1
|
Zhao J, Xue E, Zhou S, Zhang M, Sun J, Tan Y, Li X. Allostatic load, genetic susceptibility, incidence risk, and all-cause mortality of colorectal cancer. J Natl Cancer Inst 2025; 117:134-143. [PMID: 39271163 DOI: 10.1093/jnci/djae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/01/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Allostatic load (AL) reflects the cumulative burden of chronic stress throughout life, potentially influencing the onset and prognosis of cancer. However, the associations between AL, colorectal cancer (CRC) risk, and all-cause mortality in patients with CRC remain unclear. METHODS We analyzed the associations between AL and CRC risk in 304 959 adults and all-cause mortality in 1794 patients with CRC from the UK Biobank, using Cox proportional hazards regression models. RESULTS Compared with the AL level in the first quartile, individuals in the second to fourth quartiles had a respective 20%, 29%, and 43% increased risk of CRC; 15%, 24%, and 42% increased risk for colon cancer; and 30%, 38%, and 45% increased risk for rectal cancer. We identified a positive dose-gradient association of AL score with CRC risk, including colon and rectal cancer. Additionally, the association between AL and increased risk of CRC was observed across different strata of genetic susceptibility for CRC. Eliminating AL exposures could prevent nearly 39.24% (95% confidence interval [CI] = 36.16 to 42.32) of CRC events. Meanwhile, a statistically association between the AL and all-cause mortality in patients with CRC was found, with a hazard ratio of 1.71 (95% CI = 1.16 to 2.50) for the fourth quartile compared with the AL score in the first quartile, demonstrating a positive dose-response relationship. CONCLUSION High AL was associated with increased CRC risk and all-cause mortality in CRC patients. Future research should prioritize the development of cognitive or behavioral intervention strategies to mitigate the adverse effects of AL on CRC incidence and prognosis.
Collapse
Affiliation(s)
- Jianhui Zhao
- Department of Big Data in Health Science, The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Erxu Xue
- Nursing Department, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Siyun Zhou
- Department of Big Data in Health Science, The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Meng Zhang
- Department of Big Data in Health Science, The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Sun
- Department of Big Data in Health Science, The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuqian Tan
- Department of Big Data in Health Science, The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xue Li
- Department of Big Data in Health Science, The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Ma Y, Li Y, Wen Z, Lai Y, Kamila K, Gao J, Xu WY, Gong C, Chen F, Shi L, Zhang Y, Chen H, Zhu M. Genome wide identification of novel DNA methylation driven prognostic markers in colorectal cancer. Sci Rep 2024; 14:15654. [PMID: 38977698 PMCID: PMC11231291 DOI: 10.1038/s41598-024-60351-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/22/2024] [Indexed: 07/10/2024] Open
Abstract
Colorectal cancer (CRC) stands as a major contributor to cancer-related fatalities within China. There is an urgent need to identify accurate biomarkers for recurrence predicting in CRC. Reduced representation bisulfite sequencing was used to perform a comparative analysis of methylation profiles in tissue samples from 30 recurrence to 30 non-recurrence patients with CRC. Least absolute shrinkage and selection operator method was performed to select the differential methylation regions (DMRs) and built a DNA methylation classifier for predicting recurrence. Based on the identified top DMRs, a methylation classifier was built and consisted of eight hypermethylated DMRs in CRC. The DNA methylation classifier showed high accuracy for predicting recurrence with an area under the receiver operator characteristic curve of 0.825 (95% CI 0.680-0.970). The Kaplan-Meier survival analysis demonstrated that CRC patients with high methylation risk score, evaluated by the DNA methylation classifier, had poorer survival than low risk score (Hazard Ratio 4.349; 95% CI 1.783-10.61, P = 0.002). And only CRC patients with low methylation risk score could acquire benefit from adjuvant therapy. The DNA methylation classifier has been proved as crucial biomarkers for predicting recurrence and exhibited promising prognostic value after curative surgery in patients with CRC.
Collapse
Affiliation(s)
- Yuhua Ma
- Xinjiang Key Laboratory of Clinical Genetic Testing and Biomedical Information, Karamay Central Hospital, Karamay, 834099, Xin Jiang, China
- Department of Pathology, Karamay Central Hospital, No. 67, Junggar Road, Karamay, 834099, Xin Jiang, China
| | - Yuanxin Li
- Xinjiang Key Laboratory of Clinical Genetic Testing and Biomedical Information, Karamay Central Hospital, Karamay, 834099, Xin Jiang, China
- Department of Pathology, Karamay Central Hospital, No. 67, Junggar Road, Karamay, 834099, Xin Jiang, China
| | - Zhahong Wen
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201318, China
| | - Yining Lai
- Xinjiang Key Laboratory of Clinical Genetic Testing and Biomedical Information, Karamay Central Hospital, Karamay, 834099, Xin Jiang, China
- Department of Pathology, Karamay Central Hospital, No. 67, Junggar Road, Karamay, 834099, Xin Jiang, China
| | - Kulaixijiang Kamila
- Xinjiang Key Laboratory of Clinical Genetic Testing and Biomedical Information, Karamay Central Hospital, Karamay, 834099, Xin Jiang, China
- Department of Pathology, Karamay Central Hospital, No. 67, Junggar Road, Karamay, 834099, Xin Jiang, China
| | - Jing Gao
- Xinjiang Key Laboratory of Clinical Genetic Testing and Biomedical Information, Karamay Central Hospital, Karamay, 834099, Xin Jiang, China
- Department of Pathology, Karamay Central Hospital, No. 67, Junggar Road, Karamay, 834099, Xin Jiang, China
| | - Wang-Yang Xu
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201318, China
| | | | - Feifan Chen
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201318, China
| | - Liuqing Shi
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201318, China
| | - Yunzhi Zhang
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201318, China
| | - Hanzhang Chen
- Department of Pathology, Zhabei Central Hospital of Shanghai, No. 619, Zhonghua New Road, Jing'an District, Shanghai, 200070, China.
| | - Min Zhu
- Xinjiang Key Laboratory of Clinical Genetic Testing and Biomedical Information, Karamay Central Hospital, Karamay, 834099, Xin Jiang, China.
- Department of Pathology, Karamay Central Hospital, No. 67, Junggar Road, Karamay, 834099, Xin Jiang, China.
| |
Collapse
|
3
|
Shu J, Jelinek J, Chen H, Zhang Y, Qin T, Li M, Liu L, Issa JPJ. Genome-wide screening and functional validation of methylation barriers near promoters. Nucleic Acids Res 2024; 52:4857-4871. [PMID: 38647050 PMCID: PMC11109949 DOI: 10.1093/nar/gkae302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/13/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
CpG islands near promoters are normally unmethylated despite being surrounded by densely methylated regions. Aberrant hypermethylation of these CpG islands has been associated with the development of various human diseases. Although local genetic elements have been speculated to play a role in protecting promoters from methylation, only a limited number of methylation barriers have been identified. In this study, we conducted an integrated computational and experimental investigation of colorectal cancer methylomes. Our study revealed 610 genes with disrupted methylation barriers. Genomic sequences of these barriers shared a common 41-bp sequence motif (MB-41) that displayed homology to the chicken HS4 methylation barrier. Using the CDKN2A (P16) tumor suppressor gene promoter, we validated the protective function of MB-41 and showed that loss of such protection led to aberrant hypermethylation. Our findings highlight a novel sequence signature of cis-acting methylation barriers in the human genome that safeguard promoters from silencing.
Collapse
Affiliation(s)
- Jingmin Shu
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Jaroslav Jelinek
- Fels Institute for Cancer Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Cooper Medical School at Rowan University, Camden, NJ 08103, USA
- Coriell Institute for Medical Research, Camden, NJ 08103, USA
| | - Hai Chen
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Yan Zhang
- Fels Institute for Cancer Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Taichun Qin
- Fels Institute for Cancer Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Ming Li
- Phoenix VA Health Care System, Phoenix, AZ 85012, USA
- University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Li Liu
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Jean-Pierre J Issa
- Fels Institute for Cancer Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Cooper Medical School at Rowan University, Camden, NJ 08103, USA
- Coriell Institute for Medical Research, Camden, NJ 08103, USA
| |
Collapse
|
4
|
Weng YY, Huang MY. The CpG Island Methylator Phenotype Status in Synchronous and Solitary Primary Colorectal Cancers: Prognosis and Effective Therapeutic Drug Prediction. Int J Mol Sci 2024; 25:5243. [PMID: 38791280 PMCID: PMC11121449 DOI: 10.3390/ijms25105243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Synchronous colorectal cancer (sCRC) is characterized by the occurrence of more than one tumor within six months of detecting the first tumor. Evidence suggests that sCRC might be more common in the serrated neoplasia pathway, marked by the CpG island methylator phenotype (CIMP), than in the chromosomal instability pathway (CIN). An increasing number of studies propose that CIMP could serve as a potential epigenetic predictor or prognostic biomarker of sCRC. Therapeutic drugs already used for treating CIMP-positive colorectal cancers (CRCs) are reviewed and drug selections for sCRC patients are discussed.
Collapse
Affiliation(s)
- Yun-Yun Weng
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Ming-Yii Huang
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Radiation Oncology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
5
|
Inciuraite R, Steponaitiene R, Raudze O, Kulokiene U, Kiudelis V, Lukosevicius R, Ugenskiene R, Adamonis K, Kiudelis G, Jonaitis LV, Kupcinskas J, Skieceviciene J. Prolonged culturing of colonic epithelial organoids derived from healthy individuals and ulcerative colitis patients results in the decrease of LINE-1 methylation level. Sci Rep 2024; 14:4456. [PMID: 38396014 PMCID: PMC10891043 DOI: 10.1038/s41598-024-55076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/19/2024] [Indexed: 02/25/2024] Open
Abstract
Patient-derived human intestinal organoids are becoming an indispensable tool for the research of digestive system in health and disease. However, very little is still known about the long-term culturing effect on global genomic methylation level in colonic epithelial organoids derived from healthy individuals as well as active and quiescent ulcerative colitis (UC) patients. In this study, we aimed to evaluate the epigenetic stability of these organoids by assessing the methylation level of LINE-1 during prolonged culturing. We found that LINE-1 region of both healthy control and UC patient colon tissues as well as corresponding epithelial organoids is highly methylated (exceeding 60%). We also showed that long-term culturing of colonic epithelial organoids generated from stem cells of healthy and diseased (both active and quiescent UC) individuals results in decrease of LINE-1 (up to 8%) methylation level, when compared to tissue of origin and short-term cultures. Moreover, we revealed that LINE-1 methylation level in sub-cultured organoids decreases at different pace depending on the patient diagnosis (healthy control, active or quiescent UC). Therefore, we propose LINE-1 as a potential and convenient biomarker for reliable assessment of global methylation status of patient-derived intestinal epithelial organoids in routine testing of ex vivo cultures.
Collapse
Affiliation(s)
- Ruta Inciuraite
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, 44307, Kaunas, Lithuania
| | - Ruta Steponaitiene
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, 44307, Kaunas, Lithuania
| | - Odeta Raudze
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, 44307, Kaunas, Lithuania
| | - Ugne Kulokiene
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, 44307, Kaunas, Lithuania
| | - Vytautas Kiudelis
- Department of Gastroenterology, Academy of Medicine, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, 44307, Kaunas, Lithuania
| | - Rokas Lukosevicius
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, 44307, Kaunas, Lithuania
| | - Rasa Ugenskiene
- Department of Genetics and Molecular Medicine, Academy of Medicine, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, 44307, Kaunas, Lithuania
| | - Kestutis Adamonis
- Department of Gastroenterology, Academy of Medicine, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, 44307, Kaunas, Lithuania
| | - Gediminas Kiudelis
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, 44307, Kaunas, Lithuania
- Department of Gastroenterology, Academy of Medicine, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, 44307, Kaunas, Lithuania
| | - Laimas Virginijus Jonaitis
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, 44307, Kaunas, Lithuania
- Department of Gastroenterology, Academy of Medicine, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, 44307, Kaunas, Lithuania
| | - Juozas Kupcinskas
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, 44307, Kaunas, Lithuania
- Department of Gastroenterology, Academy of Medicine, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, 44307, Kaunas, Lithuania
| | - Jurgita Skieceviciene
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, A. Mickeviciaus St. 9, 44307, Kaunas, Lithuania.
| |
Collapse
|
6
|
Lu YW, Ding ZL, Mao R, Zhao GG, He YQ, Li XL, Liu J. Early results of the integrative epigenomic-transcriptomic landscape of colorectal adenoma and cancer. World J Gastrointest Oncol 2024; 16:414-435. [PMID: 38425399 PMCID: PMC10900154 DOI: 10.4251/wjgo.v16.i2.414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/24/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Aberrant methylation is common during the initiation and progression of colorectal cancer (CRC), and detecting these changes that occur during early adenoma (ADE) formation and CRC progression has clinical value. AIM To identify potential DNA methylation markers specific to ADE and CRC. METHODS Here, we performed SeqCap targeted bisulfite sequencing and RNA-seq analysis of colorectal ADE and CRC samples to profile the epigenomic-transcriptomic landscape. RESULTS Comparing 22 CRC and 25 ADE samples, global methylation was higher in the former, but both showed similar methylation patterns regarding differentially methylated gene positions, chromatin signatures, and repeated elements. High-grade CRC tended to exhibit elevated methylation levels in gene promoter regions compared to those in low-grade CRC. Combined with RNA-seq gene expression data, we identified 14 methylation-regulated differentially expressed genes, of which only AGTR1 and NECAB1 methylation had prognostic significance. CONCLUSION Our results suggest that genome-wide alterations in DNA methylation occur during the early stages of CRC and demonstrate the methylation signatures associated with colorectal ADEs and CRC, suggesting prognostic biomarkers for CRC.
Collapse
Affiliation(s)
- You-Wang Lu
- Department of Dermatology and Venereology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| | - Zhao-Li Ding
- Kunming Biological Diversity Regional Center of Large Apparatus and Equipments, Public Technical Service Center, Kunming Institute of Zoology, Kunming 650223, Yunnan Province, China
| | - Rui Mao
- School of Stomatology, Kunming Medical University, Kunming 650500, Yunnan Province, China
| | - Gui-Gang Zhao
- Genome Center of Biodiversity, Kunming Institute of Zoology, Chinese Academy of Science, Kunming 650223, Yunnan Province, China
| | - Yu-Qi He
- Genome Center of Biodiversity, Kunming Institute of Zoology, Chinese Academy of Science, Kunming 650223, Yunnan Province, China
| | - Xiao-Lu Li
- Genome Center of Biodiversity, Kunming Institute of Zoology, Chinese Academy of Science, Kunming 650223, Yunnan Province, China
| | - Jiang Liu
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| |
Collapse
|
7
|
Gehring A, Huebner K, Rani H, Erlenbach-Wuensch K, Merkel S, Mahadevan V, Grutzmann R, Hartmann A, Schneider-Stock R. DNA demethylation and tri-methylation of H3K4 at the TACSTD2 promoter are complementary players for TROP2 regulation in colorectal cancer cells. Sci Rep 2024; 14:2683. [PMID: 38302503 PMCID: PMC10834991 DOI: 10.1038/s41598-024-52437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/18/2024] [Indexed: 02/03/2024] Open
Abstract
TROP2 is a powerful cancer driver in colorectal cancer cells. Divergent epigenetic regulation mechanisms for the corresponding TACSTD2 gene exist such as miRNAs or DNA methylation. However, the role of TACSTD2 promoter hypermethylation in colorectal cancer has not been investigated yet. In this study, TROP2 expression strongly correlated with promoter methylation in different colorectal tumor cell lines. Treatment with 5-Azacytidine, a DNMT1 inhibitor, led to demethylation of the TACSTD2 promoter accompanied by an increase in TROP2 protein expression. TROP2 expression correlated with promoter methylation in vivo in human colon tumor tissue, thereby verifying promoter methylation as an important factor in the regulation of TROP2 expression in colorectal cancer. When performing a ChIP-Seq analysis in HCT116 and HT29 cells, we found that TACSTD2 promoter demethylation was accompanied by tri-methylation of H3K4. In silico analysis of GSE156613 data set confirmed that a higher binding of histone mark H3K4me3 around the TACSTD2 promoter was found in TACSTD2 high expressing tumors of colon cancer patients compared to the corresponding adjacent tumor tissue. Moreover, the link between TROP2 and the H3K4me3 code was even evident in tumors showing high intratumoral heterogeneity for TROP2 staining. Our data provide novel evidence for promoter demethylation and simultaneous gains of the active histone mark H3K4me3 across CpG-rich sequences, both being complementary mechanisms in the transcriptional regulation of TACSTD2 in colon cancer. The functional consequences of TROP2 loss in colorectal cancer needs to be further investigated.
Collapse
Affiliation(s)
- A Gehring
- Experimental Tumorpathology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Institute of Pathology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - K Huebner
- Experimental Tumorpathology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Institute of Pathology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - H Rani
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bangalore, India
| | - K Erlenbach-Wuensch
- Institute of Pathology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - S Merkel
- Department of Surgery, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - V Mahadevan
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bangalore, India
| | - R Grutzmann
- Department of Surgery, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - A Hartmann
- Institute of Pathology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Bavarian Cancer Research Center (BZKF), Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), FAU Erlangen-Nürnberg, Erlangen, Germany
| | - R Schneider-Stock
- Experimental Tumorpathology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany.
- Institute of Pathology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany.
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Bavarian Cancer Research Center (BZKF), Erlangen, Germany.
- FAU Profile Center Immunomedicine (FAU I-MED), FAU Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
8
|
Tian W, Huang J, Zhang W, Wang Y, Jin R, Guo H, Tang Y, Wang Y, Lai H, Leung ELH. Harnessing natural product polysaccharides against lung cancer and revisit its novel mechanism. Pharmacol Res 2024; 199:107034. [PMID: 38070793 DOI: 10.1016/j.phrs.2023.107034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
The incidence and mortality of lung cancer are on the rise worldwide. However, the benefit of clinical treatment in lung cancer is limited. Owning to important sources of drug development, natural products have received constant attention around the world. Main ingredient polysaccharides in natural products have been found to have various activities in pharmacological research. In recent years, more and more scientists are looking for the effects and mechanisms of different natural product polysaccharides on lung cancer. In this review, we focus on the following aspects: First, natural product polysaccharides have been discovered to directly suppress the growth of lung cancer cells, which can be effective in limiting tumor progression. Additionally, polysaccharides have been considered to enhance immune function, which can play a pivotal role in fighting lung cancer. Lastly, polysaccharides can improve the efficacy of drugs in lung cancer treatment by regulating the gut microbiota. Overall, the research of natural product polysaccharides in the treatment of lung cancer is a promising area that has the potential to lead to new clinical treatments. With better understanding, natural product polysaccharides have the potential to become important components of future lung cancer treatments.
Collapse
Affiliation(s)
- Wangqi Tian
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Jumin Huang
- Cancer Center, Faculty of Health Sciences, and MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau
| | - Weitong Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Yifan Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Ruyi Jin
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Hui Guo
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Yuping Tang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Yuwei Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China.
| | - Huanling Lai
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangdong Province, China; Guangzhou Laboratory, Guangzhou 510005, Guangdong Province, China.
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Sciences, and MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau; State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau.
| |
Collapse
|
9
|
Lin X, Chen JD, Wang CY, Cai Z, Zhan R, Yang C, Zhang LY, Li LY, Xiao Y, Chen MK, Wu M. Cooperation of MLL1 and Jun in controlling H3K4me3 on enhancers in colorectal cancer. Genome Biol 2023; 24:268. [PMID: 38012744 PMCID: PMC10680327 DOI: 10.1186/s13059-023-03108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Enhancer dysregulation is one of the important features for cancer cells. Enhancers enriched with H3K4me3 have been implicated to play important roles in cancer. However, their detailed features and regulatory mechanisms have not been well characterized. RESULTS Here, we profile the landscape of H3K4me3-enriched enhancers (m3Es) in 43 pairs of colorectal cancer (CRC) samples. M3Es are widely distributed in CRC and averagely possess around 10% of total active enhancers. We identify 1322 gain variant m3Es and 367 lost variant m3Es in CRC. The target genes of the gain m3Es are enriched in immune response pathways. We experimentally prove that repression of CBX8 and RPS6KA5 m3Es inhibits target gene expression in CRC. Furthermore, we find histone methyltransferase MLL1 is responsible for depositing H3K4me3 on the identified Vm3Es. We demonstrate that the transcription factor AP1/JUN interacts with MLL1 and regulates m3E activity. Application of a small chemical inhibitor for MLL1 activity, OICR-9429, represses target gene expression of the identified Vm3Es, enhances anti-tumor immunity and inhibits CRC growth in an animal model. CONCLUSIONS Taken together, our study illustrates the genome-wide landscape and the regulatory mechanisms of m3Es in CRC, and reveals potential novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Xiang Lin
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Taikang Center for Life and Medical Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Ji-Dong Chen
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Taikang Center for Life and Medical Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Chen-Yu Wang
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Taikang Center for Life and Medical Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Zhen Cai
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Taikang Center for Life and Medical Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Rui Zhan
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Taikang Center for Life and Medical Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Chen Yang
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Taikang Center for Life and Medical Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - La-Ying Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Lian-Yun Li
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Taikang Center for Life and Medical Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Yong Xiao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China.
| | - Ming-Kai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China.
| | - Min Wu
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Taikang Center for Life and Medical Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China.
| |
Collapse
|
10
|
Liu F, Ma Y, Sun H, Cai H, Liang X, Xu C, Du L, Wang Y, Liu Q. SUMO1 Modification Stabilizes TET3 Protein and Increases Colorectal Cancer Radiation Therapy Sensitivity. Int J Radiat Oncol Biol Phys 2023; 117:942-954. [PMID: 37244630 DOI: 10.1016/j.ijrobp.2023.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/23/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
PURPOSE The aim of this work was to explore the role and mechanism of active DNA demethylase in colorectal cancer (CRC) radiation sensitization and better understand the function of DNA demethylation in tumor radiosensitization. METHODS AND MATERIALS Tested the effect of ten-eleven translocation 3 (TET3) overexpression on the sensitivity of CRC to radiation therapy through G2/M arrest, apoptosis, and clonogenic suppression. TET3 knockdown HCT 116 and TET3 knockdown LS 180 cell lines were constructed by siRNA technology, and the effect of exogenous knockdown of TET3 on radiation-induced apoptosis, cell cycle arrest, DNA damage, and clone formation in CRC cells were detected. The co-localization of TET3 and small ubiquitin-like modifier 1 (SUMO1), SUMO2/3 was detected by immunofluorescence and cytoplasmic-nuclear extraction, and the interaction between TET3 and SUMO1, SUMO2/3 was detected by a coimmunoprecipitation assay. RESULTS The malignant phenotype and radiosensitivity of CRC cell lines were favorably linked with TET3 protein and mRNA expression. TET3 is upregulated in 23 of the 27 tumor types investigated, including colon cancer. TET3 was shown to correlate with the CRC pathologic malignancy grade positively. Overexpression of TET3 in CRC cell lines increased radiation-induced apoptosis, G2/M phase arrest, DNA damage, and clonal suppression in vitro. The binding region of TET3 and SUMO2/3 was located at 833-1795 AA except for K1012, K1188, K1397, and K1623. SUMOylation of TET3 increased the stability of the TET3 protein without changing its nuclear localization. CONCLUSIONS We report the sensitizing role of TET3 protein in the radiation of CRC cells, depending on SUMO1 modification of TET3 at the lysine sites (K479, K758, K1012, K1188, K1397, K1623), in turn stabilizing TET3 expression in the nucleus and subsequently increasing the sensitivity of CRC to radiation therapy. Together, this study highlights the potentially critical role of TET3 SUMOylation in radiation regulation, which may contribute to an enhanced understanding of the relationship between DNA demethylation and radiation therapy.
Collapse
Affiliation(s)
- Fengting Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; Department of Radiation Oncology, The Afliated Cancer Hospital of Zhengzhou University, No. 127 Dongming Road, Zhengzhou 450008, Henan, China
| | - Ya Ma
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hao Sun
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hui Cai
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xin Liang
- School of Public Health, Tianjin Medical University, Tianjin, China; Tianjin Center for Disease Control and Prevention, Tianjin, China
| | - Chang Xu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Liqing Du
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
11
|
Zhao LY, Mei JX, Yu G, Lei L, Zhang WH, Liu K, Chen XL, Kołat D, Yang K, Hu JK. Role of the gut microbiota in anticancer therapy: from molecular mechanisms to clinical applications. Signal Transduct Target Ther 2023; 8:201. [PMID: 37179402 PMCID: PMC10183032 DOI: 10.1038/s41392-023-01406-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/21/2023] [Accepted: 03/12/2023] [Indexed: 05/15/2023] Open
Abstract
In the past period, due to the rapid development of next-generation sequencing technology, accumulating evidence has clarified the complex role of the human microbiota in the development of cancer and the therapeutic response. More importantly, available evidence seems to indicate that modulating the composition of the gut microbiota to improve the efficacy of anti-cancer drugs may be feasible. However, intricate complexities exist, and a deep and comprehensive understanding of how the human microbiota interacts with cancer is critical to realize its full potential in cancer treatment. The purpose of this review is to summarize the initial clues on molecular mechanisms regarding the mutual effects between the gut microbiota and cancer development, and to highlight the relationship between gut microbes and the efficacy of immunotherapy, chemotherapy, radiation therapy and cancer surgery, which may provide insights into the formulation of individualized therapeutic strategies for cancer management. In addition, the current and emerging microbial interventions for cancer therapy as well as their clinical applications are summarized. Although many challenges remain for now, the great importance and full potential of the gut microbiota cannot be overstated for the development of individualized anti-cancer strategies, and it is necessary to explore a holistic approach that incorporates microbial modulation therapy in cancer.
Collapse
Affiliation(s)
- Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-Xin Mei
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Yu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University; Frontier Innovation Center for Dental Medicine Plus, Sichuan University, Chengdu, China
| | - Wei-Han Zhang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Liu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Long Chen
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Damian Kołat
- Department of Experimental Surgery, Medical University of Lodz, Lodz, Poland
| | - Kun Yang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Jian-Kun Hu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Mokhtari K, Peymani M, Rashidi M, Hushmandi K, Ghaedi K, Taheriazam A, Hashemi M. Colon cancer transcriptome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:49-82. [PMID: 37059270 DOI: 10.1016/j.pbiomolbio.2023.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Over the last four decades, methodological innovations have continuously changed transcriptome profiling. It is now feasible to sequence and quantify the transcriptional outputs of individual cells or thousands of samples using RNA sequencing (RNA-seq). These transcriptomes serve as a connection between cellular behaviors and their underlying molecular mechanisms, such as mutations. This relationship, in the context of cancer, provides a chance to unravel tumor complexity and heterogeneity and uncover novel biomarkers or treatment options. Since colon cancer is one of the most frequent malignancies, its prognosis and diagnosis seem to be critical. The transcriptome technology is developing for an earlier and more accurate diagnosis of cancer which can provide better protectivity and prognostic utility to medical teams and patients. A transcriptome is a whole set of expressed coding and non-coding RNAs in an individual or cell population. The cancer transcriptome includes RNA-based changes. The combined genome and transcriptome of a patient may provide a comprehensive picture of their cancer, and this information is beginning to affect treatment decision-making in real-time. A full assessment of the transcriptome of colon (colorectal) cancer has been assessed in this review paper based on risk factors such as age, obesity, gender, alcohol use, race, and also different stages of cancer, as well as non-coding RNAs like circRNAs, miRNAs, lncRNAs, and siRNAs. Similarly, they have been examined independently in the transcriptome study of colon cancer.
Collapse
Affiliation(s)
- Khatere Mokhtari
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
13
|
Zhou L, Pan LZ, Fan YJ. DNMT3b affects colorectal cancer development by regulating FLI1 through DNA hypermethylation. Kaohsiung J Med Sci 2023; 39:364-376. [PMID: 36655868 DOI: 10.1002/kjm2.12647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 01/20/2023] Open
Abstract
Friend leukemia integration 1 (FLI1) is an ETS transcription factor family member. Here, we identified cg11017065 as the most hyper-methylated cytosine and guanine (CpG) in colorectal cancer (CRC), which belongs to the FLI1 gene. Moreover, integrated bioinformatics prediction and analysis of our cohort showed that FLI1 expression was downregulated and DNA methylation was elevated in CRC. Bioinformatics prediction also indicated that patients overexpressing FLI1 had higher survival rates than those with low FLI1 expression. CRC cells with ectopic expression of FLI1 had reduced invasion, migration, cloning ability and increased apoptosis. Furthermore, DNA-methyltransferase 3b (DNMT3b) was found to be significantly overexpressed in CRC, and low DNMT3b expression predicted a prolonged survival. DNMT3b bound to the FLI1 promoter. Inhibition of DNMT3b increased FLI1 expression and inhibited the malignant phenotype of CRC cells. Inhibition of FLI1 reversed the phenotypic modulation by DNMT3b depletion in vitro and in vivo. In conclusion, our data indicate that DNMT3b potentiates CRC cell proliferation, migration, and invasion through downregulating FLI1.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Gastroenterology, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, Jiangsu, People's Republic of China
| | - Li-Zhen Pan
- Department of Gastroenterology, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, Jiangsu, People's Republic of China
| | - Yue-Juan Fan
- Department of Gastroenterology, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|
14
|
Bhootra S, Jill N, Shanmugam G, Rakshit S, Sarkar K. DNA methylation and cancer: transcriptional regulation, prognostic, and therapeutic perspective. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2023; 40:71. [PMID: 36602616 DOI: 10.1007/s12032-022-01943-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/25/2022] [Indexed: 01/06/2023]
Abstract
DNA methylation is one among the major grounds of cancer progression which is characterized by the addition of a methyl group to the promoter region of the gene thereby causing gene silencing or increasing the probability of mutations; however, in bacteria, methylation is used as a defense mechanism where DNA protection is by addition of methyl groups making restriction enzymes unable to cleave. Hypermethylation and hypomethylation both pose as leading causes of oncogenesis; the former being more frequent which occurs at the CpG islands present in the promoter region of the genes, whereas the latter occurs globally in various genomic sequences. Reviewing methylation profiles would help in the detection and treatment of cancers. Demethylation is defined as preventing methyl group addition to the cytosine DNA base which could cause cancers in case of global hypomethylation, however, upon further investigation; it could be used as a therapeutic tool as well as for drug design in cancer treatment. In this review, we have studied the molecules that induce and enzymes (DNMTs) that bring about methylation as well as comprehend the correlation between methylation with transcription factors and various signaling pathways. DNA methylation has also been reviewed in terms of how it could serve as a prognostic marker and the various therapeutic drugs that have come into the market for reversing methylation opening an avenue toward curing cancers.
Collapse
Affiliation(s)
- Sannidhi Bhootra
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Nandana Jill
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Geetha Shanmugam
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Sudeshna Rakshit
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
15
|
Athanasopoulou K, Daneva GN, Boti MA, Dimitroulis G, Adamopoulos PG, Scorilas A. The Transition from Cancer "omics" to "epi-omics" through Next- and Third-Generation Sequencing. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122010. [PMID: 36556377 PMCID: PMC9785810 DOI: 10.3390/life12122010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
Deciphering cancer etiopathogenesis has proven to be an especially challenging task since the mechanisms that drive tumor development and progression are far from simple. An astonishing amount of research has revealed a wide spectrum of defects, including genomic abnormalities, epigenomic alterations, disturbance of gene transcription, as well as post-translational protein modifications, which cooperatively promote carcinogenesis. These findings suggest that the adoption of a multidimensional approach can provide a much more precise and comprehensive picture of the tumor landscape, hence serving as a powerful tool in cancer research and precision oncology. The introduction of next- and third-generation sequencing technologies paved the way for the decoding of genetic information and the elucidation of cancer-related cellular compounds and mechanisms. In the present review, we discuss the current and emerging applications of both generations of sequencing technologies, also referred to as massive parallel sequencing (MPS), in the fields of cancer genomics, transcriptomics and proteomics, as well as in the progressing realms of epi-omics. Finally, we provide a brief insight into the expanding scope of sequencing applications in personalized cancer medicine and pharmacogenomics.
Collapse
|
16
|
Ali SR, Humphreys KJ, Simpson K, McKinnon RA, Meech R, Michael MZ. Functional high-throughput screen identifies microRNAs that promote butyrate-induced death in colorectal cancer cells. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 30:30-47. [PMID: 36189423 PMCID: PMC9485215 DOI: 10.1016/j.omtn.2022.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/24/2022] [Indexed: 12/24/2022]
Abstract
The gut fermentation product butyrate displays anti-cancer properties in the human proximal colon, including the ability to inhibit proliferation and induce apoptosis in colorectal cancer (CRC) cells. A natural histone deacetylase inhibitor (HDACi), butyrate can alter histone acetylation patterns in CRC cells, and thereby regulate global gene expression, including the non-coding transcriptome and microRNAs (miRNAs). Dysregulated miRNA expression affects CRC development and progression; however, the interplay between miRNA activity and butyrate response remains to be elucidated. A high-throughput functional screen was employed to identify miRNAs that can act as enhancers of the anti-cancer properties of butyrate. Validation studies confirmed that several miRNAs, including miR-125b, miR-181a, miR-593, and miR-1227, enhanced apoptosis, decreased proliferation, and promoted cell-cycle arrest in the presence of butyrate. Pathway analyses of predicted miRNA target genes highlighted their likely involvement in critical cancer-related growth pathways, including WNT and PI3K signaling. Several cancer-associated miRNA targets, including TRIM29, COX2, PIK3R3, CCND1, MET, EEF2K, DVL3, and NUP62 were synergistically regulated by the combination of cognate miRNAs and butyrate. Overall, this study has exposed the potential of miRNAs to act as enhancers of the anti-cancer effects of HDAC inhibition and identifies specific miRNAs that might be exploited for therapeutic benefit.
Collapse
|
17
|
Wilson SL, Shen SY, Harmon L, Burgener JM, Triche T, Bratman SV, De Carvalho DD, Hoffman MM. Sensitive and reproducible cell-free methylome quantification with synthetic spike-in controls. CELL REPORTS METHODS 2022; 2:100294. [PMID: 36160046 PMCID: PMC9499995 DOI: 10.1016/j.crmeth.2022.100294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/17/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
Cell-free methylated DNA immunoprecipitation sequencing (cfMeDIP-seq) identifies genomic regions with DNA methylation, using a protocol adapted to work with low-input DNA samples and with cell-free DNA (cfDNA). We developed a set of synthetic spike-in DNA controls for cfMeDIP-seq to provide a simple and inexpensive reference for quantitative normalization. We designed 54 DNA fragments with combinations of methylation status (methylated and unmethylated), fragment length (80 bp, 160 bp, 320 bp), G + C content (35%, 50%, 65%), and fraction of CpG dinucleotides within the fragment (1/80 bp, 1/40 bp, 1/20 bp). Using 0.01 ng of spike-in controls enables training a generalized linear model that absolutely quantifies methylated cfDNA in MeDIP-seq experiments. It mitigates batch effects and corrects for biases in enrichment due to known biophysical properties of DNA fragments and other technical biases.
Collapse
Affiliation(s)
- Samantha L. Wilson
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Shu Yi Shen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Justin M. Burgener
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Tim Triche
- Van Andel Institute, Grand Rapids, MI, USA
| | - Scott V. Bratman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Daniel D. De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Michael M. Hoffman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
| |
Collapse
|
18
|
Krieg C, Weber LM, Fosso B, Marzano M, Hardiman G, Olcina MM, Domingo E, El Aidy S, Mallah K, Robinson MD, Guglietta S. Complement downregulation promotes an inflammatory signature that renders colorectal cancer susceptible to immunotherapy. J Immunother Cancer 2022; 10:e004717. [PMID: 36137652 PMCID: PMC9511657 DOI: 10.1136/jitc-2022-004717] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND AND AIMS The role of inflammatory immune responses in colorectal cancer (CRC) development and response to therapy is a matter of intense debate. While inflammation is a known driver of CRC, inflammatory immune infiltrates are a positive prognostic factor in CRC and predispose to response to immune checkpoint blockade (ICB) therapy. Unfortunately, over 85% of CRC cases are primarily unresponsive to ICB due to the absence of an immune infiltrate, and even the cases that show an initial immune infiltration can become refractory to ICB. The identification of therapy supportive immune responses in the field has been partially hindered by the sparsity of suitable mouse models to recapitulate the human disease. In this study, we aimed to understand how the dysregulation of the complement anaphylatoxin C3a receptor (C3aR), observed in subsets of patients with CRC, affects the immune responses, the development of CRC, and response to ICB therapy. METHODS We use a comprehensive approach encompassing analysis of publicly available human CRC datasets, inflammation-driven and newly generated spontaneous mouse models of CRC, and multiplatform high-dimensional analysis of immune responses using microbiota sequencing, RNA sequencing, and mass cytometry. RESULTS We found that patients' regulation of the complement C3aR is associated with epigenetic modifications. Specifically, downregulation of C3ar1 in human CRC promotes a tumor microenvironment characterized by the accumulation of innate and adaptive immune cells that support antitumor immunity. In addition, in vivo studies in our newly generated mouse model revealed that the lack of C3a in the colon activates a microbiota-mediated proinflammatory program which promotes the development of tumors with an immune signature that renders them responsive to the ICB therapy. CONCLUSIONS Our findings reveal that C3aR may act as a previously unrecognized checkpoint to enhance antitumor immunity in CRC. C3aR can thus be exploited to overcome ICB resistance in a larger group of patients with CRC.
Collapse
Affiliation(s)
- Carsten Krieg
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
- Hollings Cancer Center Charleston, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lukas M Weber
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Bruno Fosso
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Marinella Marzano
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Gary Hardiman
- School of Biological Sciences and Institute for Global Food Security, Queens University of Belfast, Belfast, UK
| | - Monica M Olcina
- Institute of Radiation Oncology, Medical Research Council Oxford Institute for Radiation Oncology, Oxford, UK
| | - Enric Domingo
- Institute of Radiation Oncology, Medical Research Council Oxford Institute for Radiation Oncology, Oxford, UK
| | - Sahar El Aidy
- Host-microbe Metabolic Interactions, Microbiology, University of Groningen, Groningen, The Netherlands
| | - Khalil Mallah
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Mark D Robinson
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Silvia Guglietta
- Hollings Cancer Center Charleston, Medical University of South Carolina, Charleston, South Carolina, USA
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
19
|
Ma Z, Wang Y, Quan Y, Wang Z, Liu Y, Ding Z. Maternal obesity alters methylation level of cytosine in CpG island for epigenetic inheritance in fetal umbilical cord blood. Hum Genomics 2022; 16:34. [PMID: 36045397 PMCID: PMC9429776 DOI: 10.1186/s40246-022-00410-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Over the past few decades, global maternal obesity prevalence has rapidly increased. This condition may induce long-lasting pathophysiological effects on either fetal or infant health that could be attributable to unknown unique changes in the umbilical blood composition. METHODS A total of 34 overweight/obese and 32 normal-weight pregnant women were recruited. Fifteen umbilical blood samples including 8 overweight/obese subjects and 7 normal weight women were sequenced using Targeted Bisulfite Sequencing technology to detect the average methylation level of cytosine and identify the differentially methylated region (DMR). GO and KEGG analyses were then employed to perform pathway enrichment analysis of DMR-related genes and promoters. Moreover, the mRNA levels of methylation-related genes histone deacetylases (HDACs) and DNA methyltransferases (DNMTs) were characterized in the samples obtained from these two groups. RESULTS Average methylated cytosine levels in both the CpG islands (CGI) and promoter significantly decreased in overweight/obese groups. A total of 1669 DMRs exhibited differences in their DNA methylation status between the overweight/obese and control groups. GO and KEGG analyses revealed that DMR-related genes and promoters were enriched in the metabolism, cancer and cardiomyopathy signaling pathways. Furthermore, the HDACs and DNMTs mRNA levels trended to decline in overweight/obese groups. CONCLUSIONS Decreased methylated cytosine levels in overweight/obese women induce the gene expression activity at a higher level than in the control group. DMRs between these two groups in the fetal blood may contribute to the changes in gene transcription that underlie the increased risk of metabolic disorders, cancers and cardiomyopathy in their offspring.
Collapse
Affiliation(s)
- Zhuoyao Ma
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, No.280, Chongqing Road (South), Shanghai, 200025, China
| | - Yingjin Wang
- Department of Obstetrics and Gynecology, Shanghai Eighth People's Hospital, Shanghai, 200235, China
| | - Yanmei Quan
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, No.280, Chongqing Road (South), Shanghai, 200025, China
| | - Zhijie Wang
- Department of Obstetrics and Gynecology, Shanghai Eighth People's Hospital, Shanghai, 200235, China.
| | - Yue Liu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, No.280, Chongqing Road (South), Shanghai, 200025, China.
| | - Zhide Ding
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, No.280, Chongqing Road (South), Shanghai, 200025, China.
| |
Collapse
|
20
|
Zhou X, Wang L, Xiao J, Sun J, Yu L, Zhang H, Meng X, Yuan S, Timofeeva M, Law PJ, Houlston RS, Ding K, Dunlop MG, Theodoratou E, Li X. Alcohol consumption, DNA methylation and colorectal cancer risk: Results from pooled cohort studies and Mendelian randomization analysis. Int J Cancer 2022; 151:83-94. [PMID: 35102554 PMCID: PMC9487984 DOI: 10.1002/ijc.33945] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/16/2021] [Accepted: 01/11/2022] [Indexed: 11/07/2022]
Abstract
Alcohol consumption is thought to be one of the modifiable risk factors for colorectal cancer (CRC). However, the causality and mechanisms by which alcohol exerts its carcinogenic effect are unclear. We evaluated the association between alcohol consumption and CRC risk by analyzing data from 32 cohort studies and conducted two-sample Mendelian randomization (MR) analysis to examine for casual relationship. To explore the effect of alcohol related DNA methylation on CRC risk, we performed an epigenetic MR analysis with data from an epigenome-wide association study (EWAS). We additionally performed gene-alcohol interaction analysis nested in the UK Biobank to assess effect modification between alcohol consumption and susceptibility genes. We discovered distinct effects of alcohol on CRC incidence and mortality from the meta-analyses, and genetic predisposition to alcohol drinking was causally associated with an increased CRC risk (OR = 1.79, 95% CI: 1.23-2.61) using two-sample MR approaches. In epigenetic MR analysis, two alcohol-related CpG sites (cg05593667 and cg10045354 mapped to COLCA1/COLCA2 gene) were identified causally associated with an increased CRC risk (P < 8.20 × 10-4 ). Gene-alcohol interaction analysis revealed that carriage of the risk allele of the eQTL (rs3087967) and mQTL (rs11213823) polymorphism of COLCA1/COLCA2 would interact with alcohol consumption to increase CRC risk (PInteraction = .027 and PInteraction = .016). Our study provides comprehensive evidence to elucidate the role of alcohol in CRC and highlights that the pathogenic effect of alcohol on CRC could be partly attributed to DNA methylation by regulating the expression of COLCA1/COLCA2 gene.
Collapse
Affiliation(s)
- Xuan Zhou
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Lijuan Wang
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Jiarui Xiao
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Jing Sun
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Lili Yu
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Han Zhang
- College of Public HealthZhengzhou UniversityZhengzhouHenanChina
| | - Xiangrui Meng
- Division of PsychiatryUniversity College of LondonLondonUK
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional EpidemiologyInstitute of Environmental Medicine, Karolinska InstitutetStockholmSweden
| | - Maria Timofeeva
- Danish Institute for Advanced Study (DIAS), Epidemiology, Biostatistics and Biodemography Research Unit, Institute of Public Health, University of Southern DenmarkOdenseDenmark
- Cancer Research UK Edinburgh CentreMedical Research Council Institute of Genetics and Cancer, University of EdinburghEdinburghUK
| | - Philip J. Law
- Division of Genetics and EpidemiologyThe Institute of Cancer ResearchLondonUK
| | - Richard S. Houlston
- Division of Genetics and EpidemiologyThe Institute of Cancer ResearchLondonUK
| | - Kefeng Ding
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang UniversityHangzhouZhejiangChina
| | - Malcolm G. Dunlop
- Cancer Research UK Edinburgh CentreMedical Research Council Institute of Genetics and Cancer, University of EdinburghEdinburghUK
| | - Evropi Theodoratou
- Cancer Research UK Edinburgh CentreMedical Research Council Institute of Genetics and Cancer, University of EdinburghEdinburghUK
- Centre for Global HealthUsher Institute, University of EdinburghEdinburghUK
| | - Xue Li
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| |
Collapse
|
21
|
Jiang HH, Xing SW, Tang X, Chen Y, Lin K, He LW, Lin MB, Tang EJ. Novel multiplex stool-based assay for the detection of early-stage colon cancer in a Chinese population. World J Gastroenterol 2022; 28:2705-2732. [PMID: 35979157 PMCID: PMC9260868 DOI: 10.3748/wjg.v28.i24.2705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/14/2022] [Accepted: 05/14/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Stool DNA (sDNA) methylation analysis is a promising, noninvasive approach for colorectal cancer screening; however, reliable biomarkers for detecting early-stage colon cancer (ECC) are lacking, particularly in the Chinese population.
AIM To identify a novel stool-based assay that can improve the effectiveness of ECC screening.
METHODS A blinded case-control study was performed using archived stool samples from 125 ECC patients, and 125 control subjects with normal colonoscopy. The cohort was randomly divided into training and test sets at a 1.5:1 ratio. Targeted bisulfite sequencing (TBSeq) was conducted on five pairs of preoperative and postop-erative sDNA samples from ECC patients to identify DNA methylation biomarkers, which were validated using pyrosequencing. By logistic regression analysis, a multiplex stool-based assay was developed in the training set, and the detection performance was further assessed in the test set and combined set. The χ2 test was used to investigate the association of detection sensitivity with clinico-pathological features.
RESULTS Following TBSeq, three hypermethylated cytosine-guanine sites were selected as biomarkers, including paired box 8, Ras-association domain family 1 and secreted frizzled-related protein 2, which differed between the groups and were involved in important cancer pathways. An sDNA panel containing the three biomarkers was constructed with a logistic model. Receiver operating characteristic (ROC) analysis revealed that this panel was superior to the fecal immunochemical test (FIT) or serum carcinoembryonic antigen for the detection of ECC. We further found that the combination of the sDNA panel with FIT could improve the screening effectiveness. In the combined set, the sensitivity, specificity and area under the ROC curve for this multiplex assay were 80.0%, 93.6% and 0.918, respectively, and the performance remained excellent in the subgroup analysis by tumor stage. In addition, the detection sensitivity did not differ with tumor site, tumor stage, histological differentiation, age or sex, but was significantly higher in T4 than in T1-3 stage tumors (P = 0.041).
CONCLUSION We identified a novel multiplex stool-based assay combining sDNA methylation biomarkers and FIT, which could detect ECC with high sensitivity and specificity throughout the colon, showing a promising application perspective.
Collapse
Affiliation(s)
- Hui-Hong Jiang
- Department of General Surgery, Yangpu Hospital, Tongji University, Shanghai 200090, China
- Institute of Gastrointestinal Surgery and Translational Medicine, Tongji University School of Medicine, Shanghai 200090, China
| | - Si-Wei Xing
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University, Shanghai 200090, China
| | - Xuan Tang
- Department of General Surgery, Yangpu Hospital, Tongji University, Shanghai 200090, China
| | - Ying Chen
- Institute of Gastrointestinal Surgery and Translational Medicine, Tongji University School of Medicine, Shanghai 200090, China
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University, Shanghai 200090, China
| | - Kang Lin
- Department of General Surgery, Yangpu Hospital, Tongji University, Shanghai 200090, China
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University, Shanghai 200090, China
| | - Lu-Wei He
- Institute of Gastrointestinal Surgery and Translational Medicine, Tongji University School of Medicine, Shanghai 200090, China
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University, Shanghai 200090, China
| | - Mou-Bin Lin
- Department of General Surgery, Yangpu Hospital, Tongji University, Shanghai 200090, China
- Institute of Gastrointestinal Surgery and Translational Medicine, Tongji University School of Medicine, Shanghai 200090, China
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University, Shanghai 200090, China
| | - Er-Jiang Tang
- Institute of Gastrointestinal Surgery and Translational Medicine, Tongji University School of Medicine, Shanghai 200090, China
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University, Shanghai 200090, China
| |
Collapse
|
22
|
Fatemi N, Tierling S, Es HA, Varkiani M, Nazemalhosseini Mojarad E, Asadzadeh Aghdaei H, Walter J, Totonchi M. DNA Methylation Biomarkers in Colorectal Cancer: Clinical Applications for Precision Medicine. Int J Cancer 2022; 151:2068-2081. [PMID: 35730647 DOI: 10.1002/ijc.34186] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/29/2022] [Accepted: 06/08/2022] [Indexed: 11/06/2022]
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer death worldwide that is attributed to gradual long-term accumulation of both genetic and epigenetic changes. To reduce the mortality rate of CRC and to improve treatment efficacy, it will be important to develop accurate noninvasive diagnostic tests for screening, acute, and personalized diagnosis. Epigenetic changes such as DNA methylation play an important role in the development and progression of CRC. Over the last decade, a panel of DNA methylation markers has been reported showing a high accuracy and reproducibility in various semi-invasive or noninvasive biosamples. Research to obtain comprehensive panels of markers allowing a highly sensitive and differentiating diagnosis of CRC is ongoing. Moreover, the epigenetic alterations for cancer therapy, as a precision medicine strategy will increase their therapeutic potential over time. Here, we discuss the current state of DNA methylation-based biomarkers and their impact on CRC diagnosis. We emphasize the need to further identify and stratify methylation-biomarkers and to develop robust and effective detection methods that are applicable for a routine clinical setting of CRC diagnostics particularly at the early stage of the disease.
Collapse
Affiliation(s)
- Nayeralsadat Fatemi
- Basic & Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sascha Tierling
- Department of Genetics/Epigenetics, Faculty NT, Life Sciences, Saarland University, Saarbrücken, Germany
| | | | - Maryam Varkiani
- Department of Molecular Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Ehsan Nazemalhosseini Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic & Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jörn Walter
- Department of Genetics/Epigenetics, Faculty NT, Life Sciences, Saarland University, Saarbrücken, Germany
| | - Mehdi Totonchi
- Basic & Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
23
|
Mekonnen N, Yang H, Shin YK. Homologous Recombination Deficiency in Ovarian, Breast, Colorectal, Pancreatic, Non-Small Cell Lung and Prostate Cancers, and the Mechanisms of Resistance to PARP Inhibitors. Front Oncol 2022; 12:880643. [PMID: 35785170 PMCID: PMC9247200 DOI: 10.3389/fonc.2022.880643] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022] Open
Abstract
Homologous recombination (HR) is a highly conserved DNA repair mechanism that protects cells from exogenous and endogenous DNA damage. Breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) play an important role in the HR repair pathway by interacting with other DNA repair proteins such as Fanconi anemia (FA) proteins, ATM, RAD51, PALB2, MRE11A, RAD50, and NBN. These pathways are frequently aberrant in cancer, leading to the accumulation of DNA damage and genomic instability known as homologous recombination deficiency (HRD). HRD can be caused by chromosomal and subchromosomal aberrations, as well as by epigenetic inactivation of tumor suppressor gene promoters. Deficiency in one or more HR genes increases the risk of many malignancies. Another conserved mechanism involved in the repair of DNA single-strand breaks (SSBs) is base excision repair, in which poly (ADP-ribose) polymerase (PARP) enzymes play an important role. PARP inhibitors (PARPIs) convert SSBs to more cytotoxic double-strand breaks, which are repaired in HR-proficient cells, but remain unrepaired in HRD. The blockade of both HR and base excision repair pathways is the basis of PARPI therapy. The use of PARPIs can be expanded to sporadic cancers displaying the “BRCAness” phenotype. Although PARPIs are effective in many cancers, their efficacy is limited by the development of resistance. In this review, we summarize the prevalence of HRD due to mutation, loss of heterozygosity, and promoter hypermethylation of 35 DNA repair genes in ovarian, breast, colorectal, pancreatic, non-small cell lung cancer, and prostate cancer. The underlying mechanisms and strategies to overcome PARPI resistance are also discussed.
Collapse
Affiliation(s)
- Negesse Mekonnen
- Department of Pharmacy, Research Institute of Pharmaceutical Science, Seoul National University College of Pharmacy, Seoul, South Korea
- Department of Veterinary Science, School of Animal Science and Veterinary Medicine, Bahir Dar University, Bahir Dar, Ethiopia
| | - Hobin Yang
- Department of Pharmacy, Research Institute of Pharmaceutical Science, Seoul National University College of Pharmacy, Seoul, South Korea
| | - Young Kee Shin
- Department of Pharmacy, Research Institute of Pharmaceutical Science, Seoul National University College of Pharmacy, Seoul, South Korea
- Bio-MAX/N-Bio, Seoul National University, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University Graduate School of Convergence Science and Technology, Seoul, South Korea
- LOGONE Bio Convergence Research Foundation, Center for Companion Diagnostics, Seoul, South Korea
- *Correspondence: Young Kee Shin,
| |
Collapse
|
24
|
Chen L, Luo Z, Zhao C, Li Q, Geng Y, Xiao Y, Chen MK, Li L, Chen ZX, Wu M. Dynamic Chromatin States Coupling with Key Transcription Factors in Colitis-Associated Colorectal Cancer. ADVANCED SCIENCE 2022; 9:e2200536. [PMID: 35712778 PMCID: PMC9376751 DOI: 10.1002/advs.202200536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/14/2022] [Indexed: 12/13/2022]
Abstract
Inflammation is one of the critical risk factors for colorectal cancer (CRC). However, the mechanisms for transition from colitis to CRC remain elusive. Recently, epigenetic changes have emerged as important regulatory factors for colitis-associated cancer. Here, a systematic epigenomic study of histone modifications is performed, including H3K4me1, H3K4me3, H3K27ac, H3K27me3 and H3K9me3, in an AOM-DSS-induced CRC mouse model. In combination with transcriptomic data, the authors generate a dataset of 105 deep sequencing files and illustrate the dynamic landscape of chromatin states at five time points during inflammation-cancer transition. Functional gene clusters are identified based on dynamic transcriptomic and epigenomic information, and key signaling pathways in the process are illustrated. This study's results reveal that enhancer state regions play important roles during inflammation-cancer transition. It predicts novel transcription factors based on enhancer information, and experimentally proves OTX2 as a critical tumor suppressive transcription factor. Taken together, this study provides comprehensive epigenomic data and reveals novel molecular mechanisms for colitis-associated cancer.
Collapse
Affiliation(s)
- Lin Chen
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Zhihui Luo
- Hubei Hongshan Laboratory, Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, College of Biomedicine and Health, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chen Zhao
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Qinglan Li
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Yingjie Geng
- Hubei Hongshan Laboratory, Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, College of Biomedicine and Health, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yong Xiao
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Ming-Kai Chen
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Lianyun Li
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Zhen-Xia Chen
- Hubei Hongshan Laboratory, Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, College of Biomedicine and Health, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, China.,Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, 518000, China.,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Min Wu
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| |
Collapse
|
25
|
Zhang G, Shang H, Liu B, Wu G, Wu D, Wang L, Li S, Wang Z, Wang S, Yuan J. Increased ATP2A1 Predicts Poor Prognosis in Patients With Colorectal Carcinoma. Front Genet 2022; 13:661348. [PMID: 35783262 PMCID: PMC9243465 DOI: 10.3389/fgene.2022.661348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/01/2022] [Indexed: 11/14/2022] Open
Abstract
Colorectal cancer is one of the most common malignant tumors in the digestive system. Traditional diagnosis and treatment methods have not significantly improved the overall survival of patients. In this study, we explored the value of ATP2A1 as a biomarker in predicting the prognosis of colorectal cancer patients. We used the TCGA database to reveal the relationship between ATP2A1 mRNA level and prognosis, methylation, and immune invasion in colorectal cancer. The results showed that the expression of ATP2A1 was increased in colorectal cancer. The overall survival of patients with high expression of ATP2A1 was significantly lower than patients with low expression of ATP2A1. Cox regression analysis showed that high expression of ATP2A1 was an independent risk factor for poor prognosis in colorectal cancer patients. In addition, we used three datasets to perform a meta-analysis, which further confirmed the reliability of the results. Furthermore, we revealed that ATP2A1 could significantly inhibit the proliferation of colorectal cancer cells by inhibiting the autophagy process and was associated with several immune cells, especially CD8 + T cells. Finally, four small molecule drugs with potential inhibition of ATP2A1 expression were found by CMap analysis. This study demonstrates for the first time that ATP2A1 is a potential pathogenic factor, which may play a significant role in colorectal cancer.
Collapse
Affiliation(s)
- Guoshun Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, China
- Department of Gastroenterology, Affiliated Hospital of North China University of Technology, Tangshan, China
| | - Hua Shang
- Blood Purification Department of Tangshan Infectious Disease Hospital, Tangshan, China
| | - Bin Liu
- Department of Gastroenterology, Chaisang District People’s Hospital, Jiujiang, China
| | - Guikai Wu
- Department of Gastroenterology, Tangshan Workers’ Hospital, Tangshan, China
| | - Diyang Wu
- Department of Gastroenterology, Tangshan Workers’ Hospital, Tangshan, China
| | - Liuqing Wang
- Department of Gastroenterology, Hongci Hospital, Tangshan, China
| | - Shengnan Li
- Department of Gastroenterology, Affiliated Hospital of North China University of Technology, Tangshan, China
| | - Zhiyuan Wang
- Department of Gastroenterology, Affiliated Hospital of North China University of Technology, Tangshan, China
| | - Suying Wang
- Department of Gastroenterology, Affiliated Hospital of North China University of Technology, Tangshan, China
| | - Juxiang Yuan
- School of Public Health, North China University of Science and Technology, Tangshan, China
- *Correspondence: Juxiang Yuan,
| |
Collapse
|
26
|
Xu L, Fang YJ, Che MM, Abulimiti A, Huang CY, Zhang CX. Association of Serum Pyridoxal-5'-Phosphate, Pyridoxal, and PAr with Colorectal Cancer Risk: A Large-Scale Case-Control Study. Nutrients 2022; 14:nu14122389. [PMID: 35745119 PMCID: PMC9230157 DOI: 10.3390/nu14122389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 12/04/2022] Open
Abstract
Previous epidemiological studies have focused on the association of dietary vitamin B6 or circulating pyridoxal-5′-phosphate (PLP) with colorectal cancer risk. This study aimed to investigate the vitamin B6 in relation to colorectal cancer risk combining the biomarkers of PLP, pyridoxal (PL) plus PLP, and PAr (the ratio of 4-pyridoxic acid over the sum of PLP and PL). A large-scale hospital-based case-control study was conducted in Guangdong Province, China, which included 1233 colorectal cancer cases and 1245 sex and age frequency-matched controls. Serum PLP, PL, and 4-pyridoxic acid (PA) were detected with ultra-high-performance liquid chromatography−tandem mass spectrometry. Unconditional logistic regression models were used to assess the odds ratios (ORs) and 95% confidence intervals (95% CIs). Serum PLP and the sum of PLP and PL were inversely associated with colorectal cancer risk, while PAr was positively associated with colorectal cancer risk. Comparing the highest with the lowest quartile, the adjusted OR (95% CI) was 0.26 (0.20−0.33, Ptrend < 0.001) for serum PLP, 0.51 (0.40−0.66, Ptrend < 0.001) for serum PLP plus PL, and 2.90 (2.25−3.75, Ptrend < 0.001) for PAr. Serum PLP and PAr had significantly stronger associations with colorectal cancer risk in the male group and smoking group. Our results supported the protective role of vitamin B6 in colorectal cancer risk among Chinese people. The positive association of PAr with colorectal cancer risk suggested the potential role of inflammation and oxidative stress in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Lei Xu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (L.X.); (M.-M.C.); (A.A.); (C.-Y.H.)
| | - Yu-Jing Fang
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou 510060, China;
| | - Meng-Meng Che
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (L.X.); (M.-M.C.); (A.A.); (C.-Y.H.)
| | - Alinuer Abulimiti
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (L.X.); (M.-M.C.); (A.A.); (C.-Y.H.)
| | - Chu-Yi Huang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (L.X.); (M.-M.C.); (A.A.); (C.-Y.H.)
| | - Cai-Xia Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (L.X.); (M.-M.C.); (A.A.); (C.-Y.H.)
- Correspondence: ; Tel.: +86-20-87331943; Fax: +86-20-87330446
| |
Collapse
|
27
|
Epithelial de-differentiation triggered by co-ordinate epigenetic inactivation of the EHF and CDX1 transcription factors drives colorectal cancer progression. Cell Death Differ 2022; 29:2288-2302. [PMID: 35606410 PMCID: PMC9613692 DOI: 10.1038/s41418-022-01016-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 11/28/2022] Open
Abstract
Colorectal cancers (CRCs) often display histological features indicative of aberrant differentiation but the molecular underpinnings of this trait and whether it directly drives disease progression is unclear. Here, we identify co-ordinate epigenetic inactivation of two epithelial-specific transcription factors, EHF and CDX1, as a mechanism driving differentiation loss in CRCs. Re-expression of EHF and CDX1 in poorly-differentiated CRC cells induced extensive chromatin remodelling, transcriptional re-programming, and differentiation along the enterocytic lineage, leading to reduced growth and metastasis. Strikingly, EHF and CDX1 were also able to reprogramme non-colonic epithelial cells to express colonic differentiation markers. By contrast, inactivation of EHF and CDX1 in well-differentiated CRC cells triggered tumour de-differentiation. Mechanistically, we demonstrate that EHF physically interacts with CDX1 via its PNT domain, and that these transcription factors co-operatively drive transcription of the colonic differentiation marker, VIL1. Compound genetic deletion of Ehf and Cdx1 in the mouse colon disrupted normal colonic differentiation and significantly enhanced colorectal tumour progression. These findings thus reveal a novel mechanism driving epithelial de-differentiation and tumour progression in CRC.
Collapse
|
28
|
Zhang ZJ, Wang KP, Huang YP, Jin C, Jiang H, Xiong L, Chen ZY, Wen Y, Liu ZT, Mo JG. Comprehensive Analysis of the Potential Immune-Related Biomarker ATG101 that Regulates Apoptosis of Cholangiocarcinoma Cells After Photodynamic Therapy. Front Pharmacol 2022; 13:857774. [PMID: 35592424 PMCID: PMC9110647 DOI: 10.3389/fphar.2022.857774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/24/2022] [Indexed: 12/04/2022] Open
Abstract
Autophagy related gene 101 (ATG101) plays a significant role in the occurrence and development of tumours by responding to stress. Our research aims to illustrate the correlation between the expression of ATG101 and tumor prognosis and its potential role and mechanism in tumor immunity and photodynamic therapy (PDT). First, integrated analysis of The Cancer Genome Atlas and Genotype-Tissue Expression portals were used to analyse the expression of ATG101. Then, Kaplan–Meier curves was applied in cholangiocarcinoma (CHOL) and liver hepatocellular carcinoma (LIHC) datasets for survival analysis. Next, the relationship between ATG101 expression and six immune cells, the immune microenvironment and immune checkpoints was analysed. Besides, the relationship between the expression of ATG101 and methyltransferase. GSEA was used to study the function and the related transcript factors of ATG101 in CHOL and LIHC. The effect of PDT on ATG101 was verified by microarray, qPCR and western blot. Then the effect of ATG101 and its regulatory factors on apoptosis were verified by siRNA, lentivirus transfection and Chip-qPCR. Comprehensive analysis showed that ATG101 was overexpressed in different tumours. Kaplan–Meier curves found that ATG101 was associated with poor prognosis in tumours (including CHOL and LIHC). We found that ATG101 can be used as a target and prognostic marker of tumour immunotherapy for different tumours. We also found that ATG101 regulates DNA methylation. GSEA analysis showed that ATG101 may play a critical role in CHOL and LIHC. Subsequent validation tests confirmed that the up-regulated ATG101 after PDT treatment is not conducive to the occurrence of apoptosis of cholangiocarcinoma cells. The high expression of ATG101 may be induced by the early stress gene EGR2. Our study highlights the significance of ATG101 in the study of tumour immunity and photodynamic therapy from a pan-cancer perspective.
Collapse
Affiliation(s)
- Zi-Jian Zhang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Kun-Peng Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, China
| | - Yun-Peng Huang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chong Jin
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, China
| | - Hao Jiang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, China
| | - Li Xiong
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhao-Yi Chen
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, China
| | - Yu Wen
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhong-Tao Liu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jing-Gang Mo
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, China
| |
Collapse
|
29
|
A Liquid Biopsy-Based Approach for Monitoring Treatment Response in Post-Operative Colorectal Cancer Patients. Int J Mol Sci 2022; 23:ijms23073774. [PMID: 35409133 PMCID: PMC8998310 DOI: 10.3390/ijms23073774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Monitoring the therapeutic response of colorectal cancer (CRC) patients is crucial to determine treatment strategies; therefore, we constructed a liquid biopsy-based approach for tracking tumor dynamics in non-metastatic (nmCRC) and metastatic (mCRC) patients (n = 55). Serial blood collections were performed during chemotherapy for measuring the amount and the global methylation pattern of cell-free DNA (cfDNA), the promoter methylation of SFRP2 and SDC2 genes, and the plasma homocysteine level. The average cfDNA amount was higher (p < 0.05) in nmCRC patients with recurrent cancer (30.4 ± 17.6 ng) and mCRC patients with progressive disease (PD) (44.3 ± 34.5 ng) compared to individuals with remission (13.2 ± 10.0 ng) or stable disease (12.5 ± 3.4 ng). More than 10% elevation of cfDNA from first to last sample collection was detected in all recurrent cases and 92% of PD patients, while a decrease was observed in most patients with remission. Global methylation level changes indicated a decline (75.5 ± 3.4% vs. 68.2 ± 8.4%), while the promoter methylation of SFRP2 and SDC2 and homocysteine level (10.9 ± 3.4 µmol/L vs. 13.7 ± 4.3 µmol/L) presented an increase in PD patients. In contrast, we found exact opposite changes in remission cases. Our study offers a more precise blood-based approach to monitor the treatment response to different chemotherapies than the currently used markers.
Collapse
|
30
|
Hypermethylation of PDX1, EN2, and MSX1 predicts the prognosis of colorectal cancer. Exp Mol Med 2022; 54:156-168. [PMID: 35169223 PMCID: PMC8894425 DOI: 10.1038/s12276-022-00731-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 02/06/2023] Open
Abstract
Despite numerous observations regarding the relationship between DNA methylation changes and cancer progression, only a few genes have been verified as diagnostic biomarkers of colorectal cancer (CRC). To more practically detect methylation changes, we performed targeted bisulfite sequencing. Through co-analysis of RNA-seq, we identified cohort-specific DNA methylation markers: CpG islands of the intragenic regions of PDX1, EN2, and MSX1. We validated that these genes have oncogenic features in CRC and that their expression levels are increased in correlation with the hypermethylation of intragenic regions. The reliable depth of the targeted bisulfite sequencing data enabled us to design highly optimized quantitative methylation-specific PCR primer sets that can successfully detect subtle changes in the methylation levels of candidate regions. Furthermore, these methylation levels can divide CRC patients into two groups denoting good and poor prognoses. In this study, we present a streamlined workflow for screening clinically significant differentially methylated regions. Our discovery of methylation markers in the PDX1, EN2, and MSX1 genes suggests their promising performance as prognostic markers and their clinical application in CRC patients. An experimental strategy for detecting patterns of DNA modification reveals gene-specific alterations associated with worse outcomes in colorectal cancer patients. Many genomic regions undergo a process of chemical modification called methylation, which can strongly affect the expression of nearby genes. Many cancers exhibit abnormal methylation, and South Korean researchers led by Tae-You Kim of Seoul National University and Lark Kyun Kim of Yonsei University College of Medicine, Seoul, have developed a strategy for identifying such tumor-specific modifications. They identified a trio of genes that undergo excessive methylation in colorectal cancer, and show that this ‘signature’ is associated with more advanced metastatic tumors and shorter overall survival. The results from this study could give clinicians an additional diagnostic tool, and highlight the potential utility of performing such methylation profiling in other cancer types.
Collapse
|
31
|
Jafarpour S, Saberi F, Yazdi M, Nedaeinia R, Amini G, Ferns GA, Salehi R. Association between colorectal cancer and the degree of ITGA4 promoter methylation in peripheral blood mononuclear cells. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Dong D, Zhang R, Shao J, Zhang A, Wang Y, Zhou Y, Li Y. Promoter methylation-mediated repression of UNC5 receptors and the associated clinical significance in human colorectal cancer. Clin Epigenetics 2021; 13:225. [PMID: 34922605 PMCID: PMC8684698 DOI: 10.1186/s13148-021-01211-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/08/2021] [Indexed: 12/24/2022] Open
Abstract
Background Deregulated methylation of tumor suppressor genes is a hallmark event in colorectal cancer (CRC) carcinogenesis. UNC5 receptors, down-regulated in various human malignancies due to epigenetic alterations, have been proposed as putative tumor suppressor genes. In this study, we focused on the methylation-mediated inhibition of UNC5 receptors and the associated clinical significance in CRC. Methods Methylation and expression analysis was performed in TCGA datasets. And the results were confirmed in vitro in CRC cell lines treated with 5-aza-deoxycytidine. Then, the expression and epigenetic alterations of UNC5 receptors were evaluated in clinical specimens. Moreover, the diagnostic and prognostic values of the methylation alterations were also analyzed. Results Methylation-mediated repression was observed in UNC5C and UNC5D, but not in UNC5A and UNC5B, which was confirmed in CRC cell lines. Except for UNC5B, significantly elevated methylation was observed in UNC5A, UNC5C, and UNC5D in CRC. The discrimination efficiency of the three receptors was comparable with that of SEPT9. Kaplan–Meier curve survival analysis showed that hypermethylation of UNC5A, UNC5C and UNC5D was associated with poor progression-free and overall survival. Moreover, methylation levels of UNC5C and UNC5D were independent predictors of CRC progression-free (P = 0.001, P = 0.003, respectively) and overall survival (P = 0.008, P = 0.004, respectively). Conclusions Hypermethylation of UNC5C and UNC5D mediates the repression and has promising diagnostic and prognostic values in CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01211-5.
Collapse
Affiliation(s)
- Dong Dong
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, People's Republic of China
| | - Runshi Zhang
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, People's Republic of China.,Department of Clinical Laboratory, Xi'an No. 1 Hospital, Xi'an, 710002, Shaanxi, People's Republic of China
| | - Jie Shao
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, People's Republic of China
| | - Aimin Zhang
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, People's Republic of China
| | - Yichao Wang
- Department of Clinical Laboratory Medicine, Taizhou Central Hospital (Taizhou University Hospital), No.999 Donghai Road, Jiaojiang District, Taizhou, 318000, Zhejiang Province, People's Republic of China.
| | - Yunli Zhou
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, People's Republic of China.
| | - Yueguo Li
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, People's Republic of China.
| |
Collapse
|
33
|
Gutierrez A, Demond H, Brebi P, Ili CG. Novel Methylation Biomarkers for Colorectal Cancer Prognosis. Biomolecules 2021; 11:1722. [PMID: 34827720 PMCID: PMC8615818 DOI: 10.3390/biom11111722] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) comprises the third most common cancer worldwide and the second regarding number of deaths. In order to make a correct and early diagnosis to predict metastasis formation, biomarkers are an important tool. Although there are multiple signaling pathways associated with cancer progression, the most recognized are the MAPK pathway, p53 pathway, and TGF-β pathway. These pathways regulate many important functions in the cell, such as cell cycle regulation, proliferation, differentiation, and metastasis formation, among others. Changes in expression in genes belonging to these pathways are drivers of carcinogenesis. Often these expression changes are caused by mutations; however, epigenetic changes, such as DNA methylation, are increasingly acknowledged to play a role in the deregulation of oncogenic genes. This makes DNA methylation changes an interesting biomarkers in cancer. Among the newly identified biomarkers for CRC metastasis INHBB, SMOC2, BDNF, and TBRG4 are included, all of which are highly deregulated by methylation and closely associated with metastasis. The identification of such biomarkers in metastasis of CRC may allow a better treatment and early identification of cancer formation in order to perform better diagnostics and improve the life expectancy.
Collapse
Affiliation(s)
| | | | - Priscilla Brebi
- Millennium Institute on Immunology and Immunotherapy, Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (A.G.); (H.D.)
| | - Carmen Gloria Ili
- Millennium Institute on Immunology and Immunotherapy, Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (A.G.); (H.D.)
| |
Collapse
|
34
|
Li QL, Lin X, Yu YL, Chen L, Hu QX, Chen M, Cao N, Zhao C, Wang CY, Huang CW, Li LY, Ye M, Wu M. Genome-wide profiling in colorectal cancer identifies PHF19 and TBC1D16 as oncogenic super enhancers. Nat Commun 2021; 12:6407. [PMID: 34737287 PMCID: PMC8568941 DOI: 10.1038/s41467-021-26600-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 10/15/2021] [Indexed: 11/09/2022] Open
Abstract
Colorectal cancer is one of the most common cancers in the world. Although genomic mutations and single nucleotide polymorphisms have been extensively studied, the epigenomic status in colorectal cancer patient tissues remains elusive. Here, together with genomic and transcriptomic analysis, we use ChIP-Seq to profile active enhancers at the genome wide level in colorectal cancer paired patient tissues (tumor and adjacent tissues from the same patients). In total, we sequence 73 pairs of colorectal cancer tissues and generate 147 H3K27ac ChIP-Seq, 144 RNA-Seq, 147 whole genome sequencing and 86 H3K4me3 ChIP-Seq samples. Our analysis identifies 5590 gain and 1100 lost variant enhancer loci in colorectal cancer, and 334 gain and 121 lost variant super enhancer loci. Multiple key transcription factors in colorectal cancer are predicted with motif analysis and core regulatory circuitry analysis. Further experiments verify the function of the super enhancers governing PHF19 and TBC1D16 in regulating colorectal cancer tumorigenesis, and KLF3 is identified as an oncogenic transcription factor in colorectal cancer. Taken together, our work provides an important epigenomic resource and functional factors for epigenetic studies in colorectal cancer.
Collapse
Affiliation(s)
- Qing-Lan Li
- Frontier Science Center for Immunology and Metabolism, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiang Lin
- Frontier Science Center for Immunology and Metabolism, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Ya-Li Yu
- Division of Gastroenterology, Department of Geriatrics, Hubei Clinical Centre & Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430072, China
| | - Lin Chen
- Frontier Science Center for Immunology and Metabolism, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Qi-Xin Hu
- Frontier Science Center for Immunology and Metabolism, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Meng Chen
- Division of Gastroenterology, Department of Geriatrics, Hubei Clinical Centre & Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430072, China
| | - Nan Cao
- Division of Gastroenterology, Department of Geriatrics, Hubei Clinical Centre & Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430072, China
| | - Chen Zhao
- Frontier Science Center for Immunology and Metabolism, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Chen-Yu Wang
- Frontier Science Center for Immunology and Metabolism, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Cheng-Wei Huang
- Frontier Science Center for Immunology and Metabolism, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Lian-Yun Li
- Frontier Science Center for Immunology and Metabolism, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Mei Ye
- Division of Gastroenterology, Department of Geriatrics, Hubei Clinical Centre & Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430072, China.
| | - Min Wu
- Frontier Science Center for Immunology and Metabolism, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China.
| |
Collapse
|
35
|
Tan S, Gui W, Wang S, Sun C, Xu X, Liu L. A methylation-based prognostic model predicts survival in patients with colorectal cancer. J Gastrointest Oncol 2021; 12:1590-1600. [PMID: 34532113 DOI: 10.21037/jgo-21-376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022] Open
Abstract
Background To construct a model that could effectively predict the prognosis of colorectal cancer (CRC) by searching for methylated-differentially expressed genes (MDEGs). Methods We identified MDEGs through four databases from Gene Expression Omnibus (GEO) and annotated their functions via bioinformatics analysis. Subsequently, after adjusting for gender, age, and grading, multivariate Cox hazard analysis was utilized to select MDEGs interrelated with the prognosis of CRC, and LASSO analysis was utilized to fit the prediction model in the training set. Furthermore, another independent dataset was harnessed to verify the effectiveness of the model in predicting prognosis. Results In total, 252 hypomethylated and up-regulated genes and 132 hypermethylated and down-regulated genes were identified, 27 of which were correlated with the prognosis of CRC, and a 10-gene prognostic model was established after LASSO analysis. The overall survival rate could be effectively grouped into different risks by the median score of this model in the training set [risk ratio (HR) =2.27, confidence interval (95% CI), 1.69-3.13, P=8.15×10-8], and the validity of its effect in predicting prognosis in CRC was verified in the validation dataset (HR =1.75, 95% CI, 1.15-2.70, P=9.32×10-3). Conclusions Our model could effectively predict the overall survival rate of patients with CRC and provides potential application guidelines for its clinically personalized treatment.
Collapse
Affiliation(s)
- Shanyue Tan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weiwei Gui
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sumeng Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chongqi Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xian Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lingxiang Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
36
|
He Y, Yu X, Zhang M, Guo W. Pan-cancer analysis of m 5C regulator genes reveals consistent epigenetic landscape changes in multiple cancers. World J Surg Oncol 2021; 19:224. [PMID: 34325709 PMCID: PMC8323224 DOI: 10.1186/s12957-021-02342-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND 5-Methylcytosine (m5C) is a reversible modification to both DNA and various cellular RNAs. However, its roles in developing human cancers are poorly understood, including the effects of mutant m5C regulators and the outcomes of modified nucleobases in RNAs. METHODS Based on The Cancer Genome Atlas (TCGA) database, we uncovered that mutations and copy number variations (CNVs) of m5C regulatory genes were significantly correlated across many cancer types. We then assessed the correlation between the expression of individual m5C regulators and the activity of related hallmark pathways of cancers. RESULTS After validating m5C regulators' expression based on their contributions to cancer development and progression, we observed their upregulation within tumor-specific processes. Notably, our research connected aberrant alterations to m5C regulatory genes with poor clinical outcomes among various tumors that may drive cancer pathogenesis and/or survival. CONCLUSION Our results offered strong evidence and clinical implications for the involvement of m5C regulators.
Collapse
Affiliation(s)
- Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation At Henan Universities, Zhengzhou, 450052, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation At Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Menggang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation At Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation At Henan Universities, Zhengzhou, 450052, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| |
Collapse
|
37
|
Amilca-Seba K, Sabbah M, Larsen AK, Denis JA. Osteopontin as a Regulator of Colorectal Cancer Progression and Its Clinical Applications. Cancers (Basel) 2021; 13:cancers13153793. [PMID: 34359694 PMCID: PMC8345080 DOI: 10.3390/cancers13153793] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/29/2022] Open
Abstract
Simple Summary The mortality of colorectal cancer is principally related to metastatic disease at the time of diagnosis or to the growth of initially undetectable micro-metastasis. Current therapeutic strategies are efficient in patients with locally advanced cancer, but are rarely able to cure patients with metastatic disease. Therapeutic failure is mainly associated with drug resistance and an aggressive phenotype. The identification of new biomarkers for micro-metastasis and tumor progression remains an unmet clinical need that should allow for improved patient stratification for optimal treatment and may lead to the identification of novel therapeutic targets. Osteopontin (OPN), a multifunctional protein, has emerged as a potentially valuable biomarker in several cancer types. This review principally describes the molecular mechanisms of OPN that are associated with colorectal cancer (CRC) progression and metastasis, as well as the use of OPN as a clinical biomarker. This review identifies a role for OPN as a biomarker ready for extended clinical application and discusses its use as a therapeutic target. Abstract A high expression of the phosphoprotein osteopontin (OPN) has been associated with cancer progression in several tumor types, including breast cancer, hepatocarcinoma, ovarian cancer, and colorectal cancer (CRC). Interestingly, OPN is overexpressed in CRC and is associated with a poor prognosis linked to invasion and metastasis. Here, we review the regulation and functions of OPN with an emphasis on CRC. We examine how epigenetic and genetic regulators interact with the key signaling pathways involved in this disease. Then, we describe the role of OPN in cancer progression, including proliferation, survival, migration, invasion, and angiogenesis. Furthermore, we outline the interest of using OPN as a clinical biomarker, and discuss if and how osteopontin can be implemented as a routine assay in clinical laboratories for monitoring CRC patients. Finally, we discuss the use of OPN an attractive, but challenging, therapeutic target.
Collapse
Affiliation(s)
- Katyana Amilca-Seba
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France; (K.A.-S.); (M.S.); (A.K.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U938, 75012 Paris, France
- Institut Universitaire de Cancérologie (IUC), Faculté de Médecine, Sorbonne Université, 75005 Paris, France
| | - Michèle Sabbah
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France; (K.A.-S.); (M.S.); (A.K.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U938, 75012 Paris, France
- Institut Universitaire de Cancérologie (IUC), Faculté de Médecine, Sorbonne Université, 75005 Paris, France
- Centre National de la Recherche Scientifique (CNRS), 75016 Paris, France
| | - Annette K. Larsen
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France; (K.A.-S.); (M.S.); (A.K.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U938, 75012 Paris, France
- Institut Universitaire de Cancérologie (IUC), Faculté de Médecine, Sorbonne Université, 75005 Paris, France
- Centre National de la Recherche Scientifique (CNRS), 75016 Paris, France
| | - Jérôme A. Denis
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France; (K.A.-S.); (M.S.); (A.K.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U938, 75012 Paris, France
- Institut Universitaire de Cancérologie (IUC), Faculté de Médecine, Sorbonne Université, 75005 Paris, France
- Department of Endocrinology and Oncology Biochemistry, Pitié-Salpetrière Hospital, 75013 Paris, France
- Correspondence: ; Tel.: +33-(0)1-42-16-20-39
| |
Collapse
|
38
|
Identification of hub genes in colorectal cancer based on weighted gene co-expression network analysis and clinical data from The Cancer Genome Atlas. Biosci Rep 2021; 41:229248. [PMID: 34308980 PMCID: PMC8314434 DOI: 10.1042/bsr20211280] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common tumors worldwide and is associated with high mortality. Here we performed bioinformatics analysis, which we validated using immunohistochemistry in order to search for hub genes that might serve as biomarkers or therapeutic targets in CRC. Based on data from The Cancer Genome Atlas (TCGA), we identified 4832 genes differentially expressed between CRC and normal samples (1562 up-regulated and 3270 down-regulated in CRC). Gene ontology (GO) analysis showed that up-regulated genes were enriched mainly in organelle fission, cell cycle regulation, and DNA replication; down-regulated genes were enriched primarily in the regulation of ion transmembrane transport and ion homeostasis. Weighted gene co-expression network analysis (WGCNA) identified eight gene modules that were associated with clinical characteristics of CRC patients, including brown and blue modules that were associated with cancer onset. Analysis of the latter two hub modules revealed the following six hub genes: adhesion G protein-coupled receptor B3 (BAI3, also known as ADGRB3), cyclin F (CCNF), cytoskeleton-associated protein 2 like (CKAP2L), diaphanous-related formin 3 (DIAPH3), oxysterol binding protein-like 3 (OSBPL3), and RERG-like protein (RERGL). Expression levels of these hub genes were associated with prognosis, based on Kaplan–Meier survival analysis of data from the Gene Expression Profiling Interactive Analysis database. Immunohistochemistry of CRC tumor tissues confirmed that OSBPL3 is up-regulated in CRC. Our findings suggest that CCNF, DIAPH3, OSBPL3, and RERGL may be useful as therapeutic targets against CRC. BAI3 and CKAP2L may be novel biomarkers of the disease.
Collapse
|
39
|
Xu M, Yuan L, Wang Y, Chen S, Zhang L, Zhang X. Integrative Analysis of DNA Methylation and Gene Expression Profiles Identifies Colorectal Cancer-Related Diagnostic Biomarkers. Pathol Oncol Res 2021; 27:1609784. [PMID: 34366718 PMCID: PMC8333028 DOI: 10.3389/pore.2021.1609784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/05/2021] [Indexed: 12/13/2022]
Abstract
Background: Colorectal cancer (CRC) is a common human malignancy worldwide. The prognosis of patients is largely frustrated by delayed diagnosis or misdiagnosis. DNA methylation alterations have been previously proved to be involved in CRC carcinogenesis. Methods: In this study, we proposed to identify CRC-related diagnostic biomarkers by analyzing DNA methylation and gene expression profiles. TCGA-COAD datasets downloaded from the Cancer Genome Atlas (TCGA) were used as the training set to screen differential expression genes (DEGs) and methylation CpG sites (dmCpGs) in CRC samples. A logistic regression model was constructed based on hyper-methylated CpG sites which were located in downregulated genes for CRC diagnosis. Another two independent datasets from the Gene Expression Omnibus (GEO) were used as a testing set to evaluate the performance of the model in CRC diagnosis. Results: We found that CpG island methylator phenotype (CIMP) was a potential signature of poor prognosis by dividing CRC samples into CIMP and noCIMP groups based on a set of CpG sites with methylation standard deviation (sd) > 0.2 among CRC samples and low methylation levels (mean β < 0.05) in adjacent samples. Hyper-methylated CpGs tended to be more closed to CpG island (CGI) and transcription start site (TSS) relative to hypo-methylated CpGs (p-value < 0.05, Fisher exact test). A logistic regression model was finally constructed based on two hyper-methylated CpGs, which had an area under receiver operating characteristic curve of 0.98 in the training set, and 0.85 and 0.95 in the two independent testing sets. Conclusions: In conclusion, our study identified promising DNA methylation biomarkers for CRC diagnosis.
Collapse
Affiliation(s)
- Mingyue Xu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Lijun Yuan
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Yan Wang
- Department of Traditional Chinese Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Shuo Chen
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Lin Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Xipeng Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
40
|
Huang Y, Wang P, Zhou W, Luo M, Xu Z, Cheng R, Xu C, Jin X, Li Y, Jiang Q. Comprehensive analysis of partial methylation domains in colorectal cancer based on single-cell methylation profiles. Brief Bioinform 2021; 22:6319935. [PMID: 34254994 DOI: 10.1093/bib/bbab267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 06/22/2021] [Indexed: 01/01/2023] Open
Abstract
Epigenetic aberrations have played a significant role in affecting the pathophysiological state of colorectal cancer, and global DNA hypomethylation mainly occurs in partial methylation domains (PMDs). However, the distribution of PMDs in individual cells and the heterogeneity between cells are still unclear. In this study, the DNA methylation profiles of colorectal cancer detected by WGBS and scBS-seq were used to depict PMDs in individual cells for the first time. We found that more than half of the entire genome is covered by PMDs. Three subclasses of PMDS have distinct characteristics, and Gain-PMDs cover a higher proportion of protein coding genes. Gain-PMDs have extensive epigenetic heterogeneity between different cells of the same tumor, and the DNA methylation in cells is affected by the tumor microenvironment. In addition, abnormally elevated promoter methylation in Gain-PMDs may further promote the growth, proliferation and metastasis of tumor cells through silent transcription. The PMDs detected in this study have the potential as epigenetic biomarkers and provide a new insight for colorectal cancer research based on single-cell methylation data.
Collapse
Affiliation(s)
- Yan Huang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Pingping Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Wenyang Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Meng Luo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Zhaochun Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Rui Cheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Chang Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Xiyun Jin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Yiqun Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Qinghua Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| |
Collapse
|
41
|
Kong C, Fu T. Value of methylation markers in colorectal cancer (Review). Oncol Rep 2021; 46:177. [PMID: 34212989 DOI: 10.3892/or.2021.8128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/18/2021] [Indexed: 11/05/2022] Open
Abstract
Colorectal cancer (CRC) is a multifactorial and multistage process that occurs due to both genetic and epigenetic variations in normal epithelial cells. Analysis of the CRC epigenome has revealed that almost all CRC types have a large number of abnormally methylated genes. Hypermethylation of cell‑free DNA from CRC in the blood or stool is considered as a potential non‑invasive cancer biomarker, and various methylation markers have shown high sensitivity and specificity. The aim of the present review was to examine potential methylation markers in CRC that have been used or are expected to be used in the clinical setting, focusing on their screening, predictive, prognostic and therapeutic roles in CRC.
Collapse
Affiliation(s)
- Can Kong
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Tao Fu
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
42
|
Dobre M, Salvi A, Pelisenco IA, Vasilescu F, De Petro G, Herlea V, Milanesi E. Crosstalk Between DNA Methylation and Gene Mutations in Colorectal Cancer. Front Oncol 2021; 11:697409. [PMID: 34277443 PMCID: PMC8281955 DOI: 10.3389/fonc.2021.697409] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/14/2021] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is often characterized by mutations and aberrant DNA methylation within the promoters of tumor suppressor genes and proto-oncogenes. The most frequent somatic mutations occur within KRAS and BRAF genes. Mutations of the KRAS gene have been detected in approximately 40% of patients, while mutations in BRAF have been detected less frequently at a rate of 10%. In this study, the DNA methylation levels of 22 candidate genes were evaluated in three types of tissue: mucosal tumoral tissue from 18 CRC patients, normal adjacent tissues from 10 CRC patients who underwent surgical resection, and tissue from a control group of six individuals with normal colonoscopies. A differential methylation profile of nine genes (RUNX3, SFRP1, WIF1, PCDH10, DKK2, DKK3, TMEFF2, OPCML, and SFRP2) presenting high methylation levels in tumoral compared to normal tissues was identified. KRAS mutations (codons 12 or 13) were detected in eight CRC cases, and BRAF mutations (codon 600) in four cases. One of the CRC patients presented concomitant mutations in KRAS codon 12 and BRAF, whereas seven patients did not present these mutations (WT). When comparing the methylation profile according to mutation status, we found that six genes (SFRP2, DKK2, PCDH10, TMEFF2, SFRP1, HS3ST2) showed a methylation level higher in BRAF positive cases than BRAF negative cases. The molecular sub-classification of CRC according to mutations and epigenetic modifications may help to identify epigenetic biomarkers useful in designing personalized strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Maria Dobre
- Laboratory of Histopathology and Immunohistochemistry, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Alessandro Salvi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Florina Vasilescu
- Laboratory of Histopathology and Immunohistochemistry, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Giuseppina De Petro
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Vlad Herlea
- Department of Pathology, Fundeni Clinical Institute, Bucharest, Romania
| | - Elena Milanesi
- Laboratory of Radiobiology, Victor Babes National Institute of Pathology, Bucharest, Romania
| |
Collapse
|
43
|
Lorzadeh A, Romero-Wolf M, Goel A, Jadhav U. Epigenetic Regulation of Intestinal Stem Cells and Disease: A Balancing Act of DNA and Histone Methylation. Gastroenterology 2021; 160:2267-2282. [PMID: 33775639 PMCID: PMC8169626 DOI: 10.1053/j.gastro.2021.03.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
Genetic mutations or regulatory failures underlie cellular malfunction in many diseases, including colorectal cancer and inflammatory bowel diseases. However, mutational defects alone fail to explain the complexity of such disorders. Epigenetic regulation-control of gene action through chemical and structural changes of chromatin-provides a platform to integrate multiple extracellular inputs and prepares the cellular genome for appropriate gene expression responses. Coregulation by polycomb repressive complex 2-mediated trimethylation of lysine 27 on histone 3 and DNA methylation has emerged as one of the most influential epigenetic controls in colorectal cancer and many other diseases, but molecular details remain inadequate. Here we review the molecular interplay of these epigenetic features in relation to gastrointestinal development, homeostasis, and disease biology. We discuss other epigenetic mechanisms pertinent to the balance of trimethylation of lysine 27 on histone 3 and DNA methylation and their actions in gastrointestinal cancers. We also review the current molecular understanding of chromatin control in the pathogenesis of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Alireza Lorzadeh
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Maile Romero-Wolf
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Unmesh Jadhav
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
44
|
Ortíz R, Quiñonero F, García-Pinel B, Fuel M, Mesas C, Cabeza L, Melguizo C, Prados J. Nanomedicine to Overcome Multidrug Resistance Mechanisms in Colon and Pancreatic Cancer: Recent Progress. Cancers (Basel) 2021; 13:2058. [PMID: 33923200 PMCID: PMC8123136 DOI: 10.3390/cancers13092058] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 12/24/2022] Open
Abstract
The development of drug resistance is one of the main causes of cancer treatment failure. This phenomenon occurs very frequently in different types of cancer, including colon and pancreatic cancers. However, the underlying molecular mechanisms are not fully understood. In recent years, nanomedicine has improved the delivery and efficacy of drugs, and has decreased their side effects. In addition, it has allowed to design drugs capable of avoiding certain resistance mechanisms of tumors. In this article, we review the main resistance mechanisms in colon and pancreatic cancers, along with the most relevant strategies offered by nanodrugs to overcome this obstacle. These strategies include the inhibition of efflux pumps, the use of specific targets, the development of nanomedicines affecting the environment of cancer-specific tissues, the modulation of DNA repair mechanisms or RNA (miRNA), and specific approaches to damage cancer stem cells, among others. This review aims to illustrate how advanced nanoformulations, including polymeric conjugates, micelles, dendrimers, liposomes, metallic and carbon-based nanoparticles, are allowing to overcome one of the main limitations in the treatment of colon and pancreatic cancers. The future development of nanomedicine opens new horizons for cancer treatment.
Collapse
Affiliation(s)
- Raúl Ortíz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Francisco Quiñonero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Beatriz García-Pinel
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Marco Fuel
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| |
Collapse
|
45
|
Zhang Y, Wu Q, Xu L, Wang H, Liu X, Li S, Hu T, Liu Y, Peng Q, Chen Z, Wu X, Fan JB. Sensitive detection of colorectal cancer in peripheral blood by a novel methylation assay. Clin Epigenetics 2021; 13:90. [PMID: 33892797 PMCID: PMC8066866 DOI: 10.1186/s13148-021-01076-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. Early detection of CRC can significantly reduce its mortality rate. Current method of CRC diagnosis relies on the invasive endoscopy. Non-invasive assays including fecal occult blood testing (FOBT) and fecal immunological test (FIT) are compromised by low sensitivity and specificity, especially at early stages. Thus, a non-invasive and accurate approach for CRC screening would be highly desirable. RESULTS A new qPCR-based assay combining the simultaneous detection of the DNA methylation status of ten candidate genes was used to examine plasma samples from 56 normal controls, 6 hyperplastic polys, 9 non-advanced adenomas (NAAs), 22 advanced adenomas (AAs) and 175 CRC patients, using 10 ng of cfDNA. We further built a logistic regression model for CRC diagnosis. We tested ten candidate methylation markers including twist1, vav3-as1, fbn1, c9orf50, sfmbt2, kcnq5, fam72c, itga4, kcnj12 and znf132. All markers showed moderate diagnostic performance with AUCs ranging from 0.726 to 0.815. Moreover, a 4-marker model, comprised of two previously reported markers (c9orf50 and twist1) and two novel ones (kcnj12 and znf132), demonstrated high performance for detecting colorectal cancer in an independent validation set (N = 69) with an overall AUC of 0.911 [95% confidence interval (CI) 0.834-0.988], sensitivity of 0.800 [95% CI 0.667-0.933] and specificity of 0.971 [95% CI 0.914-1.000]. The stage-stratified sensitivity of the model was 0.455 [95% CI 0.227-0.682], 0.667 [95% CI 0.289-1.000], 0.800 [95% CI 0.449-1.000], 0.800 [95% CI 0.449-1.000] and 0.842 [95% CI 0.678-1.000] for advanced adenoma and CRC stage I-IV, respectively. CONCLUSION kcnj12 and znf132 are two novel methylation biomarkers for CRC diagnosis. The 4-marker methylation model provides a new non-invasive choice for CRC screening and interception.
Collapse
Affiliation(s)
- Yunfeng Zhang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
| | - Qian Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
| | - Linhao Xu
- AnchorDx Medical Co., Ltd, Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, China
| | - Hong Wang
- AnchorDx Medical Co., Ltd, Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, China
| | - Xin Liu
- AnchorDx Inc., 6305 Landing Pkwy, Fremont, CA, 94538, USA
| | - Sihui Li
- AnchorDx Medical Co., Ltd, Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, China
| | - Tianliang Hu
- AnchorDx Medical Co., Ltd, Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, China
| | - Yanying Liu
- AnchorDx Medical Co., Ltd, Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, China
| | - Quanzhou Peng
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Zhiwei Chen
- AnchorDx Medical Co., Ltd, Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, China. .,AnchorDx Inc., 6305 Landing Pkwy, Fremont, CA, 94538, USA.
| | - Xianrui Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China. .,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China.
| | - Jian-Bing Fan
- AnchorDx Medical Co., Ltd, Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, China. .,Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
46
|
Fenofibrate Exerts Antitumor Effects in Colon Cancer via Regulation of DNMT1 and CDKN2A. PPAR Res 2021; 2021:6663782. [PMID: 33959155 PMCID: PMC8075693 DOI: 10.1155/2021/6663782] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/25/2021] [Accepted: 04/05/2021] [Indexed: 12/24/2022] Open
Abstract
Peroxisome proliferator-activated receptor alpha (PPARA) is the molecular target of fibrates commonly used to treat dyslipidemia and diabetes. Recently, the potential role of PPARA in other pathological conditions, such as cancers, has been recognized. Here, using bioinformatics analysis, we found that PPARA was expressed at relatively low levels in pancancers, and Kaplan-Meier analyses revealed that high PPARA protein expression was correlated with better survival of patients with colon cancer. In vitro experiments showed that fenofibrate regulated cell cycle distribution, promoted apoptosis, and suppressed cell proliferation and epithelial mesenchymal transition by activating PPARA. PPARA activation inhibited DNMT1 activity and abolished methylation-mediated CDKN2A repression. Downregulation of cyclin-CDK complexes led to the restoration of CDKN2A, which caused cell cycle arrest in the G1 phase via regulation of the CDKN2A/RB/E2F pathway. Finally, we demonstrated that fenofibrate administration inhibited tumor growth and DNMT1 activity in vivo. The PPARA agonist, fenofibrate, might serve as an applicable agent for epigenetic therapy of colon cancer patients.
Collapse
|
47
|
Poturnajova M, Furielova T, Balintova S, Schmidtova S, Kucerova L, Matuskova M. Molecular features and gene expression signature of metastatic colorectal cancer (Review). Oncol Rep 2021; 45:10. [PMID: 33649827 PMCID: PMC7876998 DOI: 10.3892/or.2021.7961] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022] Open
Abstract
Uncontrollable metastatic outgrowth process is the leading cause of mortality worldwide, even in the case of colorectal cancer. Colorectal cancer (CRC) accounts for approximately 10% of all annually diagnosed cancers and 50% of CRC patients will develop metastases in the course of disease. Most patients with metastatic CRC have incurable disease. Even if patients undergo resection of liver metastases, the 5‑year survival rate ranges from 25 to 58%. Next‑generation sequencing of tumour specimens from large colorectal cancer patient cohorts has led to major advances in elucidating the genomic landscape of these tumours and paired metastases. The expression profiles of primary CRC and their metastatic lesions at both the gene and pathway levels were compared and led to the selection of early driver genes responsible for carcinogenesis and metastasis‑specific genes that increased the metastatic process. The genetic, transcriptional and epigenetic alteration encoded by these genes and their combination influence many pivotal signalling pathways, enabling the dissemination and outgrowth in distant organs. Therapeutic regimens affecting several different active pathways may have important implications for therapeutic efficacy.
Collapse
Affiliation(s)
- Martina Poturnajova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, University Science Park for Biomedicine, 84505 Bratislava, Slovakia
| | - Tatiana Furielova
- Department of Genetics, Faculty of Natural Sciences, Comenius University, 84215 Bratislava, Slovakia
| | - Sona Balintova
- Department of Genetics, Faculty of Natural Sciences, Comenius University, 84215 Bratislava, Slovakia
| | - Silvia Schmidtova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, University Science Park for Biomedicine, 84505 Bratislava, Slovakia
- Translational Research Unit, Faculty of Medicine, Comenius University, 81499 Bratislava, Slovakia
| | - Lucia Kucerova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, University Science Park for Biomedicine, 84505 Bratislava, Slovakia
| | - Miroslava Matuskova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, University Science Park for Biomedicine, 84505 Bratislava, Slovakia
| |
Collapse
|
48
|
Grady WM. Epigenetic alterations in the gastrointestinal tract: Current and emerging use for biomarkers of cancer. Adv Cancer Res 2021; 151:425-468. [PMID: 34148620 DOI: 10.1016/bs.acr.2021.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Colorectal cancer is a leading cause of cancer related deaths worldwide. One of the hallmarks of cancer and a fundamental trait of virtually all gastrointestinal cancers is genomic and epigenomic DNA alterations. Cancer cells acquire genetic and epigenetic alterations that drive the initiation and progression of the cancers by altering the molecular and cell biological process of the cells. These alterations, as well as other host and microenvironment factors, ultimately mediate the initiation and progression of cancers, including colorectal cancer. Epigenetic alterations, which include changes affecting DNA methylation, histone modifications, chromatin structure, and noncoding RNA expression, have emerged as a major class of molecular alteration in colon polyps and colorectal cancer. The classes of epigenetic alterations, their status in colorectal polyps and cancer, their effects on neoplasm biology, and their application to clinical care will be discussed.
Collapse
Affiliation(s)
- William M Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States; Division of Gastroenterology, University of Washington School of Medicine, Seattle, WA, United States.
| |
Collapse
|
49
|
Zhang H, Xu C, Shi C, Zhang J, Qian T, Wang Z, Ma R, Wu J, Jiang F, Feng J. Hypermethylation of heparanase 2 promotes colorectal cancer proliferation and is associated with poor prognosis. J Transl Med 2021; 19:98. [PMID: 33663522 PMCID: PMC7934273 DOI: 10.1186/s12967-021-02770-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/25/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The epigenetic abnormality of tumor-associated genes contributes to the pathogenesis of colorectal carcinoma (CRC). However, methylation in colorectal cancer is still poorly characterized. METHOD By integration of DNA methylation data from the GEO database and gene expression data from The Cancer Genome Atlas database, the aberrantly methylated genes involved in CRC tumorigenesis were identified. Subsequent in vitro experiments further validated their role in CRC. RESULTS We performed integrative genomic analysis and identified HPSE2, a novel tumor suppressor gene that is frequently inactivated through promoter methylation in CRC. K-M survival analysis showed that hypermethylation-low expression of heparanase 2 (HPSE2) was related to poor patient prognosis. Overexpression of HPSE2 reduced cell proliferation in vivo and in vitro. HPSE2 could regulate the p53 signaling pathway to block the cell cycle in G1 phase. CONCLUSION HPSE2, a novel tumor suppressor gene that is frequently inactivated through promoter methylation in CRC. HPSE2 performs a tumor suppressive function by activating the p53/ p21 signaling cascade. The promoter hypermethylation of HPSE2 is a potential therapeutic target in patients with CRC, especially those with late-stage CRC.
Collapse
Affiliation(s)
- Hui Zhang
- Department of General Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Chenxin Xu
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Chen Shi
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Junying Zhang
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Ting Qian
- Department of Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Zhuo Wang
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Rong Ma
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Jianzhong Wu
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Feng Jiang
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210000, Jiangsu, People's Republic of China.
| | - Jifeng Feng
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210000, Jiangsu, People's Republic of China.
| |
Collapse
|
50
|
Niu L, Yang W, Duan L, Wang X, Li Y, Xu C, Liu C, Zhang Y, Zhou W, Liu J, Zhao Q, Hong L, Fan D. Biological Implications and Clinical Potential of Metastasis-Related miRNA in Colorectal Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:42-54. [PMID: 33335791 PMCID: PMC7723777 DOI: 10.1016/j.omtn.2020.10.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC), ranking as the third commonest cancer, leads to extremely high rates of mortality. Metastasis is the major cause of poor outcome in CRC. When metastasis occurs, 5-year survival rates of patients decrease sharply, and strategies to enhance a patient's lifetime seem limited. MicroRNAs (miRNAs) are evolutionarily conserved small non-coding RNAs that are significantly involved in manipulation of CRC malignant phenotypes, including proliferation, invasion, and metastasis. To date, accumulating studies have revealed the mechanisms and functions of certain miRNAs in CRC metastasis. However, there is no systematic discussion about the biological implications and clinical potential (diagnostic role, prognostic role, and targeted therapy potential) of metastasis-related miRNAs in CRC. This review mainly summarizes the recent advances of miRNA-mediated metastasis in CRC. We also discuss the clinical values of metastasis-related miRNAs as potential biomarkers or therapeutic targets in CRC. Moreover, we envisage the future orientation and challenges in translating these findings into clinical applications.
Collapse
Affiliation(s)
- Liaoran Niu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Wanli Yang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Lili Duan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Xiaoqian Wang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Yiding Li
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Chengchao Xu
- 94719 Military Hospital, Ji’an 343700, Jiangxi Province, China
| | - Chao Liu
- School of Basic Medical Sciences, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Yujie Zhang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Wei Zhou
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Jinqiang Liu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Qingchuan Zhao
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Liu Hong
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| |
Collapse
|