1
|
Kitano T, Goto S, Wang X, Kamihara T, Sei Y, Kondo Y, Sannomiya T, Uekusa H, Murakami Y. 2.5-dimensional covalent organic frameworks. Nat Commun 2025; 16:280. [PMID: 39747237 PMCID: PMC11696810 DOI: 10.1038/s41467-024-55729-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
Covalently bonded crystalline substances with micropores have broad applications. Covalent organic frameworks (COFs) are representative of such substances. They have so far been classified into two-dimensional (2D) and three-dimensional (3D) COFs. 2D-COFs have planar shapes useful for broad purposes, but obtaining good crystals of 2D-COFs with sizes larger than 10 μm is significantly challenging, whereas yielding 3D-COFs with high crystallinity and larger sizes is easier. Here, we show COFs with 2.5-dimensional (2.5D) skeletons, which are microscopically constructed with 3D bonds but have macroscopically 2D planar shapes. The 2.5D-COFs shown herein achieve large single-crystal sizes above 0.1 mm and ultrahigh-density primary amines regularly allocated on and pointing perpendicular to the covalently-bonded network plane. Owing to the latter nature, the COFs are promising as CO2 adsorbents that can simultaneously achieve high CO2/N2 selectivity and low heat of adsorption, which are usually in a mutually exclusive relationship. 2.5D-COFs are expected to broaden the frontier and application of covalently bonded microporous crystalline systems.
Collapse
Affiliation(s)
- Tomoki Kitano
- Laboratory for Zero-Carbon Energy, Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan
- Department of Mechanical Engineering, Institute of Science Tokyo, Tokyo, Japan
| | - Syunto Goto
- Laboratory for Zero-Carbon Energy, Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan
- Department of Mechanical Engineering, Institute of Science Tokyo, Tokyo, Japan
| | - Xiaohan Wang
- Laboratory for Zero-Carbon Energy, Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan
- Department of Mechanical Engineering, Institute of Science Tokyo, Tokyo, Japan
| | - Takayuki Kamihara
- Facility Station Division, Open Facility Center, Institute of Science Tokyo, Yokohama, Japan
| | - Yoshihisa Sei
- Facility Station Division, Open Facility Center, Institute of Science Tokyo, Yokohama, Japan
| | - Yukihito Kondo
- Department of Materials Science & Engineering, Institute of Science Tokyo, Yokohama, Japan
| | - Takumi Sannomiya
- Department of Materials Science & Engineering, Institute of Science Tokyo, Yokohama, Japan
| | - Hidehiro Uekusa
- Department of Chemistry, Institute of Science Tokyo, Tokyo, Japan
| | - Yoichi Murakami
- Laboratory for Zero-Carbon Energy, Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan.
- Department of Mechanical Engineering, Institute of Science Tokyo, Tokyo, Japan.
- Department of Transdisciplinary Science & Engineering, Institute of Science Tokyo, Tokyo, Japan.
| |
Collapse
|
2
|
Toral V, Gómez-Gijón S, Romero FJ, Morales DP, Castillo E, Rodríguez N, Rojas S, Molina-Lopez F, Rivadeneyra A. Future Trends in Alternative Sustainable Materials for Low-Temperature Thermoelectric Applications. ACS APPLIED ELECTRONIC MATERIALS 2024; 6:8640-8654. [PMID: 39735570 PMCID: PMC11673103 DOI: 10.1021/acsaelm.4c00770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 12/31/2024]
Abstract
In the evolution of pervasive electronics, it is imperative to significantly reduce the energy consumption of power systems and embrace sustainable materials and fabrication processes with minimal carbon footprint. Within this context, thermoelectric generators (TEGs) have garnered substantial attention in recent years because of the readily available thermal gradients in the environment, making them a promising energy-harvesting technology. Current commercial room-temperature thermoelectrics are based on scarce, expensive, and/or toxic V-VI chalcogenide materials, which limit their widespread use. Thermoelectric polymers partially address this issue, and as such, they have been intensively studied in the field in the past decade. However, less popular materials have recently appeared to respond to the challenges of room-temperature thermoelectrics in terms of sustainability and cost. In this contribution, we comprehensively review the latest advancements in emerging alternative materials with the potential to pave the way for the next generation of sustainable TEGs. This upcoming generation includes flexible and printed TEGs for applications like wearables or the Internet of Things.
Collapse
Affiliation(s)
- Víctor Toral
- Department
of Electronics and Computer Science, University
of Granada, Granada 18071, Spain
| | - Sonia Gómez-Gijón
- Department
of Electronics and Computer Science, University
of Granada, Granada 18071, Spain
| | - Francisco J. Romero
- Department
of Electronics and Computer Science, University
of Granada, Granada 18071, Spain
| | - Diego P. Morales
- Department
of Electronics and Computer Science, University
of Granada, Granada 18071, Spain
| | - Encarnación Castillo
- Department
of Electronics and Computer Science, University
of Granada, Granada 18071, Spain
| | - Noel Rodríguez
- Department
of Electronics and Computer Science, University
of Granada, Granada 18071, Spain
| | - Sara Rojas
- Department
of Inorganic Chemistry, University of Granada, Granada 18071, Spain
| | - Francisco Molina-Lopez
- Department
of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, P.O. Box 2450, Leuven B-3001, Belgium
| | - Almudena Rivadeneyra
- Department
of Electronics and Computer Science, University
of Granada, Granada 18071, Spain
| |
Collapse
|
3
|
Nandre BK, Halder S, Chakraborty C. Redox-Active Triphenylamine-Triazine Covalent Organic Framework: A High Surface Area Microporous Material for Electrochromism and Electrofluorochromism. Chem Asian J 2024:e202401460. [PMID: 39663517 DOI: 10.1002/asia.202401460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 12/13/2024]
Abstract
Porous covalent organic frameworks (COFs) offer significant advantages in electrochromic (EC) applications due to their high surface area and porosity, which facilitate faradaic redox-mediated diffusion-controlled processes. However, COFs remain underexplored as EC materials due to challenges such as limited solubility and poor film-forming ability. In this study, we synthesized a redox-active triphenylamine-containing COF (TPA-TCIF) on ITO glass via a solvothermal method tailored for electrochromism and electrofluorochromism. The COF, formed through the condensation of tris(4-formyl phenyl)amine and 2,4,6-tris-(4-aminophenyl)-1,3,5-triazine, features a high surface area of 1136.8 m2/g and a pore diameter of 1.18 nm. This structure promotes efficient ion transport, reducing switching times and enhancing coloration efficiency (CE). Reversible redox reactions induce a color change from yellow to red, with an optical contrast (ΔT) of 37 % and a CE of 47.7 cm2/C. The film exhibited stable electrofluorochromic (EFC) behavior, switching from yellow emissive to dark black upon voltage application, with stability over 40 cycles. A quasi-solid-state electrochromic device (ECD) based on TPA-TCIF demonstrated reversible color transitions, showcasing its potential for future display technologies and highlighting the promise of COFs in advanced EC applications.
Collapse
Affiliation(s)
- Bhushan Kishor Nandre
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus. Jawaharnagar, Samirpet, Hyderabad, Telangana, 500078, India
| | - Sayan Halder
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus. Jawaharnagar, Samirpet, Hyderabad, Telangana, 500078, India
| | - Chanchal Chakraborty
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus. Jawaharnagar, Samirpet, Hyderabad, Telangana, 500078, India
- Materials Center for Sustainable Energy & Environment (McSEE), Birla Institute of Technology and Science, Hyderabad Campus, Hyderabad, 500078, India
| |
Collapse
|
4
|
Le PH, Liu A, Zasada LB, Geary J, Kamin AA, Rollins DS, Nguyen HA, Hill AM, Liu Y, Xiao DJ. Nitrogen-Rich Conjugated Macrocycles: Synthesis, Conductivity, and Application in Electrochemical CO 2 Capture. Angew Chem Int Ed Engl 2024:e202421822. [PMID: 39637287 DOI: 10.1002/anie.202421822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
Here we report a series of nitrogen-rich conjugated macrocycles that mimic the structure and function of semiconducting 2D metal-organic and covalent organic frameworks while providing greater solution processability and surface tunability. Using a new tetraaminotriphenylene building block that is compatible with both coordination chemistry and dynamic covalent chemistry reactions, we have synthesized two distinct macrocyclic cores containing Ni-N and phenazine-based linkages, respectively. The fully conjugated macrocycle cores support strong interlayer stacking and accessible nanochannels. For the metal-organic macrocycles, good out-of-plane charge transport is preserved, with pressed pellet conductivities of 10-3 S/cm for the nickel variants. Finally, using electrochemically mediated CO2 capture as an example, we illustrate how colloidal phenazine-based organic macrocycles improve electrical contact and active site electrochemical accessibility relative to bulk covalent organic framework powders. Together, these results highlight how simple macrocycles can enable new synthetic directions as well as new applications by combining the properties of crystalline porous frameworks, the processability of nanomaterials, and the precision of molecular synthesis.
Collapse
Affiliation(s)
- Phuong H Le
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Andong Liu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Leo B Zasada
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Jackson Geary
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Ashlyn A Kamin
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Devin S Rollins
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Hao A Nguyen
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Audrey M Hill
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Yayuan Liu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Dianne J Xiao
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
5
|
Blätte D, Ortmann F, Bein T. Photons, Excitons, and Electrons in Covalent Organic Frameworks. J Am Chem Soc 2024; 146:32161-32205. [PMID: 39556616 PMCID: PMC11613328 DOI: 10.1021/jacs.3c14833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/20/2024]
Abstract
Covalent organic frameworks (COFs) are created by the condensation of molecular building blocks and nodes to form two-dimensional (2D) or three-dimensional (3D) crystalline frameworks. The diversity of molecular building blocks with different properties and functionalities and the large number of possible framework topologies open a vast space of possible well-defined porous architectures. Besides more classical applications of porous materials such as molecular absorption, separation, and catalytic conversions, interest in the optoelectronic properties of COFs has recently increased considerably. The electronic properties of both the molecular building blocks and their linkage chemistry can be controlled to tune photon absorption and emission, to create excitons and charge carriers, and to use these charge carriers in different applications such as photocatalysis, luminescence, chemical sensing, and photovoltaics. In this Perspective, we will discuss the relationship between the structural features of COFs and their optoelectronic properties, starting with the building blocks and their chemical connectivity, layer stacking in 2D COFs, control over defects and morphology including thin film synthesis, exploring the theoretical modeling of structural, electronic, and dynamic features of COFs, and discussing recent intriguing applications with a focus on photocatalysis and photoelectrochemistry. We conclude with some remarks about present challenges and future prospects of this powerful architectural paradigm.
Collapse
Affiliation(s)
- Dominic Blätte
- Department
of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| | - Frank Ortmann
- Department
of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Thomas Bein
- Department
of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
6
|
Králik M, Koóš P, Markovič M, Lopatka P. Organic and Metal-Organic Polymer-Based Catalysts-Enfant Terrible Companions or Good Assistants? Molecules 2024; 29:4623. [PMID: 39407552 PMCID: PMC11477782 DOI: 10.3390/molecules29194623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
This overview provides insights into organic and metal-organic polymer (OMOP) catalysts aimed at processes carried out in the liquid phase. Various types of polymers are discussed, including vinyl (various functional poly(styrene-co-divinylbenzene) and perfluorinated functionalized hydrocarbons, e.g., Nafion), condensation (polyesters, -amides, -anilines, -imides), and additional (polyurethanes, and polyureas, polybenzimidazoles, polyporphyrins), prepared from organometal monomers. Covalent organic frameworks (COFs), metal-organic frameworks (MOFs), and their composites represent a significant class of OMOP catalysts. Following this, the preparation, characterization, and application of dispersed metal catalysts are discussed. Key catalytic processes such as alkylation-used in large-scale applications like the production of alkyl-tert-butyl ether and bisphenol A-as well as reduction, oxidation, and other reactions, are highlighted. The versatile properties of COFs and MOFs, including well-defined nanometer-scale pores, large surface areas, and excellent chemisorption capabilities, make them highly promising for chemical, electrochemical, and photocatalytic applications. Particular emphasis is placed on their potential for CO2 treatment. However, a notable drawback of COF- and MOF-based catalysts is their relatively low stability in both alkaline and acidic environments, as well as their high cost. A special part is devoted to deactivation and the disposal of the used/deactivated catalysts, emphasizing the importance of separating heavy metals from catalysts. The conclusion provides guidance on selecting and developing OMOP-based catalysts.
Collapse
Affiliation(s)
- Milan Králik
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (M.M.); (P.L.)
| | - Peter Koóš
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (M.M.); (P.L.)
| | | | | |
Collapse
|
7
|
Fu GE, Yang H, Zhao W, Samorì P, Zhang T. 2D Conjugated Polymer Thin Films for Organic Electronics: Opportunities and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311541. [PMID: 38551322 DOI: 10.1002/adma.202311541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/07/2024] [Indexed: 04/06/2024]
Abstract
2D conjugated polymers (2DCPs) possess extended in-plane π-conjugated lattice and out-of-plane π-π stacking, which results in enhanced electronic performance and potentially unique band structures. These properties, along with predesignability, well-defined channels, easy postmodification, and order structure attract extensive attention from material science to organic electronics. In this review, the recent advance in the interfacial synthesis and conductivity tuning strategies of 2DCP thin films, as well as their application in organic electronics is summarized. Furthermore, it is shown that, by combining topology structure design and targeted conductivity adjustment, researchers have fabricated 2DCP thin films with predesigned active groups, highly ordered structures, and enhanced conductivity. These films exhibit great potential for various thin-film organic electronics, such as organic transistors, memristors, electrochromism, chemiresistors, and photodetectors. Finally, the future research directions and perspectives of 2DCPs are discussed in terms of the interfacial synthetic design and structure engineering for the fabrication of fully conjugated 2DCP thin films, as well as the functional manipulation of conductivity to advance their applications in future organic electronics.
Collapse
Affiliation(s)
- Guang-En Fu
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Haoyong Yang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Wenkai Zhao
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
8
|
Luo L, Li C, Wang Y, Chen P, Zhou Z, Chen T, Wu K, Ding SY, Tan L, Wang J, Shao X, Liu Z. Multi-Functional 2D Covalent Organic Frameworks with Diketopyrrolopyrrole as Electron Acceptor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402993. [PMID: 38750614 DOI: 10.1002/smll.202402993] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Indexed: 10/01/2024]
Abstract
2D covalent organic framework (COF) materials with extended conjugated structure and periodic columnar π-arrays exhibit promising applications in organic optoelectronics. However, there is a scarcity of reports on optoelectronic COFs, mainly due to the lack of suitable π-skeletons. Here, two multi-functional optoelectronic 2D COFs DPP-TPP-COF and DPP-TBB-COF are constructed with diketopyrrolopyrrole as electron acceptor (A), and 1,3,6,8-tetraphenylpyrene and 1,3,5-triphenylbenzene as electron donor (D) through imine bonds. Both 2D COFs showed good crystallinities and AA stacking with a rhombic framework for DPP-TPP-COF and hexagonal one for DPP-TBB-COF, respectively. The electron D-A and ordered intermolecular packing structures endow the COFs with broad UV-vis absorptions and narrow bandgaps along with suitable HOMO/LUMO energy levels, resulting in multi-functional optoelectronic properties, including photothermal conversion, supercapacitor property, and ambipolar semiconducting behavior. Among them, DPP-TPP-COF exhibits a high photothermal conversion efficiency of 47% under 660 nm laser irradiation, while DPP-TBB-COF exhibits superior specific capacitance of 384 F g-1. Moreover, P-type doping and N-type doping are achieved by iodine and tetrakis(dimethylamino)ethylene on a single host COF, resulting in ambipolar semiconducting behavior. These results provide a paradigm for the application of multi-functional optoelectronic COF materials.
Collapse
Affiliation(s)
- Liang Luo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Chunbin Li
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, China
| | - Yuancheng Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Pinyu Chen
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zhaoqiong Zhou
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Tianwen Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Kunlan Wu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - San-Yuan Ding
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Luxi Tan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
9
|
Yao L, Pütz AM, Vignolo-González H, Lotsch BV. Covalent Organic Frameworks as Single-Site Photocatalysts for Solar-to-Fuel Conversion. J Am Chem Soc 2024; 146:9479-9492. [PMID: 38547041 PMCID: PMC11009957 DOI: 10.1021/jacs.3c11539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Single-site photocatalysts (SSPCs) are well-established as potent platforms for designing innovative materials to accomplish direct solar-to-fuel conversion. Compared to classical inorganic porous materials, such as zeolites and silica, covalent organic frameworks (COFs)─an emerging class of porous polymers that combine high surface areas, structural diversity, and chemical stability─are attractive candidates for SSPCs due to their molecular-level precision and intrinsic light harvesting ability, both amenable to structural engineering. In this Perspective, we summarize the design concepts and state-of-the-art strategies for the construction of COF SSPCs, and we review the development of COF SSPCs and their applications in solar-to-fuel conversion from their inception. Underlying pitfalls concerning photocatalytic characterization are discussed, and perspectives for the future development of this burgeoning field are given.
Collapse
Affiliation(s)
- Liang Yao
- Max
Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Alexander M. Pütz
- Max
Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
- Department
of Chemistry, University of Munich (LMU), Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Hugo Vignolo-González
- Max
Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
- Department
of Chemistry, University of Munich (LMU), Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Bettina V. Lotsch
- Max
Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
- Department
of Chemistry, University of Munich (LMU), Butenandtstrasse 5-13, 81377 Munich, Germany
- E-Conversion
and Center for Nanoscience, Lichtenbergstraße 4a, Garching, 85748 Munich, Germany
| |
Collapse
|
10
|
Chen L, Jiang L, Cheng L, Gao Y, Wang M, Xu L, Zhu Z. Kinetic study of electron transfer process in methyl orange decolorization by shewanella in MFCs with covalent organic frameworks modified anode. CHEMOSPHERE 2024; 350:141073. [PMID: 38171395 DOI: 10.1016/j.chemosphere.2023.141073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/11/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
As a new electrode material for electrochemical systems, covalent organic framework (COF) materials have been gradually applied to bioelectrochemical systems. In our previous study, the COFBTA-DPPD-rGO composite was synthesized via Schiff-base coupling between benzene-1,3,5-tricarbaldehyde (BTA) and 3,8-diamino-6-phenylphenanthridine (DPPD) on reduced graphene oxide (rGO) at room temperature. Here, COFBTA-DPPD-rGO modified MFC anode was used to assist microorganisms to decolorize methyl orange (MO), and the properties of MFCs were studied. The results showed that compared to the unmodified electrode MFC (28 mA m-2, 4.20 mW m-2) the current density and maximum power density of the anode MFC modified by COFBTA-DPPD-rGO (134.5 mA m-2, 21.78 mW m-2) were increased by 380.3% and 423.6%, respectively. The transferred electron number n and charge transfer coefficient α of the modified COFBTA-DPPD-rGO anode (4 and 0.43) compared to the unmodified electrode (2.4 and 0.38) were increased by 67% and 13%, respectively. The decolorization ratio of MO could reach 90.3% at 10 h. Compared with the unmodified electrode MFC (53.0%), the decolorization ratio and kinetic constant of decolorization process were enhanced by 26% and 372%, respectively. Therefore, COFBTA-DPPD-rGO could be a new choice for applying to the MFCs.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Science, Qufu Normal University, Qufu, 273165, Shandong, PR China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, PR China
| | - Limin Jiang
- School of Life Science, Qufu Normal University, Qufu, 273165, Shandong, PR China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, PR China
| | - Liangyue Cheng
- School of Life Science, Qufu Normal University, Qufu, 273165, Shandong, PR China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, PR China
| | - Yuhao Gao
- School of Life Science, Qufu Normal University, Qufu, 273165, Shandong, PR China
| | - Mingpeng Wang
- School of Life Science, Qufu Normal University, Qufu, 273165, Shandong, PR China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, PR China.
| | - Lirong Xu
- School of Life Science, Qufu Normal University, Qufu, 273165, Shandong, PR China; School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, PR China.
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, PR China.
| |
Collapse
|
11
|
Busche SA, Traxler M, Thomas A, Börner HG. Ligating Catalytically Active Peptides onto Microporous Polymers: A General Route Toward Specifically-Functional High Surface Area Platforms. CHEMSUSCHEM 2024; 17:e202301045. [PMID: 37698038 DOI: 10.1002/cssc.202301045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
A versatile post-synthetic modification strategy to functionalize a high surface area microporous network (MPN-OH) by bio-orthogonal inverse electron-demand Diels-Alder (IEDDA) ligation is presented. While the polymer matrix is modified with a readily accessible norbornene isocyanate (Nor-NCO), a series of functional units presenting the robust asymmetric 1,2,4,5-tetrazine (Tz) allows easy functionalization of the MPN by chemoselective Nor/Tz ligation. A generic route is demonstrated, modulating the internal interfaces by introducing carboxylates, amides or amino acids as well as an oligopeptide d-Pro-Pro-Glu organocatalyst. The MPN-Pz-Peptide construct largely retains the catalytic activity and selectivity in an enantioselective enamine catalysis, demonstrates remarkable availability in different solvents, offers heterogeneous organocatalysis in bulk and shows stability in recycling settings.
Collapse
Affiliation(s)
- Steffen A Busche
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, Berlin, Germany
| | - Michael Traxler
- Institute of Chemistry, Technische Universität Berlin, Institute of Chemistry, Hardenbergstr. 40, Berlin, Germany
| | - Arne Thomas
- Institute of Chemistry, Technische Universität Berlin, Institute of Chemistry, Hardenbergstr. 40, Berlin, Germany
| | - Hans G Börner
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, Berlin, Germany
| |
Collapse
|
12
|
Gayle J, Roy S, Gupta S, Hassan S, Rao A, Demingos PG, Miller K, Guo G, Wang X, Garg A, Singh CV, Vajtai R, Robinson JT, Ajayan PM. Imine-Linked 2D Conjugated Porous Organic Polymer Films for Tunable Acid Vapor Sensing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2726-2739. [PMID: 38170672 DOI: 10.1021/acsami.3c14825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Two-dimensional (2D) films of conjugated porous organic polymers (C-POPs) can translate the rich in-plane functionalities of conjugated frameworks into diverse optical and electronic applications while addressing the processability issues of their crystalline analogs for adaptable device architectures. However, the lack of facile single-step synthetic routes to obtain large-area high-quality films of 2D-C-POPs has limited their application possibilities so far. Here, we report the synthesis of four mechanically robust imine-linked 2D-C-POP free-standing films using a single-step fast condensation route that is scalable and tunable. The rigid covalently bonded 2D structures of the C-POP films offer high stability for volatile gas sensing in harsh environments while simultaneously enhancing site accessibility for gas molecules due to mesoporosity by structural design. Structurally, all films were composed of exfoliable layers of 2D polymeric nanosheets (NSs) that displayed anisotropy from disordered stacking, evinced by out-of-plane birefringent properties. The tunable in-plane conjugation, different nitrogen centers, and porous structures allow the films to act as ultraresponsive colorimetric sensors for acid sensing via reversible imine bond protonation. All the films could detect hydrogen chloride (HCl) gas down to 0.05 ppm, far exceeding the Occupational Safety and Health Administration's permissible exposure limit of 5 ppm with fast response time and good recyclability. Computational insights elucidated the effect of conjugation and tertiary nitrogen in the structures on the sensitivity and response time of the films. Furthermore, we exploited the exfoliated large 2D NSs and anisotropic optoelectronic properties of the films to adapt them into micro-optical and triboelectric devices to demonstrate their real-time sensing capabilities.
Collapse
Affiliation(s)
- Jessica Gayle
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Soumyabrata Roy
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Shashikant Gupta
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Sakib Hassan
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Adwitiya Rao
- Department of Materials Science and Engineering, University of Toronto, Ontario M5S 3E4, Canada
| | - Pedro Guerra Demingos
- Department of Materials Science and Engineering, University of Toronto, Ontario M5S 3E4, Canada
| | - Kristen Miller
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Galio Guo
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Xu Wang
- Shared Equipment Authority, Rice University, Houston, Texas 77005, United States
| | - Ashish Garg
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Chandra Veer Singh
- Department of Materials Science and Engineering, University of Toronto, Ontario M5S 3E4, Canada
| | - Robert Vajtai
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Jacob T Robinson
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
13
|
Azadi E, Dinari M. Green and Facile Preparation of Covalent Organic Frameworks Based on Reaction Medium for Advanced Applications. Chemistry 2023; 29:e202301837. [PMID: 37640690 DOI: 10.1002/chem.202301837] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Covalent organic frameworks (COFs), as a new class of crystalline, well-ordered, and porous materials with intermittent constructions, are formed via organic structural parts connected through covalent bonds. These materials have been employed in several fields comprising pollutant adsorption and separation, catalysis, electrical conductivity, gas storage, etc. The preparation of COFs is mainly applied in tubes with high temperatures and degassing treatment. Furthermore, the reaction medium is involved in toxic organic solvents like toluene, dioxane, mesitylene, acetonitrile, and so on. Hence, discovering clean medium and green approaches has attracted wide attention. Recently, facile, less dangerous, and greener methods have been developed for COFs synthesis in diverse applications like performing the reaction at ambient temperature or employing aqueous solvents, ionic liquids, and a mixture of organic solvents/water. This review article summarizes the eco-friendly production approaches of COFs for diverse applications.
Collapse
Affiliation(s)
- Elham Azadi
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
14
|
Paz R, Viltres H, Gupta NK, Phung V, Srinivasan S, Rajabzadeh AR, Leyva C. Covalent organic frameworks as highly versatile materials for the removal and electrochemical sensing of organic pollutants. CHEMOSPHERE 2023; 342:140145. [PMID: 37714485 DOI: 10.1016/j.chemosphere.2023.140145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/04/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
The presence of persistent organic compounds in water has become a worldwide issue due to its resistance to natural degradation, inducing its environmental resilience. Therefore, the accumulation in water bodies, soils, and humans produces toxic effects. Also, low levels of organic pollutants can lead to serious human health issues, such as cancer, chronic diseases, thyroid complications, immune system suppression, etc. Therefore, developing efficient and economically viable remediation strategies motivates researchers to delve into novel domains within material science. Moreover, finding approaches to detect pollutants in drinking water systems is vital for safeguarding water safety and security. Covalent organic frameworks (COFs) are valuable materials constructed through strong covalent interactions between blocked monomers. These materials have tremendous potential in removing and detecting persistent organic pollutants due to their high adsorption capacity, large surface area, tunable porosity, porous structure, and recyclability. This review discusses various synthesis routes for constructing non-functionalized and functionalized COFs and their application in the remediation and electrochemical sensing of persistent organic compounds from contaminated water sources. The development of COF-based materials has some major challenges that need to be addressed for their suitability in the industrial configuration. This review also aims to highlight the importance of COFs in the environmental remediation application with detailed scrutiny of their challenges and outcomes in the current research scenario.
Collapse
Affiliation(s)
- Roxana Paz
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, LNAgua, 11500, CDMX, Mexico
| | - Herlys Viltres
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario, L8S 4L8, Canada
| | - Nishesh Kumar Gupta
- Department of Environmental Research, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Vivian Phung
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario, L8S 4L8, Canada
| | - Seshasai Srinivasan
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario, L8S 4L8, Canada.
| | - Amin Reza Rajabzadeh
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario, L8S 4L8, Canada.
| | - Carolina Leyva
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, LNAgua, 11500, CDMX, Mexico.
| |
Collapse
|
15
|
Kim SW, Jung H, Okyay MS, Noh HJ, Chung S, Kim YH, Jeon JP, Wong BM, Cho K, Seo JM, Yoo JW, Baek JB. Hexaazatriphenylene-Based Two-Dimensional Conductive Covalent Organic Framework with Anisotropic Charge Transfer. Angew Chem Int Ed Engl 2023; 62:e202310560. [PMID: 37654107 DOI: 10.1002/anie.202310560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/02/2023]
Abstract
The development of covalent organic frameworks (COFs) with efficient charge transport is of immense interest for applications in optoelectronic devices. To enhance COF charge transport properties, electroactive building blocks and dopants can be used to induce extended conduction channels. However, understanding their intricate interplay remains challenging. We designed and synthesized a tailor-made COF structure with electroactive hexaazatriphenylene (HAT) core units and planar dioxin (D) linkages, denoted as HD-COF. With the support of theoretical calculations, we found that the HAT units in the HD-COF induce strong, eclipsed π-π stacking. The unique stacking of HAT units and the weak in-plane conjugation of dioxin linkages leads to efficient anisotropic charge transport. We fabricated HD-COF films to minimize the grain boundary effect of bulk COFs, which resulted in enhanced conductivity. As a result, the HD-COF films showed an electrical conductivity as high as 1.25 S cm-1 after doping with tris(4-bromophenyl)ammoniumyl hexachloroantimonate.
Collapse
Affiliation(s)
- Seong-Wook Kim
- Department of Energy and Chemical Engineering/, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyeonjung Jung
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Mahmut Sait Okyay
- Materials Science & Engineering Program, Department of Chemistry, and Department of Physics & Astronomy, University of California-Riverside, Riverside, CA, 92521, USA
| | - Hyuk-Jun Noh
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA
| | - Sein Chung
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Young Hyun Kim
- Department of Energy and Chemical Engineering/, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jong-Pil Jeon
- Department of Energy and Chemical Engineering/, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Bryan M Wong
- Materials Science & Engineering Program, Department of Chemistry, and Department of Physics & Astronomy, University of California-Riverside, Riverside, CA, 92521, USA
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jeong-Min Seo
- Department of Energy and Chemical Engineering/, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jung-Woo Yoo
- School of Materials Science and Engineering/, Graduate School of Semiconductor Materials and Devices, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jong-Beom Baek
- Department of Energy and Chemical Engineering/, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
16
|
Yang Y, Ratsch M, Evans AM, Börjesson K. Layered 3D Covalent Organic Framework Films Based on Carbon-Carbon Bonds. J Am Chem Soc 2023; 145:18668-18675. [PMID: 37581382 PMCID: PMC10450803 DOI: 10.1021/jacs.3c06621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Indexed: 08/16/2023]
Abstract
The development of covalent organic frameworks (COFs) during the past decades has led to a variety of promising applications within gas storage, catalysis, drug delivery, and sensing. Even though most described synthesis methods result in powdery COFs with uncontrolled grain size, several approaches to grow COF films have recently been explored. However, in all COFs so far presented, the isolated materials are chemically homogeneous, with all functionalities homogeneously distributed throughout the entire material. Strategies to synthetically manipulate the spatial distribution of functionalities in a single film would be game changing. Specifically, this would allow for the introduction of local functionalities and even consecutive functions in single frameworks, thus broadening their synthetic versatility and application potential. Here, we synthesize two 3D crystalline COF films. The frameworks, the ionic B-based and neutral C-based COFs, have similar unit cell parameters, which enables their epitaxial stacking in a layered 3D COF film. The film growth was monitored in real time using a quartz crystal microbalance, showing linear growth with respect to reaction time. The high degree of polymerization was confirmed by chemical analysis and vibrational spectroscopy. Their polycrystalline and anisotropic natures were confirmed with grazing incidence X-ray diffraction. We further expand the scope of the concept by making layered films from COF-300 and its iodinated derivative. Finally, the work presented here will pave the path for multifunctional COF films where concurrent functionalities are embedded in the same crystalline material.
Collapse
Affiliation(s)
- Yizhou Yang
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| | - Martin Ratsch
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| | - Austin M. Evans
- George
and Josephine Butler Polymer Laboratory, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Karl Börjesson
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| |
Collapse
|
17
|
Abstract
Chemical doping of organic semiconductors (OSCs) enables feasible tuning of carrier concentration, charge mobility, and energy levels, which is critical for the applications of OSCs in organic electronic devices. However, in comparison with p-type doping, n-type doping has lagged far behind. The achievement of efficient and air-stable n-type doping in OSCs would help to significantly improve electron transport and device performance, and endow new functionalities, which are, therefore, gaining increasing attention currently. In this review, the issue of doping efficiency and doping air stability in n-type doped OSCs was carefully addressed. We first clarified the main factors that influenced chemical doping efficiency in n-type OSCs and then explain the origin of instability in n-type doped films under ambient conditions. Doping microstructure, charge transfer, and dissociation efficiency were found to determine the overall doping efficiency, which could be precisely tuned by molecular design and post treatments. To further enhance the air stability of n-doped OSCs, design strategies such as tuning the lowest unoccupied molecular orbital (LUMO) energy level, charge delocalization, intermolecular stacking, in situ n-doping, and self-encapsulations are discussed. Moreover, the applications of n-type doping in advanced organic electronics, such as solar cells, light-emitting diodes, field-effect transistors, and thermoelectrics are being introduced. Finally, an outlook is provided on novel doping ways and material systems that are aimed at stable and efficient n-type doped OSCs.
Collapse
Affiliation(s)
- Dafei Yuan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Wuyue Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Xiaozhang Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
18
|
Zhu J, Wen W, Tian Z, Zhang X, Wang S. Covalent organic framework: A state-of-the-art review of electrochemical sensing applications. Talanta 2023; 260:124613. [PMID: 37146454 DOI: 10.1016/j.talanta.2023.124613] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
Covalent organic framework (COF), a kind of porous polymer with crystalline properties, is a periodic porous framework material with precise regulation at atomic level, which can be formed by the orderly connection of pre-designed organic construction units through covalent bonds. Compared with metal-organic frameworks, COFs exhibit unique performance, including tailor-made functions, stronger load ability, structural diversity, ordered porosity, intrinsic stability and excellent adsorption features, are more conducive to the expansion of electrochemical sensing applications and the universality of applications. In addition, COFs can accurately integrate organic structural units with atomic precision into ordered structures, so that the structural diversity and application of COFs can be greatly enriched by designing new construction units and adopting reasonable functional strategies. In this review, we mainly summarized state-of-the-art recent advances of the classification and synthesis strategy of COFs, the design of functionalized COF for electrochemical sensors and COFs-based electrochemical sensing. Then, an overview of the considerable recent advances made in applying outstanding COFs to establish electrochemical sensing platform, including electrochemical sensor based on voltammetry, amperometry, electrochemical impedance spectroscopy, electrochemiluminescence, photoelectrochemical sensor and others. Finally, we discussed the positive outlooks, critical challenges and bright directions of COFs-based electrochemical sensing in the field of disease diagnosis, environmental monitoring, food safety, drug analysis, etc.
Collapse
Affiliation(s)
- Junlun Zhu
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, PR China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Zhengfang Tian
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, PR China.
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| |
Collapse
|
19
|
Seddiki I, N’Diaye BI, Skene WG. Survey of Recent Advances in Molecular Fluorophores, Unconjugated Polymers, and Emerging Functional Materials Designed for Electrofluorochromic Use. Molecules 2023; 28:molecules28073225. [PMID: 37049988 PMCID: PMC10096808 DOI: 10.3390/molecules28073225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 04/08/2023] Open
Abstract
In this review, recent advances that exploit the intrinsic emission of organic materials for reversibly modulating their intensity with applied potential are surveyed. Key design strategies that have been adopted during the past five years for developing such electrofluorochromic materials are presented, focusing on molecular fluorophores that are coupled with redox-active moieties, intrinsically electroactive molecular fluorophores, and unconjugated emissive organic polymers. The structural effects, main challenges, and strides toward addressing the limitations of emerging fluorescent materials that are electrochemically responsive are surveyed, along with how these can be adapted for their use in electrofluorochromic devices.
Collapse
Affiliation(s)
- Ilies Seddiki
- Laboratoire de Caractérisation Photophysique des Matériaux Conjugués Département de Chimie, Campus MIL, Université de Montréal, CP 6128, Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada
| | - Brelotte Idriss N’Diaye
- Laboratoire de Caractérisation Photophysique des Matériaux Conjugués Département de Chimie, Campus MIL, Université de Montréal, CP 6128, Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada
| | - W. G. Skene
- Laboratoire de Caractérisation Photophysique des Matériaux Conjugués Département de Chimie, Campus MIL, Université de Montréal, CP 6128, Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
20
|
Owsianik K, Różycka-Sokołowska E, Bałczewski P. O,S-Acetals in a New Modification of oxo-Friedel-Crafts-Bradsher Cyclization-Synthesis of Fluorescent (Hetero)acenes and Mechanistic Considerations. Molecules 2023; 28:molecules28062474. [PMID: 36985445 PMCID: PMC10051591 DOI: 10.3390/molecules28062474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
This paper presents the use of O,S-acetals in a new modification of the oxo-Friedel-Crafts-Bradsher cyclization. In this reaction, under mild reaction conditions (25 °C), three- and four-ring fused RO-acenes (major) and/or HO(CH2)2S-acenes (minor) are formed, the latter products having never been observed before in this type of cyclization. In this way, two electronically different fluorophores could be obtained in a single cyclization reaction, one of them having strong electron donor properties (+M effect of alkoxy groups) and the other having donor-acceptor properties (+M and -I effects of the HO(CH2)2S-group, Hammett's constants). Further increasing the reaction temperature, HCl concentration or prolonging reaction time, surprisingly, yielded a 2:1 mixture of cis and trans dimeric isomers, as the only products of this cyclization. The DFT calculations confirmed a greater stability of the cis isomer compared to the trans isomer. The formation of unexpected dimeric products and HO(CH2)2S-acenes sheds light on the mechanism of oxo-Friedel-Crafts-Bradsher cyclization, involving competitive O/S atom protonation in strained O,S-acetals and in strain-free side groups of intermediate species.
Collapse
Affiliation(s)
- Krzysztof Owsianik
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Ewa Różycka-Sokołowska
- Institute of Chemistry, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-201 Częstochowa, Poland
| | - Piotr Bałczewski
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
- Institute of Chemistry, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-201 Częstochowa, Poland
| |
Collapse
|
21
|
A self-standing three-dimensional covalent organic framework film. Nat Commun 2023; 14:220. [PMID: 36639394 PMCID: PMC9839775 DOI: 10.1038/s41467-023-35931-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Covalent crystals such as diamonds are a class of fascinating materials that are challenging to fabricate in the form of thin films. This is because spatial kinetic control of bond formation is required to create covalently bonded crystal films. Directional crystal growth is commonly achieved by chemical vapor deposition, an approach that is hampered by technical complexity and associated high cost. Here we report on a liquid-liquid interfacial approach based on physical-organic considerations to synthesize an ultrathin covalent crystal film. By distributing reactants into separate phases using hydrophobicity, the chemical reaction is confined to an interface that orients the crystal growth. A molecular-smooth interface combined with in-plane isotropic conditions enables the synthesis of films on a centimeter size scale with a uniform thickness of 13 nm. The film exhibits considerable mechanical robustness enabling a free-standing length of 37 µm, as well as a clearly anisotropic chemical structure and crystal lattice alignment.
Collapse
|
22
|
|
23
|
Yang Y, Sandra AP, Idström A, Schäfer C, Andersson M, Evenäs L, Börjesson K. Electroactive Covalent Organic Framework Enabling Photostimulus-Responsive Devices. J Am Chem Soc 2022; 144:16093-16100. [PMID: 36007228 PMCID: PMC9460776 DOI: 10.1021/jacs.2c06333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Two-dimensional covalent organic frameworks (2D COFs)
feature graphene-type
2D layered sheets but with a tunable structure, electroactivity, and
high porosity. If these traits are well-combined, then 2D COFs can
be applied in electronics to realize functions with a high degree
of complexity. Here, a highly crystalline electroactive COF, BDFamide-Tp,
was designed and synthesized. It shows regularly distributed pores
with a width of 1.35 nm. Smooth and successive films of such a COF
were fabricated and found to be able to increase the conductivity
of an organic semiconductor by 103 by interfacial doping.
Upon encapsulation of a photoswitchable molecule (spiropyran) into
the voids of the COF layer, the resulted devices respond differently
to light of different wavelengths. Specifically, the current output
ratio after UV vs Vis illumination reaches 100 times, thus effectively
creating on and off states. The respective positive and negative feedbacks
are memorized by the device and can be reprogrammed by UV/Vis illumination.
The reversible photostimulus responsivity and reliable memory of the
device are derived from the combination of electroactivity and porosity
of the 2D COF. This work shows the capability of 2D COFs in higher-level
electronic functions and extends their possible applications in information
storage.
Collapse
Affiliation(s)
- Yizhou Yang
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Amritha P Sandra
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Alexander Idström
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Clara Schäfer
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Martin Andersson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Lars Evenäs
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Karl Börjesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden
| |
Collapse
|
24
|
Guan Q, Zhou LL, Dong YB. Metalated covalent organic frameworks: from synthetic strategies to diverse applications. Chem Soc Rev 2022; 51:6307-6416. [PMID: 35766373 DOI: 10.1039/d1cs00983d] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covalent organic frameworks (COFs) are a class of organic crystalline porous materials discovered in the early 21st century that have become an attractive class of emerging materials due to their high crystallinity, intrinsic porosity, structural regularity, diverse functionality, design flexibility, and outstanding stability. However, many chemical and physical properties strongly depend on the presence of metal ions in materials for advanced applications, but metal-free COFs do not have these properties and are therefore excluded from such applications. Metalated COFs formed by combining COFs with metal ions, while retaining the advantages of COFs, have additional intriguing properties and applications, and have attracted considerable attention over the past decade. This review presents all aspects of metalated COFs, from synthetic strategies to various applications, in the hope of promoting the continued development of this young field.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
25
|
Zheng W, Li A, Wang X, Li Z, Zhao B, Wang L, Kan W, Sun L, Qi X. Construction of hydrophilic covalent organic frameworks and their fast and efficient adsorption of cationic dyes from aqueous solution. NEW J CHEM 2022. [DOI: 10.1039/d2nj04336j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
TFPB-Pa-SO3H COF and TFPB-BDSA COF were synthesized and showed fast adsorption of MLB (1 and 2 min) and high adsorption uptakes of CV (1559 and 1288 mg g−1). TFPB-Pa-SO3H COF as adsorbing material was used for the removal of dye molecules in real water samples.
Collapse
Affiliation(s)
- Wang Zheng
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar, 161006, China
| | - Anran Li
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar, 161006, China
| | - Xiuwen Wang
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar, 161006, China
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar, 161006, China
| | - Zhigang Li
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar, 161006, China
| | - Bing Zhao
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar, 161006, China
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar, 161006, China
| | - Liyan Wang
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar, 161006, China
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar, 161006, China
| | - Wei Kan
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar, 161006, China
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar, 161006, China
| | - Li Sun
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar, 161006, China
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar, 161006, China
| | - Xin Qi
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar, 161006, China
| |
Collapse
|
26
|
Li L, Li A, Zhao B, Kan W, Bi C, Zheng W, Wang X, Sun L, Wang L, Zhang H. Multi-sulfonated functionalized hydrophilic covalent organic framework for highly efficient dye removal from real samples. NEW J CHEM 2022. [DOI: 10.1039/d2nj02857c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A hydrophilic covalent organic framework (BTA-BDSA-COF) was successfully erected by introducing multi-sulfonated groups into a covalent framework structure and it can be easily applied to capture the cationic dye in real water samples.
Collapse
Affiliation(s)
- Lantian Li
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar 161006, China
| | - Anran Li
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar 161006, China
| | - Bing Zhao
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar 161006, China
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar 161006, China
| | - Wei Kan
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar 161006, China
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar 161006, China
| | - Chunyu Bi
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar 161006, China
| | - Wang Zheng
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar 161006, China
| | - Xiuwen Wang
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar 161006, China
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar 161006, China
| | - Li Sun
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar 161006, China
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar 161006, China
| | - Liyan Wang
- Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar 161006, China
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar 161006, China
| | - Hongrui Zhang
- Qiqihar Inspection and Testing Center, Qiqihar 161006, China
| |
Collapse
|