovation and health impact from biomedical research: survey results and interviews with recipients of EU-funding in the fields of Alzheimer's disease, breast cancer and prostate cancer. Health Res Policy Syst 2023; 21:66. [PMID: 37386455 DOI: 10.1186/s12961-023-00981-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/05/2023] [Indexed: 07/01/2023] Open
Abstract
Biomedical research on Alzheimer's disease (AD), breast cancer (BC) and prostate cancer (PC) has globally improved our understanding of the etiopathological mechanisms underlying the onset of these diseases, often with the goal to identify associated genetic and environmental risk factors and develop new medicines. However, the prevalence of these diseases and failure rate in drug development remain high. Being able to retrospectively monitor the major scientific breakthroughs and impact of such investment endeavors is important to re-address funding strategies if and when needed. The EU has supported research into those diseases via its successive framework programmes for research, technological development and innovation. The European Commission (EC) has already undertaken several activities to monitor research impact. As an additional contribution, the EC Joint Research Centre (JRC) launched in 2020 a survey addressed to former and current participants of EU-funded research projects in the fields of AD, BC and PC, with the aim to understand how EU-funded research has contributed to scientific innovation and societal impact, and how the selection of the experimental models may have underpinned the advances made. Further feedback was also gathered through in-depth interviews with some selected survey participants representative of the diverse pre-clinical models used in the EU-funded projects. A comprehensive analysis of survey replies, complemented with the information derived from the interviews, has recently been published in a Synopsis report. Here we discuss the main findings of this analysis and propose a set of priority actions that could be considered to help improving the translation of scientific innovation of biomedical research into societal impact.
Collapse
Affiliation(s)
- Francesca Pistollato
- European Commission, Joint Research Centre (JRC), Directorate F-Health, Consumers and Reference Materials, Via E. Fermi 2749, 21027, Ispra, VA, Italy
| | - Ivana Campia
- European Commission, Joint Research Centre (JRC), Directorate F-Health, Consumers and Reference Materials, Via E. Fermi 2749, 21027, Ispra, VA, Italy
| | - Evangelos P Daskalopoulos
- European Commission, Joint Research Centre (JRC), Directorate F-Health, Consumers and Reference Materials, Via E. Fermi 2749, 21027, Ispra, VA, Italy
| | - Camilla Bernasconi
- European Commission, Joint Research Centre (JRC), Directorate F-Health, Consumers and Reference Materials, Via E. Fermi 2749, 21027, Ispra, VA, Italy
| | | | - Sergio Di Virgilio
- European Commission, DG Research & Innovation (DG RTD), Brussels, Belgium
| | | | - Maurice Whelan
- European Commission, Joint Research Centre (JRC), Directorate F-Health, Consumers and Reference Materials, Via E. Fermi 2749, 21027, Ispra, VA, Italy
| | - Pierre Deceuninck
- European Commission, Joint Research Centre (JRC), Directorate F-Health, Consumers and Reference Materials, Via E. Fermi 2749, 21027, Ispra, VA, Italy.
| |
Collapse
|
9
|
Mostofi A, Jain V, Kumar S, Mei Y, Chandra C. A game theory data science-based mechanism for licensed pharmaceutical products concerning their deterioration: a case of a micro, small, and medium enterprise in Iran. ANNALS OF OPERATIONS RESEARCH 2023:1-35. [PMID: 37361076 PMCID: PMC10204692 DOI: 10.1007/s10479-023-05360-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 06/28/2023]
Abstract
One of the main characteristics of health systems and pharmaceutical supply chains is their significant costs in the public sector, which has forced governments and companies active in this field to find ways to reduce costs. In this paper, the deterioration of imported pharmaceutical items is investigated as one of the challenges of the supply chain of pharmaceutical firms. Specifically, the micro, small medium enterprise (MSME), and a collaborative strategy to reduce its costs is presented. The technical solution of the cooperative strategy is the formation of a partnership alliance between the foreign patent holder of brand drugs and a domestic manufacturer through an exclusive license contract in the local country. This leads to a significant reduction of costs in the distribution network of the pharmaceutical supply chain. On the other hand, supply chain management techniques in the cooperative strategy provide the necessary motivation for its practical implementation by splitting fair profits between producers and other members, namely local government, distributors, and pharmacies. For these purposes, a cooperative game theory-based contract is utilized to set the parameters of the license agreement, and then a profit-sharing mechanism is introduced that splits the benefits of cooperation among the supply chain members based on their afforded costs. The most important contribution of the current research is to propose an integrated framework that combines the logistics network models, valuation methods, and profit split mechanisms that embody more facts from real-world problems than separate models in this regard in previous studies. Moreover, results of the proposed strategy in the supply chain of a drug for thalassemia patients in Iran indicate the effectiveness of the proposed strategy in reducing costs and deterioration. Further, it is shown that the higher the ordering costs of the imported drugs, the lower the market share of the patent holder, and the lower the financing expenses of the cooperative alliance, the more efficient is the proposed strategy.
Collapse
Affiliation(s)
- Amirhossein Mostofi
- Wellington School of Business and Government, Victoria University of Wellington, Wellington, New Zealand
| | - Vipul Jain
- Wellington School of Business and Government, Victoria University of Wellington, Wellington, New Zealand
| | - Sameer Kumar
- Opus College of Business, Department of Operations and Supply Chain Management, University of St. Thomas, 1000 LaSalle Avenue, Minneapolis, MN 55403 USA
| | - Yi Mei
- School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand
| | - Charu Chandra
- College of Business Administration, Department of Management Studies, University of Michigan – Dearborn, Dearborn, MI USA
| |
Collapse
|
10
|
Rizk JG, Lewin JC. FDA's dilemma with the aducanumab approval: public pressure and hope, surrogate markers and efficacy, and possible next steps. BMJ Evid Based Med 2023; 28:78-82. [PMID: 35450946 DOI: 10.1136/bmjebm-2022-111914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/02/2022] [Indexed: 11/03/2022]
Abstract
Accelerating Food and Drug Administration (FDA) product approval to market based on surrogate markers in the absence of proven efficacy creates a risk of adverse outcomes for affected patients, even in response to a life-threatening condition, such as in this case, Alzheimer's disease. FDA's recent unexpected approval of aducanumab, despite the unified opposition of its own highly respected advisory committee after the early termination of two efficacy trials, creates the potential risk of adverse effects and lack of clinical efficacy at very high costs. In view of these concerns, a thorough review of the issues and pressures that led to this decision is worth the careful consideration of the clinical and scientific communities with regard to whether this approval represents a calculated and balanced compassionate decision versus a disturbing precedent.
Collapse
Affiliation(s)
- John G Rizk
- University of Maryland, Baltimore, Department of Pharmaceutical Health Services Research, Baltimore, Maryland, USA
| | - John C Lewin
- National Coalition on Health Care, Washington, District of Columbia, USA
| |
Collapse
|
11
|
Nichols E, Merrick R, Hay SI, Himali D, Himali JJ, Hunter S, Keage HAD, Latimer CS, Scott MR, Steinmetz JD, Walker JM, Wharton SB, Wiedner CD, Crane PK, Keene CD, Launer LJ, Matthews FE, Schneider J, Seshadri S, White L, Brayne C, Vos T. The prevalence, correlation, and co-occurrence of neuropathology in old age: harmonisation of 12 measures across six community-based autopsy studies of dementia. THE LANCET. HEALTHY LONGEVITY 2023; 4:e115-e125. [PMID: 36870337 PMCID: PMC9977689 DOI: 10.1016/s2666-7568(23)00019-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Population-based autopsy studies provide valuable insights into the causes of dementia but are limited by sample size and restriction to specific populations. Harmonisation across studies increases statistical power and allows meaningful comparisons between studies. We aimed to harmonise neuropathology measures across studies and assess the prevalence, correlation, and co-occurrence of neuropathologies in the ageing population. METHODS We combined data from six community-based autopsy cohorts in the US and the UK in a coordinated cross-sectional analysis. Among all decedents aged 80 years or older, we assessed 12 neuropathologies known to be associated with dementia: arteriolosclerosis, atherosclerosis, macroinfarcts, microinfarcts, lacunes, cerebral amyloid angiopathy, Braak neurofibrillary tangle stage, Consortium to Establish a Registry for Alzheimer's disease (CERAD) diffuse plaque score, CERAD neuritic plaque score, hippocampal sclerosis, limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC), and Lewy body pathology. We divided measures into three groups describing level of confidence (low, moderate, and high) in harmonisation. We described the prevalence, correlations, and co-occurrence of neuropathologies. FINDINGS The cohorts included 4354 decedents aged 80 years or older with autopsy data. All cohorts included more women than men, with the exception of one study that only included men, and all cohorts included decedents at older ages (range of mean age at death across cohorts 88·0-91·6 years). Measures of Alzheimer's disease neuropathological change, Braak stage and CERAD scores, were in the high confidence category, whereas measures of vascular neuropathologies were in the low (arterioloscerosis, atherosclerosis, cerebral amyloid angiopathy, and lacunes) or moderate (macroinfarcts and microinfarcts) categories. Neuropathology prevalence and co-occurrence was high (2443 [91%] of 2695 participants had more than one of six key neuropathologies and 1106 [41%] of 2695 had three or more). Co-occurrence was strongly but not deterministically associated with dementia status. Vascular and Alzheimer's disease features clustered separately in correlation analyses, and LATE-NC had moderate associations with Alzheimer's disease measures (eg, Braak stage ρ=0·31 [95% CI 0·20-0·42]). INTERPRETATION Higher variability and more inconsistency in the measurement of vascular neuropathologies compared with the measurement of Alzheimer's disease neuropathological change suggests the development of new frameworks for the measurement of vascular neuropathologies might be helpful. Results highlight the complexity and multi-morbidity of the brain pathologies that underlie dementia in older adults and suggest that prevention efforts and treatments should be multifaceted. FUNDING Gates Ventures.
Collapse
Affiliation(s)
- Emma Nichols
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA.
| | - Richard Merrick
- Cambridge Public Health, University of Cambridge, Cambridge, UK
| | - Simon I Hay
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | | | - Jayandra J Himali
- Framingham Heart Study, Framingham, MA, USA; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Sally Hunter
- Cambridge Public Health, University of Cambridge, Cambridge, UK
| | - Hannah A D Keage
- Cognitive Ageing and Impairment Neurosciences Lab, Justice and Society, University of South Australia, Adelaide, SA, Australia
| | - Caitlin S Latimer
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Matthew R Scott
- Framingham Heart Study, Framingham, MA, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jaimie D Steinmetz
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Jamie M Walker
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mt Sinai, New York, NY, USA
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Crystal D Wiedner
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Fiona E Matthews
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Julie Schneider
- Rush Alzheimer's Disease Center, Chicago, IL, USA; Rush University Medical Center, Chicago, IL, USA
| | - Sudha Seshadri
- Framingham Heart Study, Framingham, MA, USA; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Lon White
- Pacific Health Research and Education Institute, Honolulu, HI, USA
| | - Carol Brayne
- Cambridge Public Health, University of Cambridge, Cambridge, UK
| | - Theo Vos
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| |
Collapse
|
12
|
Smith ML, Risse G, Sziklas V, Banks S, Small D, Frasnelli J, Klein D. Neurophysiology, Neuropsychology, Epilepsy, 2022: Hills We Have Climbed and the Hills Ahead. Cognition and Sensory Systems in Healthy and Diseased Subjects. Epilepsy Behav 2023; 140:109119. [PMID: 36804713 DOI: 10.1016/j.yebeh.2023.109119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/22/2023] [Accepted: 01/29/2023] [Indexed: 02/18/2023]
Abstract
This article summarizes selected presentations from a session titled "Cognition and Sensory Systems in Healthy and Diseased Subjects", held to highlight and honor the work of Dr. Marilyn Jones-Gotman. The session was part of a two-day symposium, "Neurophysiology, Neuropsychology, Epilepsy, 2022: Hills We Have Climbed and the Hills Ahead". The session presented research on epilepsy and sensory systems by colleagues and former trainees of Dr. Jones-Gotman. The extended summaries provide an overview of historical and current work in the neuropsychology of epilepsy, neuropsychological and neuroimaging approaches to understanding brain organization, sex differences in brain mechanisms underlying neurological disorders, dietary influences on brain function and cognition, and expertise in olfactory training and language experiences and their implications for brain organization and structure.
Collapse
Affiliation(s)
- Mary Lou Smith
- Department of Psychology, University of Toronto Mississauga; Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada.
| | - Gail Risse
- Minnesota Epilepsy Group, Roseville, MN, USA; Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Viviane Sziklas
- Department of Neurology and Neurosurgery; Department of Psychology, McGill University, Montreal, QC, Canada
| | - Sarah Banks
- Departments of Neuroscience and Psychiatry, University of California, San Diego, CA, USA
| | - Dana Small
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Johannes Frasnelli
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Denise Klein
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
13
|
Maheux E, Koval I, Ortholand J, Birkenbihl C, Archetti D, Bouteloup V, Epelbaum S, Dufouil C, Hofmann-Apitius M, Durrleman S. Forecasting individual progression trajectories in Alzheimer's disease. Nat Commun 2023; 14:761. [PMID: 36765056 PMCID: PMC9918533 DOI: 10.1038/s41467-022-35712-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 12/19/2022] [Indexed: 02/12/2023] Open
Abstract
The anticipation of progression of Alzheimer's disease (AD) is crucial for evaluations of secondary prevention measures thought to modify the disease trajectory. However, it is difficult to forecast the natural progression of AD, notably because several functions decline at different ages and different rates in different patients. We evaluate here AD Course Map, a statistical model predicting the progression of neuropsychological assessments and imaging biomarkers for a patient from current medical and radiological data at early disease stages. We tested the method on more than 96,000 cases, with a pool of more than 4,600 patients from four continents. We measured the accuracy of the method for selecting participants displaying a progression of clinical endpoints during a hypothetical trial. We show that enriching the population with the predicted progressors decreases the required sample size by 38% to 50%, depending on trial duration, outcome, and targeted disease stage, from asymptomatic individuals at risk of AD to subjects with early and mild AD. We show that the method introduces no biases regarding sex or geographic locations and is robust to missing data. It performs best at the earliest stages of disease and is therefore highly suitable for use in prevention trials.
Collapse
Affiliation(s)
- Etienne Maheux
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Igor Koval
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Juliette Ortholand
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Colin Birkenbihl
- Department of bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 53115, Germany
| | - Damiano Archetti
- IRCCS Instituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Vincent Bouteloup
- Université de Bordeaux, CNRS UMR 5293, Institut des Maladies Neurodégénératives, Bordeaux, France
- Centre Hospitalier Universitaire (CHU) de Bordeaux, pôle de neurosciences cliniques, centre mémoire de ressources et de recherche, Bordeaux, France
| | - Stéphane Epelbaum
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital Pitié-Salpêtrière, Institut de la mémoire et de la maladie d'Alzheimer (IM2A), center of excellence of neurodegenerative diseases (CoEN), department of Neurology, DMU Neurosciences, Paris, France
| | - Carole Dufouil
- Université de Bordeaux, CNRS UMR 5293, Institut des Maladies Neurodégénératives, Bordeaux, France
- Centre Hospitalier Universitaire (CHU) de Bordeaux, pôle de neurosciences cliniques, centre mémoire de ressources et de recherche, Bordeaux, France
| | - Martin Hofmann-Apitius
- Department of bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 53115, Germany
| | - Stanley Durrleman
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
14
|
Hsieh KL, Plascencia-Villa G, Lin KH, Perry G, Jiang X, Kim Y. Synthesize heterogeneous biological knowledge via representation learning for Alzheimer's disease drug repurposing. iScience 2023; 26:105678. [PMID: 36594024 PMCID: PMC9804117 DOI: 10.1016/j.isci.2022.105678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/04/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
Developing drugs for treating Alzheimer's disease has been extremely challenging and costly due to limited knowledge of underlying mechanisms and therapeutic targets. To address the challenge in AD drug development, we developed a multi-task deep learning pipeline that learns biological interactions and AD risk genes, then utilizes multi-level evidence on drug efficacy to identify repurposable drug candidates. Using the embedding derived from the model, we ranked drug candidates based on evidence from post-treatment transcriptomic patterns, efficacy in preclinical models, population-based treatment effects, and clinical trials. We mechanistically validated the top-ranked candidates in neuronal cells, identifying drug combinations with efficacy in reducing oxidative stress and safety in maintaining neuronal viability and morphology. Our neuronal response experiments confirmed several biologically efficacious drug combinations. This pipeline showed that harmonizing heterogeneous and complementary data/knowledge, including human interactome, transcriptome patterns, experimental efficacy, and real-world patient data shed light on the drug development of complex diseases.
Collapse
Affiliation(s)
- Kang-Lin Hsieh
- Center for Secure Artificial Intelligence for Healthcare, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - German Plascencia-Villa
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX 78729, USA
| | - Ko-Hong Lin
- Center for Secure Artificial Intelligence for Healthcare, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX 78729, USA
| | - Xiaoqian Jiang
- Center for Secure Artificial Intelligence for Healthcare, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yejin Kim
- Center for Secure Artificial Intelligence for Healthcare, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
15
|
Zhang T, Chen X, Yuan C, Pang X, Shangguan P, Liu Y, Han L, Sun J, Lam JWY, Liu Y, Wang J, Shi B, Zhong Tang B. Near-Infrared Aggregation-Induced Emission Luminogens for In Vivo Theranostics of Alzheimer's Disease. Angew Chem Int Ed Engl 2023; 62:e202211550. [PMID: 36336656 DOI: 10.1002/anie.202211550] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 11/09/2022]
Abstract
Optimized theranostic strategies for Alzheimer's disease (AD) remain almost absent from bench to clinic. Current probes and drugs attempting to prevent β-amyloid (Aβ) fibrosis encounter failures due to the blood-brain barrier (BBB) penetration challenge and blind intervention time window. Herein, we design a near-infrared (NIR) aggregation-induced emission (AIE) probe, DNTPH, via balanced hydrophobicity-hydrophilicity strategy. DNTPH binds selectively to Aβ fibrils with a high signal-to-noise ratio. In vivo imaging revealed its excellent BBB permeability and long-term tracking ability with high-performance AD diagnosis. Remarkably, DNTPH exhibits a strong inhibitory effect on Aβ fibrosis and promotes fibril disassembly, thereby attenuating Aβ-induced neurotoxicity. DNTPH treatment significantly reduced Aβ plaques and rescued learning deficits in AD mice. Thus, DNTPH serves as the first AIE in vivo theranostic agent for real-time NIR imaging of Aβ plaques and AD therapy simultaneously.
Collapse
Affiliation(s)
- Tianfu Zhang
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiaoyu Chen
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Congmin Yuan
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiaobin Pang
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, 475004, Kaifeng, China
| | - Ping Shangguan
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Yisheng Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Lulu Han
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Jianwei Sun
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W Y Lam
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yang Liu
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, 475004, Kaifeng, China
| | - Jiefei Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, 475004, Kaifeng, China.,Centre for motor neuron disease, Macquarie Medical School, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ben Zhong Tang
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| |
Collapse
|
16
|
Kumar D, Md Ashraf G, Bilgrami AL, Imtaiyaz Hassan M. Emerging therapeutic developments in neurodegenerative diseases: A clinical investigation. Drug Discov Today 2022; 27:103305. [PMID: 35728774 DOI: 10.1016/j.drudis.2022.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/13/2022] [Accepted: 06/15/2022] [Indexed: 12/15/2022]
Abstract
Despite a century of intensive research, there is still a lack of disease-modifying treatments for neurodegenerative diseases that pose a threat to human society. A well-documented knowledge and resource gap has impeded the translation of fundamental research into promising therapies. In addition, the analysis of extensive preclinical data to allow the improved selection of therapeutic technologies and clinical candidates for further development is challenging. To address this need, we describe technologies that have emerged over the past decade that have enabled the development of novel, high-quality, cost-effective treatments for major neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Moreover, we benchmark emerging technologies that have been adopted by top pharmaceutical companies looking to bridge the gap between drug discovery and drug development in neurodegenerative disease.
Collapse
Affiliation(s)
- Dhiraj Kumar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110 025, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Anwar L Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110 025, India.
| |
Collapse
|
17
|
Salech F, SanMartín CD, Concha-Cerda J, Romero-Hernández E, Ponce DP, Liabeuf G, Rogers NK, Murgas P, Bruna B, More J, Behrens MI. Senescence Markers in Peripheral Blood Mononuclear Cells in Amnestic Mild Cognitive Impairment and Alzheimer's Disease. Int J Mol Sci 2022; 23:9387. [PMID: 36012652 PMCID: PMC9409141 DOI: 10.3390/ijms23169387] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
Recent studies suggest that cellular senescence plays a role in Alzheimer's Disease (AD) pathogenesis. We hypothesize that cellular senescence markers might be tracked in the peripheral tissues of AD patients. Senescence hallmarks, including altered metabolism, cell-cycle arrest, DNA damage response (DDR) and senescence secretory associated phenotype (SASP), were measured in peripheral blood mononuclear cells (PBMCs) of healthy controls (HC), amnestic mild cognitive impairment (aMCI) and AD patients. Senescence-associated βeta-galactosidase (SA-β-Gal) activity, G0-G1 phase cell-cycle arrest, p16 and p53 were analyzed by flow cytometry, while IL-6 and IL-8 mRNA were analyzed by qPCR, and phosphorylated H2A histone family member X (γH2AX) was analyzed by immunofluorescence. Senescent cells in the brain tissue were determined with lipofuscin staining. An increase in the number of senescent cells was observed in the frontal cortex and hippocampus of advanced AD patients. PBMCs of aMCI patients, but not in AD, showed increased SA-β-Gal compared with HCs. aMCI PBMCs also had increased IL-6 and IL8 mRNA expression and number of cells arrested at G0-G1, which were absent in AD. Instead, AD PBMCs had significantly increased p16 and p53 expression and decreased γH2Ax activity compared with HC. This study reports that several markers of cellular senescence can be measured in PBMCs of aMCI and AD patients.
Collapse
Affiliation(s)
- Felipe Salech
- Centro de Investigación Clínica Avanzada (CICA), Facultad de Medicina-Hospital Clínico, Universidad de Chile, Santiago 8380453, Chile
| | - Carol D. SanMartín
- Centro de Investigación Clínica Avanzada (CICA), Facultad de Medicina-Hospital Clínico, Universidad de Chile, Santiago 8380453, Chile
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago 8380430, Chile
| | - Jorge Concha-Cerda
- Centro de Investigación Clínica Avanzada (CICA), Facultad de Medicina-Hospital Clínico, Universidad de Chile, Santiago 8380453, Chile
| | - Esteban Romero-Hernández
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Daniela P. Ponce
- Centro de Investigación Clínica Avanzada (CICA), Facultad de Medicina-Hospital Clínico, Universidad de Chile, Santiago 8380453, Chile
| | - Gianella Liabeuf
- Laboratorio de Obesidad y Metabolismo Energético (OMEGA), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile
| | - Nicole K. Rogers
- Departamento de Neurociencia, Facultad de Medicina de la Universidad de Chile, Santiago 8380453, Chile
| | - Paola Murgas
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Bárbara Bruna
- Centro de Investigación Clínica Avanzada (CICA), Facultad de Medicina-Hospital Clínico, Universidad de Chile, Santiago 8380453, Chile
| | - Jamileth More
- Centro de Investigación Clínica Avanzada (CICA), Facultad de Medicina-Hospital Clínico, Universidad de Chile, Santiago 8380453, Chile
| | - María I. Behrens
- Centro de Investigación Clínica Avanzada (CICA), Facultad de Medicina-Hospital Clínico, Universidad de Chile, Santiago 8380453, Chile
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago 8380430, Chile
- Departamento de Neurociencia, Facultad de Medicina de la Universidad de Chile, Santiago 8380453, Chile
- Departamento de Neurología y Psiquiatría, Clínica Alemana-Universidad del Desarrollo, Santiago 8370065, Chile
| |
Collapse
|
18
|
Schindler SE, Li Y, Li M, Despotis A, Park E, Vittert L, Hamilton BH, Womack KB, Saef B, Holtzman DM, Morris JC, Bateman RJ, Gupta MR. Using Alzheimer's disease blood tests to accelerate clinical trial enrollment. Alzheimers Dement 2022; 19:1175-1183. [PMID: 35934777 PMCID: PMC9902574 DOI: 10.1002/alz.12754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/03/2022] [Accepted: 06/22/2022] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Screening potential participants in Alzheimer's disease (AD) clinical trials with amyloid positron emission tomography (PET) is often time consuming and expensive. METHODS A web-based application was developed to model the time and financial cost of screening for AD clinical trials. Four screening approaches were compared; three approaches included an AD blood test at different stages of the screening process. RESULTS The traditional screening approach using only amyloid PET was the most time consuming and expensive. Incorporating an AD blood test at any point in the screening process decreased both the time and financial cost of trial enrollment. Improvements in AD blood test accuracy over currently available tests only marginally increased savings. Use of a high specificity cut-off may improve the feasibility of screening with only an AD blood test. DISCUSSION Incorporating AD blood tests into screening for AD clinical trials may reduce the time and financial cost of enrollment. HIGHLIGHTS The time and cost of enrolling participants in Alzheimer's disease (AD) clinical trials were modeled. A web-based application was developed to enable evaluation of key parameters. AD blood tests may decrease the time and financial cost of clinical trial enrollment. Improvements in AD blood test accuracy only marginally increased savings. Use of a high specificity cut-off may enable screening with only an AD blood test.
Collapse
Affiliation(s)
- Suzanne E. Schindler
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA,Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA,Corresponding author: Suzanne E. Schindler, MD, PhD, Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8111, St. Louis, MO 63110, USA. Phone (314) 273-1655, Fax (314) 362-2244
| | - Yan Li
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA,Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Melody Li
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Alyssa Despotis
- Olin Business School, Washington University, St. Louis, MO, USA
| | - Ethan Park
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Liberty Vittert
- Olin Business School, Washington University, St. Louis, MO, USA
| | | | - Kyle B. Womack
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA,Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Benjamin Saef
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David M. Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA,Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - John C. Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA,Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Randall J. Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA,Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | |
Collapse
|
19
|
Construction and Functional Evaluation of a Three-Dimensional Blood–Brain Barrier Model Equipped With Human Induced Pluripotent Stem Cell-Derived Brain Microvascular Endothelial Cells. Pharm Res 2022; 39:1535-1547. [PMID: 35411503 PMCID: PMC9246774 DOI: 10.1007/s11095-022-03249-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/29/2022] [Indexed: 12/28/2022]
Abstract
Abstract
Purpose
The purpose of this study was to construct and validate an in vivo three-dimensional blood–brain barrier (3D-BBB) model system equipped with brain microvascular endothelial cells derived from human induced pluripotent stem cells (hiPS-BMECs).
Methods
The 3D-BBB system was constructed by seeding hiPS-BMECs onto the capillary lane of a MIMETAS OrganoPlate® 3-lane coated with fibronectin/collagen IV. hiPS-BMECs were incubated under continuous switchback flow with an OrganoFlow® for 2 days. The 3D capillary structure and expression of tight-junction proteins and transporters were confirmed by immunocytochemistry. The mRNA expression of transporters in the 3D environment was determined using qRT-PCR, and the permeability of endogenous substances and drugs was evaluated under various conditions.
Results and Discussion
The expression of tight-junction proteins, including claudin-5 and ZO-1, was confirmed by immunohistochemistry. The permeability rate constant of lucifer yellow through hiPS-BMECs was undetectably low, indicating that paracellular transport is highly restricted by tight junctions in the 3D-BBB system. The mRNA expression levels of transporters and receptors in the 3D-BBB system differed from those in the 2D-culture system by 0.2- to 5.8-fold. The 3D-cultured hiPS-BMECs showed asymmetric transport of substrates of BCRP, CAT1 and LAT1 between the luminal (blood) and abluminal (brain) sides. Proton-coupled symport function of MCT1 was also confirmed.
Conclusion
The 3D-BBB system constructed in this study mimics several important characteristics of the human BBB, and is expected to be a useful high-throughput evaluation tool in the development of CNS drugs.
Collapse
|
20
|
Neuroprotective Effects of PARP Inhibitors in Drosophila Models of Alzheimer’s Disease. Cells 2022; 11:cells11081284. [PMID: 35455964 PMCID: PMC9027574 DOI: 10.3390/cells11081284] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 12/10/2022] Open
Abstract
Alzheimer’s disease (AD) is an irreversible age-related neurodegenerative disorder clinically characterized by severe memory impairment, language deficits and cognitive decline. The major neuropathological hallmarks of AD include extracellular deposits of the β-amyloid (Aβ) peptides and cytoplasmic neurofibrillary tangles (NFTs) of hyperphosphorylated tau protein. The accumulation of plaques and tangles in the brain triggers a cascade of molecular events that culminate in neuronal damage and cell death. Despite extensive research, our understanding of the molecular basis of AD pathogenesis remains incomplete and a cure for this devastating disease is still not available. A growing body of evidence in different experimental models suggests that poly(ADP-ribose) polymerase-1 (PARP-1) overactivation might be a crucial component of the molecular network of interactions responsible for AD pathogenesis. In this work, we combined genetic, molecular and biochemical approaches to investigate the effects of two different PARP-1 inhibitors (olaparib and MC2050) in Drosophila models of Alzheimer’s disease by exploring their neuroprotective and therapeutic potential in vivo. We found that both pharmacological inhibition and genetic inactivation of PARP-1 significantly extend lifespan and improve the climbing ability of transgenic AD flies. Consistently, PARP-1 inhibitors lead to a significant decrease of Aβ42 aggregates and partially rescue the epigenetic alterations associated with AD in the brain. Interestingly, olaparib and MC2050 also suppress the AD-associated aberrant activation of transposable elements in neuronal tissues of AD flies.
Collapse
|
21
|
Ghazarian AL, Haim T, Sauma S, Katiyar P. National Institute on Aging seed funding enables Alzheimer's disease startups to reach key value inflection points. Alzheimers Dement 2022; 18:348-359. [PMID: 34374496 PMCID: PMC9291195 DOI: 10.1002/alz.12392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 11/06/2022]
Abstract
INTRODUCTION The National Institute on Aging (NIA) provides funding to academic researchers and small businesses working in the Alzheimer's Disease (AD) and AD-related dementia (ADRD) fields to help commercialize their products. The NIA uses Small Business Innovation Research (SBIR) awards to bridge the funding gap in the diagnostic, therapeutic, and care interventions areas, enabling startups to reach key value inflection points to achieve scientific milestones. METHODS Only publicly available information is reported. The National Institutes of Health Report Portfolio Online Reporting Tool database and the commercial database Global Data, were used to track the progress of companies that received SBIR or Small Business Technology Transfer (STTR) funding from the NIA. RESULTS Since 2008, the NIA has awarded $280 million-including $207 million from fiscal year (FY) 2015 to FY 2019-in new small business program awards for AD/ADRD research. DISCUSSION NIA seed capital and mentoring programs are critical resources to help small businesses reach key value inflection points and advance their research from concept to commercialization.
Collapse
Affiliation(s)
- Armineh L Ghazarian
- Office of Small Business ResearchNational Institute on AgingBethesdaMarylandUSA
| | - Todd Haim
- Office of Small Business ResearchNational Institute on AgingBethesdaMarylandUSA
| | - Samir Sauma
- Office of Planning, Analysis, and EvaluationNational Institute on AgingBethesdaMarylandUSA
| | - Pragati Katiyar
- Office of Planning, Analysis, and EvaluationNational Institute on AgingBethesdaMarylandUSA
| |
Collapse
|
22
|
Wasilewski D, Villalba-Moreno ND, Stange I, Glatzel M, Sepulveda-Falla D, Krasemann S. Reactive Astrocytes Contribute to Alzheimer’s Disease-Related Neurotoxicity and Synaptotoxicity in a Neuron-Astrocyte Co-culture Assay. Front Cell Neurosci 2022; 15:739411. [PMID: 35126055 PMCID: PMC8813976 DOI: 10.3389/fncel.2021.739411] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/08/2021] [Indexed: 01/14/2023] Open
Abstract
Pathological hallmarks of Alzheimer’s disease (AD) include deposition and accumulation of amyloid- β (Aβ), neurofibrillary tangle formation, and neuronal loss. Pathogenesis of presymptomatic disease stages remains elusive, although studies suggest that the early structural and functional alterations likely occur at neuronal dendritic spines. Presymptomatic alterations may also affect different CNS cell types. However, specific contributions of these cell types as cause or consequence of pathology are difficult to study in vivo. There is a shortage of relatively simple, well-defined, and validated in vitro models that allow a straightforward interpretation of results and recapitulate aspects of pathophysiology. For instance, dissecting the AD-related processes (e.g., neurotoxicity vs. synaptotoxicity) may be difficult with the common cell-based systems such as neuronal cell lines or primary neurons. To investigate and characterize the impact of reactive astrocytes on neuronal morphology in the context of AD-related cues, we modified an in vitro co-culture assay of primary mouse neurons and primary mouse astrocytes based on the so-called Banker “sandwich” co-culture assay. Here, we provide a simple and modular assay with fully differentiated primary mouse neurons to study the paracrine interactions between the neurons and the astrocytes in the co-culture setting. Readouts were obtained from both cell types in our assay. Astrocyte feeder cells were pre-exposed to neuroinflammatory conditions by means of Aβ42, Aβ40, or lipopolysaccharide (LPS). Non-cell autonomous toxic effects of reactive astrocytes on neurons were assessed using the Sholl analysis to evaluate the dendritic complexity, whereas synaptic puncta served as a readout of synaptotoxicity. Here, we show that astrocytes actively contribute to the phenotype of the primary neurons in an AD-specific context, emphasizing the role of different cell types in AD pathology. The cytokine expression pattern was significantly altered in the treated astrocytes. Of note, the impact of reactive astrocytes on neurons was highly dependent on the defined cell ratios. Our co-culture system is modular, of low cost, and allows us to probe aspects of neurodegeneration and neuroinflammation between the two major CNS cell types, neurons, and astrocytes, under well-defined experimental conditions. Our easy-to-follow protocol, including work-flow figures, may also provide a methodological outline to study the interactions of astrocytes and neurons in the context of other diseases in the future.
Collapse
|
23
|
Rahman MM, Junaid M, Hosen SMZ, Mostafa M, Liu L, Benkendorff K. Mollusc-Derived Brominated Indoles for the Selective Inhibition of Cyclooxygenase: A Computational Expedition. Molecules 2021; 26:molecules26216538. [PMID: 34770946 PMCID: PMC8587571 DOI: 10.3390/molecules26216538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Inflammation plays an important role in different chronic diseases. Brominated indoles derived from the Australian marine mollusk Dicathais orbita (D. orbita) are of interest for their anti-inflammatory properties. This study evaluates the binding mechanism and potentiality of several brominated indoles (tyrindoxyl sulfate, tyrindoleninone, 6-bromoisatin, and 6,6′-dibromoindirubin) against inflammatory mediators cyclooxygenases-1/2 (COX-1/2) using molecular docking, followed by molecular dynamics simulation, along with physicochemical, drug-likeness, pharmacokinetic (pk), and toxicokinetic (tk) properties. Molecular docking identified that these indole compounds are anchored, with the main amino acid residues, positioned in the binding pocket of the COX-1/2, required for selective inhibition. Moreover, the molecular dynamics simulation based on root mean square deviation (RMSD), radius of gyration (Rg), solvent accessible surface area (SASA), and root mean square fluctuation (RMSF) analyses showed that these natural brominated molecules transit rapidly to a progressive constant configuration during binding with COX-1/2 and seem to accomplish a consistent dynamic behavior by maintaining conformational stability and compactness. The results were comparable to the Food and Drug Administration (FDA)-approved selective COX inhibitor, aspirin. Furthermore, the free energy of binding for the compounds assessed by molecular mechanics–Poisson–Boltzmann surface area (MM–PBSA) confirmed the binding capacity of indoles towards COX-1/2, with suitable binding energy values except for the polar precursor tyrindoxyl sulfate (with COX-1). The physicochemical and drug-likeness analysis showed zero violations of Lipinski’s rule, and the compounds are predicted to have excellent pharmacokinetic profiles. These indoles are projected to be non-mutagenic and free from hepatotoxicity, with no inhibition of human ether-a-go–go gene (hERG) I inhibitors, and the oral acute toxicity LD50 in rats is predicted to be similar or lower than aspirin. Overall, this work has identified a plausible mechanism for selective COX inhibition by natural marine indoles as potential therapeutic candidates for the mitigation of inflammation.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Marine Ecology Research Centre, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Md. Junaid
- Molecular Modeling Drug-design and Discovery Laboratory, Pharmacology Research Division, BCSIR Laboratories Chattogram, Bangladesh Council of Scientific and Industrial Research, Chattogram 4217, Bangladesh; (M.J.); (S.M.Z.H.); (M.M.)
| | - S. M. Zahid Hosen
- Molecular Modeling Drug-design and Discovery Laboratory, Pharmacology Research Division, BCSIR Laboratories Chattogram, Bangladesh Council of Scientific and Industrial Research, Chattogram 4217, Bangladesh; (M.J.); (S.M.Z.H.); (M.M.)
- Pancreatic Research Group, South Western Sydney Clinical School, and Ingham Institute for AppliedMedical Research, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mohammad Mostafa
- Molecular Modeling Drug-design and Discovery Laboratory, Pharmacology Research Division, BCSIR Laboratories Chattogram, Bangladesh Council of Scientific and Industrial Research, Chattogram 4217, Bangladesh; (M.J.); (S.M.Z.H.); (M.M.)
| | - Lei Liu
- Southern Cross Plant Science, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Kirsten Benkendorff
- Marine Ecology Research Centre, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW 2450, Australia
- Correspondence:
| |
Collapse
|
24
|
Chemical and genetic rescue of in vivo progranulin-deficient lysosomal and autophagic defects. Proc Natl Acad Sci U S A 2021; 118:2022115118. [PMID: 34140407 DOI: 10.1073/pnas.2022115118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In 2006, GRN mutations were first linked to frontotemporal dementia (FTD), the leading cause of non-Alzheimer dementias. While much research has been dedicated to understanding the genetic causes of the disease, our understanding of the mechanistic impacts of GRN deficiency has only recently begun to take shape. With no known cure or treatment available for GRN-related FTD, there is a growing need to rapidly advance genetic and/or small-molecule therapeutics for this disease. This issue is complicated by the fact that, while lysosomal dysfunction seems to be a key driver of pathology, the mechanisms linking a loss of GRN to a pathogenic state remain unclear. In our attempt to address these key issues, we have turned to the nematode, Caenorhabditis elegans, to model, study, and find potential therapies for GRN-deficient FTD. First, we show that the loss of the nematode GRN ortholog, pgrn-1, results in several behavioral and molecular defects, including lysosomal dysfunction and defects in autophagic flux. Our investigations implicate the sphingolipid metabolic pathway in the regulation of many of the in vivo defects associated with pgrn-1 loss. Finally, we utilized these nematodes as an in vivo tool for high-throughput drug screening and identified two small molecules with potential therapeutic applications against GRN/pgrn-1 deficiency. These compounds reverse the biochemical, cellular, and functional phenotypes of GRN deficiency. Together, our results open avenues for mechanistic and therapeutic research into the outcomes of GRN-related neurodegeneration, both genetic and molecular.
Collapse
|
25
|
Cummings J, Bauzon J, Lee G. Who funds Alzheimer's disease drug development? ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12185. [PMID: 34095442 PMCID: PMC8145442 DOI: 10.1002/trc2.12185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Despite the increase in Alzheimer's disease (AD) cases in the United States, no new treatments have been approved in the United States since 2003. The costs associated with drug development programs are high and serve as a significant deterrent to AD therapeutic investigations. In this study, we analyze the sponsorship data for AD clinical trials conducted since 2016 to assess the fiscal support for AD clinical trials. METHODS We analyzed the funding sources of all AD trials over the past 5 years as reported on ClinicalTrials.gov. RESULTS There were 136 trials being conducted for treatments in the US AD therapeutic pipeline on the index date of this study. Among non-prevention trials, disease-modifying therapies (DMT) in Phase 3 were almost entirely sponsored by the biopharmaceutical industry; Phase 2 DMT trials were split between the biopharmaceutical industry and funding from the National Institutes of Health (NIH) to academic medical centers (AMCs). The majority of prevention trials received sponsorship from public-private partnerships (PPP). Trials of symptomatic agents are equally likely to have biopharmaceutical or NIH/AMC sponsorship. Most trials with repurposed agents had NIH/AMC funding (89%). Since 2016, there has been consistent growth in the number of trials sponsored both in part and fully by NIH/AMC sources and in PPP, and there has been a reduction in biopharmaceutical company-sponsored trials. DISCUSSION The number of trials supported by the biopharmaceutical industry has decreased over the past 5 years; trials supported from federal sources and PPP have increased. Repurposed compounds are mostly in Phase 2 trials and provide critical mechanistic information.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Chambers‐Grundy Center for Transformative NeuroscienceDepartment of Brain HealthSchool of Integrated Health SciencesUniversity of NevadaLas Vegas (UNLV)Las VegasNevadaUSA
| | - Justin Bauzon
- University of NevadaLas Vegas (UNLV)School of MedicineLas VegasNevadaUSA
| | - Garam Lee
- Biogen, Medical AffairsWestonMassachusettsUSA
| |
Collapse
|
26
|
Llibre-Guerra JJ, Li Y, Allegri RF, Mendez PC, Surace EI, Llibre-Rodriguez JJ, Sosa AL, Aláez-Verson C, Longoria EM, Tellez A, Carrillo-Sánchez K, Flores-Lagunes LL, Sánchez V, Takada LT, Nitrini R, Ferreira-Frota NA, Benevides-Lima J, Lopera F, Ramírez L, Jiménez-Velázquez I, Schenk C, Acosta D, Behrens MI, Doering M, Ziegemeier E, Morris JC, McDade E, Bateman RJ. Dominantly inherited Alzheimer's disease in Latin America: Genetic heterogeneity and clinical phenotypes. Alzheimers Dement 2021; 17:653-664. [PMID: 33226734 PMCID: PMC8140610 DOI: 10.1002/alz.12227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/08/2020] [Accepted: 10/09/2020] [Indexed: 01/21/2023]
Abstract
INTRODUCTION A growing number of dominantly inherited Alzheimer's disease (DIAD) cases have become known in Latin American (LatAm) in recent years. However, questions regarding mutation distribution and frequency by country remain open. METHODS A literature review was completed aimed to provide estimates for DIAD pathogenic variants in the LatAm population. The search strategies were established using a combination of standardized terms for DIAD and LatAm. RESULTS Twenty-four DIAD pathogenic variants have been reported in LatAm countries. Our combined dataset included 3583 individuals at risk; countries with highest DIAD frequencies were Colombia (n = 1905), Puerto Rico (n = 672), and Mexico (n = 463), usually attributable to founder effects. We found relatively few reports with extensive documentation on biomarker profiles and disease progression. DISCUSSION Future DIAD studies will be required in LatAm, albeit with a more systematic approach to include fluid biomarker and imaging studies. Regional efforts are under way to extend the DIAD observational studies and clinical trials to Latin America.
Collapse
Affiliation(s)
- Jorge J Llibre-Guerra
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Yan Li
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ricardo F Allegri
- Department of Cognitive Neurology, Institute for Neurological Research Fleni, Buenos Aires, Argentina
| | - Patricio Chrem Mendez
- Department of Cognitive Neurology, Institute for Neurological Research Fleni, Buenos Aires, Argentina
| | - Ezequiel I Surace
- Department of Cognitive Neurology, Institute for Neurological Research Fleni, Buenos Aires, Argentina
| | | | - Ana Luisa Sosa
- Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico, Mexico City, Mexico
| | - Carmen Aláez-Verson
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | | | - Alberto Tellez
- Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico, Mexico City, Mexico
| | - Karol Carrillo-Sánchez
- Laboratorio de Diagnóstico Genómico, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | | | - Victor Sánchez
- Department of Neurology, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil
| | | | | | | | | | - Francisco Lopera
- University of Puerto Rico School of Medicine, San Juan, Puerto Rico, USA
| | - Laura Ramírez
- University of Puerto Rico School of Medicine, San Juan, Puerto Rico, USA
| | | | - Christian Schenk
- Universidad Nacional Pedro Henríquez Ureña, Santo Domingo, Republica Dominicana
| | - Daisy Acosta
- Departamento de Neurología y Neurocirugía Hospital Clínico, Departamento de Neurociencias, Centro de Investigación Clínica Avanzada (CICA), Universidad de Chile & Clínica Alemana, Santiago, Chile
| | - María Isabel Behrens
- Becker Medical Library, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michelle Doering
- Department of Biostatistics, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ellen Ziegemeier
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - John C Morris
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Eric McDade
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Randall J Bateman
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
27
|
Tan SZK, Zhao RC, Chakrabarti S, Stambler I, Jin K, Lim LW. Interdisciplinary Research in Alzheimer's Disease and the Roles International Societies Can Play. Aging Dis 2021; 12:36-41. [PMID: 33532125 PMCID: PMC7801283 DOI: 10.14336/ad.2020.0602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/02/2020] [Indexed: 01/01/2023] Open
Abstract
An ever-increasing ageing population has elevated Alzheimer's disease to be one of the biggest challenges in modern medicine. Alzheimer's disease is highly complex, and we are still no closer to understanding the causes, let alone an effective treatment. The lack of good experimental models and lack of critical understanding has led to high failure rates of clinical trials with high associated costs, as well as difficulties in implementing treatments. The multifaceted nature of this disease highlights the need for an interdisciplinary approach to address these concerns. In this essay, we suggest how collaborative work can be useful in addressing some of the above issues. We then propose that international organisations and publishers need to support interdisciplinary research by creating platforms, lobbying funders, and pushing for interdisciplinary publications. We further highlight some of the issues involved in implementing these suggestions and argue that willpower of the research community, together with a re-evaluation of evaluation metrics and incentive systems, are needed in order to foster interdisciplinary research. Overall, we emphasise the need for interdisciplinary research in Alzheimer's disease and suggest that international societies should play a huge role in this endeavour.
Collapse
Affiliation(s)
- Shawn Zheng Kai Tan
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Robert Chunhua Zhao
- International Society on Aging and Disease (ISOAD), Fort Worth, Texas, USA.
- The Executive Committee on Anti-aging and Disease Prevention in the framework of Science and Technology, Pharmacology and Medicine Themes under an Interactive Atlas along the Silk Roads, UNESCO, Paris, France.
- School of Life Sciences, Shanghai University, Shanghai, China.
| | - Sasanka Chakrabarti
- International Society on Aging and Disease (ISOAD), Fort Worth, Texas, USA.
- The Executive Committee on Anti-aging and Disease Prevention in the framework of Science and Technology, Pharmacology and Medicine Themes under an Interactive Atlas along the Silk Roads, UNESCO, Paris, France.
- Department of Biochemistry and Central Research Cell, M M Institute of Medical Sciences and Research, Mullana, India.
| | - Ilia Stambler
- International Society on Aging and Disease (ISOAD), Fort Worth, Texas, USA.
- The Executive Committee on Anti-aging and Disease Prevention in the framework of Science and Technology, Pharmacology and Medicine Themes under an Interactive Atlas along the Silk Roads, UNESCO, Paris, France.
- The Geriatric Medical Center "Shmuel Harofe", Beer Yaakov, affiliated to Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Kunlin Jin
- International Society on Aging and Disease (ISOAD), Fort Worth, Texas, USA.
- The Executive Committee on Anti-aging and Disease Prevention in the framework of Science and Technology, Pharmacology and Medicine Themes under an Interactive Atlas along the Silk Roads, UNESCO, Paris, France.
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Texas, USA.
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- International Society on Aging and Disease (ISOAD), Fort Worth, Texas, USA.
- The Executive Committee on Anti-aging and Disease Prevention in the framework of Science and Technology, Pharmacology and Medicine Themes under an Interactive Atlas along the Silk Roads, UNESCO, Paris, France.
| |
Collapse
|
28
|
Goldman JG, Forsberg LK, Boeve BF, Armstrong MJ, Irwin DJ, Ferman TJ, Galasko D, Galvin JE, Kaufer D, Leverenz J, Lippa CF, Marder K, Abler V, Biglan K, Irizarry M, Keller B, Munsie L, Nakagawa M, Taylor A, Graham T. Challenges and opportunities for improving the landscape for Lewy body dementia clinical trials. Alzheimers Res Ther 2020; 12:137. [PMID: 33121510 PMCID: PMC7597002 DOI: 10.1186/s13195-020-00703-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/08/2020] [Indexed: 01/05/2023]
Abstract
Lewy body dementia (LBD), including dementia with Lewy bodies and Parkinson's disease dementia, affects over a million people in the USA and has a substantial impact on patients, caregivers, and society. Symptomatic treatments for LBD, which can include cognitive, neuropsychiatric, autonomic, sleep, and motor features, are limited with only two drugs (cholinesterase inhibitors) currently approved by regulatory agencies for dementia in LBD. Clinical trials represent a top research priority, but there are many challenges in the development and implementation of trials in LBD. To address these issues and advance the field of clinical trials in the LBDs, the Lewy Body Dementia Association formed an Industry Advisory Council (LBDA IAC), in addition to its Research Center of Excellence program. The LBDA IAC comprises a diverse and collaborative group of experts from academic medical centers, pharmaceutical industries, and the patient advocacy foundation. The inaugural LBDA IAC meeting, held in June 2019, aimed to bring together this group, along with representatives from regulatory agencies, to address the topic of optimizing the landscape of LBD clinical trials. This review highlights the formation of the LBDA IAC, current state of LBD clinical trials, and challenges and opportunities in the field regarding trial design, study populations, diagnostic criteria, and biomarker utilization. Current gaps include a lack of standardized clinical assessment tools and evidence-based management strategies for LBD as well as difficulty and controversy in diagnosing LBD. Challenges in LBD clinical trials include the heterogeneity of LBD pathology and symptomatology, limited understanding of the trajectory of LBD cognitive and core features, absence of LBD-specific outcome measures, and lack of established standardized biologic, imaging, or genetic biomarkers that may inform study design. Demands of study participation (e.g., travel, duration, and frequency of study visits) may also pose challenges and impact trial enrollment, retention, and outcomes. There are opportunities to improve the landscape of LBD clinical trials by harmonizing clinical assessments and biomarkers across cohorts and research studies, developing and validating outcome measures in LBD, engaging the patient community to assess research needs and priorities, and incorporating biomarker and genotype profiling in study design.
Collapse
Affiliation(s)
- Jennifer G Goldman
- Parkinson's Disease and Movement Disorders Program, Shirley Ryan AbilityLab and Departments of Physical Medicine and Rehabilitation and Neurology, Northwestern University Feinberg School of Medicine, 355 E. Erie Street, Chicago, IL, 60611, USA.
| | | | | | - Melissa J Armstrong
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA
| | - David J Irwin
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Tanis J Ferman
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | - Doug Galasko
- Department of Neurosciences, UC San Diego, San Diego, CA, USA
| | - James E Galvin
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Daniel Kaufer
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - James Leverenz
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Carol F Lippa
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Karen Marder
- Department of Neurology, Taub Institute, Sergievsky Center, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Kevin Biglan
- Neuroscience Research, Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | - Leanne Munsie
- Neuroscience Research, Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Angela Taylor
- Lewy Body Dementia Association, S.W., Lilburn, GA, USA
| | - Todd Graham
- Lewy Body Dementia Association, S.W., Lilburn, GA, USA
| |
Collapse
|
29
|
|
30
|
Salech F, Ponce DP, Paula-Lima AC, SanMartin CD, Behrens MI. Nicotinamide, a Poly [ADP-Ribose] Polymerase 1 (PARP-1) Inhibitor, as an Adjunctive Therapy for the Treatment of Alzheimer's Disease. Front Aging Neurosci 2020; 12:255. [PMID: 32903806 PMCID: PMC7438969 DOI: 10.3389/fnagi.2020.00255] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/24/2020] [Indexed: 12/25/2022] Open
Abstract
Nicotinamide (vitamin B3) is a key component in the cellular production of Nicotinamide Adenine Dinucleotide (NAD) and has long been associated with neuronal development, survival and death. Numerous data suggest that nicotinamide may offer therapeutic benefits in neurodegenerative disorders, including Alzheimer’s Disease (AD). Beyond its effect in NAD+ stores, nicotinamide is an inhibitor of Poly [ADP-ribose] polymerase 1 (PARP-1), an enzyme with multiple cellular functions, including regulation of cell death, energy/metabolism and inflammatory response. PARP-1 functions as a DNA repair enzyme but under intense DNA damage depletes the cell of NAD+ and ATP and leads to a non-apoptotic type of cell death called Parthanatos, which has been associated with the pathogenesis of neurodegenerative diseases. Moreover, NAD+ availability might potentially improve mitochondrial function, which is severely impaired in AD. PARP-1 inhibition may also exert a protective effect against neurodegeneration by its action to diminish neuroinflammation and microglial activation which are also implicated in the pathogenesis of AD. Here we discuss the evidence supporting the use of nicotinamide as adjunctive therapy for the treatment of early stages of AD based on the inhibitory effect of nicotinamide on PARP-1 activity. The data support evaluating nicotinamide as an adjunctive treatment for AD at early stages of the disease not only to increase NAD+ stores but as a PARP-1 inhibitor, raising the hypothesis that other PARP-1 inhibitors – drugs that are already approved for breast cancer treatment – might be explored for the treatment of AD.
Collapse
Affiliation(s)
- Felipe Salech
- Centro de Investigación Clínica Avanzada, Facultad de Medicina and Hospital Clínico Universidad de Chile, Santiago, Chile.,Sección de Geriatría Hospital Clínico Universidad de Chile, Santiago, Chile.,Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Daniela P Ponce
- Centro de Investigación Clínica Avanzada, Facultad de Medicina and Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Andrea C Paula-Lima
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Facultad of Medicina, Universidad de Chile, Santiago, Chile.,Institute for Research in Dental Sciences, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Carol D SanMartin
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Departamento de Neurologiìa y Neurocirugiìa, Hospital Cliìnico Universidad de Chile, Santiago, Chile
| | - María I Behrens
- Centro de Investigación Clínica Avanzada, Facultad de Medicina and Hospital Clínico Universidad de Chile, Santiago, Chile.,Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento de Neurologiìa y Neurocirugiìa, Hospital Cliìnico Universidad de Chile, Santiago, Chile.,Departamento de Neurología y Psiquiatría, Clínica Alemana de Santiago, Santiago, Chile
| |
Collapse
|
31
|
Hoang CL, Ha GH, Pham KTH, Tran BX, Latkin CA, Ho CSH, Ho RCM. Global Mapping of Interventions to Improve Quality of Life of Patients with Alzheimer's Disease during 1990-2018. Dement Geriatr Cogn Disord 2020; 48:221-233. [PMID: 32114583 DOI: 10.1159/000505741] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/03/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) with its high burden on disability is known as one of the critical public health issues worldwide. Hence, providing comprehensive care and effective symptomatic treatment are becoming a challenge for many healthcare systems. Quality of life (QOL) has been identified as an important indicator to develop holistic care for people living with AD since it reflects treatment response, the progression of AD, and activities of daily living. This study aimed to identify research trends and landscapes as well as important factors in QOL studies in the field of AD. SUMMARY English research was extracted from the online database Web of Science to analyze research publications' growth rate and content on AD and QOL. VOSviewer was used to visualize the correlations between terms in titles and abstracts. Research topics were created using Latent Dirichlet Allocation of abstracts' content and disciplines. Major landscapes in the QOL assessment included care and treatment for AD in epidemiological studies and clinical trials. Besides, most studies were conducted in high-income countries, such as the USA or the United Kingdom. Findings of our study also identified a lack of contextualized factors and research gaps in terms of QOL among individuals with AD. Key Messages: Further studies should be conducted taking an effort to assess QOL among demented patients as well as advancing knowledge, attitude, and practice among family caregivers.
Collapse
Affiliation(s)
- Chi Linh Hoang
- Institute for Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam.,Center of Excellence in Behavioral Medicine, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Giang Hai Ha
- Institute for Global Health Innovations, Duy Tan University, Da Nang, Vietnam, .,Faculty of Pharmacy, Duy Tan University, Da Nang, Vietnam,
| | - Kiet Tuan Huy Pham
- Institute for Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| | - Bach Xuan Tran
- Institute for Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam.,Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Carl A Latkin
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Cyrus S H Ho
- Department of Psychological Medicine, National University Hospital, Singapore, Singapore
| | - Roger C M Ho
- Center of Excellence in Behavioral Medicine, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam.,Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, Singapore
| |
Collapse
|
32
|
Pistollato F, Bernasconi C, McCarthy J, Campia I, Desaintes C, Wittwehr C, Deceuninck P, Whelan M. Alzheimer's Disease, and Breast and Prostate Cancer Research: Translational Failures and the Importance to Monitor Outputs and Impact of Funded Research. Animals (Basel) 2020; 10:E1194. [PMID: 32674379 PMCID: PMC7401638 DOI: 10.3390/ani10071194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 12/24/2022] Open
Abstract
Dementia and cancer are becoming increasingly prevalent in Western countries. In the last two decades, research focused on Alzheimer's disease (AD) and cancer, in particular, breast cancer (BC) and prostate cancer (PC), has been substantially funded both in Europe and worldwide. While scientific research outcomes have contributed to increase our understanding of the disease etiopathology, still the prevalence of these chronic degenerative conditions remains very high across the globe. By definition, no model is perfect. In particular, animal models of AD, BC, and PC have been and still are traditionally used in basic/fundamental, translational, and preclinical research to study human disease mechanisms, identify new therapeutic targets, and develop new drugs. However, animals do not adequately model some essential features of human disease; therefore, they are often unable to pave the way to the development of drugs effective in human patients. The rise of new technological tools and models in life science, and the increasing need for multidisciplinary approaches have encouraged many interdisciplinary research initiatives. With considerable funds being invested in biomedical research, it is becoming pivotal to define and apply indicators to monitor the contribution to innovation and impact of funded research. Here, we discuss some of the issues underlying translational failure in AD, BC, and PC research, and describe how indicators could be applied to retrospectively measure outputs and impact of funded biomedical research.
Collapse
Affiliation(s)
- Francesca Pistollato
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (C.B.); (I.C.); (C.W.); (P.D.); (M.W.)
| | - Camilla Bernasconi
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (C.B.); (I.C.); (C.W.); (P.D.); (M.W.)
| | - Janine McCarthy
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (C.B.); (I.C.); (C.W.); (P.D.); (M.W.)
- Physicians Committee for Responsible Medicine (PCRM), Washington, DC 20016, USA;
| | - Ivana Campia
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (C.B.); (I.C.); (C.W.); (P.D.); (M.W.)
| | - Christian Desaintes
- European Commission, Directorate General for Research and Innovation (RTD), 1000 Brussels, Belgium;
| | - Clemens Wittwehr
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (C.B.); (I.C.); (C.W.); (P.D.); (M.W.)
| | - Pierre Deceuninck
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (C.B.); (I.C.); (C.W.); (P.D.); (M.W.)
| | - Maurice Whelan
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (C.B.); (I.C.); (C.W.); (P.D.); (M.W.)
| |
Collapse
|
33
|
Myers A, McGonigle P. Overview of Transgenic Mouse Models for Alzheimer's Disease. ACTA ACUST UNITED AC 2020; 89:e81. [PMID: 31532917 DOI: 10.1002/cpns.81] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review describes several transgenic mouse models of Alzheimer's disease (AD), a devastating neurodegenerative disorder that causes progressive cognitive decline and is diagnosed postmortem by the presence of extracellular amyloid-β (Aβ) plaques and intraneuronal tau neurofibrillary tangles in the cerebral cortex. Currently there is no intervention that cures, prevents, or even slows disease progression. Its complex etiology and pathology pose significant challenges for animal model development, and there is no single model that faithfully recapitulates both the pathological aspects and behavioral phenotypes of AD. Nearly 200 transgenic rodent models of AD have been generated primarily based on mutations linked to Aβ protein misprocessing in the familial form of the disease. More recent models incorporate mutations in tau protein, as well as mutations associated with the sporadic form of the disease. The salient features, strengths, limitations, and key differentiators for the most commonly used and best characterized of these models are considered here. While the translational utility of many of these models to assess the potential of novel therapeutics is in dispute, knowledge of the different models available and a detailed understanding of their features can aid in the selection of the optimal model to explore disease mechanisms or evaluate candidate medications. We comment on the predictive utility of these models considering recent clinical trial failures and discuss trends and future directions in the development of models for AD based on the plethora of clinical data that have been generated over the last decade. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Ariana Myers
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania.,Buck Institute for Research on Aging, Novato, California
| | - Paul McGonigle
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
34
|
Cole MA, Seabrook GR. On the horizon-the value and promise of the global pipeline of Alzheimer's disease therapeutics. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2020; 6:e12009. [PMID: 32405530 PMCID: PMC7217086 DOI: 10.1002/trc2.12009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/18/2019] [Accepted: 12/26/2019] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The recent failure of several late-stage Alzheimer's disease (AD) clinical trials focused on amyloid beta (Aβ) highlights the challenges of finding effective disease-modifying therapeutics. Despite major advances in our understanding of the genetic risk factors of disease and the development of clinical biomarkers, and that not all Aβ-based approaches are equivalent, these failures may engender skepticism regarding the value of the AD pipeline. METHODS To investigate these concerns, we compiled a database of current Phase 2 and 3 trials based on disease-modifying targets through a query of the National Institutes of Health's ClinicalTrials.gov. We then assessed the financial value of the pipeline. Financial modeling utilized risk-adjusted net present value (rNPV) measurements and included sensitivity analyses to help inform the drug development process. RESULTS Results indicate that the preponderance of current Phase 3 trials were indeed targeting Aβ, with only 15% addressing other targets. In contrast, the pipeline of Phase 2 trials was more diverse. The estimated rNPV of Phase 2 and 3 therapeutics was estimated to be $338 billion over 10 years. This figure increased to a theoretical cumulative value of $788 billion when incorporating the assumption that diagnostics will be developed to identify individuals at high risk for developing AD. Results from model sensitivity analyses showed that speed of market penetration and patient access contributed the most weight to financial value. In contrast, decreasing drug development costs had minimal impact on rNPV. DISCUSSION These findings argue in favor of conducting thorough biomarker-driven Phase 2 proof of concept studies to avoid prematurely advancing assets into Phase 3. Insights from these analyses are also discussed in the context of the financial ecosystem needed to maintain a healthy AD pipeline.
Collapse
Affiliation(s)
- Michael A. Cole
- Clinical Science ProgramUniversity of California BerkeleyBerkeleyCaliforniaUSA
- Global Neurohealth VenturesSan FranciscoCaliforniaUSA
| | - Guy R. Seabrook
- Johnson & Johnson InnovationSouth San FranciscoCaliforniaUSA
| |
Collapse
|
35
|
Rodríguez-Lavado J, Gallardo-Garrido C, Mallea M, Bustos V, Osorio R, Hödar-Salazar M, Chung H, Araya-Maturana R, Lorca M, Pessoa-Mahana CD, Mella-Raipán J, Saitz C, Jaque P, Reyes-Parada M, Iturriaga-Vásquez P, Pessoa-Mahana H. Synthesis, in vitro evaluation and molecular docking of a new class of indolylpropyl benzamidopiperazines as dual AChE and SERT ligands for Alzheimer's disease. Eur J Med Chem 2020; 198:112368. [PMID: 32388114 DOI: 10.1016/j.ejmech.2020.112368] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/11/2020] [Accepted: 04/20/2020] [Indexed: 12/22/2022]
Abstract
During the last decade, the one drug-one target strategy has resulted to be inefficient in facing diseases with complex ethiology like Alzheimer's disease and many others. In this context, the multitarget paradigm has emerged as a promising strategy. Based on this consideration, we aim to develop novel molecules as promiscuous ligands acting in two or more targets at the same time. For such purpose, a new series of indolylpropyl-piperazinyl oxoethyl-benzamido piperazines were synthesized and evaluated as multitarget-directed drugs for the serotonin transporter (SERT) and acetylcholinesterase (AChE). The ability to decrease β-amyloid levels as well as cell toxicity of all compounds were also measured. In vitro results showed that at least four compounds displayed promising activity against SERT and AChE. Compounds 18 and 19 (IC50 = 3.4 and 3.6 μM respectively) exhibited AChE inhibition profile in the same order of magnitude as donepezil (DPZ, IC50 = 2.17 μM), also displaying nanomolar affinity in SERT. Moreover, compounds 17 and 24 displayed high SERT affinities (IC50 = 9.2 and 1.9 nM respectively) similar to the antidepressant citalopram, and significant micromolar AChE activity at the same time. All the bioactive compounds showed a low toxicity profile in the range of concentrations studied. Molecular docking allowed us to rationalize the binding mode of the synthesized compounds in both targets. In addition, we also show that compounds 11 and 25 exhibit significant β-amyloid lowering activity in a cell-based assay, 11 (50% inhibition, 10 μM) and 25 (35% inhibition, 10 μM). These results suggest that indolylpropyl benzamidopiperazines based compounds constitute promising leads for a multitargeted approach for Alzheimer's disease.
Collapse
Affiliation(s)
- Julio Rodríguez-Lavado
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos, 1007, Santiago, Chile
| | - Carlos Gallardo-Garrido
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos, 1007, Santiago, Chile
| | - Michael Mallea
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos, 1007, Santiago, Chile
| | - Victor Bustos
- Laboratory of Cellular and Molecular Neuroscience, The Rockefeller University, New York, USA
| | - Rodrigo Osorio
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos, 1007, Santiago, Chile
| | - Martín Hödar-Salazar
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería Ciencias, Universidad de la Frontera, Temuco, Chile
| | - Hery Chung
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Marcos Lorca
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - C David Pessoa-Mahana
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jaime Mella-Raipán
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Centro de Investigación Farmacopea Chilena (CIFAR), Universidad de Valparaíso, Santa Marta, Valparaíso, Chile
| | - Claudio Saitz
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos, 1007, Santiago, Chile
| | - Pablo Jaque
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos, 1007, Santiago, Chile
| | - Miguel Reyes-Parada
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Chile; Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Patricio Iturriaga-Vásquez
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería Ciencias, Universidad de la Frontera, Temuco, Chile; Center of Excellence in Biotechnology Research Applied to the Environment, Universidad de La Frontera, Temuco, Chile.
| | - Hernán Pessoa-Mahana
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos, 1007, Santiago, Chile.
| |
Collapse
|
36
|
Zeiss CJ. Utility of spontaneous animal models of Alzheimer’s disease in preclinical efficacy studies. Cell Tissue Res 2020; 380:273-286. [DOI: 10.1007/s00441-020-03198-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/03/2020] [Indexed: 12/14/2022]
|
37
|
Arbo BD, André-Miral C, Nasre-Nasser RG, Schimith LE, Santos MG, Costa-Silva D, Muccillo-Baisch AL, Hort MA. Resveratrol Derivatives as Potential Treatments for Alzheimer's and Parkinson's Disease. Front Aging Neurosci 2020; 12:103. [PMID: 32362821 PMCID: PMC7180342 DOI: 10.3389/fnagi.2020.00103] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/26/2020] [Indexed: 12/21/2022] Open
Abstract
Neurodegenerative diseases are characterized by the progressive loss of neurons in different regions of the nervous system. Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the two most prevalent neurodegenerative diseases, and the symptoms associated with these pathologies are closely related to the regions that are most affected by the process of neurodegeneration. Despite their high prevalence, currently, there is no cure or disease-modifying drugs for the treatment of these conditions. In the last decades, due to the need for the development of new treatments for neurodegenerative diseases, several authors have investigated the neuroprotective actions of naturally occurring molecules, such as resveratrol. Resveratrol is a stilbene found in several plants, including grapes, blueberries, raspberries, and peanuts. Studies have shown that resveratrol presents neuroprotective actions in experimental models of AD and PD, however, its clinical application is limited due to its rapid metabolism and low bioavailability. In this context, studies have proposed that structural changes in the resveratrol molecule, including glycosylation, alkylation, halogenation, hydroxylation, methylation, and prenylation could lead to the development of derivatives with enhanced bioavailability and pharmacological activity. Therefore, this review article aims to discuss how resveratrol derivatives could represent viable molecules in the search for new drugs for the treatment of AD and PD.
Collapse
Affiliation(s)
- Bruno Dutra Arbo
- Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Corinne André-Miral
- Université de Nantes, CNRS, Unité de Fonctionnalité et Ingénierie des Protéines (UFIP), UMR 6286, Nantes, France
| | | | - Lúcia Emanueli Schimith
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, Brazil
| | - Michele Goulart Santos
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, Brazil
| | - Dennis Costa-Silva
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, Brazil
| | | | - Mariana Appel Hort
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, Brazil
| |
Collapse
|
38
|
Pataranutaporn P, Jain A, Johnson CM, Shah P, Maes P. Wearable Lab on Body: Combining Sensing of Biochemical and Digital Markers in a Wearable Device. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:3327-3332. [PMID: 31946594 DOI: 10.1109/embc.2019.8857479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Wearables are being widely researched for monitoring individual's health and wellbeing. Current generation wearable devices sense an individual's physiological data such as heart rate, respiration, electrodermal activity, and EEG, but lack in sensing their biological counterparts, which drive the majority of individual's physiological signals. On the other hand, biosensors for detecting biochemical markers are currently limited to one-time use, are non-continuous and don't provide flexibility in choosing which biomarker they sense. We present "wearable lab on body", a platform for active continuous monitoring of human biomarkers from the biological fluid. Our platform contains both digital sensors such as IMU for activity recognition, as well as an automated system for continuous sampling of biomarkers from saliva by leveraging already existing paper-based biochemical sensors. The platform could aid with longitudinal studies of biomarkers and early diagnosis of diseases.
Collapse
|
39
|
Fossel M. A unified model of dementias and age-related neurodegeneration. Alzheimers Dement 2020; 16:365-383. [PMID: 31943780 DOI: 10.1002/alz.12012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/09/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
|
40
|
Noufi P, Khoury R, Jeyakumar S, Grossberg GT. Use of Cholinesterase Inhibitors in Non-Alzheimer's Dementias. Drugs Aging 2019; 36:719-731. [PMID: 31201687 DOI: 10.1007/s40266-019-00685-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Non-Alzheimer's dementias constitute 30% of all dementias and present with major cognitive and behavioral disturbances. Cholinesterase inhibitors improve memory by increasing brain acetylcholine levels and are approved symptomatic therapies for Alzheimer's disease (AD). They have also been investigated in other types of dementias with potential cholinergic dysfunction. There is compelling evidence for a profound cholinergic deficit in Lewy Body dementia (LBD) and Parkinson's disease dementia (PDD), even to a greater extent than AD. However, this deficit is difficult to objectivize in vascular dementia (VaD) given the increased comorbidity with AD. Furthermore, there is minimal to no evidence for cholinergic loss in frontotemporal dementia (FTD). Although cholinesterase inhibitors showed significant improvement in cognitive, behavioral, and functional measures in both LBD and PDD clinical trials, only rivastigmine is approved for PDD, due to the heterogeneity of the scales used, the duration of trials, and the limited sample sizes impacting data interpretation. Similarly, the interpretation of findings in VaD trials are limited by the lack of pre-defined inclusion criteria for 'pure VaD' and the wide heterogeneity of patients enrolled with respect to location and extent of cerebrovascular disease. In FTD patients, cholinesterase inhibitors were mostly associated with worsening of cognitive and behavioral symptoms. In non-AD dementias, cholinesterase inhibitors were well tolerated, with increased reports of mild to moderate cholinergic side effects and a non-significant trend for increased cardio and cerebrovascular events with rivastigmine in VaD, justifying their cautious use on a case-by-case basis, especially when there is evidence for cholinergic deficit.
Collapse
Affiliation(s)
- Paul Noufi
- Department of Psychiatry, American University of Beirut, Beirut, Lebanon
| | - Rita Khoury
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, 1438 S Grand Blvd, St. Louis, MO, 63104, USA.
| | - Sajeeka Jeyakumar
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, 1438 S Grand Blvd, St. Louis, MO, 63104, USA
| | - George T Grossberg
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, 1438 S Grand Blvd, St. Louis, MO, 63104, USA
| |
Collapse
|
41
|
Wei S, Mai Y, Peng W, Ma J, Sun C, Li G, Liu Z. The effect of nonpharmacologic therapy on global cognitive functions in patients with Alzheimer's disease: an updated meta-analysis of randomized controlled trials. Int J Neurosci 2019; 130:28-44. [PMID: 31251099 DOI: 10.1080/00207454.2019.1638377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background: The effectiveness of non-pharmacologic therapy (NPT) in treating the global cognition dysfunction associated with Alzheimer's disease (AD) has not been clearly demonstrated. Therefore, we performed a meta-analysis to address this issue.Methods: The Cochrane Central Register of Controlled Trials, PUBMED, EMBASE and other databases were searched, and outcomes measured by the Mini-Mental State Examination (MMSE) or the Alzheimer's Disease Assessment Scale-cognitive subscale (ADAS-cog) were analysed.Results: Seven types of NPT were included, 25 randomized controlled trials (RCTs) were selected and 3238 participants were included in the meta-analysis. There were significant differences between the NPT and control groups in the MMSE and ADAS-cog scores.Conclusions: Although more extensive trials need to be performed, NPT has been observed to be beneficial in AD patients.
Collapse
Affiliation(s)
- Shouchao Wei
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yingren Mai
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wanjuan Peng
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jing Ma
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chaowen Sun
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Guangning Li
- Department of Neurology, Huadu District People's Hospital, Southern Medical University, Guangzhou, China
| | - Zhou Liu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
42
|
Nanogroove-Enhanced Hydrogel Scaffolds for 3D Neuronal Cell Culture: An Easy Access Brain-on-Chip Model. MICROMACHINES 2019; 10:mi10100638. [PMID: 31548503 PMCID: PMC6843116 DOI: 10.3390/mi10100638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022]
Abstract
In order to better understand the brain and brain diseases, in vitro human brain models need to include not only a chemically and physically relevant microenvironment, but also structural network complexity. This complexity reflects the hierarchical architecture in brain tissue. Here, a method has been developed that adds complexity to a 3D cell culture by means of nanogrooved substrates. SH-SY5Y cells were grown on these nanogrooved substrates and covered with Matrigel, a hydrogel. To quantitatively analyze network behavior in 2D neuronal cell cultures, we previously developed an automated image-based screening method. We first investigated if this method was applicable to 3D primary rat brain cortical (CTX) cell cultures. Since the method was successfully applied to these pilot data, a proof of principle in a reductionist human brain cell model was attempted, using the SH-SY5Y cell line. The results showed that these cells also create an aligned network in the 3D microenvironment by maintaining a certain degree of guidance by the nanogrooved topography in the z-direction. These results indicate that nanogrooves enhance the structural complexity of 3D neuronal cell cultures for both CTX and human SH-SY5Y cultures, providing a basis for further development of an easy access brain-on-chip model.
Collapse
|
43
|
Bang S, Jeong S, Choi N, Kim HN. Brain-on-a-chip: A history of development and future perspective. BIOMICROFLUIDICS 2019; 13:051301. [PMID: 31616534 PMCID: PMC6783295 DOI: 10.1063/1.5120555] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/25/2019] [Indexed: 05/04/2023]
Abstract
Since the advent of organ-on-a-chip, many researchers have tried to mimic the physiology of human tissue on an engineered platform. In the case of brain tissue, structural connections and cell-cell interactions are important factors for brain function. The recent development of brain-on-a-chip is an effort to mimic those structural and functional aspects of brain tissue within a miniaturized engineered platform. From this perspective, we provide an overview of trace of brain-on-a-chip development, especially in terms of complexity and high-content/high-throughput screening capabilities, and future perspectives on more in vivo-like brain-on-a-chip development.
Collapse
Affiliation(s)
- Seokyoung Bang
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea
| | | | - Nakwon Choi
- Authors to whom correspondence should be addressed:, Telephone: +82-2-958-5617 and , Telephone: +82-2-958-6742
| | - Hong Nam Kim
- Authors to whom correspondence should be addressed:, Telephone: +82-2-958-5617 and , Telephone: +82-2-958-6742
| |
Collapse
|
44
|
Suomi F, McWilliams T. Autophagy in the mammalian nervous system: a primer for neuroscientists. Neuronal Signal 2019; 3:NS20180134. [PMID: 32269837 PMCID: PMC7104325 DOI: 10.1042/ns20180134] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 07/06/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy refers to the lysosomal degradation of damaged or superfluous components and is essential for metabolic plasticity and tissue integrity. This evolutionarily conserved process is particularly vital to mammalian post-mitotic cells such as neurons, which face unique logistical challenges and must sustain homoeostasis over decades. Defective autophagy has pathophysiological importance, especially for human neurodegeneration. The present-day definition of autophagy broadly encompasses two distinct yet related phenomena: non-selective and selective autophagy. In this minireview, we focus on established and emerging concepts in the field, paying particular attention to the physiological significance of macroautophagy and the burgeoning world of selective autophagy pathways in the context of the vertebrate nervous system. By highlighting established basics and recent breakthroughs, we aim to provide a useful conceptual framework for neuroscientists interested in autophagy, in addition to autophagy enthusiasts with an eye on the nervous system.
Collapse
Affiliation(s)
- Fumi Suomi
- Translational Stem Cell Biology and Metabolism Program, Research Programs Unit, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, Helsinki 00290, Finland
| | - Thomas G. McWilliams
- Translational Stem Cell Biology and Metabolism Program, Research Programs Unit, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, Helsinki 00290, Finland
- Department of Anatomy, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, Helsinki 00290, Finland
| |
Collapse
|
45
|
Bittencourt JAHM, Neto MFA, Lacerda PS, Bittencourt RCVS, Silva RC, Lobato CC, Silva LB, Leite FHA, Zuliani JP, Rosa JMC, Borges RS, Santos CBR. In Silico Evaluation of Ibuprofen and Two Benzoylpropionic Acid Derivatives with Potential Anti-Inflammatory Activity. Molecules 2019; 24:E1476. [PMID: 30991684 PMCID: PMC6515000 DOI: 10.3390/molecules24081476] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/07/2019] [Accepted: 04/11/2019] [Indexed: 12/19/2022] Open
Abstract
Inflammation is a complex reaction involving cellular and molecular components and an unspecific response to a specific aggression. The use of scientific and technological innovations as a research tool combining multidisciplinary knowledge in informatics, biotechnology, chemistry and biology are essential for optimizing time and reducing costs in the drug design. Thus, the integration of these in silico techniques makes it possible to search for new anti-inflammatory drugs with better pharmacokinetic and toxicological profiles compared to commercially used drugs. This in silico study evaluated the anti-inflammatory potential of two benzoylpropionic acid derivatives (MBPA and DHBPA) using molecular docking and their thermodynamic profiles by molecular dynamics, in addition to predicting oral bioavailability, bioactivity and toxicity. In accordance to our predictions the derivatives proposed here had the potential capacity for COX-2 inhibition in the human and mice enzyme, due to containing similar interactions with the control compound (ibuprofen). Ibuprofen showed toxic predictions of hepatotoxicity (in human, mouse and rat; toxicophoric group 2-arylacetic or 3-arylpropionic acid) and irritation of the gastrointestinal tract (in human, mouse and rat; toxicophoric group alpha-substituted propionic acid or ester) confirming the literature data, as well as the efficiency of the DEREK 10.0.2 program. Moreover, the proposed compounds are predicted to have a good oral bioavailability profile and low toxicity (LD50 < 700 mg/kg) and safety when compared to the commercial compound. Therefore, future studies are necessary to confirm the anti-inflammatory potential of these compounds.
Collapse
Affiliation(s)
- José A H M Bittencourt
- Graduate Program of Pharmaceutical Innovation, Federal University of Amapá, Macapá-AP 68902-280, Brazil.
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá-AP 68902-280, Brazil.
| | - Moysés F A Neto
- Laboratory of Molecular Modeling, State University of Feira de Santana, Feira de Santana-BA 44036-900, Brazil.
| | - Pedro S Lacerda
- Laboratory of Bioinformatics and Molecular Modeling, School of Pharmacy, Federal University of Bahia, Barão de Jeremoabo Street, Salvador 40170-115, BA, Brazil.
| | - Renata C V S Bittencourt
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá-AP 68902-280, Brazil.
| | - Rai C Silva
- Computational Laboratory of Pharmaceutical Chemistry, University of Sao Paulo, Av. Prof. do Café, s/n - Monte Alegre, Ribeirão Preto, São Paulo 14040-903, Brazil.
| | - Cleison C Lobato
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá-AP 68902-280, Brazil.
- Nucleus of Studies and Selection of Bioactive Molecules, Institute of Health Sciences, Federal University of Pará, Belém-PA 66075-110, Brazil.
| | - Luciane B Silva
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá-AP 68902-280, Brazil.
| | - Franco H A Leite
- Laboratory of Molecular Modeling, State University of Feira de Santana, Feira de Santana-BA 44036-900, Brazil.
| | - Juliana P Zuliani
- Laboratory Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Rua da Beira, 7671 BR-364, Porto Velho-RO 78912-000, Brazil.
| | - Joaquín M C Rosa
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, Institute of Biosanitary Research ibs.GRANADA. University of Granada, 18071 Granada, Spain.
| | - Rosivaldo S Borges
- Graduate Program of Pharmaceutical Innovation, Federal University of Amapá, Macapá-AP 68902-280, Brazil.
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá-AP 68902-280, Brazil.
- Nucleus of Studies and Selection of Bioactive Molecules, Institute of Health Sciences, Federal University of Pará, Belém-PA 66075-110, Brazil.
| | - Cleydson B R Santos
- Graduate Program of Pharmaceutical Innovation, Federal University of Amapá, Macapá-AP 68902-280, Brazil.
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá-AP 68902-280, Brazil.
- Nucleus of Studies and Selection of Bioactive Molecules, Institute of Health Sciences, Federal University of Pará, Belém-PA 66075-110, Brazil.
| |
Collapse
|
46
|
Abstract
Similar to other complex disorders, the etiology of Alzheimer disease is multifactorial and characterized by an interplay of biological and environmental risk and protective factors. Potentially modifiable risk factors have emerged from epidemiological research and strategies to prevent neurodegeneration and dementia are currently being tested, including multimodal interventions aiming to reduce several risk factors at once. The concept of reserve was developed based on the observation that certain individual characteristics, such as life experiences, lifestyles, and neurobiological parameters, are associated with a higher resilience against neurodegeneration and its symptoms. Coordinated research is required to maximize the use of available human and financial resources to better understand the underlying neurobiological mechanisms of reserve and to translate research findings into effective public health interventions.
Collapse
|