1
|
Keeling PJ, Burki F. Evolution: Untangling the mix of plastid endosymbiosis events. Curr Biol 2025; 35:R94-R96. [PMID: 39904315 DOI: 10.1016/j.cub.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The demonstration that a plastid protein targeting system remained unchanged following the endosymbiotic transfer to a new host calls into question whether we can distinguish between different models commonly used to explain the distribution and origin of eukaryotic organelles.
Collapse
Affiliation(s)
- Patrick J Keeling
- Botany Department, University of British Columbia, Vancouver, BC, Canada.
| | - Fabien Burki
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
He FY, Zhao LS, Qu XX, Li K, Guo JP, Zhao F, Wang N, Qin BY, Chen XL, Gao J, Liu LN, Zhang YZ. Structural insights into the assembly and energy transfer of haptophyte photosystem I-light-harvesting supercomplex. Proc Natl Acad Sci U S A 2024; 121:e2413678121. [PMID: 39642204 PMCID: PMC11648859 DOI: 10.1073/pnas.2413678121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/04/2024] [Indexed: 12/08/2024] Open
Abstract
Haptophyta represents a major taxonomic group, with plastids derived from the primary plastids of red algae. Here, we elucidated the cryoelectron microscopy structure of the photosystem I-light-harvesting complex I (PSI-LHCI) supercomplex from the haptophyte Isochrysis galbana. The PSI core comprises 12 subunits, which have evolved differently from red algae and cryptophytes by losing the PsaO subunit while incorporating the PsaK subunit, which is absent in diatoms and dinoflagellates. The PSI core is encircled by 22 fucoxanthin-chlorophyll a/c-binding light-harvesting antenna proteins (iFCPIs) that form a trilayered antenna arrangement. Moreover, a pigment-binding subunit, LiFP, which has not been identified in any other previously characterized PSI-LHCI supercomplexes, was determined in I. galbana PSI-iFCPI, presumably facilitating the interactions and energy transfer between peripheral iFCPIs and the PSI core. Calculation of excitation energy transfer rates by computational simulations revealed that the intricate pigment network formed within PSI-iFCPI ensures efficient transfer of excitation energy. Overall, our study provides a solid structural foundation for understanding the light-harvesting and energy transfer mechanisms in haptophyte PSI-iFCPI and provides insights into the evolution and structural variations of red-lineage PSI-LHCIs.
Collapse
Affiliation(s)
- Fei-Yu He
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
| | - Long-Sheng Zhao
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
- Ministry of Education Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
| | - Xin-Xiao Qu
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
| | - Kang Li
- Ministry of Education Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
| | - Jian-Ping Guo
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan430070, China
| | - Fang Zhao
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
| | - Ning Wang
- Ministry of Education Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao266003, China
| | - Bing-Yue Qin
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
| | - Xiu-Lan Chen
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
| | - Jun Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan430070, China
| | - Lu-Ning Liu
- Ministry of Education Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao266003, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
| | - Yu-Zhong Zhang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao266237, China
- Ministry of Education Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
| |
Collapse
|
3
|
Lewis WH, Paris G, Beedessee G, Kořený L, Flores V, Dendooven T, Gallet B, Yee DP, Lam S, Decelle J, Luisi BF, Waller RF. Plastid translocon recycling in dinoflagellates demonstrates the portability of complex plastids between hosts. Curr Biol 2024; 34:5494-5506.e3. [PMID: 39571577 DOI: 10.1016/j.cub.2024.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/29/2024] [Accepted: 10/11/2024] [Indexed: 12/06/2024]
Abstract
The plastids of photosynthetic organisms on land are predominantly "primary plastids," derived from an ancient endosymbiosis of a cyanobacterium. Conversely, the plastids of marine photosynthetic organisms were mostly gained through subsequent endosymbioses of photosynthetic eukaryotes generating so-called "complex plastids." The plastids of the major eukaryotic lineages-cryptophytes, haptophytes, ochrophytes, dinoflagellates, and apicomplexans-were posited to derive from a single secondary endosymbiosis of a red alga in the "chromalveloate" hypothesis. Subsequent phylogenetic resolution of eukaryotes has shown that separate events of plastid acquisition must have occurred to account for this distribution of plastids. However, the number of such events and the donor organisms for the new plastid endosymbioses are still not resolved. A perceived bottleneck of endosymbiotic plastid gain is the development of protein targeting from the hosts into the new plastids, and this supposition has often driven hypotheses toward minimizing the number of plastid-gain events to explain plastid distribution in eukaryotes. But how plastid-protein-targeting is established for new endosymbionts is often unclear, which makes it difficult to assess the likelihood of plastid transfers between lineages. Here, we show that Kareniaceae dinoflagellates, which possess complex plastids known to be derived from haptophytes, acquired all the necessary protein import machinery from these haptophytes. Furthermore, cryo-electron tomography revealed that no additional membranes were added to the Kareniaceae complex plastid during serial endosymbiosis, suggesting that the haptophyte-derived import processes were sufficient. Our analyses suggest that complex red plastids are preadapted for horizontal transmission, potentially explaining their widespread distribution in algal diversity.
Collapse
Affiliation(s)
- William H Lewis
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Giulia Paris
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Girish Beedessee
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Ludek Kořený
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Victor Flores
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Tom Dendooven
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Trumpington, Cambridge CB2 0QH, UK
| | - Benoit Gallet
- Cell and Plant Physiology Laboratory, University of Grenoble Alpes, CNRS, CEA, INRAE, and IRIG, 17 Avenue des Martyrs, Auvergne-Rhone-Alpes, Grenoble 38054, France
| | - Daniel P Yee
- Cell and Plant Physiology Laboratory, University of Grenoble Alpes, CNRS, CEA, INRAE, and IRIG, 17 Avenue des Martyrs, Auvergne-Rhone-Alpes, Grenoble 38054, France
| | - Simon Lam
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Johan Decelle
- Cell and Plant Physiology Laboratory, University of Grenoble Alpes, CNRS, CEA, INRAE, and IRIG, 17 Avenue des Martyrs, Auvergne-Rhone-Alpes, Grenoble 38054, France
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK.
| |
Collapse
|
4
|
Berdieva M, Kalinina V, Palii O, Skarlato S. Putative MutS2 Homologs in Algae: More Goods in Shopping Bag? J Mol Evol 2024; 92:815-833. [PMID: 39365456 DOI: 10.1007/s00239-024-10210-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024]
Abstract
MutS2 proteins are presumably involved in either control of recombination or translation quality control in bacteria. MutS2 homologs have been found in plants and some algae; however, their actual diversity in eukaryotes remains unknown. We found putative MutS2 homologs in various species of photosynthetic eukaryotes and performed a detailed analysis of the revealed amino acid sequences. Three groups of homologs were distinguished depending on their domain composition: MutS2 homologs with full set of specific domains, MutS2-like sequences without endonuclease Smr domain, and MutS2-like homologs lacking Smr and clamp in domain IV, the extreme form of which are proteins with only a complete ATPase domain. We clarified the information about amino acid composition and set of specific motifs in the conserved domains in MutS2 and MutS2-like sequences. The models of the predicted tertiary structure were obtained for each group of homologs. The phylogenetic analysis demonstrated that all eukaryotic sequences split into two large groups. The first group included homologs belonging to species of Archaeplastida and a subset of haptophyte homologs, while the second-sequences of organisms from CASH groups (cryptophytes, alveolates, stramenopiles, haptophytes) and chlorarachniophytes. The cyanobacterial MutS2 clustered together with the first group, and proteins belonging to Deltaproteobacteria (orders Myxococcales and Bradymonadales) showed phylogenetic affinity to the CASH-including group with strong support. The observed tree pattern did not support a clear differentiation of eukaryotes into lineages with red and green algae-derived plastids. The results are discussed in the context of current conceptions of serial endosymbioses and genetic mosaicism in algae with complex plastids.
Collapse
Affiliation(s)
- Mariia Berdieva
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia.
| | - Vera Kalinina
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia
| | - Olga Palii
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia
| | - Sergei Skarlato
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia
| |
Collapse
|
5
|
Pietluch F, Mackiewicz P, Ludwig K, Gagat P. A New Model and Dating for the Evolution of Complex Plastids of Red Alga Origin. Genome Biol Evol 2024; 16:evae192. [PMID: 39240751 DOI: 10.1093/gbe/evae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 08/14/2024] [Accepted: 08/31/2024] [Indexed: 09/08/2024] Open
Abstract
Complex plastids, characterized by more than two bounding membranes, still present an evolutionary puzzle for the traditional endosymbiotic theory. Unlike primary plastids that directly evolved from cyanobacteria, complex plastids originated from green or red algae. The Chromalveolata hypothesis proposes a single red alga endosymbiosis that involved the ancestor of all the Chromalveolata lineages: cryptophytes, haptophytes, stramenopiles, and alveolates. As extensive phylogenetic analyses contradict the monophyly of Chromalveolata, serial plastid endosymbiosis models were proposed, suggesting a single secondary red alga endosymbiosis within Cryptophyta, followed by subsequent plastid transfers to other chromalveolates. Our findings based on 97 plastid-encoded markers, 112 species, and robust phylogenetic methods challenge all the existing models. They reveal two independent secondary endosymbioses, one within Cryptophyta and one within stramenopiles, precisely the phylum Ochrophyta, with two different groups of red algae. Consequently, we propose a new model for the emergence of red alga plastid-containing lineages and, through molecular clock analyses, estimate their ages.
Collapse
Affiliation(s)
- Filip Pietluch
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Paweł Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Kacper Ludwig
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Przemysław Gagat
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| |
Collapse
|
6
|
Jinkerson RE, Poveda-Huertes D, Cooney EC, Cho A, Ochoa-Fernandez R, Keeling PJ, Xiang T, Andersen-Ranberg J. Biosynthesis of chlorophyll c in a dinoflagellate and heterologous production in planta. Curr Biol 2024; 34:594-605.e4. [PMID: 38157859 DOI: 10.1016/j.cub.2023.12.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Chlorophyll c is a key photosynthetic pigment that has been used historically to classify eukaryotic algae. Despite its importance in global photosynthetic productivity, the pathway for its biosynthesis has remained elusive. Here we define the CHLOROPHYLL C SYNTHASE (CHLCS) discovered through investigation of a dinoflagellate mutant deficient in chlorophyll c. CHLCSs are proteins with chlorophyll a/b binding and 2-oxoglutarate-Fe(II) dioxygenase (2OGD) domains found in peridinin-containing dinoflagellates; other chlorophyll c-containing algae utilize enzymes with only the 2OGD domain or an unknown synthase to produce chlorophyll c. 2OGD-containing synthases across dinoflagellate, diatom, cryptophyte, and haptophyte lineages form a monophyletic group, 8 members of which were also shown to produce chlorophyll c. Chlorophyll c1 to c2 ratios in marine algae are dictated in part by chlorophyll c synthases. CHLCS heterologously expressed in planta results in the accumulation of chlorophyll c1 and c2, demonstrating a path to augment plant pigment composition with algal counterparts.
Collapse
Affiliation(s)
- Robert E Jinkerson
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521, USA; Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA.
| | - Daniel Poveda-Huertes
- Department of Plant and Environmental Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Elizabeth C Cooney
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Anna Cho
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Rocio Ochoa-Fernandez
- Department of Plant and Environmental Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Tingting Xiang
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA.
| | - Johan Andersen-Ranberg
- Department of Plant and Environmental Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| |
Collapse
|
7
|
Jirsová D, Wideman JG. Integrated overview of stramenopile ecology, taxonomy, and heterotrophic origin. THE ISME JOURNAL 2024; 18:wrae150. [PMID: 39077993 PMCID: PMC11412368 DOI: 10.1093/ismejo/wrae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/12/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Abstract
Stramenopiles represent a significant proportion of aquatic and terrestrial biota. Most biologists can name a few, but these are limited to the phototrophic (e.g. diatoms and kelp) or parasitic species (e.g. oomycetes, Blastocystis), with free-living heterotrophs largely overlooked. Though our attention is slowly turning towards heterotrophs, we have only a limited understanding of their biology due to a lack of cultured models. Recent metagenomic and single-cell investigations have revealed the species richness and ecological importance of stramenopiles-especially heterotrophs. However, our lack of knowledge of the cell biology and behaviour of these organisms leads to our inability to match species to their particular ecological functions. Because photosynthetic stramenopiles are studied independently of their heterotrophic relatives, they are often treated separately in the literature. Here, we present stramenopiles as a unified group with shared synapomorphies and evolutionary history. We introduce the main lineages, describe their important biological and ecological traits, and provide a concise update on the origin of the ochrophyte plastid. We highlight the crucial role of heterotrophs and mixotrophs in our understanding of stramenopiles with the goal of inspiring future investigations in taxonomy and life history. To understand each of the many diversifications within stramenopiles-towards autotrophy, osmotrophy, or parasitism-we must understand the ancestral heterotrophic flagellate from which they each evolved. We hope the following will serve as a primer for new stramenopile researchers or as an integrative refresher to those already in the field.
Collapse
Affiliation(s)
- Dagmar Jirsová
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, 1001 S McAllister Avenue, Tempe, Arizona, 85287-7701, United States
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice 37005, Czech Republic
| | - Jeremy G Wideman
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, 1001 S McAllister Avenue, Tempe, Arizona, 85287-7701, United States
| |
Collapse
|
8
|
Holt CC, Hehenberger E, Tikhonenkov DV, Jacko-Reynolds VKL, Okamoto N, Cooney EC, Irwin NAT, Keeling PJ. Multiple parallel origins of parasitic Marine Alveolates. Nat Commun 2023; 14:7049. [PMID: 37923716 PMCID: PMC10624901 DOI: 10.1038/s41467-023-42807-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/20/2023] [Indexed: 11/06/2023] Open
Abstract
Microbial eukaryotes are important components of marine ecosystems, and the Marine Alveolates (MALVs) are consistently both abundant and diverse in global environmental sequencing surveys. MALVs are dinoflagellates that are thought to be parasites of other protists and animals, but the lack of data beyond ribosomal RNA gene sequences from all but a few described species means much of their biology and evolution remain unknown. Using single-cell transcriptomes from several MALVs and their free-living relatives, we show that MALVs evolved independently from two distinct, free-living ancestors and that their parasitism evolved in parallel. Phylogenomics shows one subgroup (MALV-II and -IV, or Syndiniales) is related to a novel lineage of free-living, eukaryovorous predators, the eleftherids, while the other (MALV-I, or Ichthyodinida) is related to the free-living predator Oxyrrhis and retains proteins targeted to a non-photosynthetic plastid. Reconstructing the evolution of photosynthesis, plastids, and parasitism in early-diverging dinoflagellates shows a number of parallels with the evolution of their apicomplexan sisters. In both groups, similar forms of parasitism evolved multiple times and photosynthesis was lost many times. By contrast, complete loss of the plastid organelle is infrequent and, when this does happen, leaves no residual genes.
Collapse
Affiliation(s)
- Corey C Holt
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.
- Hakai Institute, Heriot Bay, British Columbia, Canada.
| | - Elisabeth Hehenberger
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.
- Institute of Parasitology, Biology Centre Czech Academy of Sciences, České Budějovice, Czech Republic.
| | - Denis V Tikhonenkov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
- AquaBioSafe Laboratory, University of Tyumen, Tyumen, Russia
| | | | - Noriko Okamoto
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Hakai Institute, Heriot Bay, British Columbia, Canada
| | - Elizabeth C Cooney
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Hakai Institute, Heriot Bay, British Columbia, Canada
| | - Nicholas A T Irwin
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Merton College, University of Oxford, Oxford, UK
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
9
|
Jiang Y, Cao T, Yang Y, Zhang H, Zhang J, Li X. A chlorophyll c synthase widely co-opted by phytoplankton. Science 2023; 382:92-98. [PMID: 37797009 DOI: 10.1126/science.adg7921] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023]
Abstract
Marine and terrestrial photosynthesis exhibit a schism in the accessory chlorophyll (Chl) that complements the function of Chl a: Chl b for green plants versus Chl c for most eukaryotic phytoplankton. The enzymes that mediate Chl c biosynthesis have long remained elusive. In this work, we identified the CHLC dioxygenase (Phatr3_J43737) from the marine diatom Phaeodactylum tricornutum as the Chl c synthase. The chlc mutants lacked Chl c, instead accumulating its precursors, and exhibited growth defects. In vitro, recombinant CHLC protein converted these precursors into Chl c, thereby confirming its identity. Phylogenetic evidence demonstrates conserved use of CHLC across phyla but also the existence of distinct Chl c synthases in different algal groups. Our study addresses a long-outstanding question with implications for both contemporary and ancient marine photosynthesis.
Collapse
Affiliation(s)
- Yanyou Jiang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Tianjun Cao
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuqing Yang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Huan Zhang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jingyu Zhang
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xiaobo Li
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| |
Collapse
|
10
|
Gololobova MA, Belyakova GA. Position of Algae on the Tree of Life. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2022; 507:312-326. [PMID: 36781528 DOI: 10.1134/s0012496622060035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 02/15/2023]
Abstract
Issues related to evolution of algal chloroplasts are considered. The position of algae on the Tree of Life is discussed. Algae are now included in five of the monophyletic eukaryotic supergroups: Archaeplastida (Glaucocystophyta, Rhodophyta, Prasinodermophyta, Chlorophyta, and Charophyta), TSAR (Ochrophyta; Dinophyta; Chlorarachniophyta; and photosynthetic species of the genera Chromera, Vetrella, and Paulinella), Haptista (Prymnesiophyta and Rappemonads), Cryptista (Cryptophyta), and Discoba (Euglenophyta). The algal divisions and the respective supergroups are characterized in brief.
Collapse
Affiliation(s)
- M A Gololobova
- Biological Faculty, Moscow State University, Moscow, Russia.
| | - G A Belyakova
- Biological Faculty, Moscow State University, Moscow, Russia
| |
Collapse
|
11
|
Oborník M. Organellar Evolution: A Path from Benefit to Dependence. Microorganisms 2022; 10:microorganisms10010122. [PMID: 35056571 PMCID: PMC8781833 DOI: 10.3390/microorganisms10010122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/10/2022] Open
Abstract
Eukaryotic organelles supposedly evolved from their bacterial ancestors because of their benefits to host cells. However, organelles are quite often retained, even when the beneficial metabolic pathway is lost, due to something other than the original beneficial function. The organellar function essential for cell survival is, in the end, the result of organellar evolution, particularly losses of redundant metabolic pathways present in both the host and endosymbiont, followed by a gradual distribution of metabolic functions between the organelle and host. Such biological division of metabolic labor leads to mutual dependence of the endosymbiont and host. Changing environmental conditions, such as the gradual shift of an organism from aerobic to anaerobic conditions or light to dark, can make the original benefit useless. Therefore, it can be challenging to deduce the original beneficial function, if there is any, underlying organellar acquisition. However, it is also possible that the organelle is retained because it simply resists being eliminated or digested untill it becomes indispensable.
Collapse
Affiliation(s)
- Miroslav Oborník
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic;
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| |
Collapse
|
12
|
Abstract
The origin of plastids (chloroplasts) by endosymbiosis stands as one of the most important events in the history of eukaryotic life. The genetic, biochemical, and cell biological integration of a cyanobacterial endosymbiont into a heterotrophic host eukaryote approximately a billion years ago paved the way for the evolution of diverse algal groups in a wide range of aquatic and, eventually, terrestrial environments. Plastids have on multiple occasions also moved horizontally from eukaryote to eukaryote by secondary and tertiary endosymbiotic events. The overall picture of extant photosynthetic diversity can best be described as “patchy”: Plastid-bearing lineages are spread far and wide across the eukaryotic tree of life, nested within heterotrophic groups. The algae do not constitute a monophyletic entity, and understanding how, and how often, plastids have moved from branch to branch on the eukaryotic tree remains one of the most fundamental unsolved problems in the field of cell evolution. In this review, we provide an overview of recent advances in our understanding of the origin and spread of plastids from the perspective of comparative genomics. Recent years have seen significant improvements in genomic sampling from photosynthetic and nonphotosynthetic lineages, both of which have added important pieces to the puzzle of plastid evolution. Comparative genomics has also allowed us to better understand how endosymbionts become organelles.
Collapse
Affiliation(s)
- Shannon J Sibbald
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John M Archibald
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
13
|
Irisarri I, Strassert JFH, Burki F. Phylogenomic Insights into the Origin of Primary Plastids. Syst Biol 2021; 71:105-120. [PMID: 33988690 DOI: 10.1093/sysbio/syab036] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
The origin of plastids was a major evolutionary event that paved the way for an astonishing diversification of photosynthetic eukaryotes. Plastids originated by endosymbiosis between a heterotrophic eukaryotic host and cyanobacteria, presumably in a common ancestor of the primary photosynthetic eukaryotes (Archaeplastida). A single origin of primary plastids is well supported by plastid evidence but not by nuclear phylogenomic analyses, which have consistently failed to recover the monophyly of Archaeplastida hosts. Importantly, plastid monophyly and non-monophyletic hosts could be explained under scenarios of independent or serial eukaryote-to-eukaryote endosymbioses. Here, we assessed the strength of the signal for the monophyly of Archaeplastida hosts in four available phylogenomic datasets. The effect of phylogenetic methodology, data quality, alignment trimming strategy, gene and taxon sampling, and the presence of outlier genes were investigated. Our analyses revealed a lack of support for host monophyly in the shorter individual datasets. However, when analyzed together under rigorous data curation and complex mixture models, the combined nuclear datasets supported the monophyly of primary photosynthetic eukaryotes (Archaeplastida) and revealed a putative association with plastid-lacking Picozoa. This study represents an important step towards better understanding deep eukaryotic evolution and the origin of plastids.
Collapse
Affiliation(s)
- Iker Irisarri
- Department of Organismal Biology (Systematic Biology), Uppsala University, Norbyv. 18D, 75236 Uppsala, Sweden.,Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Jürgen F H Strassert
- Department of Organismal Biology (Systematic Biology), Uppsala University, Norbyv. 18D, 75236 Uppsala, Sweden.,Department of Ecosystem Research, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany
| | - Fabien Burki
- Department of Organismal Biology (Systematic Biology), Uppsala University, Norbyv. 18D, 75236 Uppsala, Sweden.,Science For Life Laboratory, Uppsala University, 75236 Sweden
| |
Collapse
|
14
|
Strassert JFH, Irisarri I, Williams TA, Burki F. A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids. Nat Commun 2021; 12:1879. [PMID: 33767194 PMCID: PMC7994803 DOI: 10.1038/s41467-021-22044-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 02/25/2021] [Indexed: 01/31/2023] Open
Abstract
In modern oceans, eukaryotic phytoplankton is dominated by lineages with red algal-derived plastids such as diatoms, dinoflagellates, and coccolithophores. Despite the ecological importance of these groups and many others representing a huge diversity of forms and lifestyles, we still lack a comprehensive understanding of their evolution and how they obtained their plastids. New hypotheses have emerged to explain the acquisition of red algal-derived plastids by serial endosymbiosis, but the chronology of these putative independent plastid acquisitions remains untested. Here, we establish a timeframe for the origin of red algal-derived plastids under scenarios of serial endosymbiosis, using Bayesian molecular clock analyses applied on a phylogenomic dataset with broad sampling of eukaryote diversity. We find that the hypotheses of serial endosymbiosis are chronologically possible, as the stem lineages of all red plastid-containing groups overlap in time. This period in the Meso- and Neoproterozoic Eras set the stage for the later expansion to dominance of red algal-derived primary production in the contemporary oceans, which profoundly altered the global geochemical and ecological conditions of the Earth.
Collapse
Affiliation(s)
- Jürgen F H Strassert
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden
- Department of Ecosystem Research, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Iker Irisarri
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Göttingen, and Campus Institute Data Science (CIDAS), Göttingen, Germany
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Life Sciences Building, Bristol, UK
| | - Fabien Burki
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden.
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
15
|
Ponce-Toledo RI, Moreira D, López-García P, Deschamps P. Secondary Plastids of Euglenids and Chlorarachniophytes Function with a Mix of Genes of Red and Green Algal Ancestry. Mol Biol Evol 2020; 35:2198-2204. [PMID: 29924337 DOI: 10.1093/molbev/msy121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Endosymbiosis has been common all along eukaryotic evolution, providing opportunities for genomic and organellar innovation. Plastids are a prominent example. After the primary endosymbiosis of the cyanobacterial plastid ancestor, photosynthesis spread in many eukaryotic lineages via secondary endosymbioses involving red or green algal endosymbionts and diverse heterotrophic hosts. However, the number of secondary endosymbioses and how they occurred remain poorly understood. In particular, contrasting patterns of endosymbiotic gene transfer have been detected and subjected to various interpretations. In this context, accurate detection of endosymbiotic gene transfers is essential to avoid wrong evolutionary conclusions. We have assembled a strictly selected set of markers that provides robust phylogenomic evidence suggesting that nuclear genes involved in the function and maintenance of green secondary plastids in chlorarachniophytes and euglenids have unexpected mixed red and green algal origins. This mixed ancestry contrasts with the clear red algal origin of most nuclear genes carrying similar functions in secondary algae with red plastids.
Collapse
Affiliation(s)
- Rafael I Ponce-Toledo
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - David Moreira
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Purificación López-García
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Philippe Deschamps
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| |
Collapse
|
16
|
Ponce-Toledo RI, López-García P, Moreira D. Horizontal and endosymbiotic gene transfer in early plastid evolution. THE NEW PHYTOLOGIST 2019; 224:618-624. [PMID: 31135958 PMCID: PMC6759420 DOI: 10.1111/nph.15965] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 05/17/2019] [Indexed: 05/03/2023]
Abstract
Plastids evolved from a cyanobacterium that was engulfed by a heterotrophic eukaryotic host and became a stable organelle. Some of the resulting eukaryotic algae entered into a number of secondary endosymbioses with diverse eukaryotic hosts. These events had major consequences on the evolution and diversification of life on Earth. Although almost all plastid diversity derives from a single endosymbiotic event, the analysis of nuclear genomes of plastid-bearing lineages has revealed a mosaic origin of plastid-related genes. In addition to cyanobacterial genes, plastids recruited for their functioning eukaryotic proteins encoded by the host nucleus and also bacterial proteins of noncyanobacterial origin. Therefore, plastid proteins and plastid-localised metabolic pathways evolved by tinkering and using gene toolkits from different sources. This mixed heritage seems especially complex in secondary algae containing green plastids, the acquisition of which appears to have been facilitated by many previous acquisitions of red algal genes (the 'red carpet hypothesis').
Collapse
Affiliation(s)
- Rafael I Ponce-Toledo
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - Purificación López-García
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - David Moreira
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| |
Collapse
|
17
|
Gavelis GS, Gile GH. How did cyanobacteria first embark on the path to becoming plastids?: lessons from protist symbioses. FEMS Microbiol Lett 2019; 365:5079637. [PMID: 30165400 DOI: 10.1093/femsle/fny209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022] Open
Abstract
Symbioses between phototrophs and heterotrophs (a.k.a 'photosymbioses') are extremely common, and range from loose and temporary associations to obligate and highly specialized forms. In the history of life, the most transformative was the 'primary endosymbiosis,' wherein a cyanobacterium was engulfed by a eukaryote and became genetically integrated as a heritable photosynthetic organelle, or plastid. By allowing the rise of algae and plants, this event dramatically altered the biosphere, but its remote origin over one billion years ago has obscured the sequence of events leading to its establishment. Here, we review the genetic, physiological and developmental hurdles involved in early primary endosymbiosis. Since we cannot travel back in time to witness these evolutionary junctures, we will draw on examples of unicellular eukaryotes (protists) spanning diverse modes of photosymbiosis. We also review experimental approaches that could be used to recreate aspects of early primary endosymbiosis on a human timescale.
Collapse
Affiliation(s)
- Gregory S Gavelis
- School of Life Sciences, Arizona State University, Room 611, Life Science Tower E, 427 E, Tyler Mall, Tempe, AZ 85287, USA
| | - Gillian H Gile
- School of Life Sciences, Arizona State University, Room 611, Life Science Tower E, 427 E, Tyler Mall, Tempe, AZ 85287, USA
| |
Collapse
|
18
|
Janouškovec J, Paskerova GG, Miroliubova TS, Mikhailov KV, Birley T, Aleoshin VV, Simdyanov TG. Apicomplexan-like parasites are polyphyletic and widely but selectively dependent on cryptic plastid organelles. eLife 2019; 8:49662. [PMID: 31418692 PMCID: PMC6733595 DOI: 10.7554/elife.49662] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/14/2019] [Indexed: 12/22/2022] Open
Abstract
The phylum Apicomplexa comprises human pathogens such as Plasmodium but is also an under-explored hotspot of evolutionary diversity central to understanding the origins of parasitism and non-photosynthetic plastids. We generated single-cell transcriptomes for all major apicomplexan groups lacking large-scale sequence data. Phylogenetic analysis reveals that apicomplexan-like parasites are polyphyletic and their similar morphologies emerged convergently at least three times. Gregarines and eugregarines are monophyletic, against most expectations, and rhytidocystids and Eleutheroschizon are sister lineages to medically important taxa. Although previously unrecognized, plastids in deep-branching apicomplexans are common, and they contain some of the most divergent and AT-rich genomes ever found. In eugregarines, however, plastids are either abnormally reduced or absent, thus increasing known plastid losses in eukaryotes from two to four. Environmental sequences of ten novel plastid lineages and structural innovations in plastid proteins confirm that plastids in apicomplexans and their relatives are widespread and share a common, photosynthetic origin. Microscopic parasites known collectively as apicomplexans are responsible for several infectious diseases in humans including malaria and toxoplasmosis. The cells of the malaria parasite and many other apicomplexans contain compartments known as cryptic chloroplasts that produce molecules the parasites need to survive. Cryptic chloroplasts are similar to the chloroplasts found in plant cells, but unlike plants the compartments in apicomplexans are unable to harvest energy from sunlight. Since the cells of humans and other animals do not contain chloroplasts, cryptic chloroplasts are a potential target for new drugs to treat diseases caused by apicomplexans. However, it remains unclear how widespread cryptic chloroplasts are in these parasites, largely because few apicomplexans have been successfully grown in the laboratory. To address this question, Janouškovec et al. used an approach called single-cell transcriptomics to study ten different apicomplexans. This provided new data about the genetic make-up of each parasite that the team analysed to find out how they are related to one another. The analysis revealed that, unexpectedly, apicomplexan parasites do not share a close common ancestor and are therefore not a natural grouping from an evolutionary perspective. Instead, their similar physical appearances and lifestyles evolved independently on at least three separate occasions. Further analysis demonstrated that cryptic chloroplasts are common in apicomplexan parasites, including in lineages where they were not previously known to exist. However, at least three lineages of apicomplexans have independently lost their cryptic chloroplasts. The findings of Janouškovec et al. shed new light on the importance of chloroplasts in the evolution of life and may help develop new treatments for diseases caused by apicomplexan parasites. Several drugs targeting the cryptic chloroplasts in malaria parasites are currently in clinical trials, and this work suggests that these drugs may also have the potential to be used against other apicomplexan parasites in the future.
Collapse
Affiliation(s)
- Jan Janouškovec
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Gita G Paskerova
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, St. Petersburg, Russian Federation
| | - Tatiana S Miroliubova
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, St. Petersburg, Russian Federation.,Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russian Federation
| | - Kirill V Mikhailov
- Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.,Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation
| | - Thomas Birley
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Vladimir V Aleoshin
- Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.,Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation
| | - Timur G Simdyanov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
19
|
Oborník M. Endosymbiotic Evolution of Algae, Secondary Heterotrophy and Parasitism. Biomolecules 2019; 9:E266. [PMID: 31288476 PMCID: PMC6681372 DOI: 10.3390/biom9070266] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/01/2019] [Accepted: 07/05/2019] [Indexed: 12/15/2022] Open
Abstract
Photosynthesis is a biochemical process essential for life, serving as the ultimate source of chemical energy for phototrophic and heterotrophic life forms. Since the machinery of the photosynthetic electron transport chain is quite complex and is unlikely to have evolved multiple independent times, it is believed that this machinery has been transferred to diverse eukaryotic organisms by endosymbiotic events involving a eukaryotic host and a phototrophic endosymbiont. Thus, photoautotrophy, as a benefit, is transmitted through the evolution of plastids. However, many eukaryotes became secondarily heterotrophic, reverting to hetero-osmotrophy, phagotrophy, or parasitism. Here, I briefly review the constructive evolution of plastid endosymbioses and the consequential switch to reductive evolution involving losses of photosynthesis and plastids and the evolution of parasitism from a photosynthetic ancestor.
Collapse
Affiliation(s)
- Miroslav Oborník
- Institute of Parasitology, Biology Centre CAS, 37005 České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic.
| |
Collapse
|
20
|
Grattepanche J, Walker LM, Ott BM, Paim Pinto DL, Delwiche CF, Lane CE, Katz LA. Microbial Diversity in the Eukaryotic SAR Clade: Illuminating the Darkness Between Morphology and Molecular Data. Bioessays 2018; 40:e1700198. [DOI: 10.1002/bies.201700198] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/16/2018] [Indexed: 01/09/2023]
Affiliation(s)
| | - Laura M. Walker
- Department of Biological Sciences, Smith CollegeNorthamptonMA 01063USA
| | - Brittany M. Ott
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege ParkMD 20742USA
| | | | - Charles F. Delwiche
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege ParkMD 20742USA
| | - Christopher E. Lane
- Department of Biological SciencesUniversity of Rhode IslandKingstonRI 02881USA
| | - Laura A. Katz
- Department of Biological Sciences, Smith CollegeNorthamptonMA 01063USA
| |
Collapse
|
21
|
Cavalier-Smith T. Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences. PROTOPLASMA 2018; 255:297-357. [PMID: 28875267 PMCID: PMC5756292 DOI: 10.1007/s00709-017-1147-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/18/2017] [Indexed: 05/18/2023]
Abstract
In 1981 I established kingdom Chromista, distinguished from Plantae because of its more complex chloroplast-associated membrane topology and rigid tubular multipartite ciliary hairs. Plantae originated by converting a cyanobacterium to chloroplasts with Toc/Tic translocons; most evolved cell walls early, thereby losing phagotrophy. Chromists originated by enslaving a phagocytosed red alga, surrounding plastids by two extra membranes, placing them within the endomembrane system, necessitating novel protein import machineries. Early chromists retained phagotrophy, remaining naked and repeatedly reverted to heterotrophy by losing chloroplasts. Therefore, Chromista include secondary phagoheterotrophs (notably ciliates, many dinoflagellates, Opalozoa, Rhizaria, heliozoans) or walled osmotrophs (Pseudofungi, Labyrinthulea), formerly considered protozoa or fungi respectively, plus endoparasites (e.g. Sporozoa) and all chromophyte algae (other dinoflagellates, chromeroids, ochrophytes, haptophytes, cryptophytes). I discuss their origin, evolutionary diversification, and reasons for making chromists one kingdom despite highly divergent cytoskeletons and trophic modes, including improved explanations for periplastid/chloroplast protein targeting, derlin evolution, and ciliary/cytoskeletal diversification. I conjecture that transit-peptide-receptor-mediated 'endocytosis' from periplastid membranes generates periplastid vesicles that fuse with the arguably derlin-translocon-containing periplastid reticulum (putative red algal trans-Golgi network homologue; present in all chromophytes except dinoflagellates). I explain chromist origin from ancestral corticates and neokaryotes, reappraising tertiary symbiogenesis; a chromist cytoskeletal synapomorphy, a bypassing microtubule band dextral to both centrioles, favoured multiple axopodial origins. I revise chromist higher classification by transferring rhizarian subphylum Endomyxa from Cercozoa to Retaria; establishing retarian subphylum Ectoreta for Foraminifera plus Radiozoa, apicomonad subclasses, new dinozoan classes Myzodinea (grouping Colpovora gen. n., Psammosa), Endodinea, Sulcodinea, and subclass Karlodinia; and ranking heterokont Gyrista as phylum not superphylum.
Collapse
|
22
|
Extensive gain and loss of photosystem I subunits in chromerid algae, photosynthetic relatives of apicomplexans. Sci Rep 2017; 7:13214. [PMID: 29038514 PMCID: PMC5643376 DOI: 10.1038/s41598-017-13575-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/26/2017] [Indexed: 12/16/2022] Open
Abstract
In oxygenic photosynthesis the initial photochemical processes are carried out by photosystem I (PSI) and II (PSII). Although subunit composition varies between cyanobacterial and plastid photosystems, the core structures of PSI and PSII are conserved throughout photosynthetic eukaryotes. So far, the photosynthetic complexes have been characterised in only a small number of organisms. We performed in silico and biochemical studies to explore the organization and evolution of the photosynthetic apparatus in the chromerids Chromera velia and Vitrella brassicaformis, autotrophic relatives of apicomplexans. We catalogued the presence and location of genes coding for conserved subunits of the photosystems as well as cytochrome b6f and ATP synthase in chromerids and other phototrophs and performed a phylogenetic analysis. We then characterised the photosynthetic complexes of Chromera and Vitrella using 2D gels combined with mass-spectrometry and further analysed the purified Chromera PSI. Our data suggest that the photosynthetic apparatus of chromerids underwent unique structural changes. Both photosystems (as well as cytochrome b6f and ATP synthase) lost several canonical subunits, while PSI gained one superoxide dismutase (Vitrella) or two superoxide dismutases and several unknown proteins (Chromera) as new regular subunits. We discuss these results in light of the extraordinarily efficient photosynthetic processes described in Chromera.
Collapse
|
23
|
Wang Q, Sun H, Huang J. Re-analyses of "Algal" Genes Suggest a Complex Evolutionary History of Oomycetes. FRONTIERS IN PLANT SCIENCE 2017; 8:1540. [PMID: 28932232 PMCID: PMC5592239 DOI: 10.3389/fpls.2017.01540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/22/2017] [Indexed: 06/07/2023]
Abstract
The spread of photosynthesis is one of the most important but constantly debated topics in eukaryotic evolution. Various hypotheses have been proposed to explain the plastid distribution in extant eukaryotes. Notably, the chromalveolate hypothesis suggested that multiple eukaryotic lineages were derived from a photosynthetic ancestor that had a red algal endosymbiont. As such, genes of plastid/algal origin in aplastidic chromalveolates, such as oomycetes, were considered to be important supporting evidence. Although the chromalveolate hypothesis has been seriously challenged, some of its supporting evidence has not been carefully investigated. In this study, we re-evaluate the "algal" genes from oomycetes with a larger sampling and careful phylogenetic analyses. Our data provide no conclusive support for a common photosynthetic ancestry of stramenopiles, but show that the initial estimate of "algal" genes in oomycetes was drastically inflated due to limited genome data available then for certain eukaryotic lineages. These findings also suggest that the evolutionary histories of these "algal" genes might be attributed to complex scenarios such as differential gene loss, serial endosymbioses, or horizontal gene transfer.
Collapse
Affiliation(s)
- Qia Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- University of Chinese Academy of SciencesBeijing, China
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
| | - Jinling Huang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, Henan UniversityKaifeng, China
- Department of Biology, East Carolina University, GreenvilleNC, United States
| |
Collapse
|
24
|
Bodył A. Did some red alga-derived plastids evolveviakleptoplastidy? A hypothesis. Biol Rev Camb Philos Soc 2017; 93:201-222. [DOI: 10.1111/brv.12340] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Andrzej Bodył
- Laboratory of Evolutionary Protistology, Department of Invertebrate Biology, Evolution and Conservation, Institute of Environmental Biology; University of Wrocław, ul. Przybyszewskiego 65; 51-148 Wrocław Poland
| |
Collapse
|
25
|
Abstract
The number and nature of endosymbioses involving red algal endosymbionts are debated. Gene phylogenies have become the most popular tool to untangle this issue, but they deliver conflicting results. As gene and lineage sampling has increased, so have both the number of conflicting trees and the number of suggestions in the literature for multiple tertiary, and even quaternary, symbioses that might reconcile the tree conflicts. Independent lines of evidence that can address the issue are needed. Here we summarize the mechanism and machinery of protein import into complex red plastids. The process involves protein translocation machinery, known as SELMA, that arose once in evolution, that facilitates protein import across the second outermost of the four plastid membranes, and that is always targeted specifically to that membrane, regardless of where it is encoded today. It is widely accepted that the unity of protein import across the two membranes of primary plastids is strong evidence for their single cyanobacterial origin. Similarly, the unity of SELMA-dependent protein import across the second outermost plastid membrane constitutes strong evidence for the existence of a single red secondary endosymbiotic event at the common origin of all red complex plastids. We furthermore propose that the two outer membranes of red complex plastids are derived from host endoplasmic reticulum in the initial red secondary endosymbiotic event.
Collapse
Affiliation(s)
- Sven B Gould
- Institute of Molecular Evolution, Heinrich-Heine University, Düsseldorf, Germany.
| | - Uwe-G Maier
- Laboratory for Cell Biology and LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Phillips University, Marburg, Germany
| | - William F Martin
- Institute of Molecular Evolution, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
26
|
Evolution of the Tetrapyrrole Biosynthetic Pathway in Secondary Algae: Conservation, Redundancy and Replacement. PLoS One 2016; 11:e0166338. [PMID: 27861576 PMCID: PMC5115734 DOI: 10.1371/journal.pone.0166338] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/26/2016] [Indexed: 11/29/2022] Open
Abstract
Tetrapyrroles such as chlorophyll and heme are indispensable for life because they are involved in energy fixation and consumption, i.e. photosynthesis and oxidative phosphorylation. In eukaryotes, the tetrapyrrole biosynthetic pathway is shaped by past endosymbioses. We investigated the origins and predicted locations of the enzymes of the heme pathway in the chlorarachniophyte Bigelowiella natans, the cryptophyte Guillardia theta, the “green” dinoflagellate Lepidodinium chlorophorum, and three dinoflagellates with diatom endosymbionts (“dinotoms”): Durinskia baltica, Glenodinium foliaceum and Kryptoperidinium foliaceum. Bigelowiella natans appears to contain two separate heme pathways analogous to those found in Euglena gracilis; one is predicted to be mitochondrial-cytosolic, while the second is predicted to be plastid-located. In the remaining algae, only plastid-type tetrapyrrole synthesis is present, with a single remnant of the mitochondrial-cytosolic pathway, a ferrochelatase of G. theta putatively located in the mitochondrion. The green dinoflagellate contains a single pathway composed of mostly rhodophyte-origin enzymes, and the dinotoms hold two heme pathways of apparently plastidal origin. We suggest that heme pathway enzymes in B. natans and L. chlorophorum share a predominantly rhodophytic origin. This implies the ancient presence of a rhodophyte-derived plastid in the chlorarachniophyte alga, analogous to the green dinoflagellate, or an exceptionally massive horizontal gene transfer.
Collapse
|
27
|
Hadariová L, Vesteg M, Birčák E, Schwartzbach SD, Krajčovič J. An intact plastid genome is essential for the survival of colorless Euglena longa but not Euglena gracilis. Curr Genet 2016; 63:331-341. [PMID: 27553633 DOI: 10.1007/s00294-016-0641-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/02/2016] [Accepted: 08/13/2016] [Indexed: 12/18/2022]
Abstract
Euglena gracilis growth with antibacterial agents leads to bleaching, permanent plastid gene loss. Colorless Euglena (Astasia) longa resembles a bleached E. gracilis. To evaluate the role of bleaching in E. longa evolution, the effect of streptomycin, a plastid protein synthesis inhibitor, and ofloxacin, a plastid DNA gyrase inhibitor, on E. gracilis and E. longa growth and plastid DNA content were compared. E. gracilis growth was unaffected by streptomycin and ofloxacin. Quantitative PCR analyses revealed a time dependent loss of plastid genes in E. gracilis demonstrating that bleaching agents produce plastid gene deletions without affecting cell growth. Streptomycin and ofloxacin inhibited E. longa growth indicating that it requires plastid genes to survive. This suggests that evolutionary divergence of E. longa from E. gracilis was triggered by the loss of a cytoplasmic metabolic activity also occurring in the plastid. Plastid metabolism has become obligatory for E. longa cell growth. A process termed "intermittent bleaching", short term exposure to subsaturating concentrations of reversible bleaching agents followed by growth in the absence of a bleaching agent, is proposed as the molecular mechanism for E. longa plastid genome reduction. Various non-photosynthetic lineages could have independently arisen from their photosynthetic ancestors via a similar process.
Collapse
Affiliation(s)
- Lucia Hadariová
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská dolina G-1, 842 15, Bratislava, Slovak Republic
| | - Matej Vesteg
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, 974 01, Banská Bystrica, Slovakia
| | - Erik Birčák
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská dolina G-1, 842 15, Bratislava, Slovak Republic
| | | | - Juraj Krajčovič
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská dolina G-1, 842 15, Bratislava, Slovak Republic. .,Department of Biology, Faculty of Natural Sciences, University of ss. Cyril and Methodius, 917 01, Trnava, Slovakia.
| |
Collapse
|
28
|
Burki F, Kaplan M, Tikhonenkov DV, Zlatogursky V, Minh BQ, Radaykina LV, Smirnov A, Mylnikov AP, Keeling PJ. Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista. Proc Biol Sci 2016; 283:rspb.2015.2802. [PMID: 26817772 DOI: 10.1098/rspb.2015.2802] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/22/2015] [Indexed: 12/16/2022] Open
Abstract
Assembling the global eukaryotic tree of life has long been a major effort of Biology. In recent years, pushed by the new availability of genome-scale data for microbial eukaryotes, it has become possible to revisit many evolutionary enigmas. However, some of the most ancient nodes, which are essential for inferring a stable tree, have remained highly controversial. Among other reasons, the lack of adequate genomic datasets for key taxa has prevented the robust reconstruction of early diversification events. In this context, the centrohelid heliozoans are particularly relevant for reconstructing the tree of eukaryotes because they represent one of the last substantial groups that was missing large and diverse genomic data. Here, we filled this gap by sequencing high-quality transcriptomes for four centrohelid lineages, each corresponding to a different family. Combining these new data with a broad eukaryotic sampling, we produced a gene-rich taxon-rich phylogenomic dataset that enabled us to refine the structure of the tree. Specifically, we show that (i) centrohelids relate to haptophytes, confirming Haptista; (ii) Haptista relates to SAR; (iii) Cryptista share strong affinity with Archaeplastida; and (iv) Haptista + SAR is sister to Cryptista + Archaeplastida. The implications of this topology are discussed in the broader context of plastid evolution.
Collapse
Affiliation(s)
- Fabien Burki
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Maia Kaplan
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Denis V Tikhonenkov
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Vasily Zlatogursky
- Department of Invertebrate Zoology, St Petersburg State University, St Petersburg, Russia
| | - Bui Quang Minh
- Center for Integrative Bioinformatics, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Liudmila V Radaykina
- Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Alexey Smirnov
- Department of Invertebrate Zoology, St Petersburg State University, St Petersburg, Russia
| | - Alexander P Mylnikov
- Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada Canadian Institute for Advanced Research, Integrated Microbial Biodiversity Program, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Waller RF, Gornik SG, Koreny L, Pain A. Metabolic pathway redundancy within the apicomplexan-dinoflagellate radiation argues against an ancient chromalveolate plastid. Commun Integr Biol 2015; 9:e1116653. [PMID: 27066182 PMCID: PMC4802802 DOI: 10.1080/19420889.2015.1116653] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 10/30/2015] [Accepted: 10/30/2015] [Indexed: 11/06/2022] Open
Abstract
The chromalveolate hypothesis presents an attractively simple explanation for the presence of red algal-derived secondary plastids in 5 major eukaryotic lineages: “chromista” phyla, cryptophytes, haptophytes and ochrophytes; and alveolate phyla, dinoflagellates and apicomplexans. It posits that a single secondary endosymbiotic event occurred in a common ancestor of these diverse groups, and that this ancient plastid has since been maintained by vertical inheritance only. Substantial testing of this hypothesis by molecular phylogenies has, however, consistently failed to provide support for the predicted monophyly of the host organisms that harbour these plastids—the “chromalveolates.” This lack of support does not disprove the chromalveolate hypothesis per se, but rather drives the proposed endosymbiosis deeper into the eukaryotic tree, and requires multiple plastid losses to have occurred within intervening aplastidic lineages. An alternative perspective on plastid evolution is offered by considering the metabolic partnership between the endosymbiont and its host cell. A recent analysis of metabolic pathways in a deep-branching dinoflagellate indicates a high level of pathway redundancy in the common ancestor of apicomplexans and dinoflagellates, and differential losses of these pathways soon after radiation of the major extant lineages. This suggests that vertical inheritance of an ancient plastid in alveolates is highly unlikely as it would necessitate maintenance of redundant pathways over very long evolutionary timescales.
Collapse
Affiliation(s)
- Ross F Waller
- Department of Biochemistry, University of Cambridge , Cambridge, UK
| | - Sebastian G Gornik
- School of Natural Sciences, National University of Ireland Galway , Galway, Ireland
| | - Ludek Koreny
- Department of Biochemistry, University of Cambridge , Cambridge, UK
| | - Arnab Pain
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology , Thuwal, Saudi Arabia
| |
Collapse
|
30
|
Bentlage B, Rogers TS, Bachvaroff TR, Delwiche CF. Complex Ancestries of Isoprenoid Synthesis in Dinoflagellates. J Eukaryot Microbiol 2015; 63:123-37. [PMID: 26291956 DOI: 10.1111/jeu.12261] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 08/12/2015] [Accepted: 08/12/2015] [Indexed: 11/29/2022]
Abstract
Isoprenoid metabolism occupies a central position in the anabolic metabolism of all living cells. In plastid-bearing organisms, two pathways may be present for de novo isoprenoid synthesis, the cytosolic mevalonate pathway (MVA) and nuclear-encoded, plastid-targeted nonmevalonate pathway (DOXP). Using transcriptomic data we find that dinoflagellates apparently make exclusive use of the DOXP pathway. Using phylogenetic analyses of all DOXP genes we inferred the evolutionary origins of DOXP genes in dinoflagellates. Plastid replacements led to a DOXP pathway of multiple evolutionary origins. Dinoflagellates commonly referred to as dinotoms due to their relatively recent acquisition of a diatom plastid, express two completely redundant DOXP pathways. Dinoflagellates with a tertiary plastid of haptophyte origin, by contrast, express a hybrid pathway of dual evolutionary origin. Here, changes in the targeting motif of signal/transit peptide likely allow for targeting the new plastid by the proteins of core isoprenoid metabolism proteins. Parasitic dinoflagellates of the Amoebophyra species complex appear to have lost the DOXP pathway, suggesting that they may rely on their host for sterol synthesis.
Collapse
Affiliation(s)
- Bastian Bentlage
- CMNS-Cell Biology and Molecular Genetics, University of Maryland, 2107 Bioscience Research Building, College Park, Maryland, 20742
| | - Travis S Rogers
- CMNS-Cell Biology and Molecular Genetics, University of Maryland, 2107 Bioscience Research Building, College Park, Maryland, 20742
| | - Tsvetan R Bachvaroff
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 E Pratt St., Baltimore, Maryland, 21202
| | - Charles F Delwiche
- CMNS-Cell Biology and Molecular Genetics, University of Maryland, 2107 Bioscience Research Building, College Park, Maryland, 20742.,Maryland Agricultural Experiment Station, AGNR, University of Maryland, College Park, Maryland, 20742
| |
Collapse
|
31
|
Phylogenetic Analysis of Nucleus-Encoded Acetyl-CoA Carboxylases Targeted at the Cytosol and Plastid of Algae. PLoS One 2015; 10:e0131099. [PMID: 26131555 PMCID: PMC4489017 DOI: 10.1371/journal.pone.0131099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/28/2015] [Indexed: 11/19/2022] Open
Abstract
The understanding of algal phylogeny is being impeded by an unknown number of events of horizontal gene transfer (HGT), and primary and secondary/tertiary endosymbiosis. Through these events, previously heterotrophic eukaryotes developed photosynthesis and acquired new biochemical pathways. Acetyl-CoA carboxylase (ACCase) is a key enzyme in the fatty acid synthesis and elongation pathways in algae, where ACCase exists in two locations (cytosol and plastid) and in two forms (homomeric and heteromeric). All algae contain nucleus-encoded homomeric ACCase in the cytosol, independent of the origin of the plastid. Nucleus-encoded homomeric ACCase is also found in plastids of algae that arose from a secondary/tertiary endosymbiotic event. In contrast, plastids of algae that arose from a primary endosymbiotic event contain heteromeric ACCase, which consists of three nucleus-encoded and one plastid-encoded subunits. These properties of ACCase provide the potential to inform on the phylogenetic relationships of hosts and their plastids, allowing different hypothesis of endosymbiotic events to be tested. Alveolata (Dinoflagellata and Apicomplexa) and Chromista (Stramenopiles, Haptophyta and Cryptophyta) have traditionally been grouped together as Chromalveolata, forming the red lineage. However, recent genetic evidence groups the Stramenopiles, Alveolata and green plastid containing Rhizaria as SAR, excluding Haptophyta and Cryptophyta. Sequences coding for plastid and cytosol targeted homomeric ACCases were isolated from Isochrysis aff. galbana (TISO), Chromera velia and Nannochloropsis oculata, representing three taxonomic groups for which sequences were lacking. Phylogenetic analyses show that cytosolic ACCase strongly supports the SAR grouping. Conversely, plastidial ACCase groups the SAR with the Haptophyta, Cryptophyta and Prasinophyceae (Chlorophyta). These two ACCase based, phylogenetic relationships suggest that the plastidial homomeric ACCase was acquired by the Haptophyta, Cryptophyta and SAR, before the photosynthetic Rhizaria acquired their green plastid. Additionally, plastidial ACCase was derived by HGT from an ancestor or relative of the Prasinophyceae and not by duplication of cytosolic ACCase.
Collapse
|
32
|
Ševčíková T, Horák A, Klimeš V, Zbránková V, Demir-Hilton E, Sudek S, Jenkins J, Schmutz J, Přibyl P, Fousek J, Vlček Č, Lang BF, Oborník M, Worden AZ, Eliáš M. Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte? Sci Rep 2015; 5:10134. [PMID: 26017773 PMCID: PMC4603697 DOI: 10.1038/srep10134] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/31/2015] [Indexed: 01/15/2023] Open
Abstract
Algae with secondary plastids of a red algal origin, such as ochrophytes (photosynthetic stramenopiles), are diverse and ecologically important, yet their evolutionary history remains controversial. We sequenced plastid genomes of two ochrophytes, Ochromonas sp. CCMP1393 (Chrysophyceae) and Trachydiscus minutus (Eustigmatophyceae). A shared split of the clpC gene as well as phylogenomic analyses of concatenated protein sequences demonstrated that chrysophytes and eustigmatophytes form a clade, the Limnista, exhibiting an unexpectedly elevated rate of plastid gene evolution. Our analyses also indicate that the root of the ochrophyte phylogeny falls between the recently redefined Khakista and Phaeista assemblages. Taking advantage of the expanded sampling of plastid genome sequences, we revisited the phylogenetic position of the plastid of Vitrella brassicaformis, a member of Alveolata with the least derived plastid genome known for the whole group. The results varied depending on the dataset and phylogenetic method employed, but suggested that the Vitrella plastids emerged from a deep ochrophyte lineage rather than being derived vertically from a hypothetical plastid-bearing common ancestor of alveolates and stramenopiles. Thus, we hypothesize that the plastid in Vitrella, and potentially in other alveolates, may have been acquired by an endosymbiosis of an early ochrophyte.
Collapse
Affiliation(s)
- Tereza Ševčíková
- University of Ostrava, Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Aleš Horák
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic.,University of South Bohemia, Faculty of Science, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Vladimír Klimeš
- University of Ostrava, Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Veronika Zbránková
- University of Ostrava, Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Elif Demir-Hilton
- Monterey Bay Aquarium Research Institute (MBARI), Moss Landing, CA 95039, USA
| | - Sebastian Sudek
- Monterey Bay Aquarium Research Institute (MBARI), Moss Landing, CA 95039, USA
| | - Jerry Jenkins
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, 601 Genome Way NW, Huntsville, Alabama 35806, USA
| | - Pavel Přibyl
- Centre for Algology and Biorefinery Research Centre of Competence, Institute of Botany, Czech Academy of Sciences, Dukelská 135, 379 82 Třeboň, Czech Republic
| | - Jan Fousek
- Institute of Molecular Genetics, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Čestmír Vlček
- Institute of Molecular Genetics, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - B Franz Lang
- Département de Biochimie, Centre Robert-Cedergren, Université de Montréal, 2900 Boulevard Edouard Montpetit, Montréal, Québec, H3C 3J7, Canada
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic.,University of South Bohemia, Faculty of Science, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute (MBARI), Moss Landing, CA 95039, USA.,Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, M5G 1Z8, Canada
| | - Marek Eliáš
- University of Ostrava, Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, Chittussiho 10, 710 00 Ostrava, Czech Republic
| |
Collapse
|
33
|
Abstract
The endosymbiotic origin of plastids from cyanobacteria was a landmark event in the history of eukaryotic life. Subsequent to the evolution of primary plastids, photosynthesis spread from red and green algae to unrelated eukaryotes by secondary and tertiary endosymbiosis. Although the movement of cyanobacterial genes from endosymbiont to host is well studied, less is known about the migration of eukaryotic genes from one nucleus to the other in the context of serial endosymbiosis. Here I explore the magnitude and potential impact of nucleus-to-nucleus endosymbiotic gene transfer in the evolution of complex algae, and the extent to which such transfers compromise our ability to infer the deep structure of the eukaryotic tree of life. In addition to endosymbiotic gene transfer, horizontal gene transfer events occurring before, during, and after endosymbioses further confound our efforts to reconstruct the ancient mergers that forged multiple lines of photosynthetic microbial eukaryotes.
Collapse
|
34
|
Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives. Proc Natl Acad Sci U S A 2015; 112:10200-7. [PMID: 25717057 DOI: 10.1073/pnas.1423790112] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Apicomplexans are a major lineage of parasites, including causative agents of malaria and toxoplasmosis. How such highly adapted parasites evolved from free-living ancestors is poorly understood, particularly because they contain nonphotosynthetic plastids with which they have a complex metabolic dependency. Here, we examine the origin of apicomplexan parasitism by resolving the evolutionary distribution of several key characteristics in their closest free-living relatives, photosynthetic chromerids and predatory colpodellids. Using environmental sequence data, we describe the diversity of these apicomplexan-related lineages and select five species that represent this diversity for transcriptome sequencing. Phylogenomic analysis recovered a monophyletic lineage of chromerids and colpodellids as the sister group to apicomplexans, and a complex distribution of retention versus loss for photosynthesis, plastid genomes, and plastid organelles. Reconstructing the evolution of all plastid and cytosolic metabolic pathways related to apicomplexan plastid function revealed an ancient dependency on plastid isoprenoid biosynthesis, predating the divergence of apicomplexan and dinoflagellates. Similarly, plastid genome retention is strongly linked to the retention of two genes in the plastid genome, sufB and clpC, altogether suggesting a relatively simple model for plastid retention and loss. Lastly, we examine the broader distribution of a suite of molecular characteristics previously linked to the origins of apicomplexan parasitism and find that virtually all are present in their free-living relatives. The emergence of parasitism may not be driven by acquisition of novel components, but rather by loss and modification of the existing, conserved traits.
Collapse
|
35
|
Hunsperger HM, Randhawa T, Cattolico RA. Extensive horizontal gene transfer, duplication, and loss of chlorophyll synthesis genes in the algae. BMC Evol Biol 2015; 15:16. [PMID: 25887237 PMCID: PMC4337275 DOI: 10.1186/s12862-015-0286-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/15/2015] [Indexed: 11/10/2022] Open
Abstract
Background Two non-homologous, isofunctional enzymes catalyze the penultimate step of chlorophyll a synthesis in oxygenic photosynthetic organisms such as cyanobacteria, eukaryotic algae and land plants: the light-independent (LIPOR) and light-dependent (POR) protochlorophyllide oxidoreductases. Whereas the distribution of these enzymes in cyanobacteria and land plants is well understood, the presence, loss, duplication, and replacement of these genes have not been surveyed in the polyphyletic and remarkably diverse eukaryotic algal lineages. Results A phylogenetic reconstruction of the history of the POR enzyme (encoded by the por gene in nuclei) in eukaryotic algae reveals replacement and supplementation of ancestral por genes in several taxa with horizontally transferred por genes from other eukaryotic algae. For example, stramenopiles and haptophytes share por gene duplicates of prasinophytic origin, although their plastid ancestry predicts a rhodophytic por signal. Phylogenetically, stramenopile pors appear ancestral to those found in haptophytes, suggesting transfer from stramenopiles to haptophytes by either horizontal or endosymbiotic gene transfer. In dinoflagellates whose plastids have been replaced by those of a haptophyte or diatom, the ancestral por genes seem to have been lost whereas those of the new symbiotic partner are present. Furthermore, many chlorarachniophytes and peridinin-containing dinoflagellates possess por gene duplicates. In contrast to the retention, gain, and frequent duplication of algal por genes, the LIPOR gene complement (chloroplast-encoded chlL, chlN, and chlB genes) is often absent. LIPOR genes have been lost from haptophytes and potentially from the euglenid and chlorarachniophyte lineages. Within the chlorophytes, rhodophytes, cryptophytes, heterokonts, and chromerids, some taxa possess both POR and LIPOR genes while others lack LIPOR. The gradual process of LIPOR gene loss is evidenced in taxa possessing pseudogenes or partial LIPOR gene compliments. No horizontal transfer of LIPOR genes was detected. Conclusions We document a pattern of por gene acquisition and expansion as well as loss of LIPOR genes from many algal taxa, paralleling the presence of multiple por genes and lack of LIPOR genes in the angiosperms. These studies present an opportunity to compare the regulation and function of por gene families that have been acquired and expanded in patterns unique to each of various algal taxa. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0286-4) contains supplementary material, which is available to authorized users.
Collapse
|
36
|
Stiller JW, Schreiber J, Yue J, Guo H, Ding Q, Huang J. The evolution of photosynthesis in chromist algae through serial endosymbioses. Nat Commun 2014; 5:5764. [PMID: 25493338 PMCID: PMC4284659 DOI: 10.1038/ncomms6764] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/05/2014] [Indexed: 11/26/2022] Open
Abstract
Chromist algae include diverse photosynthetic organisms of great ecological and social importance. Despite vigorous research efforts, a clear understanding of how various chromists acquired photosynthetic organelles has been complicated by conflicting phylogenetic results, along with an undetermined number and pattern of endosymbioses, and the horizontal movement of genes that accompany them. We apply novel statistical approaches to assess impacts of endosymbiotic gene transfer on three principal chromist groups at the heart of long-standing controversies. Our results provide robust support for acquisitions of photosynthesis through serial endosymbioses, beginning with the adoption of a red alga by cryptophytes, then a cryptophyte by the ancestor of ochrophytes, and finally an ochrophyte by the ancestor of haptophytes. Resolution of how chromist algae are related through endosymbioses provides a framework for unravelling the further reticulate history of red algal-derived plastids, and for clarifying evolutionary processes that gave rise to eukaryotic photosynthetic diversity. The chromalveolate hypothesis proposes that chromist algae became photosynthetic through a single endosymbiosis in a common ancestor. Here, Stiller et al. use a novel statistical approach to propose that instead, the major chromist algae arose as a result of three specific serial plastid transfers.
Collapse
Affiliation(s)
- John W Stiller
- Department of Biology, East Carolina University, Greenville, North Carolina 27858, USA
| | - John Schreiber
- Department of Biology, East Carolina University, Greenville, North Carolina 27858, USA
| | - Jipei Yue
- Department of Biology, East Carolina University, Greenville, North Carolina 27858, USA
| | - Hui Guo
- Department of Computer Science, East Carolina University, Greenville, North Carolina 27858, USA
| | - Qin Ding
- Department of Computer Science, East Carolina University, Greenville, North Carolina 27858, USA
| | - Jinling Huang
- Department of Biology, East Carolina University, Greenville, North Carolina 27858, USA
| |
Collapse
|
37
|
Petersen J, Ludewig AK, Michael V, Bunk B, Jarek M, Baurain D, Brinkmann H. Chromera velia, endosymbioses and the rhodoplex hypothesis--plastid evolution in cryptophytes, alveolates, stramenopiles, and haptophytes (CASH lineages). Genome Biol Evol 2014; 6:666-84. [PMID: 24572015 PMCID: PMC3971594 DOI: 10.1093/gbe/evu043] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The discovery of Chromera velia, a free-living photosynthetic relative of apicomplexan pathogens, has provided an unexpected opportunity to study the algal ancestry of malaria parasites. In this work, we compared the molecular footprints of a eukaryote-to-eukaryote endosymbiosis in C. velia to their equivalents in peridinin-containing dinoflagellates (PCD) to reevaluate recent claims in favor of a common ancestry of their plastids. To this end, we established the draft genome and a set of full-length cDNA sequences from C. velia via next-generation sequencing. We documented the presence of a single coxI gene in the mitochondrial genome, which thus represents the genetically most reduced aerobic organelle identified so far, but focused our analyses on five "lucky genes" of the Calvin cycle. These were selected because of their known support for a common origin of complex plastids from cryptophytes, alveolates (represented by PCDs), stramenopiles, and haptophytes (CASH) via a single secondary endosymbiosis with a red alga. As expected, our broadly sampled phylogenies of the nuclear-encoded Calvin cycle markers support a rhodophycean origin for the complex plastid of Chromera. However, they also suggest an independent origin of apicomplexan and dinophycean (PCD) plastids via two eukaryote-to-eukaryote endosymbioses. Although at odds with the current view of a common photosynthetic ancestry for alveolates, this conclusion is nonetheless in line with the deviant plastome architecture in dinoflagellates and the morphological paradox of four versus three plastid membranes in the respective lineages. Further support for independent endosymbioses is provided by analysis of five additional markers, four of them involved in the plastid protein import machinery. Finally, we introduce the "rhodoplex hypothesis" as a convenient way to designate evolutionary scenarios where CASH plastids are ultimately the product of a single secondary endosymbiosis with a red alga but were subsequently horizontally spread via higher-order eukaryote-to-eukaryote endosymbioses.
Collapse
Affiliation(s)
- Jörn Petersen
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Zimorski V, Ku C, Martin WF, Gould SB. Endosymbiotic theory for organelle origins. Curr Opin Microbiol 2014; 22:38-48. [PMID: 25306530 DOI: 10.1016/j.mib.2014.09.008] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/01/2014] [Accepted: 09/12/2014] [Indexed: 11/19/2022]
Abstract
Endosymbiotic theory goes back over 100 years. It explains the similarity of chloroplasts and mitochondria to free-living prokaryotes by suggesting that the organelles arose from prokaryotes through (endo)symbiosis. Gene trees provide important evidence in favour of symbiotic theory at a coarse-grained level, but the finer we get into the details of branches in trees containing dozens or hundreds of taxa, the more equivocal evidence for endosymbiotic events sometimes becomes. It seems that either the interpretation of some endosymbiotic events are wrong, or something is wrong with the interpretations of some gene trees having many leaves. There is a need for evidence that is independent of gene trees and that can help outline the course of symbiosis in eukaryote evolution. Protein import is the strongest evidence we have for the single origin of chloroplasts and mitochondria. It is probably also the strongest evidence we have to sort out the number and nature of secondary endosymbiotic events that have occurred in evolution involving the red plastid lineage. If we relax our interpretation of individual gene trees, endosymbiotic theory can tell us a lot.
Collapse
Affiliation(s)
- Verena Zimorski
- Institute of Molecular Evolution, Heinrich-Heine-University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Chuan Ku
- Institute of Molecular Evolution, Heinrich-Heine-University of Düsseldorf, 40225 Düsseldorf, Germany
| | - William F Martin
- Institute of Molecular Evolution, Heinrich-Heine-University of Düsseldorf, 40225 Düsseldorf, Germany.
| | - Sven B Gould
- Institute of Molecular Evolution, Heinrich-Heine-University of Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
39
|
Stiller JW. Toward an empirical framework for interpreting plastid evolution. JOURNAL OF PHYCOLOGY 2014; 50:462-471. [PMID: 26988319 DOI: 10.1111/jpy.12178] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 02/06/2014] [Indexed: 06/05/2023]
Abstract
The idea that evolutionary models should minimize plastid endosymbioses has dominated thinking about the history of eukaryotic photosynthesis. Although a reasonable starting point, this framework has not gained support from observed patterns of algal and plant evolution, and can be an obstacle to fully understanding the modern distribution of plastids. Empirical data indicate that plastid losses are extremely uncommon, that major changes in plastid biochemistry/architecture are evidence of an endosymbiotic event, and that comparable selection pressures can lead to remarkable convergences in algae with different endosymbiotic origins. Such empirically based generalizations can provide a more realistic philosophical framework for interpreting complex and often contradictory results from phylogenomic investigations of algal evolution.
Collapse
Affiliation(s)
- John W Stiller
- Department of Biology, East Carolina University, Greenville, North Carolina, 27858, USA
| |
Collapse
|
40
|
Burki F. The eukaryotic tree of life from a global phylogenomic perspective. Cold Spring Harb Perspect Biol 2014; 6:a016147. [PMID: 24789819 DOI: 10.1101/cshperspect.a016147] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Molecular phylogenetics has revolutionized our knowledge of the eukaryotic tree of life. With the advent of genomics, a new discipline of phylogenetics has emerged: phylogenomics. This method uses large alignments of tens to hundreds of genes to reconstruct evolutionary histories. This approach has led to the resolution of ancient and contentious relationships, notably between the building blocks of the tree (the supergroups), and allowed to place in the tree enigmatic yet important protist lineages for understanding eukaryote evolution. Here, I discuss the pros and cons of phylogenomics and review the eukaryotic supergroups in light of earlier work that laid the foundation for the current view of the tree, including the position of the root. I conclude by presenting a picture of eukaryote evolution, summarizing the most recent progress in assembling the global tree.
Collapse
Affiliation(s)
- Fabien Burki
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
41
|
Lee R, Lai H, Malik SB, Saldarriaga JF, Keeling PJ, Slamovits CH. Analysis of EST data of the marine protist Oxyrrhis marina, an emerging model for alveolate biology and evolution. BMC Genomics 2014; 15:122. [PMID: 24512041 PMCID: PMC3942190 DOI: 10.1186/1471-2164-15-122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 02/06/2014] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The alveolates include a large number of important lineages of protists and algae, among which are three major eukaryotic groups: ciliates, apicomplexans and dinoflagellates. Collectively alveolates are present in virtually every environment and include a vast diversity of cell shapes, molecular and cellular features and feeding modes including lifestyles such as phototrophy, phagotrophy/predation and intracellular parasitism, in addition to a variety of symbiotic associations. Oxyrrhis marina is a well-known model for heterotrophic protist biology, and is now emerging as a useful organism to explore the many changes that occurred during the origin and diversification of dinoflagellates by virtue of its phylogenetic position at the base of the dinoflagellate tree. RESULTS We have generated and analysed expressed sequence tag (EST) sequences from the alveolate Oxyrrhis marina in order to shed light on the evolution of a number of dinoflagellate characteristics, especially regarding the emergence of highly unusual genomic features. We found that O. marina harbours extensive gene redundancy, indicating high rates of gene duplication and transcription from multiple genomic loci. In addition, we observed a correlation between expression level and copy number in several genes, suggesting that copy number may contribute to determining transcript levels for some genes. Finally, we analyze the genes and predicted products of the recently discovered Dinoflagellate Viral Nuclear Protein, and several cases of horizontally acquired genes. CONCLUSION The dataset presented here has proven very valuable for studying this important group of protists. Our analysis indicates that gene redundancy is a pervasive feature of dinoflagellate genomes, thus the mechanisms involved in its generation must have arisen early in the evolution of the group.
Collapse
Affiliation(s)
- Renny Lee
- Department of Biochemistry and Molecular Biology, Dalhousie University, B3H4R2 Halifax, NS, Canada
| | - Hugo Lai
- Department of Biochemistry and Molecular Biology, Dalhousie University, B3H4R2 Halifax, NS, Canada
| | - Shehre Banoo Malik
- Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, B3H4R2 Halifax, NS, Canada
| | - Juan F Saldarriaga
- Botany Department, University of British Columbia, V6T1Z4 Vancouver, BS, Canada
| | - Patrick J Keeling
- Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Alberta, Canada
- Botany Department, University of British Columbia, V6T1Z4 Vancouver, BS, Canada
| | - Claudio H Slamovits
- Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, B3H4R2 Halifax, NS, Canada
| |
Collapse
|
42
|
Endosymbiotic gene transfer in tertiary plastid-containing dinoflagellates. EUKARYOTIC CELL 2013; 13:246-55. [PMID: 24297445 DOI: 10.1128/ec.00299-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Plastid establishment involves the transfer of endosymbiotic genes to the host nucleus, a process known as endosymbiotic gene transfer (EGT). Large amounts of EGT have been shown in several photosynthetic lineages but also in present-day plastid-lacking organisms, supporting the notion that endosymbiotic genes leave a substantial genetic footprint in the host nucleus. Yet the extent of this genetic relocation remains debated, largely because the long period that has passed since most plastids originated has erased many of the clues to how this process unfolded. Among the dinoflagellates, however, the ancestral peridinin-containing plastid has been replaced by tertiary plastids on several more recent occasions, giving us a less ancient window to examine plastid origins. In this study, we evaluated the endosymbiotic contribution to the host genome in two dinoflagellate lineages with tertiary plastids. We generated the first nuclear transcriptome data sets for the "dinotoms," which harbor diatom-derived plastids, and analyzed these data in combination with the available transcriptomes for kareniaceans, which harbor haptophyte-derived plastids. We found low level of detectable EGT in both dinoflagellate lineages, with only 9 genes and 90 genes of possible tertiary endosymbiotic origin in dinotoms and kareniaceans, respectively, suggesting that tertiary endosymbioses did not heavily impact the host dinoflagellate genomes.
Collapse
|
43
|
Kishore SP, Stiller JW, Deitsch KW. Horizontal gene transfer of epigenetic machinery and evolution of parasitism in the malaria parasite Plasmodium falciparum and other apicomplexans. BMC Evol Biol 2013; 13:37. [PMID: 23398820 PMCID: PMC3598677 DOI: 10.1186/1471-2148-13-37] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 02/05/2013] [Indexed: 12/14/2022] Open
Abstract
Background The acquisition of complex transcriptional regulatory abilities and epigenetic machinery facilitated the transition of the ancestor of apicomplexans from a free-living organism to an obligate parasite. The ability to control sophisticated gene expression patterns enabled these ancient organisms to evolve several differentiated forms, invade multiple hosts and evade host immunity. How these abilities were acquired remains an outstanding question in protistan biology. Results In this work, we study SET domain bearing genes that are implicated in mediating immune evasion, invasion and cytoadhesion pathways of modern apicomplexans, including malaria parasites. We provide the first conclusive evidence of a horizontal gene transfer of a Histone H4 Lysine 20 (H4K20) modifier, Set8, from an animal host to the ancestor of apicomplexans. Set8 is known to contribute to the coordinated expression of genes involved in immune evasion in modern apicomplexans. We also show the likely transfer of a H3K36 methyltransferase (Ashr3 from plants), possibly derived from algal endosymbionts. These transfers appear to date to the transition from free-living organisms to parasitism and coincide with the proposed horizontal acquisition of cytoadhesion domains, the O-glycosyltransferase that modifies these domains, and the primary family of transcription factors found in apicomplexan parasites. Notably, phylogenetic support for these conclusions is robust and the genes clearly are dissimilar to SET sequences found in the closely related parasite Perkinsus marinus, and in ciliates, the nearest free-living organisms with complete genome sequences available. Conclusions Animal and plant sources of epigenetic machinery provide new insights into the evolution of parasitism in apicomplexans. Along with the horizontal transfer of cytoadhesive domains, O-linked glycosylation and key transcription factors, the acquisition of SET domain methyltransferases marks a key transitional event in the evolution to parasitism in this important protozoan lineage.
Collapse
Affiliation(s)
- Sandeep P Kishore
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | |
Collapse
|
44
|
Keeling PJ. The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:583-607. [PMID: 23451781 DOI: 10.1146/annurev-arplant-050312-120144] [Citation(s) in RCA: 280] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plastids (chloroplasts) have long been recognized to have originated by endosymbiosis of a cyanobacterium, but their subsequent evolutionary history has proved complex because they have also moved between eukaryotes during additional rounds of secondary and tertiary endosymbioses. Much of this history has been revealed by genomic analyses, but some debates remain unresolved, in particular those relating to secondary red plastids of the chromalveolates, especially cryptomonads. Here, I examine several fundamental questions and assumptions about endosymbiosis and plastid evolution, including the number of endosymbiotic events needed to explain plastid diversity, whether the genetic contribution of the endosymbionts to the host genome goes far beyond plastid-targeted genes, and whether organelle origins are best viewed as a singular transition involving one symbiont or as a gradual transition involving a long line of transient food/symbionts. I also discuss a possible link between transporters and the evolution of protein targeting in organelle integration.
Collapse
Affiliation(s)
- Patrick J Keeling
- Canadian Institute for Advanced Research and Department of Botany, University of British Columbia, Vancouver, Canada V6T 1Z4.
| |
Collapse
|
45
|
Abstract
The bulk of the diversity of eukaryotic life is microbial. Although the larger eukaryotes-namely plants, animals, and fungi-dominate our visual landscapes, microbial lineages compose the greater part of both genetic diversity and biomass, and contain many evolutionary innovations. Our understanding of the origin and diversification of eukaryotes has improved substantially with analyses of molecular data from diverse lineages. These data have provided insight into the nature of the genome of the last eukaryotic common ancestor (LECA). Yet, the origin of key eukaryotic features, namely the nucleus and cytoskeleton, remains poorly understood. In contrast, the past decades have seen considerable refinement in hypotheses on the major branching events in the evolution of eukaryotic diversity. New insights have also emerged, including evidence for the acquisition of mitochondria at the time of the origin of eukaryotes and data supporting the dynamic nature of genomes in LECA.
Collapse
Affiliation(s)
- Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts 01063, USA.
| |
Collapse
|
46
|
Burki F, Okamoto N, Pombert JF, Keeling PJ. The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins. Proc Biol Sci 2012. [PMID: 22298847 DOI: 10.1098/rsbp.2011.2301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
An important missing piece in the puzzle of how plastids spread across the eukaryotic tree of life is a robust evolutionary framework for the host lineages. Four assemblages are known to harbour plastids derived from red algae and, according to the controversial chromalveolate hypothesis, these all share a common ancestry. Phylogenomic analyses have consistently shown that stramenopiles and alveolates are closely related, but haptophytes and cryptophytes remain contentious; they have been proposed to branch together with several heterotrophic groups in the newly erected Hacrobia. Here, we tested this question by producing a large expressed sequence tag dataset for the katablepharid Roombia truncata, one of the last hacrobian lineages for which genome-level data are unavailable, and combined this dataset with the recently completed genome of the cryptophyte Guillardia theta to build an alignment composed of 258 genes. Our analyses strongly support haptophytes as sister to the SAR group, possibly together with telonemids and centrohelids. We also confirmed the common origin of katablepharids and cryptophytes, but these lineages were not related to other hacrobians; instead, they branch with plants. Our study resolves the evolutionary position of haptophytes, an ecologically critical component of the oceans, and proposes a new hypothesis for the origin of cryptophytes.
Collapse
Affiliation(s)
- Fabien Burki
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
47
|
Burki F, Okamoto N, Pombert JF, Keeling PJ. The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins. Proc Biol Sci 2012; 279:2246-54. [PMID: 22298847 DOI: 10.1098/rspb.2011.2301] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
An important missing piece in the puzzle of how plastids spread across the eukaryotic tree of life is a robust evolutionary framework for the host lineages. Four assemblages are known to harbour plastids derived from red algae and, according to the controversial chromalveolate hypothesis, these all share a common ancestry. Phylogenomic analyses have consistently shown that stramenopiles and alveolates are closely related, but haptophytes and cryptophytes remain contentious; they have been proposed to branch together with several heterotrophic groups in the newly erected Hacrobia. Here, we tested this question by producing a large expressed sequence tag dataset for the katablepharid Roombia truncata, one of the last hacrobian lineages for which genome-level data are unavailable, and combined this dataset with the recently completed genome of the cryptophyte Guillardia theta to build an alignment composed of 258 genes. Our analyses strongly support haptophytes as sister to the SAR group, possibly together with telonemids and centrohelids. We also confirmed the common origin of katablepharids and cryptophytes, but these lineages were not related to other hacrobians; instead, they branch with plants. Our study resolves the evolutionary position of haptophytes, an ecologically critical component of the oceans, and proposes a new hypothesis for the origin of cryptophytes.
Collapse
Affiliation(s)
- Fabien Burki
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
48
|
Moszczynski K, Mackiewicz P, Bodyl A. Evidence for horizontal gene transfer from bacteroidetes bacteria to dinoflagellate minicircles. Mol Biol Evol 2011; 29:887-92. [PMID: 22075114 DOI: 10.1093/molbev/msr276] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dinoflagellate protists harbor a characteristic peridinin-containing plastid that evolved from a red or haptophyte alga. In contrast to typical plastids that have ∼100-200 kb circular genomes, the dinoflagellate plastid genome is composed of minicircles that each encode 0-5 genes. It is commonly assumed that dinoflagellate minicircles are derived from a standard plastid genome through drastic reduction and fragmentation. However, we demonstrate that the ycf16 and ycf24 genes (encoded on the Ceratium AF490364 minicircle), as well as rpl28 and rpl33 (encoded on the Pyrocystis AF490367 minicircle), are related to sequences from Algoriphagus and/or Cytophaga bacteria belonging to the Bacteroidetes clade. Moreover, we identified a new open reading frame on the Pyrocystis minicircle encoding a SRP54 N domain, which is typical of FtsY proteins. Because neither of these minicircles share sequence similarity with any other dinoflagellate minicircles, and their genes resemble bacterial operons, we propose that these Ceratium and Pyrocystis minicircles resulted from a horizontal gene transfer (HGT) from a Bacteroidetes donor. Our findings are the first indication of HGT to dinoflagellate minicircles, highlighting yet another peculiar aspect of this plastid genome.
Collapse
Affiliation(s)
- Krzysztof Moszczynski
- Faculty of Humanities and Social Sciences, Warsaw School of Social Sciences and Humanities (SWPS), Campus in Wrocław, Wrocław, Poland
| | | | | |
Collapse
|
49
|
Woehle C, Dagan T, Martin WF, Gould SB. Red and problematic green phylogenetic signals among thousands of nuclear genes from the photosynthetic and apicomplexa-related Chromera velia. Genome Biol Evol 2011; 3:1220-30. [PMID: 21965651 PMCID: PMC3205606 DOI: 10.1093/gbe/evr100] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2011] [Indexed: 11/14/2022] Open
Abstract
The photosynthetic and basal apicomplexan Chromera velia was recently described, expanding the membership of this otherwise nonphotosynthetic group of parasite protists. Apicomplexans are alveolates with secondary plastids of red algal origin, but the evolutionary history of their nuclear genes is still actively discussed. Using deep sequencing of expressed genes, we investigated the phylogenetic affinities of a stringent filtered set of 3,151 expressed sequence tag-contigs by generating clusters with eukaryotic homologs and constructing phylogenetic trees and networks. The phylogenetic positioning of this alveolate alga was determined and sets of phyla-specific proteins extracted. Phylogenetic trees provided conflicting signals, with 444 trees grouping C. velia with the apicomplexans but 354 trees grouping C. velia with the alveolate oyster pathogen Perkinsus marinus, the latter signal being reinforced from the analysis of shared genes and overall sequence similarity. Among the 513 C. velia nuclear genes that reflect a photosynthetic ancestry and for which nuclear homologs were available both from red and green lineages, 263 indicated a red photosynthetic ancestry, whereas 250 indicated a green photosynthetic ancestry. The same 1:1 signal ratio was found among the putative 255 nuclear-encoded plastid proteins identified. This finding of red and green signals for the alveolate mirrors the result observed in the heterokont lineage and supports a common but not necessarily single origin for the plastid in heterokonts and alveolates. The inference of green endosymbiosis preceding red plastid acquisition in these lineages leads to worryingly complicated evolutionary scenarios, prompting the search for other explanations for the green phylogenetic signal and the amount of hosts involved.
Collapse
Affiliation(s)
| | | | | | - Sven B. Gould
- Molecular Evolution (Botanik III), Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
50
|
Stiller JW. Experimental design and statistical rigor in phylogenomics of horizontal and endosymbiotic gene transfer. BMC Evol Biol 2011; 11:259. [PMID: 21923904 PMCID: PMC3190393 DOI: 10.1186/1471-2148-11-259] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 09/16/2011] [Indexed: 11/16/2022] Open
Abstract
A growing number of phylogenomic investigations from diverse eukaryotes are examining conflicts among gene trees as evidence of horizontal gene transfer. If multiple foreign genes from the same eukaryotic lineage are found in a given genome, it is increasingly interpreted as concerted gene transfers during a cryptic endosymbiosis in the organism's evolutionary past, also known as "endosymbiotic gene transfer" or EGT. A number of provocative hypotheses of lost or serially replaced endosymbionts have been advanced; to date, however, these inferences largely have been post-hoc interpretations of genomic-wide conflicts among gene trees. With data sets as large and complex as eukaryotic genome sequences, it is critical to examine alternative explanations for intra-genome phylogenetic conflicts, particularly how much conflicting signal is expected from directional biases and statistical noise. The availability of genome-level data both permits and necessitates phylogenomics that test explicit, a priori predictions of horizontal gene transfer, using rigorous statistical methods and clearly defined experimental controls.
Collapse
Affiliation(s)
- John W Stiller
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|