1
|
Nam J, Kim S, Jin E, Lee S, Cho HJ, Min SK, Choe W. Zeolitic Imidazolate Frameworks as Solid-State Nanomachines. Angew Chem Int Ed Engl 2024; 63:e202404061. [PMID: 38696243 DOI: 10.1002/anie.202404061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Indexed: 06/15/2024]
Abstract
Machines have continually developed with the needs of daily life and industrial applications. While the careful design of molecular-scale devices often displays enhanced properties along with mechanical movements, controlling mechanics within solid-state molecular structures remains a significant challenge. Here, we explore the distinct mechanical properties of zeolitic imidazolate frameworks (ZIFs)-frameworks that contain hidden mechanical components. Using a combination of experimental and theoretical approaches, we uncover the machine-like capabilities of ZIFs, wherein connected composite building units operate similarly to a mechanical linkage system. Importantly, this research suggests that certain ZIF subunits act as core mechanical components, paving an innovative view for the future design of solid-state molecular machines.
Collapse
Affiliation(s)
- Joohan Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Seokjin Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Eunji Jin
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Soochan Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hye Jin Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Seung Kyu Min
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Wonyoung Choe
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Graduate School of Artificial Intelligence, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
2
|
Perego J, Daolio A, Bezuidenhout CX, Piva S, Prando G, Costarella B, Carretta P, Marchiò L, Kubicki D, Sozzani P, Bracco S, Comotti A. Solid State Machinery of Multiple Dynamic Elements in a Metal-Organic Framework. Angew Chem Int Ed Engl 2024; 63:e202317094. [PMID: 38236628 DOI: 10.1002/anie.202317094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/19/2024]
Abstract
Engineering coordinated rotational motion in porous architectures enables the fabrication of molecular machines in solids. A flexible two-fold interpenetrated pillared Metal-Organic Framework precisely organizes fast mobile elements such as bicyclopentane (BCP) (107 Hz regime at 85 K), two distinct pyridyl rotors and E-azo group involved in pedal-like motion. Reciprocal sliding of the two sub-networks, switched by chemical stimuli, modulated the sizes of the channels and finally the overall dynamical machinery. Actually, iodine-vapor adsorption drives a dramatic structural rearrangement, displacing the two distinct subnets in a concerted piston-like motion. Unconventionally, BCP mobility increases, exploring ultra-fast dynamics (107 Hz) at temperatures as low as 44 K, while the pyridyl rotors diverge into a faster and slower dynamical regime by symmetry lowering. Indeed, one pillar ring gained greater rotary freedom as carried by the azo-group in a crank-like motion. A peculiar behavior was stimulated by pressurized CO2, which regulates BCP dynamics upon incremental site occupation. The rotary dynamics is intrinsically coupled to the framework flexibility as demonstrated by complementary experimental evidence (multinuclear solid-state NMR down to very low temperatures, synchrotron radiation XRD, gas sorption) and computational modelling, which helps elucidate the highly sophisticated rotor-structure interplay.
Collapse
Affiliation(s)
- Jacopo Perego
- Department of Materials Science, University of Milano Bicocca, Milan, Italy
| | - Andrea Daolio
- Department of Materials Science, University of Milano Bicocca, Milan, Italy
| | | | - Sergio Piva
- Department of Materials Science, University of Milano Bicocca, Milan, Italy
| | - Giacomo Prando
- Dipartimento di Fisica, Università degli studi di Pavia, Pavia, Italy
| | - Benjamin Costarella
- Dipartimento di Fisica, Università degli studi di Pavia, Pavia, Italy
- École normale supérieure Paris-Saclay, Gif-sur-Yvette, France
| | - Pietro Carretta
- Dipartimento di Fisica, Università degli studi di Pavia, Pavia, Italy
| | - Luciano Marchiò
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli studi di Parma, Parma, Italy
| | - Dominik Kubicki
- School of Chemistry, University of Birmingham, Birmingham, UK
| | - Piero Sozzani
- Department of Materials Science, University of Milano Bicocca, Milan, Italy
| | - Silvia Bracco
- Department of Materials Science, University of Milano Bicocca, Milan, Italy
| | - Angiolina Comotti
- Department of Materials Science, University of Milano Bicocca, Milan, Italy
| |
Collapse
|
3
|
Tsai CY, Cheng HT, Chiu SH. Improbable Rotaxanes Constructed From Surrogate Malonate Rotaxanes as Encircled Methylene Synthons. Angew Chem Int Ed Engl 2023; 62:e202308974. [PMID: 37712453 DOI: 10.1002/anie.202308974] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
We have developed a new approach for the synthesis of "improbable" rotaxanes by using malonate-centered rotaxanes as interlocked surrogate precursors. Here, the desired dumbbell-shaped structure can be assembled from two different, completely separate, portions, with the only residual structure introduced from the malonate surrogate being a methylene group. We have synthesized improbable [2]- and [3]rotaxanes with all-hydrocarbon dumbbell-shaped components to demonstrate the potential structural flexibility and scope of the guest species that can be interlocked when using this approach.
Collapse
Affiliation(s)
- Chi-You Tsai
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| | - Hung-Te Cheng
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| | - Sheng-Hsien Chiu
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| |
Collapse
|
4
|
Krause S, Milić JV. Functional dynamics in framework materials. Commun Chem 2023; 6:151. [PMID: 37452112 PMCID: PMC10349092 DOI: 10.1038/s42004-023-00945-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/29/2023] [Indexed: 07/18/2023] Open
Abstract
Dynamic crystalline materials have emerged as a unique category of condensed phase matter that combines crystalline lattice with components that display dynamic behavior in the solid state. This has involved a range of materials incorporating dynamic functional units in the form of stimuli-responsive molecular switches and machines, among others. In particular, it has been possible by relying on framework materials, such as porous molecular frameworks and other hybrid organic-inorganic systems that demonstrated potential for serving as scaffolds for dynamic molecular functions. As functional dynamics increase the level of complexity, the associated phenomena are often overlooked and need to be explored. In this perspective, we discuss a selection of recent developments of dynamic solid-state materials across material classes, outlining opportunities and fundamental and methodological challenges for their advancement toward innovative functionality and applications.
Collapse
Affiliation(s)
- Simon Krause
- Max Planck Institute for Solid-State Research, Stuttgart, Germany.
| | - Jovana V Milić
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
5
|
Singhania A, Kalita S, Chettri P, Ghosh S. Accounts of applied molecular rotors and rotary motors: recent advances. NANOSCALE ADVANCES 2023; 5:3177-3208. [PMID: 37325522 PMCID: PMC10262963 DOI: 10.1039/d3na00010a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Molecular machines are nanoscale devices capable of performing mechanical works at molecular level. These systems could be a single molecule or a collection of component molecules that interrelate with one another to produce nanomechanical movements and resulting performances. The design of the components of molecular machine with bioinspired traits results in various nanomechanical motions. Some known molecular machines are rotors, motors, nanocars, gears, elevators, and so on based on their nanomechanical motion. The conversion of these individual nanomechanical motions to collective motions via integration into suitable platforms yields impressive macroscopic output at varied sizes. Instead of limited experimental acquaintances, the researchers demonstrated several applications of molecular machines in chemical transformation, energy conversion, gas/liquid separation, biomedical use, and soft material fabrication. As a result, the development of new molecular machines and their applications has accelerated over the previous two decades. This review highlights the design principles and application scopes of several rotors and rotary motor systems because these machines are used in real applications. This review also offers a systematic and thorough overview of current advancements in rotary motors, providing in-depth knowledge and predicting future problems and goals in this area.
Collapse
Affiliation(s)
- Anup Singhania
- Natural Product Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology Jorhat 785006 Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Sudeshna Kalita
- Natural Product Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology Jorhat 785006 Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Prerna Chettri
- Natural Product Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology Jorhat 785006 Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Subrata Ghosh
- Natural Product Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology Jorhat 785006 Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
6
|
Wu W, Xu Y, Wang S, Pang Q, Liu S. Metal-organic rotaxane frameworks constructed from a cucurbit[8]uril-based ternary complex for the selective detection of antibiotics. Chem Commun (Camb) 2023; 59:5890-5893. [PMID: 37097118 DOI: 10.1039/d3cc00950e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Herein we report two 2D layered metal-organic rotaxane frameworks (MORFs), WUST-1 and WUST-2, constituted by a ternary host-guest complex based on cucurbit[8]uril (CB[8]) and an (E)-1-methyl-4-[4-(pyridin-4-yl)styryl] pyridinium (G1) ligand, and different metal ions and auxiliary linkers. Both MORFs are stable in water and highly fluorescence emissive, and can selectively sense nitrofurazone with low detection limits.
Collapse
Affiliation(s)
- Weijie Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Yinghao Xu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Shoujun Wang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Qingqing Pang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Simin Liu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
7
|
Perego J, Bezuidenhout CX, Bracco S, Piva S, Prando G, Aloisi C, Carretta P, Kaleta J, Le TP, Sozzani P, Daolio A, Comotti A. Benchmark Dynamics of Dipolar Molecular Rotors in Fluorinated Metal-Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202215893. [PMID: 36469012 DOI: 10.1002/anie.202215893] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Fluorinated Metal-Organic Frameworks (MOFs), comprising a wheel-shaped ligand with geminal rotating fluorine atoms, produced benchmark mobility of correlated dipolar rotors at 2 K, with practically null activation energy (Ea =17 cal mol-1 ). 1 H T1 NMR revealed multiple relaxation phenomena due to the exchange among correlated dipole-rotor configurations. Synchrotron radiation X-ray diffraction at 4 K, Density Functional Theory, Molecular Dynamics and phonon calculations showed the fluid landscape and pointed out a cascade mechanism converting dipole configurations into each other. Gas accessibility, shown by hyperpolarized-Xe NMR, allowed for chemical stimuli intervention: CO2 triggered dipole reorientation, reducing their collective dynamics and stimulating a dipole configuration change in the crystal. Dynamic materials under limited thermal noise and high responsiveness enable the fabrication of molecular machines with low energy dissipation and controllable dynamics.
Collapse
Affiliation(s)
- Jacopo Perego
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125, Milan, Italy
| | - Charl X Bezuidenhout
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125, Milan, Italy
| | - Silvia Bracco
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125, Milan, Italy
| | - Sergio Piva
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125, Milan, Italy
| | - Giacomo Prando
- Department of Physics, University of Pavia, Via Bassi 6, 27100, Pavia, Italy
| | - Cristian Aloisi
- Department of Physics, University of Pavia, Via Bassi 6, 27100, Pavia, Italy
| | - Pietro Carretta
- Department of Physics, University of Pavia, Via Bassi 6, 27100, Pavia, Italy
| | - Jiří Kaleta
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo námĕstí 542/2, 16000, Prague, Czech Republic
| | - Thi Phuong Le
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo námĕstí 542/2, 16000, Prague, Czech Republic
| | - Piero Sozzani
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125, Milan, Italy
| | - Andrea Daolio
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125, Milan, Italy
| | - Angiolina Comotti
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125, Milan, Italy
| |
Collapse
|
8
|
Dong J, Wee V, Zhao D. Stimuli-responsive metal-organic frameworks enabled by intrinsic molecular motion. NATURE MATERIALS 2022; 21:1334-1340. [PMID: 35864154 DOI: 10.1038/s41563-022-01317-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Jinqiao Dong
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, Singapore.
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China.
| | - Vanessa Wee
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Dan Zhao
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
9
|
Feng L, Astumian RD, Stoddart JF. Controlling dynamics in extended molecular frameworks. Nat Rev Chem 2022; 6:705-725. [PMID: 37117491 DOI: 10.1038/s41570-022-00412-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 11/09/2022]
Abstract
Molecular machines are essential dynamic components for fuel production, cargo delivery, information storage and processing in living systems. Scientists have demonstrated that they can design and synthesize artificial molecular machines that operate efficiently in isolation - for example, at high dilution in solution - fuelled by chemicals, electricity or light. To organize the spatial arrangement and motion of these machines within close proximity to one another in solid frameworks, such that useful macroscopic work can be performed, remains a challenge in both chemical and materials science. In this Review, we summarize the progress that has been made during the past decade in organizing dynamic molecular entities in such solid frameworks. Emerging applications of these dynamic smart materials in the contexts of molecular recognition, optoelectronics, drug delivery, photodynamic therapy and water desalination are highlighted. Finally, we review recent work on a new non-equilibrium adsorption phenomenon for which we have coined the term mechanisorption. The ability to use external energy to drive directional processes in mechanized extended frameworks augurs well for the future development of artificial molecular factories.
Collapse
|
10
|
Kolodzeiski E, Amirjalayer S. Dynamic network of intermolecular interactions in metal-organic frameworks functionalized by molecular machines. SCIENCE ADVANCES 2022; 8:eabn4426. [PMID: 35776789 PMCID: PMC10883363 DOI: 10.1126/sciadv.abn4426] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Molecular machines enable external control of structural and dynamic phenomena at the atomic level. To efficiently transfer their tunable properties into designated functionalities, a detailed understanding of the impact of molecular embedding is needed. In particular, a comprehensive insight is fundamental to design hierarchical multifunctional systems that are inspired by biological cells. Here, we applied an on-the-fly trained force field to perform atomistic simulations of a systematically modified rotaxane functionalized metal-organic framework. Our atomistic studies reveal a symmetric and asymmetric interplay of the mechanically bonded rings (MBRs) within the framework depending on the local environment. As a result, their translational motion is modulated ranging from fast oscillatory behavior to cooperative and potentially directed shuttling. The derived picture of competitive interactions, which influence the operation mechanism of the MBRs embedded in these soft porous materials, promotes the development of responsive functional materials, which is a key step toward intelligent matter.
Collapse
Affiliation(s)
- Elena Kolodzeiski
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
- Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Saeed Amirjalayer
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
- Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| |
Collapse
|
11
|
Thomas D, Tetlow DJ, Ren Y, Kassem S, Karaca U, Leigh DA. Pumping between phases with a pulsed-fuel molecular ratchet. NATURE NANOTECHNOLOGY 2022; 17:701-707. [PMID: 35379944 DOI: 10.1038/s41565-022-01097-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
The sorption of species from a solution into and onto solids underpins the sequestering of waste and pollutants, precious metal recovery, heterogeneous catalysis, analysis and separation science, and other technologies1,2. The transfer between phases tends to proceed spontaneously in the direction of equilibrium. For example, alkyl ammonium groups mounted on silica nanoparticles are used to chemisorb cucurbituril macrocycles from solution through host-guest binding3,4. Molecular ratchet mechanisms5-7, in which kinetic gating8-12 inhibits or accelerates particular steps, makes it possible to progressively drive dynamic systems13-16 away from equilibrium17-21. Here we report on molecular pumps22 immobilized on polymer beads23-25 that use an energy ratchet mechanism5,9,19-21,26-30 to directionally transport substrates from solution onto the beads. On the addition of trichloroacetic acid (CCl3CO2H)19,31-33 fuel19,34-37, micrometre-diameter polystyrene beads functionalized38 with solvent-accessible molecular pumps sequester from the solution crown ethers appended with fluorescent tags. After fuel consumption, the rings are mechanically trapped in a higher-energy, out-of-equilibrium state on the beads and cannot be removed by dilution or exhaustive washing. This differs from dissipative assembled materials11,13-16, which require a continuous supply of energy to persist, and from conventional host-guest complexes. The addition of a second fuel pulse causes the uptake of more macrocycles, which drives the system further away from equilibrium. The second macrocycle can be labelled with a different fluorescent tag, which confers sequence information39 on the absorbed structure. The polymer-bound substrates can be released back to the bulk either one compartment at a time or all at once. Non-equilibrium40 sorption by immobilized artificial molecular machines41-45 enables the transduction of energy from chemical fuels for the use, storage and release of energy and information.
Collapse
Affiliation(s)
- Dean Thomas
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Daniel J Tetlow
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Yansong Ren
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Salma Kassem
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Ulvi Karaca
- Department of Chemistry, University of Manchester, Manchester, UK
| | - David A Leigh
- Department of Chemistry, University of Manchester, Manchester, UK.
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
| |
Collapse
|
12
|
Saura-Sanmartin A, Pastor A, Martinez-Cuezva A, Cutillas-Font G, Alajarin M, Berna J. Mechanically interlocked molecules in metal-organic frameworks. Chem Soc Rev 2022; 51:4949-4976. [PMID: 35612363 DOI: 10.1039/d2cs00167e] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanically interlocked molecules (MIMs) have great potential in the development of molecular machinery due to their intercomponent dynamics. The incorporation of these molecules in a condensed phase makes it possible to take advantage of the control of the motion of the components at the macroscopic level. Metal-organic frameworks (MOFs) are postulated as ideal supports for intertwined molecules. This review covers the chemistry of the mechanical bond incorporated into metal-organic frameworks from the seminal studies to the latest published advances. We first describe some fundamental concepts of MIMs and MOFs. Next, we summarize the advances in the incorporation of rotaxanes and catenanes inside MOF matrices. Finally, we conclude by showing the study of the rotaxane dynamics in MOFs and the operation of some stimuli-responsive MIMs within MOFs. In addition to emphasising some selected examples, we offer a critical opinion on the state of the art of this research field, remarking the key points on which the future of these systems should be focused.
Collapse
Affiliation(s)
- Adrian Saura-Sanmartin
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain.
| | - Aurelia Pastor
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain.
| | - Alberto Martinez-Cuezva
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain.
| | - Guillermo Cutillas-Font
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain.
| | - Mateo Alajarin
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain.
| | - Jose Berna
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain.
| |
Collapse
|
13
|
Geng JS, Mei L, Liang YY, Yuan LY, Yu JP, Hu KQ, Yuan LH, Feng W, Chai ZF, Shi WQ. Controllable photomechanical bending of metal-organic rotaxane crystals facilitated by regioselective confined-space photodimerization. Nat Commun 2022; 13:2030. [PMID: 35440111 PMCID: PMC9019062 DOI: 10.1038/s41467-022-29738-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/29/2022] [Indexed: 01/14/2023] Open
Abstract
Molecular machines based on mechanically-interlocked molecules (MIMs) such as (pseudo) rotaxanes or catenates are known for their molecular-level dynamics, but promoting macro-mechanical response of these molecular machines or related materials is still challenging. Herein, by employing macrocyclic cucurbit[8]uril (CB[8])-based pseudorotaxane with a pair of styrene-derived photoactive guest molecules as linking structs of uranyl node, we describe a metal-organic rotaxane compound, U-CB[8]-MPyVB, that is capable of delivering controllable macroscopic mechanical responses. Under light irradiation, the ladder-shape structural unit of metal-organic rotaxane chain in U-CB[8]-MPyVB undergoes a regioselective solid-state [2 + 2] photodimerization, and facilitates a photo-triggered single-crystal-to-single-crystal (SCSC) transformation, which even induces macroscopic photomechanical bending of individual rod-like bulk crystals. The fabrication of rotaxane-based crystalline materials with both photoresponsive microscopic and macroscopic dynamic behaviors in solid state can be promising photoactuator devices, and will have implications in emerging fields such as optomechanical microdevices and smart microrobotics.
Collapse
Affiliation(s)
- Jun-Shan Geng
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China.,Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China.
| | - Yuan-Yuan Liang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China
| | - Li-Yong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China
| | - Ji-Pan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China
| | - Li-Hua Yuan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Wen Feng
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China.,Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
14
|
Falahati M, Sharifi M, Hagen TLMT. Explaining chemical clues of metal organic framework-nanozyme nano-/micro-motors in targeted treatment of cancers: benchmarks and challenges. J Nanobiotechnology 2022; 20:153. [PMID: 35331244 PMCID: PMC8943504 DOI: 10.1186/s12951-022-01375-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/12/2022] [Indexed: 02/07/2023] Open
Abstract
Nowadays, nano-/micro-motors are considered as powerful tools in different areas ranging from cleaning all types of contaminants, to development of Targeted drug delivery systems and diagnostic activities. Therefore, the development and application of nano-/micro-motors based on metal-organic frameworks with nanozyme activity (abbreviated as: MOF-NZs) in biomedical activities have received much interest recently. Therefore, after investigating the catalytic properties and applications of MOF-NZs in the treatment of cancer, this study intends to point out their key role in the production of biocompatible nano-/micro-motors. Since reducing the toxicity of MOF-NZ nano-/micro-motors can pave the way for medical activities, this article examines the methods of making biocompatible nanomotors to address the benefits and drawbacks of the required propellants. In the following, an analysis of the amplified directional motion of MOF-NZ nano-/micro-motors under physiological conditions is presented, which can improve the motor behaviors in the propulsion function, conductivity, targeting, drug release, and possible elimination. Meanwhile, by explaining the use of MOF-NZ nano-/micro-motors in the treatment of cancer through the possible synergy of nanomotors with different therapies, it was revealed that MOF-NZ nano-/micro-motors can be effective in the treatment of cancer. Ultimately, by analyzing the potential challenges of MOF-NZ nano-/micro-motors in the treatment of cancers, we hope to encourage researchers to develop MOF-NZs-based nanomotors, in addition to opening up new ideas to address ongoing problems.
Collapse
Affiliation(s)
- Mojtaba Falahati
- Laboratory Experimental Oncology, Department of Pathology, Erasmus MC, 3015GD, Rotterdam, The Netherlands.
| | - Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
- Depatment of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Timo L M Ten Hagen
- Laboratory Experimental Oncology, Department of Pathology, Erasmus MC, 3015GD, Rotterdam, The Netherlands.
| |
Collapse
|
15
|
Payne DT, Labuta J, Futera Z, Březina V, Hanyková L, Chahal MK, Hill JP. Molecular rotor based on an oxidized resorcinarene. Org Chem Front 2022. [DOI: 10.1039/d1qo01479j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rate of rotation of substituents in a molecular single stator-double rotor based on an oxidized resorcinarene with unsaturated hemiquinonoid groups at its meso positions (i.e., a fuchsonarene) has been controlled according to solvent polarity and acidity.
Collapse
Affiliation(s)
- Daniel T. Payne
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
- International Center for Young Scientists, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Jan Labuta
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Zdeněk Futera
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice 370 05, Czech Republic
| | - Václav Březina
- Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Lenka Hanyková
- Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Mandeep K. Chahal
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Jonathan P. Hill
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
16
|
Stähler C, Grunenberg L, Terban MW, Browne WR, Doellerer D, Kathan M, Etter M, Lotsch BV, Feringa BL, Krause S. Light-Driven Molecular Motors Embedded in Covalent Organic Frameworks. Chem Sci 2022; 13:8253-8264. [PMID: 35919721 PMCID: PMC9297439 DOI: 10.1039/d2sc02282f] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/31/2022] [Indexed: 11/21/2022] Open
Abstract
The incorporation of molecular machines into the backbone of porous framework structures will facilitate nano actuation, enhanced molecular transport, and other out-of-equilibrium host-guest phenomena in well-defined 3D solid materials. In...
Collapse
Affiliation(s)
- Cosima Stähler
- Stratingh Institute for Chemistry, Rijksuniversiteit Groningen Nijenborgh 4 9747 AG Groningen Netherlands
| | - Lars Grunenberg
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany
- Department of Chemistry, Ludwig-Maximilians-Universität (LMU) Butenandtstr. 5-13 81377 Munich Germany
| | - Maxwell W Terban
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany
| | - Wesley R Browne
- Stratingh Institute for Chemistry, Rijksuniversiteit Groningen Nijenborgh 4 9747 AG Groningen Netherlands
| | - Daniel Doellerer
- Stratingh Institute for Chemistry, Rijksuniversiteit Groningen Nijenborgh 4 9747 AG Groningen Netherlands
| | - Michael Kathan
- Stratingh Institute for Chemistry, Rijksuniversiteit Groningen Nijenborgh 4 9747 AG Groningen Netherlands
| | - Martin Etter
- Deutsches Elektronen-Synchrotron (DESY) Notkestr. 85 22607 Hamburg Germany
| | - Bettina V Lotsch
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany
- Department of Chemistry, Ludwig-Maximilians-Universität (LMU) Butenandtstr. 5-13 81377 Munich Germany
- E-conversion Lichtenbergstrasse 4a 85748 Garching Germany
| | - Ben L Feringa
- Stratingh Institute for Chemistry, Rijksuniversiteit Groningen Nijenborgh 4 9747 AG Groningen Netherlands
| | - Simon Krause
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany
| |
Collapse
|
17
|
Yang W, Liang W, O’Dell LA, Toop HD, Maddigan N, Zhang X, Kochubei A, Doonan CJ, Jiang Y, Huang J. Insights into the Interaction between Immobilized Biocatalysts and Metal-Organic Frameworks: A Case Study of PCN-333. JACS AU 2021; 1:2172-2181. [PMID: 34977888 PMCID: PMC8715483 DOI: 10.1021/jacsau.1c00226] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Indexed: 05/05/2023]
Abstract
The immobilization of enzymes in metal-organic frameworks (MOFs) with preserved biofunctionality paves a promising way to solve problems regarding the stability and reusability of enzymes. However, the rational design of MOF-based biocomposites remains a considerable challenge as very little is known about the state of the enzyme, the MOF support, and their host-guest interactions upon immobilization. In this study, we elucidate the detailed host-guest interaction for MOF immobilized enzymes in the biointerface. Two enzymes with different sizes, lipase and insulin, have been immobilized in a mesoporous PCN-333(Al) MOF. The dynamic changes of local structures of the MOF host and enzyme guests have been experimentally revealed for the existence of the confinement effect to enzymes and van der Waals interaction in the biointerface between the aluminum oxo-cluster of the PCN-333 and the -NH2 species of enzymes. This kind of host-guest interaction renders the immobilization of enzymes in PCN-333 with high affinity and highly preserved enzymatic bioactivity.
Collapse
Affiliation(s)
- Wenjie Yang
- Laboratory
for Catalysis Engineering, School of Chemical and Biomolecular Engineering,
Sydney Nano Institute, the University of
Sydney, Sydney, NSW 2006, Australia
- School
of Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Weibin Liang
- Laboratory
for Catalysis Engineering, School of Chemical and Biomolecular Engineering,
Sydney Nano Institute, the University of
Sydney, Sydney, NSW 2006, Australia
| | - Luke A. O’Dell
- Institute
for Frontier Materials, Deakin University, Geelong, VIC 3220, Australia
| | - Hamish D. Toop
- Department
of Chemistry and the Centre for Advanced Nanomaterials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Natasha Maddigan
- Department
of Chemistry and the Centre for Advanced Nanomaterials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Xingmo Zhang
- Laboratory
for Catalysis Engineering, School of Chemical and Biomolecular Engineering,
Sydney Nano Institute, the University of
Sydney, Sydney, NSW 2006, Australia
| | - Alena Kochubei
- School
of Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Christian J. Doonan
- Department
of Chemistry and the Centre for Advanced Nanomaterials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Yijiao Jiang
- School
of Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Jun Huang
- Laboratory
for Catalysis Engineering, School of Chemical and Biomolecular Engineering,
Sydney Nano Institute, the University of
Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
18
|
Feng L, Qiu Y, Guo QH, Chen Z, Seale JSW, He K, Wu H, Feng Y, Farha OK, Astumian RD, Stoddart JF. Active mechanisorption driven by pumping cassettes. Science 2021; 374:1215-1221. [PMID: 34672694 DOI: 10.1126/science.abk1391] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Liang Feng
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Yunyan Qiu
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Qing-Hui Guo
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Zhijie Chen
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - James S W Seale
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Kun He
- Northwestern University Atomic and Nanoscale Characterization Experimental Center (NUANCE), Northwestern University, Evanston, IL 60208, USA
| | - Huang Wu
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Yuanning Feng
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Omar K Farha
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.,Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - R Dean Astumian
- Department of Physics and Astronomy, University of Maine, Orono, ME 04469, USA
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
19
|
Stoica AC, Damoc M, Zaltariov MF, Racles C, Cazacu M. Two-dimensional coordination polymers containing permethylated motifs - promising candidates for 2D emerging materials. Structural, behavioral and functional particularities. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Baggi G, Wilson BH, Dhara A, O'Keefe CA, Schurko RW, Loeb SJ. Dynamics of a [2]rotaxane wheel in a crystalline molecular solid. Chem Commun (Camb) 2021; 57:8210-8213. [PMID: 34308949 DOI: 10.1039/d1cc03009d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An H-shaped [2]rotaxane comprising a bis(benzimidazole) axle and a 24-membered crown ether wheel appended with four trityl groups forms a highly crystalline material with enough free volume to allow large amplitude motion of the interlocked macrocycle. Variable-temperature (VT) 2H solid-state nuclear magnetic resonance (SSNMR) was used to characterize the dynamics of the [2]rotaxane wheel in this material.
Collapse
Affiliation(s)
- Giorgio Baggi
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada.
| | | | | | | | | | | |
Collapse
|
21
|
Perego J, Bezuidenhout CX, Bracco S, Prando G, Marchiò L, Negroni M, Carretta P, Sozzani P, Comotti A. Cascade Dynamics of Multiple Molecular Rotors in a MOF: Benchmark Mobility at a Few Kelvins and Dynamics Control by CO 2. J Am Chem Soc 2021; 143:13082-13090. [PMID: 34388339 PMCID: PMC8413000 DOI: 10.1021/jacs.1c03801] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Achieving
sophisticated juxtaposition of geared molecular rotors
with negligible energy-requirements in solids enables fast yet controllable
and correlated rotary motion to construct switches and motors. Our
endeavor was to realize multiple rotors operating in a MOF architecture
capable of supporting fast motional regimes, even at extremely cold
temperatures. Two distinct ligands, 4,4′-bipyridine (bipy)
and bicyclo[1.1.1]pentanedicarboxylate (BCP), coordinated to Zn clusters
fabricated a pillar-and-layer 3D array of orthogonal rotors. Variable
temperature XRD, 2H solid-echo, and 1H T1 relaxation NMR, collected down to a temperature of 2 K revealed
the hyperfast mobility of BCP and an unprecedented cascade mechanism
modulated by distinct energy barriers starting from values as low
as 100 J mol–1 (24 cal mol–1),
a real benchmark for complex arrays of rotors. These rotors explored
multiple configurations of conrotary and disrotary relationships,
switched on and off by thermal energy, a scenario supported by DFT
modeling. Furthermore, the collective bipy-ring rotation was concerted
with the framework, which underwent controllable swinging between
two arrangements in a dynamical structure. A second way to manipulate
rotors by external stimuli was the use of CO2, which diffused
through the open pores, dramatically changing the global rotation
mechanism. Collectively, the intriguing gymnastics of multiple rotors,
devised cooperatively and integrated into the same framework, gave
the opportunity to engineer hypermobile rotors (107 Hz
at 4 K) in machine-like double ligand MOF crystals.
Collapse
Affiliation(s)
- Jacopo Perego
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125 Milan, Italy
| | - Charl X Bezuidenhout
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125 Milan, Italy
| | - Silvia Bracco
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125 Milan, Italy
| | - Giacomo Prando
- Department of Physics, University of Pavia, Via Bassi 6, 27100 Pavia, Italy
| | - Luciano Marchiò
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, University of Parma, Parco Area delle Scienze 17/a, 43121 Parma, Italy
| | - Mattia Negroni
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125 Milan, Italy
| | - Pietro Carretta
- Department of Physics, University of Pavia, Via Bassi 6, 27100 Pavia, Italy
| | - Piero Sozzani
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125 Milan, Italy
| | - Angiolina Comotti
- Department of Materials Science, University of Milano - Bicocca, Via R. Cozzi 55, 20125 Milan, Italy
| |
Collapse
|
22
|
Gonzalez-Nelson A, Mula S, Šimėnas M, Balčiu Nas S, Altenhof AR, Vojvodin CS, Canossa S, Banys JR, Schurko RW, Coudert FX, van der Veen MA. Emergence of Coupled Rotor Dynamics in Metal-Organic Frameworks via Tuned Steric Interactions. J Am Chem Soc 2021; 143:12053-12062. [PMID: 34324323 PMCID: PMC8361432 DOI: 10.1021/jacs.1c03630] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The organic components
in metal–organic frameworks (MOFs)
are unique: they are embedded in a crystalline lattice, yet, as they
are separated from each other by tunable free space, a large variety
of dynamic behavior can emerge. These rotational dynamics of the organic
linkers are especially important due to their influence over properties
such as gas adsorption and kinetics of guest release. To fully exploit
linker rotation, such as in the form of molecular machines, it is
necessary to engineer correlated linker dynamics to achieve their
cooperative functional motion. Here, we show that for MIL-53, a topology
with closely spaced rotors, the phenylene functionalization allows
researchers to tune the rotors’ steric environment, shifting
linker rotation from completely static to rapid motions at frequencies
above 100 MHz. For steric interactions that start to inhibit independent
rotor motion, we identify for the first time the emergence of coupled
rotation modes in linker dynamics. These findings pave the way for
function-specific engineering of gear-like cooperative motion in MOFs.
Collapse
Affiliation(s)
- Adrian Gonzalez-Nelson
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands.,DPI, P.O.Box 92, 5600 AX Eindhoven, The Netherlands
| | - Srinidhi Mula
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Mantas Šimėnas
- Faculty of Physics, Vilnius University, LT-10222 Vilnius, Lithuania
| | | | - Adam R Altenhof
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States.,National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Cameron S Vojvodin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States.,National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Stefano Canossa
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Ju Ras Banys
- Faculty of Physics, Vilnius University, LT-10222 Vilnius, Lithuania
| | - Robert W Schurko
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States.,National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - François-Xavier Coudert
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
| | - Monique A van der Veen
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
| |
Collapse
|
23
|
Corra S, Casimiro L, Baroncini M, Groppi J, La Rosa M, Tranfić Bakić M, Silvi S, Credi A. Artificial Supramolecular Pumps Powered by Light. Chemistry 2021; 27:11076-11083. [PMID: 33951231 PMCID: PMC8453702 DOI: 10.1002/chem.202101163] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 12/13/2022]
Abstract
The development of artificial nanoscale motors that can use energy from a source to perform tasks requires systems capable of performing directionally controlled molecular movements and operating away from chemical equilibrium. Here, the design, synthesis and properties of pseudorotaxanes are described, in which a photon input triggers the unidirectional motion of a macrocyclic ring with respect to a non-symmetric molecular axle. The photoinduced energy ratcheting at the basis of the pumping mechanism is validated by measuring the relevant thermodynamic and kinetic parameters. Owing to the photochemical behavior of the azobenzene moiety embedded in the axle, the pump can repeat its operation cycle autonomously under continuous illumination. NMR spectroscopy was used to observe the dissipative non-equilibrium state generated in situ by light irradiation. We also show that fine changes in the axle structure lead to an improvement in the performance of the motor. Such results highlight the modularity and versatility of this minimalist pump design, which provides facile access to dynamic systems that operate under photoinduced non-equilibrium regimes.
Collapse
Affiliation(s)
- Stefano Corra
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNRVia Gobetti 10140129BolognaItaly
- Dipartimento di Chimica Industriale “Toso Montanari”Università di BolognaViale del Risorgimento 440136BolognaItaly
| | - Lorenzo Casimiro
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNRVia Gobetti 10140129BolognaItaly
- Dipartimento di Chimica “G. Ciamician”Università di BolognaVia Selmi 240126BolognaItaly
- Université Paris-Saclay, CNRS, PPSM4 Avenue des Sciences91190Gif-sur-YvetteFrance
| | - Massimo Baroncini
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNRVia Gobetti 10140129BolognaItaly
- Dipartimento di Scienze e Tecnologie Agro-alimentariUniversità di BolognaViale Fanin 4440127BolognaItaly
| | - Jessica Groppi
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNRVia Gobetti 10140129BolognaItaly
| | - Marcello La Rosa
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNRVia Gobetti 10140129BolognaItaly
- Dipartimento di Scienze e Tecnologie Agro-alimentariUniversità di BolognaViale Fanin 4440127BolognaItaly
| | - Marina Tranfić Bakić
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNRVia Gobetti 10140129BolognaItaly
- Dipartimento di Chimica Industriale “Toso Montanari”Università di BolognaViale del Risorgimento 440136BolognaItaly
| | - Serena Silvi
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNRVia Gobetti 10140129BolognaItaly
- Dipartimento di Chimica “G. Ciamician”Università di BolognaVia Selmi 240126BolognaItaly
| | - Alberto Credi
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNRVia Gobetti 10140129BolognaItaly
- Dipartimento di Chimica Industriale “Toso Montanari”Università di BolognaViale del Risorgimento 440136BolognaItaly
| |
Collapse
|
24
|
Pavlović RZ, Lalisse RF, Hansen AL, Waudby CA, Lei Z, Güney M, Wang X, Hadad CM, Badjić JD. From Selection to Instruction and Back: Competing Conformational Selection and Induced Fit Pathways in Abiotic Hosts. Angew Chem Int Ed Engl 2021; 60:19942-19948. [PMID: 34125989 DOI: 10.1002/anie.202107091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Indexed: 12/15/2022]
Abstract
Two limiting cases of molecular recognition, induced fit (IF) and conformational selection (CS), play a central role in allosteric regulation of natural systems. The IF paradigm states that a substrate "instructs" the host to change its shape after complexation, while CS asserts that a guest "selects" the optimal fit from an ensemble of preexisting host conformations. With no studies that quantitatively address the interplay of two limiting pathways in abiotic systems, we herein and for the first time describe the way by which twisted capsule M-1, encompassing two conformers M-1(+) and M-1(-), trap CX4 (X=Cl, Br) to give CX4 ⊂M-1(+) and CX4 ⊂M-1(-), with all four states being in thermal equilibrium. With the assistance of 2D EXSY, we found that CBr4 would, at its lower concentrations, bind M-1 via a M-1(+)→M-1(-)→CBr4 ⊂M-1(-) pathway corresponding to conformational selection. For M-1 complexing CCl4 though, data from 2D EXSY measurements and 1D NMR line-shape analysis suggested that lower CCl4 concentrations would favor CS while the IF pathway prevailed at higher proportions of the guest. Since CS and IF are not mutually exclusive, we reason that our work sets the stage for characterizing the dynamics of a wide range of already existing hosts to broaden our fundamental understanding of their action. The objective is to master the way in which encapsulation takes place for designing novel and allosteric sequestering agents, catalysts and chemosensors akin to those found in nature.
Collapse
Affiliation(s)
- Radoslav Z Pavlović
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Remy F Lalisse
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Alexandar L Hansen
- Campus Chemical Instrument Center, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Christopher A Waudby
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Zhiquan Lei
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Murat Güney
- Agri Ibrahim Çeçen University, Department of Chemistry, 04100, Agri, Turkey
| | - Xiuze Wang
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Christopher M Hadad
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Jovica D Badjić
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| |
Collapse
|
25
|
Pavlović RZ, Lalisse RF, Hansen AL, Waudby CA, Lei Z, Güney M, Wang X, Hadad CM, Badjić JD. From Selection to Instruction and Back: Competing Conformational Selection and Induced Fit Pathways in Abiotic Hosts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Radoslav Z. Pavlović
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Remy F. Lalisse
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Alexandar L. Hansen
- Campus Chemical Instrument Center The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Christopher A. Waudby
- Institute of Structural and Molecular Biology University College London London WC1E 6BT UK
| | - Zhiquan Lei
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Murat Güney
- Agri Ibrahim Çeçen University Department of Chemistry 04100 Agri Turkey
| | - Xiuze Wang
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Christopher M. Hadad
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Jovica D. Badjić
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| |
Collapse
|
26
|
Xia T, Yu ZY, Gong HY. Pb 2+-Containing Metal-Organic Rotaxane Frameworks (MORFs). Molecules 2021; 26:4241. [PMID: 34299516 PMCID: PMC8306753 DOI: 10.3390/molecules26144241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/26/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022] Open
Abstract
The metal-organic rotaxane framework (MORF) structures with the advantage of mechanically interlocking molecules (MIMs) have attracted intense interest from the chemical community. In this study, a set of MORFs (i.e., MORF-Pb-1 and MORF-Pb-2) are constructed using Pb2+, a tetraimidazolium macrocycle (Texas-sized molecular box; 14+), and aromatic dicarboxylate (p-phthalate dianions (PTADAs; 2) or 2,6-naphthalene dicarboxylate dianions (3)) via a one-pot three-layer diffusion protocol. In particular, an unusual Pb…Pb weak interaction was shown in MORF-Pb-1 (charactered with distance of 3.656 Å).
Collapse
Affiliation(s)
- Ting Xia
- Department of Chemistry, Renmin University of China, No. 59, Zhongguan Street, Beijing 100872, China;
| | - Zhi-Yong Yu
- Department of Chemistry, Renmin University of China, No. 59, Zhongguan Street, Beijing 100872, China;
| | - Han-Yuan Gong
- College of Chemistry, Beijing Normal University, No. 19, Xinwai Street, Beijing 100875, China
| |
Collapse
|
27
|
Molaaghaei T, Kalateh K, Najafpour J, Ahmadi R. Theoretical investigation of the structural and electronic properties of molecular machine based on phenylene and trityl. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1016/j.sajce.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
28
|
Feng Y, Ovalle M, Seale JSW, Lee CK, Kim DJ, Astumian RD, Stoddart JF. Molecular Pumps and Motors. J Am Chem Soc 2021; 143:5569-5591. [PMID: 33830744 DOI: 10.1021/jacs.0c13388] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pumps and motors are essential components of the world as we know it. From the complex proteins that sustain our cells, to the mechanical marvels that power industries, much we take for granted is only possible because of pumps and motors. Although molecular pumps and motors have supported life for eons, it is only recently that chemists have made progress toward designing and building artificial forms of the microscopic machinery present in nature. The advent of artificial molecular machines has granted scientists an unprecedented level of control over the relative motion of components of molecules through the development of kinetically controlled, away-from-thermodynamic equilibrium chemistry. We outline the history of pumps and motors, focusing specifically on the innovations that enable the design and synthesis of the artificial molecular machines central to this Perspective. A key insight connecting biomolecular and artificial molecular machines is that the physical motions by which these machines carry out their function are unambiguously in mechanical equilibrium at every instant. The operation of molecular motors and pumps can be described by trajectory thermodynamics, a theory based on the work of Onsager, which is grounded on the firm foundation of the principle of microscopic reversibility. Free energy derived from thermodynamically non-equilibrium reactions kinetically favors some reaction pathways over others. By designing molecules with kinetic asymmetry, one can engineer potential landscapes to harness external energy to drive the formation and maintenance of geometries of component parts of molecules away-from-equilibrium, that would be impossible to achieve by standard synthetic approaches.
Collapse
Affiliation(s)
- Yuanning Feng
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Marco Ovalle
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - James S W Seale
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Christopher K Lee
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Dong Jun Kim
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - R Dean Astumian
- Department of Physics, University of Maine, Orono, Maine 04469, United States
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
29
|
Kolodzeiski E, Amirjalayer S. Collective structural properties of embedded molecular motors in functionalized metal-organic frameworks. Phys Chem Chem Phys 2021; 23:4728-4735. [PMID: 33598666 DOI: 10.1039/d0cp06263d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photo-responsive molecular motors incorporated in soft porous materials enable the amplification of the motion of individual motor units by employing their collective and cooperative behavior. Metal-organic frameworks (MOFs) provide in this regard, due to their structural diversity and modular assembly, a unique matrix to construct well-defined and systematically tunable molecular environments for the embedding of molecular motors. However, despite advances in the development of such photo-responsive functional materials, a thorough understanding of the governing interactions at the atomic scale has been missing so far, limiting the possibility of predicting and fully exploring the potential of these assembled machineries. Here, we present a conformational study to unravel the collective structural behavior and elucidate the impact of motor-motor interactions on the local and global properties of the scaffold. In particular, our work highlights the impact of full conversion of the embedded molecular motors on the overall network topology of the MotorMOF and thus acts as a benchmark for future studies to further explore the correlation of responsive building units with the resulting functionality of these hierarchical systems.
Collapse
Affiliation(s)
- Elena Kolodzeiski
- Physikalisches Institut Westfälische Wilhelms-Universität Münster, Willhelm-Klemm-Strasse 10, 48149 Münster, Germany. and Center for Nanotechnology (CeNTech), Center for Multiscale Theory and Computation (CMTC), Heisenbergstrasse 11, 48149 Münster, Germany
| | - Saeed Amirjalayer
- Physikalisches Institut Westfälische Wilhelms-Universität Münster, Willhelm-Klemm-Strasse 10, 48149 Münster, Germany. and Center for Nanotechnology (CeNTech), Center for Multiscale Theory and Computation (CMTC), Heisenbergstrasse 11, 48149 Münster, Germany
| |
Collapse
|
30
|
Wilson BH, Abdulla LM, Schurko RW, Loeb SJ. Translational dynamics of a non-degenerate molecular shuttle imbedded in a zirconium metal-organic framework. Chem Sci 2021; 12:3944-3951. [PMID: 34163664 PMCID: PMC8179482 DOI: 10.1039/d0sc06837c] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/21/2021] [Indexed: 12/29/2022] Open
Abstract
A new [2]rotaxane molecular shuttle linker based on the binding of a 24-crown-8 ether macrocycle at a benzimidazole recognition site was synthesised. The shuttling dynamics of the linker were studied in solution and the structure confirmed by X-ray crystallography. A multivariate Zr(iv) MOF, UWDM-11, containing the new MIM linker and primary linker tetramethylterphenyldicarboxylate was synthesised and the translational motion of the molecular shuttle studied in the solid state. The use of a 13C enriched MIM linker allowed the dynamics of both activated and mesitylene-solvated UWDM-11 to be elucidated by VT 13C CPMAS SSNMR. The incorporation of mesitylene into the pores of UWDM-11 resulted in a significant increase in the barrier for thermally driven translation of the macrocycle.
Collapse
Affiliation(s)
- Benjamin H Wilson
- Department of Chemistry and Biochemistry, University of Windsor Windsor Ontario N9B 3P4 Canada
| | - Louae M Abdulla
- Department of Chemistry and Biochemistry, University of Windsor Windsor Ontario N9B 3P4 Canada
| | - Robert W Schurko
- Department of Chemistry and Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Stephen J Loeb
- Department of Chemistry and Biochemistry, University of Windsor Windsor Ontario N9B 3P4 Canada
| |
Collapse
|
31
|
Danowski W, van Leeuwen T, Browne WR, Feringa BL. Photoresponsive porous materials. NANOSCALE ADVANCES 2021; 3:24-40. [PMID: 36131866 PMCID: PMC9417539 DOI: 10.1039/d0na00647e] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/11/2020] [Indexed: 05/04/2023]
Abstract
Molecular machines, switches, and motors enable control over nanoscale molecular motion with unprecedented precision in artificial systems. Integration of these compounds into robust material scaffolds, in particular nanostructured solids, is a fabrication strategy for smart materials with unique properties that can be controlled with external stimuli. Here, we describe a subclass of these structures, namely light-responsive porous materials metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), and porous aromatic frameworks (PAFs) appended with molecular photoswitches. In this review, we provide an overview of a broad range of light-responsive porous materials focusing on potential applications.
Collapse
Affiliation(s)
- Wojciech Danowski
- Synthetic Organic Chemistry, Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 Groningen 9747 AG The Netherlands
| | - Thomas van Leeuwen
- Synthetic Organic Chemistry, Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 Groningen 9747 AG The Netherlands
| | - Wesley R Browne
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 Groningen 9747 AG The Netherlands
| | - Ben L Feringa
- Synthetic Organic Chemistry, Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 Groningen 9747 AG The Netherlands
| |
Collapse
|
32
|
Bej S, Nandi M, Ghosh P. A Cd(ii) and Zn(ii) selective naphthyl based [2]rotaxane acts as an exclusive Zn(ii) sensor upon further functionalization with pyrene. Dalton Trans 2021; 50:294-303. [PMID: 33300925 DOI: 10.1039/d0dt03645e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new multi-functional [2]rotaxane, ROTX, has been synthesized via a Cu(i) catalysed azide-alkyne cycloaddition reaction between Ni(ii) templated azide terminated pseudorotaxane composed of a naphthalene based heteroditopic wheel, NaphMC, and an alkyne terminated stopper. Subsequently, ROTX has been functionalized with pyrene moieties to develop a bifluorophoric [2]rotaxane, PYROTX, having naphthalene and pyrene moieties. Detailed characterization of these two rotaxanes is performed by utilizing several techniques such as ESI-MS, (1D and 2D) NMR, UV/Vis and PL studies. Comparative metal ion sensing studies of NaphMC (a fluorophoric cyclic receptor), ROTX ([2]rotaxane with a naphthyl fluorophore) and PYROTX ([2]rotaxane having naphthyl and pyrene fluorophores) have been performed to determine the effect of dimensionality/functionalization on the metal ion selectivity. Although NaphMC fails to discriminate between metal ions, ROTX serves as a selective sensor for Zn(ii) and Cd(ii). Importantly, PYROTX shows exclusive selectivity towards Zn(ii) over various transition, alkali and alkaline earth metal ions including Cd(ii).
Collapse
Affiliation(s)
- Somnath Bej
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.
| | | | | |
Collapse
|
33
|
Evans JD, Krause S, Feringa BL. Cooperative and synchronized rotation in motorized porous frameworks: impact on local and global transport properties of confined fluids. Faraday Discuss 2021; 225:286-300. [DOI: 10.1039/d0fd00016g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Simulations reveal the influence of rotating molecular motors and the importance of orientation and directionality for altering the transport properties of fluids. This has outlined that motors with specific rotation can generate directed diffusion.
Collapse
Affiliation(s)
- Jack D. Evans
- Department of Inorganic Chemistry
- Technische Universität Dresden
- 01062 Dresden
- Germany
| | - Simon Krause
- Centre for Systems Chemistry
- Stratingh Institute for Chemistry
- University of Groningen
- Groningen
- The Netherlands
| | - Ben L. Feringa
- Centre for Systems Chemistry
- Stratingh Institute for Chemistry
- University of Groningen
- Groningen
- The Netherlands
| |
Collapse
|
34
|
Wilson BH, Vojvodin CS, Gholami G, Abdulla LM, O’Keefe CA, Schurko RW, Loeb SJ. Precise Spatial Arrangement and Interaction between Two Different Mobile Components in a Metal-Organic Framework. Chem 2021. [DOI: 10.1016/j.chempr.2020.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Carney J, Roundy D, Simon CM. Statistical Mechanical Model of Gas Adsorption in a Metal-Organic Framework Harboring a Rotaxane Molecular Shuttle. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13112-13123. [PMID: 33095580 DOI: 10.1021/acs.langmuir.0c02839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal-organic frameworks (MOFs) are modular and tunable nanoporous materials with applications in gas storage, separations, and sensing. Integrating flexible/dynamic, gas-responsive components into MOFs can give them unique or enhanced adsorption properties. Here, we explore the adsorption properties that could be imparted to a MOF by a rotaxane molecular shuttle (RMS) in its pores. In the unit cell of an RMS-MOF, a macrocyclic wheel is mechanically interlocked with a strut of the MOF scaffold. The wheel shuttles between stations on the strut that are also gas adsorption sites. At a level of abstraction similar to the seminal Langmuir adsorption model, we pose and analyze a simple statistical mechanical model of gas adsorption in an RMS-MOF that accounts for (i) wheel/gas competition for sites on the strut and (ii) gas-induced changes in the configurational entropy of the shuttling wheel. We determine how the amount of gas adsorbed, the position of the wheel, and the differential energy of adsorption depend on temperature, pressure, and the interactions of the gas and wheel with the stations on the strut. Our model reveals that, compared to a rigid, Langmuir material, the chemistry of the RMS-MOF can be tuned to render gas adsorption more or less temperature sensitive and to release more or less heat upon adsorption. The model also uncovers that, if gas-wheel competition for a station is fierce, temperature influences the position of the wheel differently depending on the amount of gas adsorbed.
Collapse
Affiliation(s)
- Jonathan Carney
- Department of Physics, Oregon State University, Corvallis, Oregon 97331, United States
| | - David Roundy
- Department of Physics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Cory M Simon
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
36
|
Taghavi Shahraki B, Maghsoudi S, Fatahi Y, Rabiee N, Bahadorikhalili S, Dinarvand R, Bagherzadeh M, Verpoort F. The flowering of Mechanically Interlocked Molecules: Novel approaches to the synthesis of rotaxanes and catenanes. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213484] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Gholami G, Wilson BH, Zhu K, O'Keefe CA, Schurko RW, Loeb SJ. Exploring the dynamics of Zr-based metal-organic frameworks containing mechanically interlocked molecular shuttles. Faraday Discuss 2020; 225:358-370. [PMID: 33089860 DOI: 10.1039/d0fd00004c] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Zr(iv) metal-organic frameworks (MOFs) UiO-68 and PCN-57, containing triphenylene dicarboxylate (TPDC) and tetramethyl-triphenylene dicarboxylate (TTDC) linkers, respectively, were doped with an H-shaped tetracarboxylate linker that contains a [2]rotaxane molecular shuttle. The new MOFs, UWDM-8 and UWDM-9, contain a [2]rotaxane crossbar spanning the tetrahedral cavities of the fcu topology while the octahedral cavities remain empty. 13C solid-state NMR (SSNMR) spectra and solution 1H NMR spectra verified that the [2]rotaxanes were included as designed. Variable-temperature (VT) cross polarization (CP) magic-angle spinning (MAS) 13C SSNMR was used to explore the translational motion of the macrocyclic ring in both MOFs. The SSNMR results clearly show that the structure of the linker (TPDCvs.TTDC) affects the shuttling rate of the macrocyclic ring, although questions remain as to how rotation of the central phenylene unit of the strut might also affect the motion of the macrocycle.
Collapse
Affiliation(s)
- Ghazale Gholami
- Department of Chemistry and Biochemistry, University of Windsor, Ontario, N9B 3P4, Canada.
| | | | | | | | | | | |
Collapse
|
38
|
Terzopoulou A, Nicholas JD, Chen XZ, Nelson BJ, Pané S, Puigmartí-Luis J. Metal–Organic Frameworks in Motion. Chem Rev 2020; 120:11175-11193. [DOI: 10.1021/acs.chemrev.0c00535] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Anastasia Terzopoulou
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich, Switzerland
| | - James D. Nicholas
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, CH-8093 Zurich, Switzerland
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional, 08028 Barcelona, Spain
| | - Xiang-Zhong Chen
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich, Switzerland
| | - Bradley J. Nelson
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich, Switzerland
| | - Salvador Pané
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich, Switzerland
| | - Josep Puigmartí-Luis
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, CH-8093 Zurich, Switzerland
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional, 08028 Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
39
|
Georgiev NI, Marinova NV, Bojinov VB. Design and synthesis of light-harvesting rotor based on 1,8-naphthalimide units. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112733] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
40
|
Gropp C, Canossa S, Wuttke S, Gándara F, Li Q, Gagliardi L, Yaghi OM. Standard Practices of Reticular Chemistry. ACS CENTRAL SCIENCE 2020; 6:1255-1273. [PMID: 32875067 PMCID: PMC7453418 DOI: 10.1021/acscentsci.0c00592] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Reticular chemistry is a growing field of science with a multitude of practitioners with diverse frames of thinking, making the need for standard practices and quality indicators ever more compelling.
Collapse
Affiliation(s)
- Cornelius Gropp
- Department of Chemistry, University of California-Berkeley, Kavli Energy Nanoscience
Institute at UC Berkeley, Berkeley, California 94720, United States
| | - Stefano Canossa
- EMAT, University
of Antwerp, Groenenborgerlaan
171, 2020 Antwerp, Belgium
| | - Stefan Wuttke
- BCMaterials, Basque Center for Materials,
UPV/EHU Science Park, 48940 Leioa, Spain
| | - Felipe Gándara
- Instituto de Ciencia de
Materiales de Madrid (ICMM)—Consejo Superior de Investigaciones
Científicas (CSIC), C/Sor Juana Ineś de la Cruz, 3, Madrid 28049, Spain
| | - Qiaowei Li
- Department of Chemistry and Shanghai Key Laboratory of
Molecular Catalysis and Innovative Materials, iChEM (Collaborative
Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| | - Laura Gagliardi
- Department
of Chemistry, Minnesota Supercomputing Institute, and Chemical Theory
Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Omar M. Yaghi
- Department of Chemistry, University of California-Berkeley, Kavli Energy Nanoscience
Institute at UC Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
41
|
Berrocal JA, Pfeifer L, Heijnen D, Feringa BL. Synthesis of Core-Modified Third-Generation Light-Driven Molecular Motors. J Org Chem 2020; 85:10670-10680. [PMID: 32691601 PMCID: PMC7445741 DOI: 10.1021/acs.joc.0c01235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The synthesis and characterization of a series of light-driven third-generation molecular motors featuring various structural modifications at the central aromatic core are presented. We explore a number of substitution patterns, such as 1,2-dimethoxybenzene, naphthyl, 1,2-dichlorobenzene, 1,1':2',1″-terphenyl, 4,4″-dimethoxy-1,1':2',1″-terphenyl, and 1,2-dicarbomethoxybenzene, considered essential for designing future responsive systems. In many cases, the synthetic routes for both synthetic intermediates and motors reported here are modular, allowing for their post-functionalization. The structural modifications introduced in the core of the motors result in improved solubility and a bathochromic shift of the absorption maxima. These features, in combination with a structural design that presents remote functionalization of the stator with respect to the fluorene rotors, make these novel motors particularly promising as light-responsive actuators in covalent and supramolecular materials.
Collapse
Affiliation(s)
- José Augusto Berrocal
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Lukas Pfeifer
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Dorus Heijnen
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
42
|
Krause S, Feringa BL. Towards artificial molecular factories from framework-embedded molecular machines. Nat Rev Chem 2020. [DOI: 10.1038/s41570-020-0209-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Krause S, Hosono N, Kitagawa S. Chemistry of Soft Porous Crystals: Structural Dynamics and Gas Adsorption Properties. Angew Chem Int Ed Engl 2020; 59:15325-15341. [DOI: 10.1002/anie.202004535] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Simon Krause
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Nobuhiko Hosono
- Department of Advanced Materials Science Graduate School of Frontier Sciences The University of Tokyo, Kashiwa Chiba 277-8561 Japan
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences Institute for Advanced Study Kyoto University, Ushinomiya, Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
44
|
Krause S, Hosono N, Kitagawa S. Die Chemie verformbarer poröser Kristalle – Strukturdynamik und Gasadsorptionseigenschaften. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004535] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Simon Krause
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen Niederlande
| | - Nobuhiko Hosono
- Department of Advanced Materials Science Graduate School of Frontier Sciences The University of Tokyo, Kashiwa Chiba 277-8561 Japan
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences Institute for Advanced Study Kyoto University, Ushinomiya, Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
45
|
|
46
|
Saura-Sanmartin A, Martinez-Cuezva A, Bautista D, Marzari MRB, Martins MAP, Alajarin M, Berna J. Copper-Linked Rotaxanes for the Building of Photoresponsive Metal Organic Frameworks with Controlled Cargo Delivery. J Am Chem Soc 2020; 142:13442-13449. [PMID: 32646211 DOI: 10.1021/jacs.0c04477] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have prepared a photoresponsive metal-organic framework by using an amide-based [2]rotaxane as linker and copper(II) ions as metal nodes. The interlocked linker was obtained by the hydrogen bond-directed approach employing a fumaramide thread as template of the macrocyclic component, this latter incorporating two carboxyl groups. Single crystal X-ray diffraction analysis of the metal-organic framework, prepared under solvothermal conditions, showed the formation of stacked 2D rhombohedral grids forming channels decorated with the interlocked alkenyl threads. A series of metal-organic frameworks differing in the E/Z olefin ratio were prepared either by the previous isomerization of the linker or by postirradiation of the reticulated materials. By dynamic solid state 2H NMR measurements, using deuterium-labeled materials, we proved that the geometry of the olefinic axis of the interlocked struts determined the obtention of materials with different independent local dynamics as a result of the strength of the intercomponent noncovalent interactions. Moreover, the usefulness of these novel copper-rotaxane materials as molecular dosing containers has also been assayed by the diffusion and photorelease of p-benzoquinone, evaluated in different solvents and temperatures.
Collapse
Affiliation(s)
- Adrian Saura-Sanmartin
- Departamento de Quimica Organica, Facultad de Quimica, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia E-30100, Spain
| | - Alberto Martinez-Cuezva
- Departamento de Quimica Organica, Facultad de Quimica, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia E-30100, Spain
| | - Delia Bautista
- Seccion Universitaria de Instrumentacion Cientifica (SUIC), Area Científica y Tecnica de Investigacion (ACTI), Universidad de Murcia, Murcia E-30100, Spain
| | - Mara R B Marzari
- Nucleo de Quimica de Heterociclos (NUQUIMHE), Departamento de Quimica, Universidad Federal de Santa Maria, Santa Maria-RS 97105-900, Brazil
| | - Marcos A P Martins
- Nucleo de Quimica de Heterociclos (NUQUIMHE), Departamento de Quimica, Universidad Federal de Santa Maria, Santa Maria-RS 97105-900, Brazil
| | - Mateo Alajarin
- Departamento de Quimica Organica, Facultad de Quimica, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia E-30100, Spain
| | - Jose Berna
- Departamento de Quimica Organica, Facultad de Quimica, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia E-30100, Spain
| |
Collapse
|
47
|
Vargas-Romero K, Martínez-Torres FC, Aguilar-Granda A, Pérez-Estrada S, Flores-Alamo M, Rodríguez-Molina B, Iglesias-Arteaga MA. Synthesis and Solid-State Dynamics of a Crystalline Steroid Molecular Rotor without the Alkyne Axle: Steroid Dimers Based on a 1,4-Di(1,3-dioxan-2-yl)benzene Moiety. J Org Chem 2020; 85:8501-8509. [PMID: 32475112 DOI: 10.1021/acs.joc.0c00867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Two diastereomeric crystalline steroid dimers were obtained by acid-catalyzed double acetalization of (20S)-5α-pregnan-3β,16β,20-triol 3-monoacetate with terephtalaldehyde. These compounds were characterized by NMR in solution, MS, single-crystal X-ray diffraction, and variable-temperature solid-state NMR by 13C cross-polarization magic angle spinning (CPMAS). While the phenylene rotator in the SR diastereomer remains static even at 373 K, the RR isomer shows a slow rotational process of the phenylene ring at temperatures above room temperature and thus may be considered the first crystalline steroid molecular rotor without the alkyne axle.
Collapse
Affiliation(s)
- Katherine Vargas-Romero
- Facultad de Quı́mica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, México
| | - Fátima C Martínez-Torres
- Facultad de Quı́mica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, México
| | - Andrés Aguilar-Granda
- Instituto de Quı́mica, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, 04510 Ciudad de México, México
| | - Salvador Pérez-Estrada
- Área Académica de Quı́mica, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5, Mineral de la Reforma, Hidalgo CP 42076, Mexico
| | - Marcos Flores-Alamo
- Facultad de Quı́mica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, México
| | - Braulio Rodríguez-Molina
- Instituto de Quı́mica, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, 04510 Ciudad de México, México
| | - Martín A Iglesias-Arteaga
- Facultad de Quı́mica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, México
| |
Collapse
|
48
|
|
49
|
Ploetz E, Zimpel A, Cauda V, Bauer D, Lamb DC, Haisch C, Zahler S, Vollmar AM, Wuttke S, Engelke H. Metal-Organic Framework Nanoparticles Induce Pyroptosis in Cells Controlled by the Extracellular pH. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907267. [PMID: 32182391 DOI: 10.1002/adfm.201909062] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 05/23/2023]
Abstract
Ion homeostasis is essential for cellular survival, and elevated concentrations of specific ions are used to start distinct forms of programmed cell death. However, investigating the influence of certain ions on cells in a controlled way has been hampered due to the tight regulation of ion import by cells. Here, it is shown that lipid-coated iron-based metal-organic framework nanoparticles are able to deliver and release high amounts of iron ions into cells. While high concentrations of iron often trigger ferroptosis, here, the released iron induces pyroptosis, a form of cell death involving the immune system. The iron release occurs only in slightly acidic extracellular environments restricting cell death to cells in acidic microenvironments and allowing for external control. The release mechanism is based on endocytosis facilitated by the lipid-coating followed by degradation of the nanoparticle in the lysosome via cysteine-mediated reduction, which is enhanced in slightly acidic extracellular environment. Thus, a new functionality of hybrid nanoparticles is demonstrated, which uses their nanoarchitecture to facilitate controlled ion delivery into cells. Based on the selectivity for acidic microenvironments, the described nanoparticles may also be used for immunotherapy: the nanoparticles may directly affect the primary tumor and the induced pyroptosis activates the immune system.
Collapse
Affiliation(s)
- Evelyn Ploetz
- Department of Chemistry and Center for NanoScience (CeNS), LMU Munich, Munich, 81377, Germany
- Nanosystems Initiative Munich (NIM), LMU Munich, Munich, 81377, Germany
- Center for Integrated Protein Science Munich (CiPSM), LMU Munich, Munich, 81377, Germany
| | - Andreas Zimpel
- Department of Chemistry and Center for NanoScience (CeNS), LMU Munich, Munich, 81377, Germany
| | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, Torino, 10129, Italy
| | - David Bauer
- Department of Chemistry, TU Munich, Munich, 81377, Germany
| | - Don C Lamb
- Department of Chemistry and Center for NanoScience (CeNS), LMU Munich, Munich, 81377, Germany
- Nanosystems Initiative Munich (NIM), LMU Munich, Munich, 81377, Germany
- Center for Integrated Protein Science Munich (CiPSM), LMU Munich, Munich, 81377, Germany
| | | | - Stefan Zahler
- Department of Pharmacy, LMU Munich, Munich, 81377, Germany
| | | | - Stefan Wuttke
- BCMaterials, Basque Center for Materials, UPV/EHU Science Park, Leioa, 48940, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| | - Hanna Engelke
- Department of Chemistry and Center for NanoScience (CeNS), LMU Munich, Munich, 81377, Germany
| |
Collapse
|
50
|
Aprahamian I. The Future of Molecular Machines. ACS CENTRAL SCIENCE 2020; 6:347-358. [PMID: 32232135 PMCID: PMC7099591 DOI: 10.1021/acscentsci.0c00064] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Indexed: 05/23/2023]
Abstract
Artificial molecular machines have captured the imagination of scientists and nonscientists alike for decades now, given their clear potential to transform and enhance all aspects of human life. In this Outlook, I use a bicycle as an analogy to explain what a molecular machine is, in my opinion, and work through a representative selection of case studies to specify the significant accomplishments made to date, and the obstacles that currently stand between these and the field's fulfillment of its great potential. The hope of this intentionally sober account is to sketch a path toward a rich and exciting research trajectory that might challenge current practitioners and attract junior scientists into its fold. Considering the progress we have witnessed in the past decade, I am positive that the future of the field is a rosy one.
Collapse
Affiliation(s)
- Ivan Aprahamian
- 6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|