1
|
Zhang L, Sun Y, Lin Y, Li H, Huang Y, Tang N, Zhang X, Lu Y, Kovalev VA, Snezhko EV, Luo Y, Wang B. Cell calcification reverses the chemoresistance of cancer cells via the conversion of glycolipid metabolism. Biomaterials 2025; 314:122886. [PMID: 39427430 DOI: 10.1016/j.biomaterials.2024.122886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Drug resistance is an inherent challenge during cancer chemotherapy. Cancer cells favor fatty acid metabolism through metabolic reprogramming to achieve therapeutic resistance. However, an effective approach to overcoming the switch from glycolysis-dependent to fatty acid beta-oxidation-dependent anabolic and energy metabolism remains elusive. Here, we developed a macromolecular drug (folate-polySia, FpSA) to induce the extracellular microcalcification of cervical cancer cells with cisplatin resistance. Microcalcification attenuated the uptake of fatty acids and the beta-oxidation of fatty acids by mitochondrial dysfunction but boosted the glycolysis pathway. Consequently, cotreatment with Pt and FpSA inhibited cisplatin-resistant tumor growth and improved tumor-bearing mice's survival rates, indicating that FpSA switched fatty acid metabolism to glycolysis to sensitize cisplatin-resistant cells further. Taken together, cancer cell calcification induced by FpSA provides a reprogramming metabolic strategy for the treatment of chemotherapy-resistant tumors.
Collapse
Affiliation(s)
- Lihong Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yandi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Yindan Lin
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hanhui Li
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Yuqiao Huang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Ning Tang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Xueyun Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yin Lu
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Vassili A Kovalev
- Biomedical Image Analysis Department, The United Institute of Informatics Problems, National Academy of Sciences of Belarus, Minsk, 220012, Belarus
| | - Eduard V Snezhko
- Biomedical Image Analysis Department, The United Institute of Informatics Problems, National Academy of Sciences of Belarus, Minsk, 220012, Belarus
| | - Yan Luo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Ben Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China; State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China; Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Hangzhou, 310029, China; Cancer Center, Zhejiang University, Hangzhou, 310029, China.
| |
Collapse
|
2
|
Cortini M, Ilieva E, Massari S, Bettini G, Avnet S, Baldini N. Uncovering the protective role of lipid droplet accumulation against acid-induced oxidative stress and cell death in osteosarcoma. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167576. [PMID: 39561857 DOI: 10.1016/j.bbadis.2024.167576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/14/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
Extracellular acidosis stemming from altered tumor metabolism promotes cancer progression by enabling tumor cell adaptation to the hostile microenvironment. In osteosarcoma, we have previously shown that acidosis increases tumor cell survival alongside substantial lipid droplet accumulation. In this study, we explored the role of lipid droplet formation in mitigating cellular stress induced by extracellular acidosis in osteosarcoma cells, thereby enhancing tumor survival during progression. Specifically, we examined how lipid droplets shield against reactive oxygen species induced by extracellular acidosis. We demonstrated that lipid droplet biogenesis is critical for acid-exposed tumor cell survival, as it starts shortly after acid exposure (24 h) and inversely correlates with ROS levels (DCFH-DA assay), lipid peroxidation (Bodipy assay), and the antioxidant response, as also revealed by NRF2 transcript. Additionally, extracellular metabolites, such as lactate, and interaction with mesenchymal stromal cells within the tumor microenvironment intensify lipid droplet build-up in osteosarcoma cells. Critically, upon targeting two key proteins implicated in LD formation - PLIN2 and DGAT1 - cell viability significantly declined while ROS production escalated. In summary, our findings underscore the vital reliance of acid-exposed tumor cells on lipid droplet formation to scavenge oxidative stress. We conclude that the rewiring of lipid metabolism driven by microenvironmental cues is of paramount importance for the survival of metabolically altered osteosarcoma cells in acidic condition. Overall, we suggest that targeting key members of lipid droplet biogenesis may eradicate more aggressive and resistant tumor cells, uncovering potential new treatment strategies for osteosarcoma.
Collapse
Affiliation(s)
- Margherita Cortini
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, Università di Bologna, 40127 Bologna, Italy.
| | - Elizabeta Ilieva
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, Università di Bologna, 40127 Bologna, Italy.
| | - Stefania Massari
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, Università di Bologna, 40127 Bologna, Italy
| | - Giuliano Bettini
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, 40100 Ozzano dell'Emilia, Italy
| | - Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, Università di Bologna, 40127 Bologna, Italy.
| | - Nicola Baldini
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, Università di Bologna, 40127 Bologna, Italy; Biomedical Science, Technology and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| |
Collapse
|
3
|
Liu G, Liu K, Ji L, Li Y. Intratumoral microbiota, fatty acid metabolism, and tumor microenvironment constitute an unresolved trinity in colon adenocarcinoma. Sci Rep 2025; 15:2568. [PMID: 39833403 PMCID: PMC11747563 DOI: 10.1038/s41598-025-87194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025] Open
Abstract
The intratumoral microbiota, fatty acid metabolism (FAM), and tumor microenvironment (TME) all provide insights into the management of colon adenocarcinoma (COAD). But the biological link among the three remains unclear. Here, we analyzed intratumoral microbiome samples and matched host transcriptome samples from 420 patients with COAD in The Cancer Genome Atlas (TCGA). All patients were divided into two subtypes (FAM_high and FAM_low) based on the Gene set variation analysis (GSVA) score of FAM pathway. Furthermore, we found significant difference in the intratumoral microbiota signatures between the two subtypes. In-depth analysis suggested that specific microbes in tumors may indirectly modify the TME, particularly stromal cell populations, by modulating the FAM process. More importantly, the crosstalk between the three can have a significant impact on prognosis, response to immunotherapy, and drug sensitivity of patients. Pathological image profiling showed that changes in the TME originating from intratumoral microbiota disturbance could be reflected in pathological image features. In summary, our study provides novel insights into the biological links among the intratumoral microbiota, FAM, and the TME in COAD, and offer guidance for the therapeutic opportunities that target intratumoral microbes.
Collapse
Affiliation(s)
- Guangyi Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kun Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Ji
- Geneis Beijing Co., Ltd., Beijing, 100102, China
| | - Yang Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Imam M, Ji J, Zhang Z, Yan S. Targeting the initiator to activate both ferroptosis and cuproptosis for breast cancer treatment: progress and possibility for clinical application. Front Pharmacol 2025; 15:1493188. [PMID: 39867656 PMCID: PMC11757020 DOI: 10.3389/fphar.2024.1493188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/12/2024] [Indexed: 01/28/2025] Open
Abstract
Breast cancer is the most commonly diagnosed cancer worldwide. Metal metabolism is pivotal for regulating cell fate and drug sensitivity in breast cancer. Iron and copper are essential metal ions critical for maintaining cellular function. The accumulation of iron and copper ions triggers distinct cell death pathways, known as ferroptosis and cuproptosis, respectively. Ferroptosis is characterized by iron-dependent lipid peroxidation, while cuproptosis involves copper-induced oxidative stress. They are increasingly recognized as promising targets for the development of anticancer drugs. Recently, compelling evidence demonstrated that the interplay between ferroptosis and cuproptosis plays a crucial role in regulating breast cancer progression. This review elucidates the converging pathways of ferroptosis and cuproptosis in breast cancer. Moreover, we examined the value of genes associated with ferroptosis and cuproptosis in the clinical diagnosis and treatment of breast cancer, mainly outlining the potential for a co-targeting approach. Lastly, we delve into the current challenges and limitations of this strategy. In general, this review offers an overview of the interaction between ferroptosis and cuproptosis in breast cancer, offering valuable perspectives for further research and clinical treatment.
Collapse
Affiliation(s)
| | | | | | - Shunchao Yan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Wang X, Liu G, Pu X, Ren T, Zhang F, Shen M, Zhu Y, Kros A, Yang J. Combating cisplatin-resistant lung cancer using a coiled-coil lipopeptides modified membrane fused drug delivery system. J Control Release 2025; 379:45-58. [PMID: 39756686 DOI: 10.1016/j.jconrel.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/05/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Drug resistance to chemotherapy in treating cancers becomes an increasingly serious challenge, which leads to treatment failure and poor patient survival. Drug-resistant cancer cells normally reduce intracellular accumulation of drugs by controlling drug uptake and promoting drug efflux, which severely limits the efficacy of chemotherapy. To overcome this problem, a membrane fused drug delivery system (MF-DDS) was constructed to treat cisplatin (DDP)-resistant lung cancer (A549-DDP) by delivering DDP via membrane fusion using a complementary coiled-coil forming peptides (CP8K4/CP8E4). The lipopeptide CP8K4 was pre-incubated firstly and decorated on the surface of A549-DDP cells, and then the cells interacted with the lipopeptide CP8E4 modified on the lipid bilayer (LB) coated PLGA nanoparticles loading DDP (PLGA-DDP@LB-CP8E4), leaded to the direct cytosolic DDP delivery and cancer cell death. Compared with free DDP, this MF-DDS achieved a 13.42-folds reduced IC50 value of A549-DDP cells in vitro, and tumor size was down-regulated, showing only 1/5.26 of the original weight in vivo. Meanwhile, the anti-drug resistant mechanism was explored, where the MF-DDS inhibited the expression of efflux protein genes, including MRP1, MRP2, and ABCG2, leading to increased intracellular drug accumulations. Altogether, this MF-DDS effectively delivered DDP into DDP-resistant cancer cells, making it a promising and improved pharmacological therapeutic approach for drug-resistant tumor treatment.
Collapse
Affiliation(s)
- Xi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Guiquan Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Xueyu Pu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Tangjun Ren
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Fan Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - MengJie Shen
- Leiden Institute of Chemistry-Supramolecular and Biomaterial Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, the Netherlands
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Alexander Kros
- Leiden Institute of Chemistry-Supramolecular and Biomaterial Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, the Netherlands.
| | - Jian Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
6
|
Li D, Jin P, Cai Y, Wu S, Guo X, Zhang Z, Liu K, Li P, Hu Y, Zhou Y. Clinical significance of lipid pathway-targeted therapy in breast cancer. Front Pharmacol 2025; 15:1514811. [PMID: 39834807 PMCID: PMC11743736 DOI: 10.3389/fphar.2024.1514811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
Globally, breast cancer represents the most common cancer and the primary cause of death by cancer in women. Lipids are crucial in human physiology, serving as vital energy reserves, structural elements of biological membranes, and essential signaling molecules. The metabolic reprogramming of lipid pathways has emerged as a critical factor in breast cancer progression, drug resistance, and patient prognosis. In this study, we delve into the clinical implications of lipid pathway-targeted therapy in breast cancer. We highlight key enzymes and potential therapeutic targets involved in lipid metabolism reprogramming, and their associations with cancer progression and treatment outcomes. Furthermore, we detail the clinical trials exploring the anticancer and cancer chemopreventive activity of therapies targeting these molecules. However, the clinical efficacy of these therapies remains controversial, highlighting the urgent need for predictive biomarkers to identify patient subpopulations likely to benefit from such treatment. We propose the Selective Lipid Metabolism Therapy Benefit Hypothesis, emphasizing the importance of personalized medicine in optimizing lipid pathway-targeted therapy for breast cancer patients.
Collapse
Affiliation(s)
- Dan Li
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengcheng Jin
- Department of Surgical Oncology, Linhai Branch, The Second Affiliated Hospital, Zhejiang University School of Medicine, Taizhou, Zhejiang, China
| | - Yiqi Cai
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shijie Wu
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianan Guo
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiyun Zhang
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kexin Liu
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Panni Li
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Hu
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunxiang Zhou
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Wang L, Duan W, Ruan C, Liu J, Miyagishi M, Kasim V, Wu S. YY2-CYP51A1 signaling suppresses hepatocellular carcinoma progression by restraining de novo cholesterol biosynthesis. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167658. [PMID: 39761760 DOI: 10.1016/j.bbadis.2025.167658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/11/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Lipid accumulation is a frequently observed characteristic of cancer. Lipid accumulation is closely related to tumor progression, metastasis, and drug resistance; however, the mechanism underlying lipid metabolic reprogramming in tumor cells is not fully understood. Yin yang 2 (YY2) is a C2H2‑zinc finger transcription factor that exerts tumor-suppressive effects. However, its involvement in tumor cell lipid metabolic reprogramming remains unclear. In the present study, we identified YY2 as a novel regulator of cholesterol metabolism. We showed that YY2 suppressed cholesterol accumulation in hepatocellular carcinoma (HCC) cells by downregulating the transcriptional activity of cytochrome P450 family 51 subfamily A member 1 (CYP51A1), a key enzyme in de novo cholesterol biosynthesis. Subsequently, through in vitro and in vivo experiments, we demonstrated that this downregulation is crucial for the YY2 tumor suppressive effect. Together, our findings unraveled a previously unprecedented regulation of HCC cells cholesterol metabolism, and eventually, their tumorigenic potential, through YY2 negative regulation on CYP51A1 expression. This study revealed a novel regulatory mechanism of lipid metabolic reprogramming in tumor cells and provided insights into the molecular mechanism underlying the YY2 the suppressive effect. Furthermore, our findings suggest a potential antitumor therapeutic strategy targeting cholesterol metabolic reprogramming using YY2.
Collapse
Affiliation(s)
- Lingxian Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Wei Duan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Cao Ruan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jingyi Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Makoto Miyagishi
- Life Science Innovation, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China; Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China.
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China; Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
8
|
Wang Q, Li D, Zhang Z, Shen L, Xu H, Wang Z, Redshaw C, Zhang Q. Polarity-Sensitive fluorescent probes based on triphenylamine for fluorescence lifetime imaging of lipid droplets. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125694. [PMID: 39754836 DOI: 10.1016/j.saa.2024.125694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a disease closely associated with metabolic abnormalities. Lipid droplets (LDs) serve as organelles that store intracellular neutral lipids and maintain cellular energy homeostasis. Their abnormalities can cause metabolic disorders and disease, which is also one of the distinctive characteristics of NAFLD patients. However, the correlation between the polarity of LDs and NAFLD is easily overlooked. To monitor the polarity changes in LDs in order to assess the progression of NAFLD, triphenylamine was used as the electron donor (D), pyridine as the electron acceptor (A) and thiazolo[5,4-d]thiazole (TTz) as π bridge in this study. The structure was modified by introducing different substituents at the triphenylamine to obtain a series of D-π-A structural polar-responsive asymmetric thiazolo[5,4-d]thiazole (aTTz) fluorescent probes with different push-pull electron effects and steric hindrance. The fluorescent probes, which exhibit distinct fluorescence emission spectra in solutions with varying polarities, demonstrate excellent polarity-sensitive properties, and the displacement of the maximum emission wavelength varies from 125 to 150 nm. Meanwhile, the fluorescent probes exhibited low dark toxicity of cells and can specifically image lipid droplets, with a localization coefficient of more than 0.84 when imaging, and can be applied to the fluorescence imaging of C. elegans. Furthermore, the polar response properties of the fluorescent probes were used to distinguish normal liver tissue and nonalcoholic fatty liver tissue by fluorescence lifetime microscopic imaging (FLIM), thus providing a molecular tool for the diagnosis of NAFLD.
Collapse
Affiliation(s)
- Qian Wang
- Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, PR China
| | - Dongmei Li
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, PR China
| | - Ze Zhang
- School of Biology and Engineering (School of Health Medicine Modern Industry), Guizhou Medical, University, Guiyang 550025, China
| | - Lingyi Shen
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, PR China
| | - Hong Xu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, PR China.
| | - Zhiyong Wang
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, PR China.
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Hull, Yorkshire HU6 7RX, UK
| | - Qilong Zhang
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, PR China.
| |
Collapse
|
9
|
Zhong X, Zhang W, Zhang W, Yu N, Li W, Song X. FASN contributes to ADM resistance of diffuse large B-cell lymphoma by inhibiting ferroptosis via nf-κB/STAT3/GPX4 axis. Cancer Biol Ther 2024; 25:2403197. [PMID: 39345091 PMCID: PMC11445901 DOI: 10.1080/15384047.2024.2403197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/06/2024] [Accepted: 09/07/2024] [Indexed: 10/01/2024] Open
Abstract
Drug resistance is a critical impediment to efficient therapy of diffuse large B-cell lymphoma (DLBCL) patients. Recent studies have highlighted the association between ferroptosis and drug resistance that has been reported. Fatty acid synthase (FASN) is always related to a poor prognosis. In this study, we investigate the impact of FASN on drug resistance in DLBCL and explore its potential modulation of ferroptosis mechanisms. The clinical correlation of FASN mRNA expression was first analyzed to confirm the role of FASN on drug resistance in DLBCL based on the TCGA database. Next, the impact of FASN on ferroptosis was investigated in vitro and in vivo. Furthermore, a combination of RNA-seq, western blot, luciferase reporter, and ChIP experiments was employed to elucidate the underlying mechanism. The prognosis for patients with DLBCL was worse when FASN was highly expressed, particularly in those undergoing chemotherapy for Adriamycin (ADM). FASN promoted tumor growth and resistance of DLBCL to ADM, both in vitro and in vivo. It is noteworthy that this effect was achieved by inhibiting ferroptosis, since Fer-1 (a ferroptosis inhibitor) treatment significantly recovered the effects of silencing FASN on inhibiting ferroptosis, while Erastin (a ferroptosis inducer) treatment attenuated the impact of overexpressing FASN. Mechanistically, FASN activated NF-κB/STAT3 signaling pathway through phosphorylating the upstream IKKα and IκBα, and the activated STAT3 promoted GPX4 expression by directly binding to GPX4 promoter. FASN inhibits ferroptosis in DLBCL via NF-κB/STAT3/GPX4 signaling pathway, indicating its critical role in mediating ADM resistance of DLBCL.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Cell Line, Tumor
- Doxorubicin/pharmacology
- Doxorubicin/therapeutic use
- Drug Resistance, Neoplasm
- Fatty Acid Synthase, Type I/metabolism
- Fatty Acid Synthase, Type I/genetics
- Ferroptosis/drug effects
- Ferroptosis/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Mice, Nude
- NF-kappa B/metabolism
- Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism
- Phospholipid Hydroperoxide Glutathione Peroxidase/genetics
- Prognosis
- Signal Transduction/drug effects
- STAT3 Transcription Factor/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Xing Zhong
- Departments of Lymphatic and Hematological Oncology, Jiangxi Cancer Hospital (The Second Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi, P. R. China
- JXHC Key Laboratory of Tumor Microenvironment and Immunoregulation (Jiangxi Cancer Hospital), Nanchang, Jiangxi, P. R. China
| | - Weiwei Zhang
- JXHC Key Laboratory of Tumor Microenvironment and Immunoregulation (Jiangxi Cancer Hospital), Nanchang, Jiangxi, P. R. China
- Nanchang Medical College, Nanchang, Jiangxi, P. R. China
| | - Weiming Zhang
- Nanchang Medical College, Nanchang, Jiangxi, P. R. China
| | - Nasha Yu
- Departments of Lymphatic and Hematological Oncology, Jiangxi Cancer Hospital (The Second Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi, P. R. China
- JXHC Key Laboratory of Tumor Microenvironment and Immunoregulation (Jiangxi Cancer Hospital), Nanchang, Jiangxi, P. R. China
| | - Wuping Li
- Departments of Lymphatic and Hematological Oncology, Jiangxi Cancer Hospital (The Second Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi, P. R. China
- JXHC Key Laboratory of Tumor Microenvironment and Immunoregulation (Jiangxi Cancer Hospital), Nanchang, Jiangxi, P. R. China
| | - Xiangxiang Song
- Departments of Lymphatic and Hematological Oncology, Jiangxi Cancer Hospital (The Second Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi, P. R. China
- JXHC Key Laboratory of Tumor Microenvironment and Immunoregulation (Jiangxi Cancer Hospital), Nanchang, Jiangxi, P. R. China
| |
Collapse
|
10
|
Korbelik M, Heger M, Girotti AW. Participation of lipids in the tumor response to photodynamic therapy and its exploitation for therapeutic gain. J Lipid Res 2024; 66:100729. [PMID: 39675508 DOI: 10.1016/j.jlr.2024.100729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/19/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Hydroperoxides of unsaturated membrane lipids (LOOHs) are the most abundant non-radical intermediates generated by photodynamic therapy (PDT) of soft tissues such as tumors and have far longer average lifetimes than singlet oxygen or oxygen radicals formed during initial photodynamic action. LOOH-initiated post-irradiation damage to remaining membrane lipids (chain peroxidation) or to membrane-associated proteins remains largely unrecognized. Such after-light processes could occur during clinical oncological PDT, but this is not well-perceived by practitioners of this therapy. In general, the pivotal influence of lipids in tumor responses to PDT needs to be better appreciated. Of related importance is the fact that most malignant tumors have dramatically different lipid metabolism compared with healthy tissues, and this too is often ignored. The response of tumors to PDT appears especially vulnerable to manipulations within the tumor lipid microenvironment. This can be exploited for therapeutic gain with PDT, as exemplified here by the combined treatment with the antitumor lipid edelfosine.
Collapse
Affiliation(s)
- Mladen Korbelik
- Department of Integrative Oncology, BC Cancer, Vancouver, BC, Canada
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, P. R. China; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| | - Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
11
|
Hu Y, Liu W, Fang W, Dong Y, Zhang H, Luo Q. Tumor energy metabolism: implications for therapeutic targets. MOLECULAR BIOMEDICINE 2024; 5:63. [PMID: 39609317 PMCID: PMC11604893 DOI: 10.1186/s43556-024-00229-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024] Open
Abstract
Tumor energy metabolism plays a crucial role in the occurrence, progression, and drug resistance of tumors. The study of tumor energy metabolism has gradually become an emerging field of tumor treatment. Recent studies have shown that epigenetic regulation is closely linked to tumor energy metabolism, influencing the metabolic remodeling and biological traits of tumor cells. This review focuses on the primary pathways of tumor energy metabolism and explores therapeutic strategies to target these pathways. It covers key areas such as glycolysis, the Warburg effect, mitochondrial function, oxidative phosphorylation, and the metabolic adaptability of tumors. Additionally, this article examines the role of the epigenetic regulator SWI/SNF complex in tumor metabolism, specifically its interactions with glucose, lipids, and amino acids. Summarizing therapeutic strategies aimed at these metabolic pathways, including inhibitors of glycolysis, mitochondrial-targeted drugs, exploitation of metabolic vulnerabilities, and recent developments related to SWI/SNF complexes as potential targets. The clinical significance, challenges, and future directions of tumor metabolism research are discussed, including strategies to overcome drug resistance, the potential of combination therapy, and the application of new technologies.
Collapse
Affiliation(s)
- Youwu Hu
- The Public Experimental Center of Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, Guizhou, 563003, China
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wanqing Liu
- The Public Experimental Center of Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, Guizhou, 563003, China
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - WanDi Fang
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yudi Dong
- The Public Experimental Center of Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, Guizhou, 563003, China
| | - Hong Zhang
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qing Luo
- The Public Experimental Center of Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, Guizhou, 563003, China.
- Guizhou Provincial Key Laboratory of Cell Engineering, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
12
|
Liu S, Liu Z, Lei H, Miao YB, Chen J. Programmable Nanomodulators for Precision Therapy, Engineering Tumor Metabolism to Enhance Therapeutic Efficacy. Adv Healthc Mater 2024:e2403019. [PMID: 39529548 DOI: 10.1002/adhm.202403019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Tumor metabolism is crucial in the continuous advancement and complex growth of cancer. The emerging field of nanotechnology has made significant strides in enhancing the understanding of the complex metabolic intricacies inherent to tumors, offering potential avenues for their strategic manipulation to achieve therapeutic goals. This comprehensive review delves into the interplay between tumor metabolism and various facets of cancer, encompassing its origins, progression, and the formidable challenges posed by metastasis. Simultaneously, it underscores the classification of programmable nanomodulators and their transformative impact on enhancing cancer treatment, particularly when integrated with modalities such as chemotherapy, radiotherapy, and immunotherapy. This review also encapsulates the mechanisms by which nanomodulators modulate tumor metabolism, including the delivery of metabolic inhibitors, regulation of oxidative stress, pH value modulation, nanoenzyme catalysis, nutrient deprivation, and RNA interference technology, among others. Additionally, the review delves into the prospects and challenges of nanomodulators in clinical applications. Finally, the innovative concept of using nanomodulators to reprogram metabolic pathways is introduced, aiming to transform cancer cells back into normal cells. This review underscores the profound impact that tailored nanomodulators can have on tumor metabolic, charting a path toward pioneering precision therapies for cancer.
Collapse
Affiliation(s)
- Siwei Liu
- Women & Children's Molecular Medicine Center, Department of Gynecology, Guangyuan Central Hospital, No. 16, Jingxiangzi, Lizhou District, Guangyuan, 628000, P. R. China
| | - Zhijun Liu
- Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China
| | - Huajiang Lei
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Jiao Chen
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| |
Collapse
|
13
|
Li R, Li Y, Song Z, Gu Y, Jiao X, Wan C, Liu T, Zhang R, Gao R, Wang X. A Graphene-Based Lipid Modulation Nanoplatform for Synergetic Lipid Starvation/Chemo/Photothermal Therapy of Oral Squamous Cell Carcinoma. Int J Nanomedicine 2024; 19:11235-11255. [PMID: 39524917 PMCID: PMC11545731 DOI: 10.2147/ijn.s478308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose Chemotherapy is one of the most commonly used treatments for oral squamous cell carcinoma (OSCC), but its use is limited by drug resistance and severe systemic toxicity. To eliminate these side effects and improve anti-tumor efficacy, several therapeutic approaches have been developed for use with chemotherapy. In this study, we developed a graphene-based lipid modulation nanoplatform (NSD) that carries SB-204990, a small molecule inhibitor specific for ATP citrate lyase (ACLY), and doxorubicin (DOX), a chemotherapeutic agent, and the trio enables synergistic treatment of OSCC with lipid starvation, chemotherapy, and photothermal therapy. Methods We first determined whether ACLY expression was upregulated in OSCC, and then assessed the growth inhibitory effects of SB-204990 on SCC-15 cells and changes in lipid (acetyl coenzyme A, free fatty acids, and cholesterol) levels. We characterized NSD and then evaluated the stability, photothermal properties, drug loading, and release ability of NSD. Finally, the therapeutic effects of NSD on OSCC were investigated by in vitro and in vivo experiments, and the changes in lipid levels in OSCC tissues after ACLY inhibition were further evaluated. Results The results showed that ACLY was highly expressed in OSCC, and ACLY inhibition produced reproductive suppression and decreased lipid levels in SCC-15 cells. The NSD nanoplatform possessed good stability, photothermal properties, high drug loading capacity and controlled release. In addition, the triple therapy achieved satisfactory anticancer effects in both in vivo and in vitro assays, and the inhibition rate of tumors was as high as 99.4% in the NSD+Laser treatment group. Conclusion The changes in tumor cell lipid levels and cell proliferation arrest induced by ACLY inhibition suggest that ACLY may be a promising target for lipid starvation therapy and resistance to chemoresistance, and its inhibitors are expected to become new anticancer drugs. The NSD nanocarrier system enables synergistic treatment with lipid starvation, chemotherapy, and photothermal therapy, which represents an innovative approach to combating tumors.
Collapse
Affiliation(s)
- Ran Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
| | - Yanwei Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
| | - Zijian Song
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
| | - Yixuan Gu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
| | - Xiaofeng Jiao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
| | - Chaoqiong Wan
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
| | - Tiantian Liu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
| | - Rongrong Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
| | - Ruifang Gao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
| | - Xiangyu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
| |
Collapse
|
14
|
Deng J, Qin JH, Li X, Tao D, Feng Y. Establishment and drug resistance characterization of paired organoids using human primary colorectal cancer and matched tumor deposit specimens. Hum Cell 2024; 38:13. [PMID: 39495391 PMCID: PMC11534897 DOI: 10.1007/s13577-024-01139-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/13/2024] [Indexed: 11/05/2024]
Abstract
Tumor deposits (TDs) represent a specific form tumor metastasis observed in colorectal cancer (CRC). The lack of successfully established cell lines for TDs, as well as the molecular mechanisms by which TDs occur remain largely unknown. Here, we established paired CRC organoids, including a human primary cancer organoid and its TD organoid, from a 46-year-old male patient with CRC. Further analysis revealed that, compared with primary tumor-derived cells, TD-derived cells exhibited enhanced proliferative, invasive and metastatic capabilities, and increased expression of stemness-related proteins. Furthermore, the present findings also demonstrated that TD-derived cells were more resistant to oxaliplatin or 5-FU. Transcriptomic profiling and qPCR revealed that TD-derived cells exhibited more alterations in fatty acid metabolism signaling and enhanced lipid synthesis ability compared to primary tumor-derived cells. Inhibition of lipid synthesis markedly decreased resistance to oxaliplatin in TD-derived cells. Taken together, the paired organoids established using CRC primary tumor and its TD specimens will provide valuable tools to study tumorigenicity, metastasis and chemoresistance in CRC. Notably, these models will provide novel insights to study tumor heterogeneity and lipid metabolism in CRC.
Collapse
Affiliation(s)
- Jiao Deng
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jerry H Qin
- Wuhan Britain-China Senior High School, Wuhan, 430030, China
| | - Xiaolan Li
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Deding Tao
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yongdong Feng
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| |
Collapse
|
15
|
Zhang Z, Li Z, Peng Y, Li Z, Xv N, Jin L, Cao Y, Jiang C, Chen Z. TRIM21-mediated ubiquitination of PLIN2 regulates neuronal lipid droplet accumulation after acute spinal cord injury. Exp Neurol 2024; 381:114916. [PMID: 39122166 DOI: 10.1016/j.expneurol.2024.114916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
To investigate the changes in neuronal lipid droplet (LD) accumulation and lipid metabolism after acute spinal cord injury (SCI), we established a rat model of compressive SCI. Oil Red O staining, BODIPY 493/503 staining, and 4-hydroxynonenal immunofluorescence staining were performed to determine overall LD accumulation, neuronal LD accumulation, and lipid peroxidation. Lipidomics was conducted to identify the lipid components in the local SCI microenvironment. We focused on the expression and regulation of perilipin 2 (PLIN2) and knocked down PLIN2 in vivo by intrathecal injection of adeno-associated virus 9-synapsin-short-hairpin RNA-PLIN2 (AAV9-SYN-shPlin2). Motor function was assessed using the Basso-Beattie-Bresnahan score. Proteins that interacted with PLIN2 were screened by immunoprecipitation (IP) and qualitative shotgun proteomics, and confirmed by co-IP. A ubiquitination assay was performed to validate whether ubiquitination was involved in PLIN2 degradation. Oil Red O staining indicated that LDs steadily accumulated after SCI. Fluorescent staining indicated the accumulation of LDs in neurons with increased lipid peroxidation. Lipidomics revealed significant changes in lipid components after SCI. PLIN2 expression significantly increased following SCI, and knockdown of PLIN2 using AAV9-SYN-Plin2 reduced neuronal LD accumulation. This intervention improved the neuronal survival and motor function of injured rats. IP and qualitative shotgun proteomics identified tripartite motif-containing protein 21 (TRIM21) as a direct binding protein of PLIN2, and this interaction was confirmed by co-IP in vitro and immunofluorescence staining in vivo. By manipulating TRIM21 expression, we found it was negatively correlated with PLIN2 expression. In conclusion, PLIN2 is involved in neuronal LD accumulation following SCI. TRIM21 mediated the ubiquitination and degradation of PLIN2 in neurons. Inhibition of PLIN2 enhanced the recovery of motor function after SCI.
Collapse
Affiliation(s)
- Zhiyang Zhang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zheng Li
- Department of Orthopaedics, the First Affiliated Hospital of University of Science and Technology of China, Hefei 230002, China
| | - Ying Peng
- Trauma center, Shanghai General Hospital, Shanghai 200080, China
| | - Zhuoxuan Li
- Trauma center, Shanghai General Hospital, Shanghai 200080, China
| | - Nixi Xv
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lixia Jin
- Department of Rehabilitation, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuanwu Cao
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chang Jiang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zixian Chen
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
16
|
Boretto C, Muzio G, Autelli R. PPARγ antagonism as a new tool for preventing or overcoming endocrine resistance in luminal A breast cancers. Biomed Pharmacother 2024; 180:117461. [PMID: 39326102 DOI: 10.1016/j.biopha.2024.117461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
PURPOSE This research investigates the role of PPARγ in the complex molecular events underlying the acquisition of resistance to tamoxifen (Tam) in luminal A breast cancer (BC) cells. Furthermore, it focuses on evaluating the possibility of repurposing Imatinib mesylate, an FDA-approved anticancer agent recently recognized also as a PPARγ antagonist, for the personalized therapy of endocrine-resistant BC with increased PPARγ expression. METHODS Differential gene expression between parental and Tam-resistant MCF7 cells was assessed by RNA-seq followed by bioinformatics analysis and validation by RT-qPCR. PPARγ was downregulated by esiRNAs or inhibited by the antagonist GW9662. Cell viability and proliferation were measured by MTT and colony formation assays. Spheroids were prepared from parental and Tam-resistant MCF7 cells. Other luminal A BC cell lines resistant to Tam were generated. RESULTS In MCF7-TamR cells, PPARγ and several of its target genes were significantly upregulated. Increased PPARγ expression was due to the modulation of its positive/negative transcriptional regulators. Downregulating PPARγ with esiRNAs or GW9662 effectively killed parental and Tam-resistant cells and spheroids. Imatinib revealed to be as effective as GW9662 in restoring Tam susceptibility of these cells. PPARγ overexpression was also observed in the newly-selected Tam-resistant luminal A BC cells, in which GW9662 and Imatinib restored their susceptibility to Tam. CONCLUSION Our findings demonstrate that the overexpression of PPARγ is a frequent occurrence during acquisition of Tam resistance in luminal A BC cells, and that PPARγ antagonism represents an alternative therapeutic approach for the personalized treatment of BC showing dysregulation of this nuclear receptor.
Collapse
Affiliation(s)
- Cecilia Boretto
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, Turin 10125, Italy
| | - Giuliana Muzio
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, Turin 10125, Italy
| | - Riccardo Autelli
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, Turin 10125, Italy.
| |
Collapse
|
17
|
Li L, Cheng H, Peng Y, Tang D. Targeting Mitochondrial Cholesterol Efflux via TCF21/ABCA10 Pathway to Enhance Cisplatin Efficacy in Ovarian Cancer. Biochem Genet 2024:10.1007/s10528-024-10939-7. [PMID: 39438390 DOI: 10.1007/s10528-024-10939-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
Cisplatin (DDP) resistance is one of the causes of treatment failure for ovarian cancer (OV). Mitochondrial cholesterol level was reported to be associated with OV chemoresistance. We found that ABCA10, a potential cholesterol transport protein, was highly expressed in ovarian tissues and downregulated in OV tissues. Our study aimed to explore TCF21/ABCA10 axis resistance to DDP therapy in ovarian cancer based on regulating mitochondrial cholesterol efflux. Thirty epithelial ovarian cancer tumors and thirty ovarian tissues from non-cancer patients were collected. Western blot and RT-qPCR were used to measure ABCA10 and TCF21 expression levels in these tissues, as well as in a human ovarian epithelial cell line (IOSE-80), OV cells (A2780 and SKOV3), and DDP-resistant OV cell lines (A2780/DDP and SKOV3/DDP). IOSE-80 cells were also infected with ABCA10 knockdown lentivirus to identify the most effective ABCA10 knockdown plasmid. Lentiviral infection was used to create ABCA10 knockdown, ABCA10 overexpression, and TCF21 overexpression anti-DDP OV cell lines. Cell proliferation was detected by CCK-8 and EDU staining, flow cytometry for apoptosis, MTT for metabolic activity, calcium-induced Cytochrome C release, and mitochondrial matrix swelling for mitochondrial function and Oil Red O staining for lipid accumulation. Cholesterol metabolism was evaluated by measuring mitochondrial cholesterol and cholesterol efflux. Protein concentration was determined using the BCA method. A dual-luciferase reporter assay confirmed TCF21's interaction with ABCA10. ChIP also verified this interaction. The mRNA level (P < 0.01) and protein level (P < 0.001) of ABCA10 were downregulated in cancer tissues of OV patients relative to normal ovarian tissues. Relative to human ovarian epithelial cells, ABCA10 expression was significantly downregulated in OV cells (P < 0.01) and even more significantly downregulated in DDP-resistant OV cells (P < 0.001). Compared to the group treated solely with DDP, the overexpression of ABCA10 significantly inhibited the proliferation of DDP-resistant OV cells (P < 0.01), markedly reduced the staining intensity of EDU in these cells (P < 0.05), and substantially accelerated apoptosis in DDP-resistant OV cells (P < 0.01).Overexpression of ABCA10 further accelerated Cytochrome C expression and mitochondrial matrix swelling in DDP-resistant OV cells compared to the DDP-alone group (P < 0.01). The addition of cholesterol reversed the decrease in lipid accumulation, the decrease in mitochondrial cholesterol levels (P < 0.05), and the increase in cholesterol efflux (P < 0.01) in DDP-resistant OV cells caused by overexpression of ABCA10. The transcription factor TCF21 was bound to the promoter of ABCA10. Overexpression of TCF21 significantly increased ABCA10 expression in DDP-resistant OV cells (P < 0.01) and increased cytochrome C expression in A2780/DDP (P < 0.05) and SKOV3/DDP (P < 0.01) cells, with accelerated mitochondrial matrix swelling in A2780/DDP (P < 0.01) and SKOV3/DDP (P < 0.001) cells, while knockdown of ABCA10 reversed these effects. Our study found that TCF21 boosts ABCA10 expression, which in turn reduces DDP resistance in OV cells by enhancing mitochondrial cholesterol efflux. This mechanism increases the sensitivity of DDP-resistant OV cells to DDP. Our findings will provide new therapeutic targets for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Li Li
- The Fourth Department of Gynecology and Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, Hunan, People's Republic of China
| | - Hui Cheng
- Family Planning and Minimally Invasive Specialist, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410028, Hunan, People's Republic of China
| | - Yang Peng
- The Fourth Department of Gynecology and Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, Hunan, People's Republic of China
| | - Dihong Tang
- The Fourth Department of Gynecology and Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
18
|
Huang Y, Zeng J, Liu T, Xu Q, Song X, Zeng J. ARHGEF39 targeted by E2F1 fosters hepatocellular carcinoma metastasis by mediating fatty acid metabolism. Clin Res Hepatol Gastroenterol 2024; 48:102446. [PMID: 39128592 DOI: 10.1016/j.clinre.2024.102446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/11/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) stands as the prevailing manifestation of primary liver cancer. Previous studies have implicated ARHGEF39 in various cancer progression processes, but its impact on HCC metastasis remains unclear. METHODS Bioinformatics analysis and qRT-PCR were employed to test ARHGEF39 expression in HCC tissues and cells, identified enriched pathways associated with ARHGEF39, and investigated its regulatory relationship with E2F1. The impact of ARHGEF39 overexpression or knockdown on cellular phenotypes in HCC was assessed through the implementation of CCK-8 and Transwell assays. Accumulation of neutral lipids was determined by BODIPY 493/503 staining, while levels of triglycerides and phospholipids were measured using specific assay kits. Expression of E-cadherin, Vimentin, MMP-2, MMP-9, and FASN were analyzed by Western blot. The interaction between ARHGEF39 and E2F1 was validated through ChIP and dual-luciferase reporter assays. RESULTS Our study demonstrated upregulated expression of both ARHGEF39 and E2F1 in HCC, with ARHGEF39 being associated with fatty acid metabolism (FAM) pathways. Additionally, ARHGEF39 was identified as a downstream target gene of E2F1. Cell-based experiments unmasked that high expression of ARHGEF39 mediated the promotion of HCC cell viability, migration, and invasion via enhanced FAM. Moreover, rescue assays demonstrated that the promotion of HCC cell metastasis by high ARHGEF39 expression was attenuated upon treatment with Orlistat. Conversely, the knockdown of E2F1 suppressed HCC cell metastasis and FAM, while the upregulation of ARHGEF39 counteracted the repressive effects of E2F1 downregulation on the metastatic potential of HCC cells. CONCLUSION Our findings confirmed the critical role of ARHGEF39 in HCC metastasis and unmasked potential molecular mechanisms through which ARHGEF39 fostered HCC metastasis via FAM, providing a theoretical basis for exploring novel molecular markers and preventive strategies for HCC metastasis.
Collapse
Affiliation(s)
- Yao Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350005, China; Department of Hepatobiliary Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, 350212, China; Department of Hepatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350005, China
| | - Jianxing Zeng
- Department of Hepatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350005, China
| | - Teng Liu
- Department of Hepatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350005, China
| | - Qingyi Xu
- Department of Hepatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350005, China
| | - Xianglin Song
- Department of Hepatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350005, China
| | - Jinhua Zeng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350005, China; Department of Hepatobiliary Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, 350212, China; Department of Hepatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350005, China.
| |
Collapse
|
19
|
Zhou S, Guo Q, Chen A, Li X, Zou X. Integrated bioinformatics analysis identifies PCSK9 as a prognosticator correlated with lipid metabolism in pancreatic adenocarcinoma. World J Surg Oncol 2024; 22:256. [PMID: 39342295 PMCID: PMC11439283 DOI: 10.1186/s12957-024-03532-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma (PAAD) is the most frequent kind of pancreatic cancer (PC). Recent studies suggest that lipid metabolism facilitates tumorigenesis, disease progression, and resistance to therapy by promoting lipid synthesis, accumulation, and breakdown. Thus, exploring the lipid metabolism network could unveil novel therapeutic avenues for early detection, precision medicine, and prognostication in PAAD. This project intends to develop new lipid metabolism-related biomarkers for PAAD diagnosis and investigate the link between important genes and immune cell infiltration (ICI). METHODS Tissue samples from 20 PAAD patients and 20 healthy controls were obtained. Analysis were focused on the datasets GSE71729 and GSE16515, which include samples of PAAD (n = 161) and those from healthy human tissue (n = 61), derived from the GEO database. Knockdown of PCSK9 on PC cells were conducted by si-RNA and sh-RNA. Migration and cell functional experiments were performed to assess the role of PCSK9 in cell multiplication. Furthermore, a xenograft mouse model was employed to confirm PCSK9's function in vivo. RESULTS The expression level of Proprotein convertase subtilisin/kexin type 9 (PCSK9) is significantly elevated in tissues affected by PAAD when compared to normal tissues. Survival analyses indicated that increased PCSK9 levels are inversely related to overall and disease-free survival (DFS). PCSK9's functional annotation associated it with the cell cycle and metabolism, especially energy metabolism. Examination of ICI data determined that PCSK9 expression demonstrated an unambiguous association with the M0 macrophages, T follicular helper cells (Tfh), gamma delta T cells and activated DC, and an inverse relationship with Monocytes, CD8+ T cells, memory B cells, resting CD4+ memory T cells, activated NK cells and resting DC abundance. PCSK9 expression knockdown has the ability to impede PC cells' migration and proliferation. CONCLUSION Our study identified PCSK9 as a critical gene in PAAD. Expression levels of PCSK9 varied between PAAD and normal samples. ROC analysis verified PCSK9's strong capacity to differentiate PC from normal samples. Importantly, PCSK9 expression was considerably elevated in PC cell lines and tissues. Furthermore, PCSK9 stimulates the migration and proliferation of tumor cells in vivo and vitro.
Collapse
Affiliation(s)
- Siqi Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, 210008, China
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu Province, China
| | - Qiyuan Guo
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, 210008, China
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu Province, China
| | - Aotian Chen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu Province, China
| | - Xihan Li
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, 210008, China.
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu Province, China.
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, 210008, China.
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu Province, China.
| |
Collapse
|
20
|
Carrà G, Petiti J, Tolino F, Vacca R, Orso F. MicroRNAs in metabolism for precision treatment of lung cancer. Cell Mol Biol Lett 2024; 29:121. [PMID: 39256662 PMCID: PMC11384722 DOI: 10.1186/s11658-024-00632-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024] Open
Abstract
The dysregulation of miRNAs in lung cancer has been extensively documented, with specific miRNAs acting as both tumor suppressors and oncogenes, depending on their target genes. Recent research has unveiled the regulatory roles of miRNAs in key metabolic pathways, such as glycolysis, the tricarboxylic acid cycle, fatty acid metabolism, and autophagy, which collectively contribute to the aberrant energy metabolism characteristic of cancer cells. Furthermore, miRNAs are increasingly recognized as critical modulators of the tumor microenvironment, impacting immune response and angiogenesis. This review embarks on a comprehensive journey into the world of miRNAs, unraveling their multifaceted roles, and more notably, their emerging significance in the context of cancer, with a particular focus on lung cancer. As we navigate this extensive terrain, we will explore the fascinating realm of miRNA-mediated metabolic rewiring, a phenomenon that plays a pivotal role in the progression of lung cancer and holds promise in the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.
- San Luigi Gonzaga Hospital, Orbassano, Italy.
| | - Jessica Petiti
- Division of Advanced Materials Metrology and Life Sciences, Istituto Nazionale di Ricerca Metrologica (INRiM), 10135, Turin, Italy
| | - Federico Tolino
- Department of Translational Medicine (DIMET), University of Eastern Piedmont, Novara, Italy
| | - Rita Vacca
- Molecular Biotechnology Center "Guido Tarone", University of Torino, Turin, Italy
| | - Francesca Orso
- Department of Translational Medicine (DIMET), University of Eastern Piedmont, Novara, Italy.
| |
Collapse
|
21
|
Al-Hawary SIS, Abdalkareem Jasim S, Altalbawy FMA, Kumar A, Kaur H, Pramanik A, Jawad MA, Alsaad SB, Mohmmed KH, Zwamel AH. miRNAs in radiotherapy resistance of cancer; a comprehensive review. Cell Biochem Biophys 2024; 82:1665-1679. [PMID: 38805114 DOI: 10.1007/s12013-024-01329-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
While intensity-modulated radiation therapy-based comprehensive therapy increases outcomes, cancer patients still have a low five-year survival rate and a high recurrence rate. The primary factor contributing to cancer patients' poor prognoses is radiation resistance. A class of endogenous non-coding RNAs, known as microRNAs (miRNAs), controls various biological processes in eukaryotes. These miRNAs influence tumor cell growth, death, migration, invasion, and metastasis, which controls how human carcinoma develops and spreads. The correlation between the unbalanced expression of miRNAs and the prognosis and sensitivity to radiation therapy is well-established. MiRNAs have a significant impact on the regulation of DNA repair, the epithelial-to-mesenchymal transition (EMT), and stemness in the tumor radiation response. But because radio resistance is a complicated phenomena, further research is required to fully comprehend these mechanisms. Radiation response rates vary depending on the modality used, which includes the method of delivery, radiation dosage, tumor stage and grade, confounding medical co-morbidities, and intrinsic tumor microenvironment. Here, we summarize the possible mechanisms through which miRNAs contribute to human tumors' resistance to radiation.
Collapse
Affiliation(s)
| | | | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Divison of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | | | - Salim Basim Alsaad
- Department of Pharmaceutics, Al-Hadi University College, Baghdad, 10011, Iraq
| | | | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
22
|
Duan Y, Deng M, Liu B, Meng X, Liao J, Qiu Y, Wu Z, Lin J, Dong Y, Duan Y, Sun Y. Mitochondria targeted drug delivery system overcoming drug resistance in intrahepatic cholangiocarcinoma by reprogramming lipid metabolism. Biomaterials 2024; 309:122609. [PMID: 38754290 DOI: 10.1016/j.biomaterials.2024.122609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
The challenge of drug resistance in intrahepatic cholangiocarcinoma (ICC) is intricately linked with lipid metabolism reprogramming. The hepatic lipase (HL) and the membrane receptor CD36 are overexpressed in BGJ398-resistant ICC cells, while they are essential for lipid uptake, further enhancing lipid utilization in ICC. Herein, a metal-organic framework-based drug delivery system (OB@D-pMOF/CaP-AC, DDS), has been developed. The specifically designed DDS exhibits a successive targeting property, enabling it to precisely target ICC cells and their mitochondria. By specifically targeting the mitochondria, DDS produces reactive oxygen species (ROS) through its sonodynamic therapy effect, achieving a more potent reduction in ATP levels compared to non-targeted approaches, through the impairment of mitochondrial function. Additionally, the DDS strategically minimizes lipid uptake through the incorporation of the anti-HL drug, Orlistat, and anti-CD36 monoclonal antibody, reducing lipid-derived energy production. This dual-action strategy on both mitochondria and lipids can hinder energy utilization to restore drug sensitivity to BGJ398 in ICC. Moreover, an orthotopic mice model of drug-resistant ICC was developed, which serves as an exacting platform for evaluating the multifunction of designed DDS. Upon in vivo experiments with this model, the DDS demonstrated exceptional capabilities in suppressing tumor growth, reprogramming lipid metabolism and improving immune response, thereby overcoming drug resistance. These findings underscore the mitochondria-targeted DDS as a promising and innovative solution in ICC drug resistance.
Collapse
Affiliation(s)
- Yi Duan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Mengqiong Deng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Bin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Xianwei Meng
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jinghan Liao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Yijie Qiu
- Department of Ultrasound, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 200092, Shanghai, China
| | - Zhihua Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Jiangtao Lin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Yi Dong
- Department of Ultrasound, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 200092, Shanghai, China.
| | - Yourong Duan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| | - Ying Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| |
Collapse
|
23
|
Qin J, Hu S, Lou J, Xu M, Gao R, Xiao Q, Chen Y, Ding M, Pan Y, Wang S. Selumetinib overcomes ITGA2-induced 5-fluorouracil resistance in colorectal cancer. Int Immunopharmacol 2024; 137:112487. [PMID: 38889513 DOI: 10.1016/j.intimp.2024.112487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/24/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most malignant tumor in the world. 5-fluorouracil (5‑FU) -based chemotherapy is the first-line chemotherapy scheme for CRC, whereas acquired drug resistance poses a huge obstacle to curing CRC patients and the mechanism is still obscure. Therefore, identification of genes associated with 5‑FU chemotherapy and seeking second-line treatment are necessary means to improve survival and prognosis of patients with CRC. METHODS The Cancer Therapeutics Response Portal (CTRP) database and Genomics of Drug Sensitivity in Cancer (GDSC) database were used to identify CRC-related genes and potential second-line therapies for 5-FU-resistant CRC. The single-cell RNA sequencing data for CRC tissues were obtained from a GEO dataset. The relationship between ITGA2 and 5-FU-resistant was investigated in vitro and in vivo models. RESULTS ACOX1 and ITGA2 were identified as risk biomarkers associated with 5-FU-resistance. We developed a risk signature, consisting of ACOX1 and ITGA2, that was able to distinguish well between 5-FU-resistance and 5-FU-sensitive. The single-cell sequencing data showed that ITGA2 was mainly enriched in malignant cells. ITGA2 was negatively correlated with IC50 values of most small molecule inhibitors, of which selumetinib had the highest negative correlation. Finally, knocking down ITGA2 can make 5-FU-resistant CRC cells sensitive to 5-FU and combining with selumetinib can improve the therapeutic effect of 5-FU resistant cells. CONCLUSION In summary, our findings demonstrated the critical role of ITGA2 in enhancing chemotherapy resistance in CRC cells and suggested that selumetinib can restore the sensitivity of chemotherapy-resistant CRC cells to 5-FU by inhibiting ITGA2 expression.
Collapse
Affiliation(s)
- Jian Qin
- School of Medicine, Southeast University, Nanjing, Jiangsu, China; General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shangshang Hu
- School of Medicine, Southeast University, Nanjing, Jiangsu, China; General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinwei Lou
- School of Basic Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Mu Xu
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Gao
- School of Basic Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Qianni Xiao
- School of Basic Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yuhan Chen
- School of Basic Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Muzi Ding
- School of Basic Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yuqin Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; School of Basic Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China; Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Shukui Wang
- School of Medicine, Southeast University, Nanjing, Jiangsu, China; General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; School of Basic Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China; Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
24
|
Dong S, Zhang M, Cheng Z, Zhang X, Liang W, Li S, Li L, Xu Q, Song S, Liu Z, Yang G, Zhao X, Tao Z, Liang S, Wang K, Zhang G, Hu S. Redistribution of defective mitochondria-mediated dihydroorotate dehydrogenase imparts 5-fluorouracil resistance in colorectal cancer. Redox Biol 2024; 73:103207. [PMID: 38805974 PMCID: PMC11152977 DOI: 10.1016/j.redox.2024.103207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024] Open
Abstract
Although 5-fluorouracil (5-FU) is the primary chemotherapy treatment for colorectal cancer (CRC), its efficacy is limited by drug resistance. Ferroptosis activation is a promising treatment for 5-FU-resistant cancer cells; however, potential therapeutic targets remain elusive. This study investigated ferroptosis vulnerability and dihydroorotate dehydrogenase (DHODH) activity using stable, 5-FU-resistant CRC cell lines and xenograft models. Ferroptosis was characterized by measuring malondialdehyde levels, assessing lipid metabolism and peroxidation, and using mitochondrial imaging and assays. DHODH function is investigated through gene knockdown experiments, tumor behavior assays, mitochondrial import reactions, intramitochondrial localization, enzymatic activity analyses, and metabolomics assessments. Intracellular lipid accumulation and mitochondrial DHODH deficiency led to lipid peroxidation overload, weakening the defense system of 5-FU-resistant CRC cells against ferroptosis. DHODH, primarily located within the inner mitochondrial membrane, played a crucial role in driving intracellular pyrimidine biosynthesis and was redistributed to the cytosol in 5-FU-resistant CRC cells. Cytosolic DHODH, like its mitochondrial counterpart, exhibited dihydroorotate catalytic activity and participated in pyrimidine biosynthesis. This amplified intracellular pyrimidine pools, thereby impeding the efficacy of 5-FU treatment through molecular competition. These findings contribute to the understanding of 5-FU resistance mechanisms and suggest that ferroptosis and DHODH are promising therapeutic targets for patients with CRC exhibiting resistance to 5-FU.
Collapse
Affiliation(s)
- Shuohui Dong
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China
| | - Mingguang Zhang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhiqiang Cheng
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China
| | - Xiang Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China
| | - Weili Liang
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China
| | - Songhan Li
- Department of General Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Linchuan Li
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, 250014, China
| | - Qian Xu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, 250014, China
| | - Siyi Song
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, 250014, China
| | - Zitian Liu
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China
| | - Guangwei Yang
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China
| | - Xiang Zhao
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China
| | - Ze Tao
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China
| | - Shuo Liang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, No. 4, Duanxing West Road, Jinan, Shandong,250022, China.
| | - Kexin Wang
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China.
| | - Guangyong Zhang
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, 250014, China.
| | - Sanyuan Hu
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China.
| |
Collapse
|
25
|
Ma MJ, Shi YH, Liu ZD, Zhu YQ, Zhao GY, Ye JY, Li FX, Huang XT, Wang XY, Wang JQ, Xu QC, Yin XY. N6-methyladenosine modified TGFB2 triggers lipid metabolism reprogramming to confer pancreatic ductal adenocarcinoma gemcitabine resistance. Oncogene 2024; 43:2405-2420. [PMID: 38914663 PMCID: PMC11281907 DOI: 10.1038/s41388-024-03092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024]
Abstract
Gemcitabine resistance is a major obstacle to the effectiveness of chemotherapy in pancreatic ductal adenocarcinoma (PDAC). Therefore, new strategies are needed to sensitize cancer cells to gemcitabine. Here, we constructed gemcitabine-resistant PDAC cells and analyzed them with RNA-sequence. Employing an integrated approach involving bioinformatic analyses from multiple databases, TGFB2 is identified as a crucial gene in gemcitabine-resistant PDAC and is significantly associated with poor gemcitabine therapeutic response. The patient-derived xenograft (PDX) model further substantiates the gradual upregulation of TGFB2 expression during gemcitabine-induced resistance. Silencing TGFB2 expression can enhance the chemosensitivity of gemcitabine against PDAC. Mechanistically, TGFB2, post-transcriptionally stabilized by METTL14-mediated m6A modification, can promote lipid accumulation and the enhanced triglyceride accumulation drives gemcitabine resistance by lipidomic profiling. TGFB2 upregulates the lipogenesis regulator sterol regulatory element binding factor 1 (SREBF1) and its downstream lipogenic enzymes via PI3K-AKT signaling. Moreover, SREBF1 is responsible for TGFB2-mediated lipogenesis to promote gemcitabine resistance in PDAC. Importantly, TGFB2 inhibitor imperatorin combined with gemcitabine shows synergistic effects in gemcitabine-resistant PDAC PDX model. This study sheds new light on an avenue to mitigate PDAC gemcitabine resistance by targeting TGFB2 and lipid metabolism and develops the potential of imperatorin as a promising chemosensitizer in clinical translation.
Collapse
Affiliation(s)
- Ming-Jian Ma
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yin-Hao Shi
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhi-De Liu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ying-Qin Zhu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Guang-Yin Zhao
- Department of Animal Experiment Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jing-Yuan Ye
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Fu-Xi Li
- Department of Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, China
| | - Xi-Tai Huang
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xi-Yu Wang
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jie-Qin Wang
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Qiong-Cong Xu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Xiao-Yu Yin
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
26
|
Lorito N, Subbiani A, Smiriglia A, Bacci M, Bonechi F, Tronci L, Romano E, Corrado A, Longo DL, Iozzo M, Ippolito L, Comito G, Giannoni E, Meattini I, Avgustinova A, Chiarugi P, Bachi A, Morandi A. FADS1/2 control lipid metabolism and ferroptosis susceptibility in triple-negative breast cancer. EMBO Mol Med 2024; 16:1533-1559. [PMID: 38926633 PMCID: PMC11251055 DOI: 10.1038/s44321-024-00090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Triple-negative breast cancer (TNBC) has limited therapeutic options, is highly metastatic and characterized by early recurrence. Lipid metabolism is generally deregulated in TNBC and might reveal vulnerabilities to be targeted or used as biomarkers with clinical value. Ferroptosis is a type of cell death caused by iron-dependent lipid peroxidation which is facilitated by the presence of polyunsaturated fatty acids (PUFA). Here we identify fatty acid desaturases 1 and 2 (FADS1/2), which are responsible for PUFA biosynthesis, to be highly expressed in a subset of TNBC with a poorer prognosis. Lipidomic analysis, coupled with functional metabolic assays, showed that FADS1/2 high-expressing TNBC are susceptible to ferroptosis-inducing agents and that targeting FADS1/2 by both genetic interference and pharmacological approach renders those tumors ferroptosis-resistant while unbalancing PUFA/MUFA ratio by the supplementation of exogenous PUFA sensitizes resistant tumors to ferroptosis induction. Last, inhibiting lipid droplet (LD) formation and turnover suppresses the buffering capacity of LD and potentiates iron-dependent cell death. These findings have been validated in vitro and in vivo in mouse- and human-derived clinically relevant models and in a retrospective cohort of TNBC patients.
Collapse
Affiliation(s)
- Nicla Lorito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Angela Subbiani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Alfredo Smiriglia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Marina Bacci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Francesca Bonechi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Laura Tronci
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Elisabetta Romano
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Alessia Corrado
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, 10126, Torino, Italy
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, 10126, Torino, Italy
| | - Marta Iozzo
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Luigi Ippolito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Giuseppina Comito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Icro Meattini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Largo Brambilla 3, 50134, Florence, Italy
| | - Alexandra Avgustinova
- Institut de Recerca Sant Joan de Déu, Carrer Santa Rosa 39-57, 08950, Esplugues de Llobregat, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Angela Bachi
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy.
| |
Collapse
|
27
|
Chen Z, Yam JWP, Mao X. The multifaceted roles of small extracellular vesicles in metabolic reprogramming in the tumor microenvironments. Proteomics 2024; 24:e2300021. [PMID: 38171844 DOI: 10.1002/pmic.202300021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024]
Abstract
The link between metabolism and tumor progression has been extensively researched for a long time. With the increasing number of studies uncovering the multiple functions of metabolic reprogramming in tumor microenvironments, the regulatory network seems to become even more intricate at the same time. Small extracellular vesicles (sEV), as crucial mediators facilitating intercellular communications, exhibit significant involvement in regulating metabolic reprogramming within the complicated network of tumor microenvironments. sEV derived from tumor cells and those released by other cell populations such as tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs) can mutually influence each other, giving rise to diverse complex feedback loops. This review includes multiple studies conducted in recent years to summarize the functions of sEV in altering metabolism in various cell types within tumor microenvironments. Additionally, it aims to highlight potential therapeutic targets based on the commonly observed mechanisms identified in different studies.
Collapse
Affiliation(s)
- Zhixian Chen
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Judy Wai Ping Yam
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiaowen Mao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
28
|
Cao L, Qin Z, Yu T, Bai X, Jiang S, Wang D, Ning F, Huang M, Jin J. Tanshinone IIA acts as a regulator of lipogenesis to overcome osimertinib acquired resistance in lung cancer. Biochem Pharmacol 2024; 224:116207. [PMID: 38621425 DOI: 10.1016/j.bcp.2024.116207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/27/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
Osimertinib is a novel epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), acting as the first-line medicine for advanced EGFR-mutated NSCLC. Recently, the acquired resistance to osimertinib brings great challenges to the advanced treatment. Therefore, it is in urgent need to find effective strategy to overcome osimertinib acquired resistance. Here, we demonstrated that SREBP pathway-driven lipogenesis was a key mediator to promote osimertinib acquired resistance, and firstly found Tanshinone IIA (Tan IIA), a natural pharmacologically active constituent isolated from Salvia miltiorrhiza, could overcome osimertinib-acquired resistance in vitro and in vivo via inhibiting SREBP pathway-mediated lipid lipogenesis by using LC-MS based cellular lipidomics analysis, quantitative real-time PCR (qRT-PCR) analysis, western blotting analysis, flow cytometry, small interfering RNAs transfection, and membrane fluidity assay et al. The results showed that SREBP1/2-driven lipogenesis was highly activated in osimertinib acquired resistant NSCLC cells, while knockdown or inhibition of SREBP1/2 could restore the sensitivity of NSCLC to osimertinib via altered the proportion of saturated phospholipids and unsaturated phospholipids in osimertinib acquired-resistant cells. Furthermore, Tanshinone IIA (Tan IIA) could reverse the acquired resistance to osimertinib in lung cancer. Mechanically, Tan IIA inhibited SREBP signaling mediated lipogenesis, changed the profiles of saturated phospholipids and unsaturated phospholipids, and thus promoted osimertinib acquired resistant cancer cells to be attacked by oxidative stress-induced damage and reduce the cell membrane fluidity. The reversal effect of Tan IIA on osimertinib acquired resistant NSCLC cells was also confirmed in vivo, which is helpful for the development of strategies to reverse osimertinib acquired resistance.
Collapse
Affiliation(s)
- Lin Cao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiyan Qin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ting Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xupeng Bai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shiqin Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Daifei Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Fangqing Ning
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Institute of Clinical Pharmacology, Sun Yat-sen University, Guangzhou 510006, China
| | - Jing Jin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Institute of Clinical Pharmacology, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
29
|
Wang H, Hu Q, Chen Y, Huang X, Feng Y, Shi Y, Li R, Yin X, Song X, Liang Y, Zhang T, Xu L, Dong G, Jiang F. Ferritinophagy mediates adaptive resistance to EGFR tyrosine kinase inhibitors in non-small cell lung cancer. Nat Commun 2024; 15:4195. [PMID: 38760351 PMCID: PMC11101634 DOI: 10.1038/s41467-024-48433-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 04/26/2024] [Indexed: 05/19/2024] Open
Abstract
Osimertinib (Osi) is a widely used epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI). However, the emergence of resistance is inevitable, partly due to the gradual evolution of adaptive resistant cells during initial treatment. Here, we find that Osi treatment rapidly triggers adaptive resistance in tumor cells. Metabolomics analysis reveals a significant enhancement of oxidative phosphorylation (OXPHOS) in Osi adaptive-resistant cells. Mechanically, Osi treatment induces an elevation of NCOA4, a key protein of ferritinophagy, which maintains the synthesis of iron-sulfur cluster (ISC) proteins of electron transport chain and OXPHOS. Additionally, active ISC protein synthesis in adaptive-resistant cells significantly increases the sensitivity to copper ions. Combining Osi with elesclomol, a copper ion ionophore, significantly increases the efficacy of Osi, with no additional toxicity. Altogether, this study reveals the mechanisms of NCOA4-mediated ferritinophagy in Osi adaptive resistance and introduces a promising new therapy of combining copper ionophores to improve its initial efficacy.
Collapse
Affiliation(s)
- Hui Wang
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Xuanwu District, Nanjing, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Xuanwu District, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, PR China
| | - Qianfan Hu
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Xuanwu District, Nanjing, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Xuanwu District, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, PR China
| | - Yuzhong Chen
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Xuanwu District, Nanjing, China
- Department of Oncology, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Xuanwu District, Nanjing, China
| | - Xing Huang
- Department of Pathology, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Xuanwu District, Nanjing, China
| | - Yipeng Feng
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Xuanwu District, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, PR China
| | - Yuanjian Shi
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Xuanwu District, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, PR China
| | - Rutao Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xuewen Yin
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Xuanwu District, Nanjing, China
| | - Xuming Song
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Xuanwu District, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, PR China
| | - Yingkuan Liang
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Xuanwu District, Nanjing, China
| | - Te Zhang
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Xuanwu District, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, PR China
| | - Lin Xu
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Xuanwu District, Nanjing, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Xuanwu District, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, PR China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Jiangning District, Nanjing, China
| | - Gaochao Dong
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Xuanwu District, Nanjing, China.
- The Fourth Clinical College of Nanjing Medical University, Nanjing, PR China.
| | - Feng Jiang
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Xuanwu District, Nanjing, China.
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Xuanwu District, Nanjing, China.
- The Fourth Clinical College of Nanjing Medical University, Nanjing, PR China.
| |
Collapse
|
30
|
Kostecka LG, Mendez S, Li M, Khare P, Zhang C, Le A, Amend SR, Pienta KJ. Cancer cells employ lipid droplets to survive toxic stress. Prostate 2024; 84:644-655. [PMID: 38409853 DOI: 10.1002/pros.24680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 12/28/2023] [Accepted: 02/13/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Lipid reprogramming is a known mechanism to increase the energetic demands of proliferating cancer cells to drive and support tumorigenesis and progression. Elevated lipid droplets (LDs) are a well-known alteration of lipid reprogramming in many cancers, including prostate cancer (PCa), and are associated with high tumor aggressiveness as well as therapy resistance. The mechanism of LD accumulation and specific LD functions are still not well understood; however, it has been shown that LDs can form as a protective mechanism against lipotoxicity and lipid peroxidation in the cell. METHODS This study investigated the significance of LDs in PCa. This was done by staining, imaging, image quantification, and flow cytometry analysis of LDs in PCa cells. Additionally, lipidomics and metabolomics experiments were performed to assess the difference of metabolites and lipids in control and treatment surviving cancer cells. Lastly, to assess clinical significance, multiple publicly available datasets were mined for LD-related data. RESULTS Our study demonstrated that prostate and breast cancer cells that survive 72 h of chemotherapy treatment have elevated LDs. These LDs formed in tandem with elevated reactive oxygen species levels to sequester damaged and excess lipids created by oxidative stress, which promoted cell survival. Additionally, by inhibiting diacylglycerol O-acyltransferase 1 (DGAT1) (which catalyzes triglyceride synthesis into LDs) and treating with chemotherapy simultaneously, we were able to decrease the overall amount of LDs and increase cancer cell death compared to treating with chemotherapy alone. CONCLUSIONS Overall, our study proposes a potential combination therapy of DGAT1 inhibitors and chemotherapy to increase cancer cell death.
Collapse
Affiliation(s)
- Laurie G Kostecka
- Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Johns Hopkins School of Medicine, Cancer Ecology Center, The James Brady Urological Institute, Baltimore, Maryland, USA
- Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Sabrina Mendez
- Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Johns Hopkins School of Medicine, Cancer Ecology Center, The James Brady Urological Institute, Baltimore, Maryland, USA
| | - Melvin Li
- Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Johns Hopkins School of Medicine, Cancer Ecology Center, The James Brady Urological Institute, Baltimore, Maryland, USA
- Pharmacology and Molecular Sciences Program, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Pratik Khare
- Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Cissy Zhang
- Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Anne Le
- Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Sarah R Amend
- Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Johns Hopkins School of Medicine, Cancer Ecology Center, The James Brady Urological Institute, Baltimore, Maryland, USA
- Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Kenneth J Pienta
- Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Johns Hopkins School of Medicine, Cancer Ecology Center, The James Brady Urological Institute, Baltimore, Maryland, USA
- Cellular and Molecular Medicine Program, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Pharmacology and Molecular Sciences Program, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
31
|
Tang S, Wang Q, Sun K, Song Y, Liu R, Tan X, Li H, Lv Y, Yang F, Zhao J, Li S, Bi P, Yang J, Zhu Z, Chen D, Chuan Z, Luo X, Hu Z, Liu Y, Li Z, Ke T, Jiang D, Zheng K, Yang R, Chen K, Guo R. Metabolic Heterogeneity and Potential Immunotherapeutic Responses Revealed by Single-Cell Transcriptomics of Breast Cancer. Apoptosis 2024:10.1007/s10495-024-01952-7. [PMID: 38578322 DOI: 10.1007/s10495-024-01952-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Breast cancer (BC) exhibits remarkable heterogeneity. However, the transcriptomic heterogeneity of BC at the single-cell level has not been fully elucidated. METHODS We acquired BC samples from 14 patients. Single-cell RNA sequencing (scRNA-seq), bioinformatic analyses, along with immunohistochemistry (IHC) and immunofluorescence (IF) assays were carried out. RESULTS According to the scRNA-seq results, 10 different cell types were identified. We found that Cancer-Associated Fibroblasts (CAFs) exhibited distinct biological functions and may promote resistance to therapy. Metabolic analysis of tumor cells revealed heterogeneity in glycolysis, gluconeogenesis, and fatty acid synthetase reprogramming, which led to chemotherapy resistance. Furthermore, patients with multiple metastases and progression were predicted to benefit from immunotherapy based on a heterogeneity analysis of T cells and tumor cells. CONCLUSIONS Our findings provide a comprehensive understanding of the heterogeneity of BC, provide comprehensive insight into the correlation between cancer metabolism and chemotherapy resistance, and enable the prediction of immunotherapy responses based on T-cell heterogeneity.
Collapse
Affiliation(s)
- Shicong Tang
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China.
| | - Qing Wang
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Ke Sun
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, 650500, People's Republic of China
| | - Ying Song
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Rui Liu
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Xin Tan
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Huimeng Li
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Yafeng Lv
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Fuying Yang
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Jiawen Zhao
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Sijia Li
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Pingping Bi
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Jiali Yang
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Zhengna Zhu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
| | - Dong Chen
- Department of Ultrasound, Caner Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Zhirui Chuan
- Department of Ultrasound, Caner Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Xiaomao Luo
- Department of Ultrasound, Caner Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Zaoxiu Hu
- Department of Pathology, Caner Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Ying Liu
- Department of Pathology, Caner Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Zhenhui Li
- Department of Radiology, Caner Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Tengfei Ke
- Department of Radiology, Caner Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Dewei Jiang
- Key Laboratory of Animal Models and Human, Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- Kunming College of Life Sciences, University of Chinese Academy Sciences, Kunming, Yunnan, China
| | - Kai Zheng
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China
| | - Rirong Yang
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Guangxi, 530021, People's Republic of China.
| | - Kai Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China.
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, 650500, People's Republic of China.
| | - Rong Guo
- Department of Breast Surgery, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, People's Republic of China.
| |
Collapse
|
32
|
Chen Y, Deng S, Xu J, Yan Y, Lan S, Guo M. Research status and hotspots on the mechanisms of liver X receptor in cancer progression: A bibliometric analysis. Medicine (Baltimore) 2024; 103:e37126. [PMID: 38552096 PMCID: PMC10977575 DOI: 10.1097/md.0000000000037126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/10/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND The mechanism of liver X receptor in cancer has been gradually revealed in recent years. This study is committed to analyzing the current research status of the mechanism of liver × receptor in cancer progression by using bibliometric methods and to explore the development trend of liver × receptor related research in the future, in order to provide some reference for further exploration in this field. METHODS The Web of Science core collection database was used to carry out the original data retrieval. Excel software was used for data statistics. Vosviewer and CiteSpace software were used to analyze the publication situation, cooperation network, reference co-citation, keyword and term co-occurrence, term bursts, and cluster analysis, and draw visual maps. RESULTS A total of 631 publications meeting the research criteria were included by December 2022, with an average of 32.5 citations per paper. The main research fields were molecular biology, oncology and cell biology, and the papers were mainly published in journals about molecular, biology and immunology. Cell is the journal with the highest citation. The United States is the most influential country, the University of California, Los Angeles is the main research institution, and Gustafsson, Jan-ake is the author with the highest output. In reference co-citation clustering, cluster#2 "cancer development" is the main cluster, and the period from 2014 to 2018 is an important stage of relevant theoretical progress. "Tumor microenvironment" with high burst and novelty became the most noteworthy term in term burst. CONCLUSION Using bibliometric methods to reveal the current status of LXR and cancer mechanisms, and making predictions of possible future hotspots based on the analysis of the current situation, the translation of LXR anti-cancer research to clinical applications, the impact on the tumor microenvironment as a whole and more immune pathways, and the formation of a systematic cognition of the effects of more cancer cell lines and oncogenic signaling crosstalk, which is a possible direction for future research.
Collapse
Affiliation(s)
- Yukun Chen
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Siqi Deng
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jiexia Xu
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yu Yan
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shuwen Lan
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Mingzhang Guo
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
33
|
Deng B, Kong W, Shen X, Han C, Zhao Z, Chen S, Zhou C, Bae-Jump V. The role of DGAT1 and DGAT2 in regulating tumor cell growth and their potential clinical implications. J Transl Med 2024; 22:290. [PMID: 38500157 PMCID: PMC10946154 DOI: 10.1186/s12967-024-05084-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/10/2024] [Indexed: 03/20/2024] Open
Abstract
Lipid metabolism is widely reprogrammed in tumor cells. Lipid droplet is a common organelle existing in most mammal cells, and its complex and dynamic functions in maintaining redox and metabolic balance, regulating endoplasmic reticulum stress, modulating chemoresistance, and providing essential biomolecules and ATP have been well established in tumor cells. The balance between lipid droplet formation and catabolism is critical to maintaining energy metabolism in tumor cells, while the process of energy metabolism affects various functions essential for tumor growth. The imbalance of synthesis and catabolism of fatty acids in tumor cells leads to the alteration of lipid droplet content in tumor cells. Diacylglycerol acyltransferase 1 and diacylglycerol acyltransferase 2, the enzymes that catalyze the final step of triglyceride synthesis, participate in the formation of lipid droplets in tumor cells and in the regulation of cell proliferation, migration and invasion, chemoresistance, and prognosis in tumor. Several diacylglycerol acyltransferase 1 and diacylglycerol acyltransferase 2 inhibitors have been developed over the past decade and have shown anti-tumor effects in preclinical tumor models and improvement of metabolism in clinical trials. In this review, we highlight key features of fatty acid metabolism and different paradigms of diacylglycerol acyltransferase 1 and diacylglycerol acyltransferase 2 activities on cell proliferation, migration, chemoresistance, and prognosis in tumor, with the hope that these scientific findings will have potential clinical implications.
Collapse
Affiliation(s)
- Boer Deng
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, People's Republic of China
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Weimin Kong
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, People's Republic of China
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xiaochang Shen
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, People's Republic of China
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chao Han
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, People's Republic of China
| | - Ziyi Zhao
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, People's Republic of China
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shuning Chen
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, People's Republic of China
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Victoria Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
34
|
Chen S, Xie DF, Li S, Luo J, Han Y, Guo H, Gao S, Huang X, Guan H, Huang R, Zhou PK. TAB182 regulates glycolytic metabolism by controlling LDHA transcription to impact tumor radiosensitivity. Cell Death Dis 2024; 15:209. [PMID: 38480704 PMCID: PMC10937931 DOI: 10.1038/s41419-024-06588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Metabolic reprogramming, a hallmark of cancer, is closely associated with tumor development and progression. Changes in glycolysis play a crucial role in conferring radiation resistance to tumor cells. How radiation changes the glycolysis status of cancer cells is still unclear. Here we revealed the role of TAB182 in regulating glycolysis and lactate production in cellular response to ionizing radiation. Irradiation can significantly stimulate the production of TAB182 protein, and inhibiting TAB182 increases cellular radiosensitivity. Proteomic analysis indicated that TAB182 influences several vital biological processes, including multiple metabolic pathways. Knockdown of TAB182 results in decreased lactate production and increased pyruvate and ATP levels in cancer cells. Moreover, knocking down TAB182 reverses radiation-induced metabolic changes, such as radioresistant-related lactate production. TAB182 is necessary for activating LDHA transcription by affecting transcription factors SP1 and c-MYC; its knockdown attenuates the upregulation of LDHA by radiation, subsequently suppressing lactate production. Targeted suppression of TAB182 significantly enhances the sensitivity of murine xenograft tumors to radiotherapy. These findings advance our understanding of glycolytic metabolism regulation in response to ionizing radiation, which may offer significant implications for developing new strategies to overcome tumor radioresistance.
Collapse
Affiliation(s)
- Shi Chen
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan Province, 421001, P. R. China
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China
| | - Da-Fei Xie
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China
| | - Saiyu Li
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China
- School of Life Sciences, Hebei University, Baoding, Hebei Province, 071002, P. R. China
| | - Jinhua Luo
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan, 410078, P. R. China
| | - Yang Han
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China
| | - Hejiang Guo
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China
| | - Shuaining Gao
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan Province, 421001, P. R. China
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China
| | - Xin Huang
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China
| | - Hua Guan
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan Province, 421001, P. R. China.
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China.
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan, 410078, P. R. China.
| | - Ping-Kun Zhou
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan Province, 421001, P. R. China.
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China.
| |
Collapse
|
35
|
Yang Y, Li A, Qiu J, Gao D, Yin C, Li D, Yan W, Dang H, Li P, Wu R, Han L, Wang X. Responses of the intestinal microbiota to exposure of okadaic acid in marine medaka Oryzias melastigma. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133087. [PMID: 38035524 DOI: 10.1016/j.jhazmat.2023.133087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/25/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
It is still limited that how the microalgal toxin okadaic acid (OA) affects the intestinal microbiota in marine fishes. In the present study, adult marine medaka Oryzias melastigma was exposed to the environmentally relevant concentration of OA (5 μg/L) for 10 days, and then recovered in fresh seawater for 10-days depuration. Analysis of taxonomic composition and diversity of the intestinal microbiota, as well as function prediction analysis and histology observation were carried out in this study. Functional prediction analysis indicated that OA potentially affected the development of colorectal cancer, protein and carbohydrate digestion and absorption functions, and development of neurodegenerative diseases like Parkinson's disease, which may be associated with changes in Proteobacteria and Firmicutes in marine medaka. Significant increases of C-reactive protein (CRP) and inducible nitric oxide synthase (iNOS) levels, as well as the changes of histology of intestinal tissue demonstrated that an intestinal inflammation was induced by OA exposure in marine medaka. This study showed that the environmental concentrations of OA could harm to the intestinal microbiota thus threatening the health of marine medaka, which hints that the chemical ecology of microalgal toxins should be paid attention to in future studies.
Collapse
Affiliation(s)
- Yongmeng Yang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Dongmei Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Chao Yin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Dongyue Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Wenhui Yan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Hui Dang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Peiyao Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Ruolin Wu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Lilin Han
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaoyun Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
36
|
Bacci M, Lorito N, Smiriglia A, Subbiani A, Bonechi F, Comito G, Morriset L, El Botty R, Benelli M, López-Velazco JI, Caffarel MM, Urruticoechea A, Sflomos G, Malorni L, Corsini M, Ippolito L, Giannoni E, Meattini I, Matafora V, Havas K, Bachi A, Chiarugi P, Marangoni E, Morandi A. Acetyl-CoA carboxylase 1 controls a lipid droplet-peroxisome axis and is a vulnerability of endocrine-resistant ER + breast cancer. Sci Transl Med 2024; 16:eadf9874. [PMID: 38416843 DOI: 10.1126/scitranslmed.adf9874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/30/2024] [Indexed: 03/01/2024]
Abstract
Targeting aromatase deprives ER+ breast cancers of estrogens and is an effective therapeutic approach for these tumors. However, drug resistance is an unmet clinical need. Lipidomic analysis of long-term estrogen-deprived (LTED) ER+ breast cancer cells, a model of aromatase inhibitor resistance, revealed enhanced intracellular lipid storage. Functional metabolic analysis showed that lipid droplets together with peroxisomes, which we showed to be enriched and active in the LTED cells, controlled redox homeostasis and conferred metabolic adaptability to the resistant tumors. This reprogramming was controlled by acetyl-CoA-carboxylase-1 (ACC1), whose targeting selectively impaired LTED survival. However, the addition of branched- and very long-chain fatty acids reverted ACC1 inhibition, a process that was mediated by peroxisome function and redox homeostasis. The therapeutic relevance of these findings was validated in aromatase inhibitor-treated patient-derived samples. Last, targeting ACC1 reduced tumor growth of resistant patient-derived xenografts, thus identifying a targetable hub to combat the acquisition of estrogen independence in ER+ breast cancers.
Collapse
Affiliation(s)
- Marina Bacci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Nicla Lorito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Alfredo Smiriglia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Angela Subbiani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Francesca Bonechi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Giuseppina Comito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Ludivine Morriset
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 rue d'Ulm, 75005 Paris, France
| | - Rania El Botty
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 rue d'Ulm, 75005 Paris, France
| | - Matteo Benelli
- Department of Medical Oncology, Azienda USL Toscana Centro, Hospital of Prato, Via Suor Niccolina Infermiera 20, 59100 Prato, Italy
| | - Joanna I López-Velazco
- Biodonostia Health Research Institute, Paseo Dr Begiristain s/n, 20014 San Sebastian, Spain
| | - Maria M Caffarel
- Biodonostia Health Research Institute, Paseo Dr Begiristain s/n, 20014 San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Ander Urruticoechea
- Biodonostia Health Research Institute, Paseo Dr Begiristain s/n, 20014 San Sebastian, Spain
- Gipuzkoa Cancer Unit, OSI Donostialdea-Onkologikoa Foundation, Paseo Dr Begiristain 121, 20014 San Sebastian, Spain
| | - George Sflomos
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Luca Malorni
- Department of Medical Oncology, Azienda USL Toscana Centro, Hospital of Prato, Via Suor Niccolina Infermiera 20, 59100 Prato, Italy
| | - Michela Corsini
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, 25123 Brescia, Italy
| | - Luigi Ippolito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Icro Meattini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy
| | - Vittoria Matafora
- IFOM ETS-AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Kristina Havas
- IFOM ETS-AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Angela Bachi
- IFOM ETS-AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Elisabetta Marangoni
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 rue d'Ulm, 75005 Paris, France
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| |
Collapse
|
37
|
Wu H, Xie J, Peng W, Ji F, Qian J, Shen Q, Hou G. Effects of guanidinoacetic acid supplementation on liver and breast muscle fat deposition, lipid levels, and lipid metabolism-related gene expression in ducks. Front Vet Sci 2024; 11:1364815. [PMID: 38435369 PMCID: PMC10904544 DOI: 10.3389/fvets.2024.1364815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
Exogenous supplementation of guanidinoacetic acid can mechanistically regulate the energy distribution in muscle cells. This study aimed to investigate the effects of guanidinoacetic acid supplementation on liver and breast muscle fat deposition, lipid levels, and lipid metabolism-related gene expression in ducks. We randomly divided 480 42 days-old female Jiaji ducks into four groups with six replicates and 20 ducks for each replicate. The control group was fed the basal diet, and the experimental groups were fed the basal diet with 400, 600, and 800 mg/kg (GA400, GA600, and GA800) guanidinoacetic acid, respectively. Compared with the control group, (1) the total cholesterol (p = 0.0262), triglycerides (p = 0.0357), malondialdehyde (p = 0.0452) contents were lower in GA400, GA600 and GA800 in the liver; (2) the total cholesterol (p = 0.0365), triglycerides (p = 0.0459), and malondialdehyde (p = 0.0326) contents in breast muscle were decreased in GA400, GA600 and GA800; (3) the high density lipoprotein (p = 0.0356) and apolipoprotein-A1 (p = 0.0125) contents were increased in GA600 in the liver; (4) the apolipoprotein-A1 contents (p = 0.0489) in breast muscle were higher in GA600 and GA800; (5) the lipoprotein lipase contents (p = 0.0325) in the liver were higher in GA600 and GA800; (6) the malate dehydrogenase contents (p = 0.0269) in breast muscle were lower in GA400, GA600, and GA800; (7) the insulin induced gene 1 (p = 0.0326), fatty acid transport protein 1 (p = 0.0412), and lipoprotein lipase (p = 0.0235) relative expression were higher in GA400, GA600, and GA800 in the liver; (8) the insulin induced gene 1 (p = 0.0269), fatty acid transport protein 1 (p = 0.0234), and lipoprotein lipase (p = 0.0425) relative expression were increased in GA400, GA600, and GA800 in breast muscle. In this study, the optimum dosage of 600 mg/kg guanidinoacetic acid improved the liver and breast muscle fat deposition, lipid levels, and lipid metabolism-related gene expression in ducks.
Collapse
Affiliation(s)
- Hongzhi Wu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jiajun Xie
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Weiqi Peng
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Fengjie Ji
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jinyu Qian
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Qian Shen
- Hainan Xuhuai Technology Co., Ltd., Haikou, China
| | - Guanyu Hou
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
38
|
Zhang Z, Liang X, Yang X, Liu Y, Zhou X, Li C. Advances in Nanodelivery Systems Based on Metabolism Reprogramming Strategies for Enhanced Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6689-6708. [PMID: 38302434 DOI: 10.1021/acsami.3c15686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Tumor development and metastasis are closely related to the complexity of the metabolism network. Recently, metabolism reprogramming strategies have attracted much attention in tumor metabolism therapy. Although there is preliminary success of metabolism therapy agents, their therapeutic effects have been restricted by the effective reaching of the tumor sites of drugs. Nanodelivery systems with unique physical properties and elaborate designs can specifically deliver to the tumors. In this review, we first summarize the research progress of nanodelivery systems based on tumor metabolism reprogramming strategies to enhance therapies by depleting glucose, inhibiting glycolysis, depleting lactic acid, inhibiting lipid metabolism, depleting glutamine and glutathione, and disrupting metal metabolisms combined with other therapies, including chemotherapy, radiotherapy, photodynamic therapy, etc. We further discuss in detail the advantages of nanodelivery systems based on tumor metabolism reprogramming strategies for tumor therapy. As well as the opportunities and challenges for integrating nanodelivery systems into tumor metabolism therapy, we analyze the outlook for these emerging areas. This review is expected to improve our understanding of modulating tumor metabolisms for enhanced therapy.
Collapse
Affiliation(s)
- Zongquan Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaoya Liang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xi Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yan Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiangyu Zhou
- Department of Thyroid and Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Basic Medicine Research Innovation Center for Cardiometabolic Disease, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
39
|
Wu K, Lin F. Lipid Metabolism as a Potential Target of Liver Cancer. J Hepatocell Carcinoma 2024; 11:327-346. [PMID: 38375401 PMCID: PMC10875169 DOI: 10.2147/jhc.s450423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/25/2024] [Indexed: 02/21/2024] Open
Abstract
Hepatocellular carcinoma (HCC) stands as a severe malignant tumor with a profound impact on overall health, often accompanied by an unfavorable prognosis. Despite some advancements in the diagnosis and treatment of this disease, improving the prognosis of HCC remains a formidable challenge. It is noteworthy that lipid metabolism plays a pivotal role in the onset, development, and progression of tumor cells. Existing research indicates the potential application of targeting lipid metabolism in the treatment of HCC. This review aims to thoroughly explore the alterations in lipid metabolism in HCC, offering a detailed account of the potential advantages associated with innovative therapeutic strategies targeting lipid metabolism. Targeting lipid metabolism holds promise for potentially enhancing the prognosis of HCC.
Collapse
Affiliation(s)
- Kangze Wu
- Department of Hepatobiliary Surgery, Shaoxing People’s Hospital, Shaoxing, People’s Republic of China
| | - Feizhuan Lin
- Department of Hepatobiliary Surgery, Shaoxing People’s Hospital, Shaoxing, People’s Republic of China
| |
Collapse
|
40
|
Sun X, Zhang Y, Xin S, Jin L, Cao Q, Wang H, Wang K, Liu X, Tang C, Li W, Li Z, Wen X, Yang G, Guo C, Liu Z, Ye L. NOTCH3 promotes docetaxel resistance of prostate cancer cells through regulating TUBB3 and MAPK signaling pathway. Cancer Sci 2024; 115:412-426. [PMID: 38115797 PMCID: PMC10859609 DOI: 10.1111/cas.16040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/12/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Docetaxel is the preferred chemotherapeutic agent in patients with castrate-resistant prostate cancer (CRPC). However, patients eventually develop docetaxel resistance and in the absence of effective treatment options. Consequently, it is essential to investigate the mechanisms generating docetaxel resistance and develop novel alternative therapeutic targets. RNA sequencing was undertaken on docetaxel-sensitive and docetaxel-resistant prostate cancer (PCa) cells. Subsequently, chemoresistance, cancer stemness, and lipid metabolism were investigated. To obtain insight into the precise activities and action mechanisms of NOTCH3 in docetaxel-resistant PCa, immunoprecipitation, mass spectrometry, ChIP, luciferase reporter assay, cell metabolism, and animal experiments were performed. Through RNA sequencing analysis, we found that NOTCH3 expression was markedly higher in docetaxel-resistant cells relative to parental cells, and that this trend was continued in docetaxel-resistant PCa tissues. Experiments in vitro and in vivo revealed that NOTCH3 enhanced stemness, lipid metabolism, and docetaxel resistance in PCa. Mechanistically, NOTCH3 is bound to TUBB3 and activates the MAPK signaling pathway. Moreover, NOTCH3 was directly regulated by MEF2A in docetaxel-resistant cells. Notably, targeting NOTCH3 and the MEF2A/TUBB3 signaling axis was related to docetaxel chemoresistance in PCa. Overall, these results demonstrated that NOTCH3 fostered stemness, lipid metabolism, and docetaxel resistance in PCa via the TUBB3 and MAPK signaling pathways. Therefore, NOTCH3 may be employed as a prognostic biomarker in PCa patients. NOTCH3 could be a therapeutic target for PCa patients, particularly those who have developed docetaxel resistance.
Collapse
Affiliation(s)
- Xianchao Sun
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
- Department of UrologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Ying Zhang
- Department of UrologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Shiyong Xin
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Liang Jin
- Department of Urology, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Qiong Cao
- Department of PathologyThe Third Affiliated Hospital of Henan University of Science and TechnologyLuoyangChina
| | - Hong Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Keyi Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xiang Liu
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Chaozhi Tang
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Weiyi Li
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
- Department of Urology, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Ziyao Li
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xiaofei Wen
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Guosheng Yang
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Changcheng Guo
- Department of Urology, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Zhiyu Liu
- Department of UrologyThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Lin Ye
- Department of Urology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
41
|
Liu N, Chen M. Crosstalk between ferroptosis and cuproptosis: From mechanism to potential clinical application. Biomed Pharmacother 2024; 171:116115. [PMID: 38181713 DOI: 10.1016/j.biopha.2023.116115] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
Ferroptosis and cuproptosis, regulated forms of cell death resulting from metal ion accumulation, are closely related in terms of occurrence, cell metabolism, signaling pathways, and drug resistance. Notably, it is now understood that these processes play crucial roles in regulating physiological and pathological processes, especially in tumor development. Consequently, ferroptosis and cuproptosis have gained increasing significance as potential targets for anti-cancer drug development. This article systematically outlines the molecular mechanisms and cross-talk components of both ferroptosis and cuproptosis, elucidating their impacts on cancer. Furthermore, it investigates the clinical perspective of targeted ferroptosis and cuproptosis in cancer chemotherapy, immunotherapy, and radiotherapy. Our discussion extends to a comparative analysis of nanoparticles developed based on the mechanisms of ferroptosis and cuproptosis in cancer, contrasting them with current conventional therapies. Opportunities and challenges in cancer treatment are explored, emphasizing the potential therapeutic direction of co-targeting ferroptosis and cuproptosis. The article also attempts to analyze the clinical applications of this co-targeting approach for cancer treatment while summarizing the existing barriers that require overcoming.
Collapse
Affiliation(s)
- Na Liu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Minbin Chen
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| |
Collapse
|
42
|
Xiao H, Qu Y, Li H, Zhang Y, Fei M, Liang C, Yang H, Zhang X. HIF-2α/LINC02609/APOL1-mediated lipid storage promotes endoplasmic reticulum homeostasis and regulates tumor progression in clear-cell renal cell carcinoma. J Exp Clin Cancer Res 2024; 43:29. [PMID: 38263248 PMCID: PMC10804485 DOI: 10.1186/s13046-023-02940-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND The VHL-HIF pathway and lipid droplet accumulation are the main characteristics of clear cell renal cell carcinoma (ccRCC). However, the connection between the two features is largely unknown. METHODS We used transcriptional sequencing and TCGA database analysis to identify APOL1 as a novel therapeutic target for ccRCC. The oncogenic functions of APOL1 were investigated by cell proliferation, colony formation, migration and invasion assays in ccRCC cells in vitro and xenografts derived from ccRCC cells in vivo. Oil red O staining and quantification were used to detect lipid droplets. Chromatin immunoprecipitation (ChIP) assays and luciferase reporter assays were carried out to identify HIF-2α bound to the promoter of APOL1 and lncRNA LINC02609. RNA-FISH and luciferase reporter assays were performed to determine that LncRNA LINC02609 functions as a competing endogenous RNA to regulate APOL1 expression by sponging miR-149-5p. FINDINGS RNA-seq data revealed that HIF2α can regulate APOL1 and lncRNA LINC02609 expression. We also found that HIF-2α can bind to the promoter of APOL1 and lncRNA LINC02609 and transcriptionally regulate their expression directly. We further demonstrated that LncRNA LINC02609 functions as a competing endogenous RNA to regulate APOL1 expression by sponging miR-149-5p in ccRCC. Mechanistically, APOL1-dependent lipid storage is required for endoplasmic reticulum (ER) homeostasis and cell viability and metastasis in ccRCC. We also showed that high APOL1 expression correlated with worse clinical outcomes, and knockdown of APOL1 inhibited tumor cell lipid droplet formation, proliferation, metastasis and xenograft tumor formation abilities. Together, our studies identify that HIF2α can regulate the expression of the lipid metabolism related gene APOL1 by direct and indirect means, which are essential for ccRCC tumorigenesis. INTERPRETATION Based on the experimental data, in ccRCC, the HIF-2α/LINC02609/APOL1 axis can regulate the expression of APOL1, thus interfering with lipid storage, promoting endoplasmic reticulum homeostasis and regulating tumor progression in ccRCC. Together, our findings provide potential biomarkers and novel therapeutic targets for future studies in ccRCC.
Collapse
Affiliation(s)
- Haibing Xiao
- Department of Urology, Institute of Urology, Anhui Province Key Laboratory of Genitourinary Diseases, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China
- Department of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Qu
- College of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan, 453000, China
| | - Haolin Li
- Department of Urology, Institute of Urology, Anhui Province Key Laboratory of Genitourinary Diseases, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China
| | - Yi Zhang
- Department of Urology, Institute of Urology, Anhui Province Key Laboratory of Genitourinary Diseases, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China
| | - Mintian Fei
- Department of Urology, Institute of Urology, Anhui Province Key Laboratory of Genitourinary Diseases, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China
| | - Chaozhao Liang
- Department of Urology, Institute of Urology, Anhui Province Key Laboratory of Genitourinary Diseases, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China.
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xiaoping Zhang
- Department of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China.
| |
Collapse
|
43
|
Lepionka T, Białek M, Czauderna M, Wojtak W, Maculewicz E, Białek A. Exploring the Influence of the Selected Conjugated Fatty Acids Isomers and Cancerous Process on the Fatty Acids Profile of Spleen. Cancers (Basel) 2024; 16:479. [PMID: 38339233 PMCID: PMC10854539 DOI: 10.3390/cancers16030479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
The spleen, traditionally associated with blood filtration and immune surveillance, has recently been recognized for its role in systemic lipid metabolism and potential influence on cancer development and progression. This study investigates effects of dietary supplements, specifically conjugated linolenic acids from pomegranate seed oil and bitter melon extract, on the fatty acid (FA) composition of the spleen in the context of cancerous processes. Advanced methods, including gas chromatography-mass spectrometry and silver ion-impregnated high-performance liquid chromatography, were employed to analyze the spleen's FA profile. Our research uncovered that dietary supplementation leads to alterations in the spleen's FA profile, especially under the carcinogenic influence of 7,12-dimethylbenz[a]anthracene. These changes did not align with a simple protective or anti-carcinogenic pattern, as previously suggested in in vitro studies. We observed shifts in conjugated FA isomer concentrations and variations in desaturase activities, suggesting disrupted lipid metabolism in cancerous conditions. The findings underscore the spleen's vital role in lipid metabolism within the body's systemic health framework, highlighting the complexity of dietary supplements' impact on FA profiles in the spleen and their potential implications in cancer progression and treatment. This study adds valuable insight into the complex interplay between diet, disease, and metabolic regulation, particularly in cancerous environments.
Collapse
Affiliation(s)
- Tomasz Lepionka
- The Biological Threats Identification and Countermeasure Center of the General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Lubelska 4 St, 24-100 Puławy, Poland;
| | - Małgorzata Białek
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland; (M.B.); (M.C.); (W.W.)
| | - Marian Czauderna
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland; (M.B.); (M.C.); (W.W.)
| | - Wiktoria Wojtak
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland; (M.B.); (M.C.); (W.W.)
| | - Ewelina Maculewicz
- Faculty of Physical Education, Jozef Pilsudski University of Physical Education in Warsaw, Marymoncka 34, 00-968 Warsaw, Poland;
| | - Agnieszka Białek
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland; (M.B.); (M.C.); (W.W.)
- School of Health and Medical Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01-043 Warsaw, Poland
| |
Collapse
|
44
|
Zhang S, Lv K, Liu Z, Zhao R, Li F. Fatty acid metabolism of immune cells: a new target of tumour immunotherapy. Cell Death Discov 2024; 10:39. [PMID: 38245525 PMCID: PMC10799907 DOI: 10.1038/s41420-024-01807-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/25/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
Metabolic competition between tumour cells and immune cells for limited nutrients is an important feature of the tumour microenvironment (TME) and is closely related to the outcome of tumour immune escape. A large number of studies have proven that tumour cells need metabolic reprogramming to cope with acidification and hypoxia in the TME while increasing energy uptake to support their survival. Among them, synthesis, oxidation and uptake of fatty acids (FAs) in the TME are important manifestations of lipid metabolic adaptation. Although different immune cell subsets often show different metabolic characteristics, various immune cell functions are closely related to fatty acids, including providing energy, providing synthetic materials and transmitting signals. In the face of the current situation of poor therapeutic effects of tumour immunotherapy, combined application of targeted immune cell fatty acid metabolism seems to have good therapeutic potential, which is blocked at immune checkpoints. Combined application of adoptive cell therapy and cancer vaccines is reflected. Therefore, it is of great interest to explore the role of fatty acid metabolism in immune cells to discover new strategies for tumour immunotherapy and improve anti-tumour immunity.
Collapse
Affiliation(s)
- Sheng Zhang
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kebing Lv
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhen Liu
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ran Zhao
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fei Li
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China.
- Jiangxi Clinical Research Center for Hematologic Disease, Nanchang, China.
- Institute of Lymphoma and Myeloma, Nanchang University, Nanchang, China.
| |
Collapse
|
45
|
Zhou L, Du K, Dai Y, Zeng Y, Luo Y, Ren M, Pan W, Liu Y, Zhang L, Zhu R, Feng D, Tian F, Gu C. Metabolic reprogramming based on RNA sequencing of gemcitabine-resistant cells reveals the FASN gene as a therapeutic for bladder cancer. J Transl Med 2024; 22:55. [PMID: 38218866 PMCID: PMC10787972 DOI: 10.1186/s12967-024-04867-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024] Open
Abstract
Bladder cancer (BLCA) is the most frequent malignant tumor of the genitourinary system. Postoperative chemotherapy drug perfusion and chemotherapy are important means for the treatment of BLCA. However, once drug resistance occurs, BLCA develops rapidly after recurrence. BLCA cells rely on unique metabolic rewriting to maintain their growth and proliferation. However, the relationship between the metabolic pattern changes and drug resistance in BLCA is unclear. At present, this problem lacks systematic research. In our research, we identified and analyzed resistance- and metabolism-related differentially expressed genes (RM-DEGs) based on RNA sequencing of a gemcitabine-resistant BLCA cell line and metabolic-related genes (MRGs). Then, we established a drug resistance- and metabolism-related model (RM-RM) through regression analysis to predict the overall survival of BLCA. We also confirmed that RM-RM had a significant correlation with tumor metabolism, gene mutations, tumor microenvironment, and adverse drug reactions. Patients with a high drug resistance- and metabolism-related risk score (RM-RS) showed more active lipid synthesis than those with a low RM-RS. Further in vitro and in vivo studies were implemented using Fatty Acid Synthase (FASN), a representative gene, which promotes gemcitabine resistance, and its inhibitor (TVB-3166) that can reverse this resistance effect.
Collapse
Affiliation(s)
- Lijie Zhou
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Kaixuan Du
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiheng Dai
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Youmiao Zeng
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongbo Luo
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengda Ren
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenbang Pan
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuanhao Liu
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lailai Zhang
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ronghui Zhu
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dapeng Feng
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fengyan Tian
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Chaohui Gu
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
46
|
Wang C, Chen Z, Yi Y, Ding Y, Xu F, Kang H, Lin K, Shu X, Zhong Z, Zhang Z, Liu J, Xu Z, Liu L, He X, Chang Y, Zhao Q. RBM45 reprograms lipid metabolism promoting hepatocellular carcinoma via Rictor and ACSL1/ACSL4. Oncogene 2024; 43:328-340. [PMID: 38040804 DOI: 10.1038/s41388-023-02902-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
Reprogramming of lipid metabolism during hepatocarcinogenesis is not well elucidated. Here, we aimed to explore pivotal RNA-binding motif proteins (RBMs) in lipid metabolism and their therapeutic potential in hepatocellular carcinoma (HCC). Through bioinformatic analysis, we identified RBM45 as a critical gene of interest among differentially expressed RBMs in HCC, with significant prognostic relevance. RBM45 influenced the malignant biological phenotype and lipid metabolism of HCC cells. Mechanically, RBM45 promotes de novo lipogenesis in HCC by directly targeting two key enzymes involved in long-chain fatty acid synthesis, ACSL1 and ACSL4. RBM45 also targets Rictor, which has been demonstrated to modulate lipid metabolism profoundly. RBM45 also aided lipid degradation through activating a key fatty acid β oxidation enzyme, CPT1A. Thus, RBM45 boosted lipid synthesis and decomposition, indicating an enhanced utility of lipid fuels in HCC. Clinically, body mass index was positively correlated with RBM45 in human HCCs. The combination of a PI3K/AKT/mTOR pathway inhibitor in vitro or Sorafenib in orthotopic liver cancer mouse models with shRBM45 has a more significant therapeutic effect on liver cancer than the drug alone. In summary, our findings highlight the versatile roles of RBM45 in lipid metabolism reprogramming and its therapeutic potential in HCC. Lipids induced RBM45 expression. In turn, RBM45 promoted the utility of lipid in HCCs through accelerating both de novo lipogenesis and fatty acid β oxidation, which required the participation of Rictor, a core component of mTORC2 that has been demonstrated to modulate lipid metabolism potently, as well as ACSL1/ACSL4, two key enzymes of long-chain fatty acid synthesis. When the first-line chemotherapy drug sorafenib is combined with a PI3K/AKT/mTOR pathway inhibitor (MK2206 is an AKT inhibitor, rapamycin is a mTOR inhibitor, and inhibiting RBM45 can significantly inhibit Rictor), cell cycle, proliferation, lipid metabolism reprogramming, and hepatocarcinogenesis can be significantly inhibited, while apoptosis can be significantly enhanced.
Collapse
Affiliation(s)
- Chun Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Zhihang Chen
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yun Yi
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Yang Ding
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Fei Xu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Hui Kang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Kun Lin
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Xiawen Shu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Zibiao Zhong
- Transplant Center of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhonglin Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Zhong Xu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Xingxing He
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China.
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China.
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China.
| |
Collapse
|
47
|
Zhang Q, Wang X, Zhao Y, Cheng Z, Fang D, Liu Y, Tian G, Li M, Luo Z. Nanointegrative In Situ Reprogramming of Tumor-Intrinsic Lipid Droplet Biogenesis for Low-Dose Radiation-Activated Ferroptosis Immunotherapy. ACS NANO 2023; 17:25419-25438. [PMID: 38055636 DOI: 10.1021/acsnano.3c08907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Low-dose radiotherapy (LDR) has shown significant implications for inflaming the immunosuppressive tumor microenvironment (TME). Surprisingly, we identify that FABP-dependent lipid droplet biogenesis in tumor cells is a key determinant of LDR-evoked cytotoxic and immunostimulatory effects and developed a nanointegrated strategy to promote the antitumor efficacy of LDR through cooperative ferroptosis immunotherapy. Specifically, TCPP-TK-PEG-PAMAM-FA, a nanoscale multicomponent functional polymer with self-assembly capability, was synthesized for cooperatively entrapping hafnium ions (Hf4+) and HIF-1α-inhibiting siRNAs (siHIF-1α). The TCPP@Hf-TK-PEG-PAMAM-FA@siHIF-1α nanoassemblies are specifically taken in by folate receptor-overexpressing tumor cells and activated by the elevated cellular ROS stress. siHIF-1α could readily inhibit the FABP3/7 expression in tumor cells via HIF-1α-FABP3/7 signaling and abolish lipid droplet biogenesis for enhancing the peroxidation susceptibility of membrane lipids, which synergizes with the elevated ROS stress in the context of Hf4+-enhanced radiation exposure and evokes pronounced ferroptotic damage in vital membrane structures. Interestingly, TCPP@Hf-TK-PEG-PAMAM-FA@siHIF-1α-enhanced ferroptotic biomembrane damage also facilitates the exposure of tumor-associated antigens (TAAs) to promote post-LDR immunotherapeutic effects, leading to robust tumor regression in vivo. This study offers a nanointegrative approach to boost the antitumor effects of LDR through the utilization of tumor-intrinsic lipid metabolism.
Collapse
Affiliation(s)
- Qiqi Zhang
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Xuan Wang
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Yuanyuan Zhao
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Zhuo Cheng
- Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing 401329, P. R. China
| | - De Fang
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Yingqi Liu
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Gan Tian
- Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing 401329, P. R. China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
48
|
Korbelik M. Photodynamic Therapy Supported by Antitumor Lipids. Pharmaceutics 2023; 15:2723. [PMID: 38140064 PMCID: PMC10747669 DOI: 10.3390/pharmaceutics15122723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Photodynamic therapy (PDT) destroys tumors by generating cytotoxic oxidants that induce oxidative stress in targeted cancer cells. Antitumor lipids developed for cancer therapy act also by inflicting similar stress. The present study investigated whether tumor response to PDT can be improved by adjuvant treatment with such lipids using the prototype molecule edelfosine. Cellular stress intensity following Photofrin-based PDT, edelfosine treatment, or their combination was assessed by the expression of heat shock protein 70 (HSP70) on the surface of treated SCCVII tumor cells by FITC-conjugated anti-HSP70 antibody staining and flow cytometry. Surface HSP70 levels that became elevated after either PDT or edelfosine rose much higher after their combined treatment. The impact of Photofrin-PDT-plus-edelfosine treatment was studied with three types of tumor models grown in syngeneic mice. With both SCCVII squamous cell carcinomas and MCA205 fibrosarcoma, the greatest impact was with edelfosine peritumoral injection at 24 h after PDT, which substantially improved tumor cure rates. With Lewis lung carcinomas, edelfosine was highly effective in elevating PDT-mediated tumor cure rates even when injected peritumorally immediately after PDT. Edelfosine used before PDT was ineffective as adjuvant with all tumor models. The study findings provide proof-in-principle for use of cancer lipids with tumor PDT.
Collapse
Affiliation(s)
- Mladen Korbelik
- Department of Integrative Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| |
Collapse
|
49
|
Zhang J, Wang H, Tian Y, Li T, Zhang W, Ma L, Chen X, Wei Y. Discovery of a novel lipid metabolism-related gene signature to predict outcomes and the tumor immune microenvironment in gastric cancer by integrated analysis of single-cell and bulk RNA sequencing. Lipids Health Dis 2023; 22:212. [PMID: 38042786 PMCID: PMC10693080 DOI: 10.1186/s12944-023-01977-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023] Open
Abstract
Gastric cancer (GC) is a pressing global clinical issue, with few treatment options and a poor prognosis. The onset and spread of stomach cancer are significantly influenced by changes in lipid metabolism-related pathways. This study aimed to discover a predictive signature for GC using lipid metabolism-related genes (LMRGs) and examine its correlation with the tumor immune microenvironment (TIME). Transcriptome data and clinical information from patients with GC were collected from the TCGA and GEO databases. Data from GC samples were analyzed using both bulk RNA-seq and single-cell sequencing of RNA (scRNA-seq). To identify survival-related differentially expressed LMRGs (DE-LMRGs), differential expression and prognosis studies were carried out. We built a predictive signature using LASSO regression and tested it on the TCGA and GSE84437 datasets. In addition, the correlation of the prognostic signature with the TIME was comprehensively analyzed. In this study, we identified 258 DE-LMRGs in GC and further screened seven survival-related DE-LMRGs. The results of scRNA-seq identified 688 differentially expressed genes (DEGs) between the three branches. Two critical genes (GPX3 and NNMT) were identified using the above two gene groups. In addition, a predictive risk score that relies on GPX3 and NNMT was developed. Survival studies in both the TCGA and GEO datasets revealed that patients categorized to be at low danger had a significantly greater prognosis than those identified to be at high danger. Additionally, by employing calibration plots based on TCGA data, the study demonstrated the substantial predictive capacity of a prognostic nomogram, which incorporated a risk score along with various clinical factors. Within the high-risk group, there was a noticeable abundance of active natural killer (NK) cells, quiescent monocytes, macrophages, mast cells, and activated CD4 + T cells. In summary, a two-gene signature and a predictive nomogram have been developed, offering accurate prognostic predictions for general survival in GC patients. These findings have the potential to assist healthcare professionals in making informed medical decisions and providing personalized treatment approaches.
Collapse
Affiliation(s)
- Jinze Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Dalian Medical University, Dalian, China
- Department of Scientific Research, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - He Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Dalian Medical University, Dalian, China
| | - Yu Tian
- Department of Epidemiology and Health Statistics, School of Public Health, Dalian Medical University, Dalian, China
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Tianfeng Li
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
- Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Wei Zhang
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Li Ma
- Department of Epidemiology and Health Statistics, School of Public Health, Dalian Medical University, Dalian, China
| | - Xiangjuan Chen
- Department of Obstetrics, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China.
| | - Yushan Wei
- Department of Scientific Research, First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
50
|
Zhao Y, Zhang X, An M, Zhang J, Liu Y. Recent advancements in nanomedicine based lipid metabolism for tumour immunotherapy. J Drug Target 2023; 31:1050-1064. [PMID: 37962291 DOI: 10.1080/1061186x.2023.2283829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023]
Abstract
Therapy on lipid metabolism is emerging as a groundbreaking cancer treatment, offering the unprecedented opportunity to effectively treat and in several cases. Tumorigenesis is inextricably linked to lipid metabolism. In this regard, the features of lipid metabolism include lipid synthesis, decomposition, metabolism and lipid storage and mobilisation from intracellular lipid droplets. Most importantly, the regulation of lipid metabolism is central to the appropriate immune response of tumour cells, and ultimately to exert the immune efforts to realise the perspective of many anti-tumour effects. Different cancers and immune cells have different dependence on lipid metabolism, playing a pivotal role in differentiation and function of immune cells. However, what lies before the immunotherapy targeting lipid metabolism is side effects of systemic toxicity and defects of individual drugs, which strongly highlights that nanodelivery strategy is a magnet for it to enhance drug efficiency, reduce drug toxicity and improve application deficiencies. This review will first focus on emerging research progress of lipid metabolic reprogramming mechanism, and then explore the complex role of lipid metabolism in the tumour cells including the effect on immune cells and their nano-preparations of monotherapy and multiple therapies used in combination, in a shift away from conventional cancer research.HighlightsThe regulation of lipid metabolism is central to the appropriate immune response of tumour cells, and ultimately to exert the immune efforts to realise the perspective of many anti-tumour effects.Preparations of focusing lipid metabolism have side effects of systemic toxicity and defects of individual drugs. It strongly highlights that nanodelivery strategy is a magnet for it to enhance drug efficiency, reduce drug toxicity and improve application deficiencies.This review will first focus on emerging research progress of lipid metabolic reprogramming mechanism, and then explore the complex role of lipid metabolism in the tumour cells including the effect on immune cells as well as their nano-preparations of monotherapy and multiple therapies used in combination, in a shift away from conventional cancer research.
Collapse
Affiliation(s)
- Yumeng Zhao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Xiaojie Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Min An
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Juntao Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|