1
|
Fokra A, Feldman HB, Kurolap A, Kinaneh S, Abassi Z, Hershkovitz T. Patients with Gaucher disease display systemic elevation of ACE2, which is impacted by therapy status and genotype. Mol Genet Metab 2024; 143:108534. [PMID: 39033630 DOI: 10.1016/j.ymgme.2024.108534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Gaucher disease (GD) has a high carrier rate among Ashkenazi Jews.The most common disease-causing variant in this population N370S, is also prevalent pan-ethnically. This has led to speculations of some protective effect for carriers of this variant. During the recent COVID-19 pandemic, GD patients reportedly had a surprisingly low infection rate and mild symptoms considering their disease status. As SARS-CoV-2 gains entry into the cell via membrane-bound angiotensin-converting enzyme 2 (ACE2), we speculated that differences in levels of soluble ACE2 in GD patients could contribute to this protective state. While ACE is known to be elevated in GD, to our knowledge, ACE2 levels have not been explored. We measured serum and macrophage-bound levels of ACE and ACE2 by ELISA and western blot, respectively, in GD patients and age- and sex-matched controls. Our results reveal a significant elevation of both serum and macrophage-bound ACE and ACE2 in GD patients compared to healthy controls. This elevation appears to be mitigated by GD treatment. Moreover, the most robust ACE2 elevation was observed in N370S homozygotes, and was not effected by treatment. Since coronaviruses use the ACE2 receptor as a gateway for host cell entry, we speculate that elevated circulating ACE2 may serve as a decoy. This might explain the observed mild infections in GD patients during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ahmad Fokra
- Department of Physiology and Biophysics Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hagit Baris Feldman
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alina Kurolap
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Safa Kinaneh
- Department of Physiology and Biophysics Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zaid Abassi
- Department of Physiology and Biophysics Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; Laboratory Medicine, Rambam Health Care Campus, Haifa, Israel
| | - Tova Hershkovitz
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel.
| |
Collapse
|
2
|
Aykanat T, Jacobsen JA, Hindar K. Ontogenetic variation in the marine foraging of Atlantic salmon functionally links genomic diversity with a major life history polymorphism. Mol Ecol 2024; 33:e17465. [PMID: 38994907 DOI: 10.1111/mec.17465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
The ecological role of heritable phenotypic variation in free-living populations remains largely unknown. Knowledge of the genetic basis of functional ecological processes can link genomic and phenotypic diversity, providing insight into polymorphism evolution and how populations respond to environmental changes. By quantifying the marine diet of Atlantic salmon, we assessed how foraging behaviour changes along the ontogeny, and in relation to genetic variation in two loci with major effects on age at maturity (six6 and vgll3). We used a two-component, zero-inflated negative binomial model to simultaneously quantify foraging frequency and foraging outcome, separately for fish and crustaceans diets. We found that older salmon forage for both prey types more actively (as evidenced by increased foraging frequency), but with a decreased efficiency (as evidenced by fewer prey in the diet), suggesting an age-dependent shift in foraging dynamics. The vgll3 locus was linked to age-dependent changes in foraging behaviour: Younger salmon with vgll3LL (the genotype associated with late maturation) tended to forage crustaceans more often than those with vgll3EE (the genotype associated with early maturation), whereas the pattern was reversed in older salmon. Vgll3 LL genotype was also linked to a marginal increase in fish acquisition, especially in younger salmon, while six6 was not a factor explaining the diet variation. Our results suggest a functional role for marine feeding behaviour linking genomic diversity at vgll3 with age at maturity among salmon, with potential age-dependent trade-offs maintaining the genetic variation. A shared genetic basis between dietary ecology and age at maturity likely subjects Atlantic salmon populations to evolution induced by bottom-up changes in marine productivity.
Collapse
Affiliation(s)
- Tutku Aykanat
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Kjetil Hindar
- Norwegian Institute for Nature Research (NINA), Trondheim, Norway
| |
Collapse
|
3
|
Spencer HG, Walter CB. Polymorphism and the Red Queen: the selective maintenance of allelic variation in a deteriorating environment. G3 (BETHESDA, MD.) 2024; 14:jkae107. [PMID: 38770661 PMCID: PMC11228834 DOI: 10.1093/g3journal/jkae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 02/21/2024] [Accepted: 05/12/2024] [Indexed: 05/22/2024]
Abstract
Although allelic variation is ubiquitous in natural populations, our theoretical models are poor at predicting the existence and properties of these observed polymorphisms. In this study, inspired by Van Valen's Red Queen hypothesis, we modeled the effect of viability selection in a deteriorating environment on the properties of allelic variation in populations subject to recurrent mutation. In Monte Carlo simulations, we found that levels of polymorphism consistently built up over time. We censused the simulated populations after 10,000 generations of mutation and selection, revealing that, compared with models assuming a constant environment, the mean number of alleles was greater, as was the range of allele numbers. These results were qualitatively robust to the addition of genetic drift and to the relaxation of the assumption that the viabilities of phenogenotypes containing a new mutation are independent of each other (i.e. incorporating a model of generalized dominance). The broad range of allele numbers realized in the simulated populations-from monomorphisms to highly polymorphic populations-more closely corresponds to the observed range from numerous surveys of natural populations than previously found in theoretical studies. This match suggests that, contrary to the views of some writers, selection may actively maintain genetic variation in natural populations, particularly if the selective environment is gradually becoming harsher. Our simulations also generated many populations with heterozygote advantage, a mismatch with real data that implies that this selective property must arise extremely rarely in natural populations.
Collapse
Affiliation(s)
- Hamish G Spencer
- Department of Zoology, University of Otago, Dunedin 9054, New Zealand
| | - Callum B Walter
- Department of Zoology, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
4
|
Lockwood C, Vo AS, Bellafard H, Carter AJR. More evidence for widespread antagonistic pleiotropy in polymorphic disease alleles. Front Genet 2024; 15:1404516. [PMID: 38952711 PMCID: PMC11215129 DOI: 10.3389/fgene.2024.1404516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/29/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction Many loci segregate alleles classified as "genetic diseases" due to their deleterious effects on health. However, some disease alleles have been reported to show beneficial effects under certain conditions or in certain populations. The beneficial effects of these antagonistically pleiotropic alleles may explain their continued prevalence, but the degree to which antagonistic pleiotropy is common or rare is unresolved. We surveyed the medical literature to identify examples of antagonistic pleiotropy to help determine whether antagonistic pleiotropy appears to be rare or common. Results We identified ten examples of loci with polymorphisms for which the presence of antagonistic pleiotropy is well supported by detailed genetic or epidemiological information in humans. One additional locus was identified for which the supporting evidence comes from animal studies. These examples complement over 20 others reported in other reviews. Discussion The existence of more than 30 identified antagonistically pleiotropic human disease alleles suggests that this phenomenon may be widespread. This poses important implications for both our understanding of human evolutionary genetics and our approaches to clinical treatment and disease prevention, especially therapies based on genetic modification.
Collapse
Affiliation(s)
| | | | | | - Ashley J. R. Carter
- California State University Long Beach, Department of Biological Sciences, Long Beach, CA, United States
| |
Collapse
|
5
|
Portnoy DS, O'Leary SJ, Fields AT, Hollenbeck CM, Grubbs RD, Peterson CT, Gardiner JM, Adams DH, Falterman B, Drymon JM, Higgs JM, Pulster EL, Wiley TR, Murawski SA. Complex patterns of genetic population structure in the mouthbrooding marine catfish, Bagre marinus, in the Gulf of Mexico and U.S. Atlantic. Ecol Evol 2024; 14:e11514. [PMID: 38859886 PMCID: PMC11163162 DOI: 10.1002/ece3.11514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024] Open
Abstract
Patterns of genetic variation reflect interactions among microevolutionary forces that vary in strength with changing demography. Here, patterns of variation within and among samples of the mouthbrooding gafftopsail catfish (Bagre marinus, Family Ariidae) captured in the U.S. Atlantic and throughout the Gulf of Mexico were analyzed using genomics to generate neutral and non-neutral SNP data sets. Because genomic resources are lacking for ariids, linkage disequilibrium network analysis was used to examine patterns of putatively adaptive variation. Finally, historical demographic parameters were estimated from site frequency spectra. The results show four differentiated groups, corresponding to the (1) U.S. Atlantic, and the (2) northeastern, (3) northwestern, and (4) southern Gulf of Mexico. The non-neutral data presented two contrasting signals of structure, one due to increases in diversity moving west to east and north to south, and another to increased heterozygosity in the Atlantic. Demographic analysis suggested that recently reduced long-term effective population size in the Atlantic is likely an important driver of patterns of genetic variation and is consistent with a known reduction in population size potentially due to an epizootic. Overall, patterns of genetic variation resemble that of other fishes that use the same estuarine habitats as nurseries, regardless of the presence/absence of a larval phase, supporting the idea that adult/juvenile behavior and habitat are important predictors of contemporary patterns of genetic structure.
Collapse
Affiliation(s)
- David S. Portnoy
- Marine Genomics Laboratory, Department of Life SciencesTexas A&M University – Corpus ChristiCorpus ChristiTexasUSA
| | - Shannon J. O'Leary
- Department of Biological SciencesSaint Anselm CollegeManchesterNew HampshireUSA
| | - Andrew T. Fields
- Marine Genomics Laboratory, Department of Life SciencesTexas A&M University – Corpus ChristiCorpus ChristiTexasUSA
| | - Christopher M. Hollenbeck
- Marine Genomics Laboratory, Department of Life SciencesTexas A&M University – Corpus ChristiCorpus ChristiTexasUSA
| | - R. Dean Grubbs
- Florida State University Coastal and Marine LaboratorySt. TeresaFloridaUSA
| | | | | | - Douglas H. Adams
- Florida Fish and Wildlife Conservation CommissionFish and Wildlife Research Institute, Indian River Field LabMelbourneFloridaUSA
| | | | - J. Marcus Drymon
- Mississippi State University Coastal Research and Extension CenterBiloxiMississippiUSA
- Mississippi‐Alabama Sea Grant ConsortiumOcean SpringsMississippiUSA
| | - Jeremy M. Higgs
- Center for Fisheries Research and DevelopmentThe University of Southern MississippiOcean SpringsMississippiUSA
| | - Erin L. Pulster
- U.S. Geological Survey, Columbia Environmental Research CenterColumbiaMissouriUSA
- College of Marine ScienceUniversity of South FloridaSt. PetersburgFloridaUSA
| | | | - Steven A. Murawski
- College of Marine ScienceUniversity of South FloridaSt. PetersburgFloridaUSA
| |
Collapse
|
6
|
Fine AG, Steinrücken M. A novel expectation-maximization approach to infer general diploid selection from time-series genetic data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593575. [PMID: 38798346 PMCID: PMC11118272 DOI: 10.1101/2024.05.10.593575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Detecting and quantifying the strength of selection is a main objective in population genetics. Since selection acts over multiple generations, many approaches have been developed to detect and quantify selection using genetic data sampled at multiple points in time. Such time series genetic data is commonly analyzed using Hidden Markov Models, but in most cases, under the assumption of additive selection. However, many examples of genetic variation exhibiting non-additive mechanisms exist, making it critical to develop methods that can characterize selection in more general scenarios. Thus, we extend a previously introduced expectation-maximization algorithm for the inference of additive selection coefficients to the case of general diploid selection, in which heterozygote and homozygote fitnesses are parameterized independently. We furthermore introduce a framework to identify bespoke modes of diploid selection from given data, as well as a procedure for aggregating data across linked loci to increase power and robustness. Using extensive simulation studies, we find that our method accurately and efficiently estimates selection coefficients for different modes of diploid selection across a wide range of scenarios; however, power to classify the mode of selection is low unless selection is very strong. We apply our method to ancient DNA samples from Great Britain in the last 4,450 years, and detect evidence for selection in six genomic regions, including the well-characterized LCT locus. Our work is the first genome-wide scan characterizing signals of general diploid selection.
Collapse
Affiliation(s)
- Adam G Fine
- Department of Ecology and Evolution, University of Chicago
- Graduate Program in Biophysical Sciences, University of Chicago
| | - Matthias Steinrücken
- Department of Ecology and Evolution, University of Chicago
- Department of Human Genetics, University of Chicago
| |
Collapse
|
7
|
van’t Hof AE, Whiteford S, Yung CJ, Yoshido A, Zrzavá M, de Jong MA, Tan KL, Zhu D, Monteiro A, Brakefield PM, Marec F, Saccheri IJ. Zygosity-based sex determination in a butterfly drives hypervariability of Masculinizer. SCIENCE ADVANCES 2024; 10:eadj6979. [PMID: 38701204 PMCID: PMC11067997 DOI: 10.1126/sciadv.adj6979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024]
Abstract
Nature has devised many ways of producing males and females. Here, we report on a previously undescribed mechanism for Lepidoptera that functions without a female-specific gene. The number of alleles or allele heterozygosity in a single Z-linked gene (BaMasc) is the primary sex-determining switch in Bicyclus anynana butterflies. Embryos carrying a single BaMasc allele develop into WZ (or Z0) females, those carrying two distinct alleles develop into ZZ males, while (ZZ) homozygotes initiate female development, have mismatched dosage compensation, and die as embryos. Consequently, selection against homozygotes has favored the evolution of spectacular allelic diversity: 205 different coding sequences of BaMasc were detected in a sample of 246 females. The structural similarity of a hypervariable region (HVR) in BaMasc to the HVR in Apis mellifera csd suggests molecular convergence between deeply diverged insect lineages. Our discovery of this primary switch highlights the fascinating diversity of sex-determining mechanisms and underlying evolutionary drivers.
Collapse
Affiliation(s)
- Arjen E. van’t Hof
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool L69 7ZB, UK
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05 České Budějovice, Czech Republic
| | - Sam Whiteford
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool L69 7ZB, UK
| | - Carl J. Yung
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool L69 7ZB, UK
| | - Atsuo Yoshido
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05 České Budějovice, Czech Republic
| | - Magda Zrzavá
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05 České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Maaike A. de Jong
- Netherlands eScience Center, Science Park 402, 1098 XH Amsterdam, Netherlands
| | - Kian-Long Tan
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Dantong Zhu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | | | - František Marec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05 České Budějovice, Czech Republic
| | - Ilik J. Saccheri
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
8
|
Nunez JCB, Lenhart BA, Bangerter A, Murray CS, Mazzeo GR, Yu Y, Nystrom TL, Tern C, Erickson PA, Bergland AO. A cosmopolitan inversion facilitates seasonal adaptation in overwintering Drosophila. Genetics 2024; 226:iyad207. [PMID: 38051996 PMCID: PMC10847723 DOI: 10.1093/genetics/iyad207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023] Open
Abstract
Fluctuations in the strength and direction of natural selection through time are a ubiquitous feature of life on Earth. One evolutionary outcome of such fluctuations is adaptive tracking, wherein populations rapidly adapt from standing genetic variation. In certain circumstances, adaptive tracking can lead to the long-term maintenance of functional polymorphism despite allele frequency change due to selection. Although adaptive tracking is likely a common process, we still have a limited understanding of aspects of its genetic architecture and its strength relative to other evolutionary forces such as drift. Drosophila melanogaster living in temperate regions evolve to track seasonal fluctuations and are an excellent system to tackle these gaps in knowledge. By sequencing orchard populations collected across multiple years, we characterized the genomic signal of seasonal demography and identified that the cosmopolitan inversion In(2L)t facilitates seasonal adaptive tracking and shows molecular footprints of selection. A meta-analysis of phenotypic studies shows that seasonal loci within In(2L)t are associated with behavior, life history, physiology, and morphological traits. We identify candidate loci and experimentally link them to phenotype. Our work contributes to our general understanding of fluctuating selection and highlights the evolutionary outcome and dynamics of contemporary selection on inversions.
Collapse
Affiliation(s)
- Joaquin C B Nunez
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
- Department of Biology, University of Vermont, 109 Carrigan Drive, Burlington, VT 05405, USA
| | - Benedict A Lenhart
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
| | - Alyssa Bangerter
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
| | - Connor S Murray
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
| | - Giovanni R Mazzeo
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
| | - Yang Yu
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
| | - Taylor L Nystrom
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
| | - Courtney Tern
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
| | - Priscilla A Erickson
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
- Department of Biology, University of Richmond, 138 UR Drive, Richmond, VA 23173, USA
| | - Alan O Bergland
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
| |
Collapse
|
9
|
Nayak SS, Panigrahi M, Rajawat D, Jain K, Sharma A, Bhushan B, Dutt T. Unique footprints of balancing selection in bovine genome. 3 Biotech 2024; 14:55. [PMID: 38282911 PMCID: PMC10817884 DOI: 10.1007/s13205-024-03914-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024] Open
Abstract
Balancing selection is the process of selection that preserves various alleles within a population. Studying the areas undergoing balancing selection is essential, because it preserves genetic diversity in a population. Finding genes that exhibit signs of balancing selection during the domestication of cattle is the goal of this study. To identify regions where polymorphism has persisted in the cattle population for millions of years, we examined the genome of cattle. In this study, we used bovine SNP 50 k data to conduct a detailed genome-wide assessment of selection signatures for balancing selection. We have included the genotyped data from 427 animals, including five taurines, two crossbreds, and eight Indian cattle breeds. For this study, we employed Tajima's D approach to identify signature regions undergoing balancing selection. Using the NCBI database, PANTHER 17.0, and CattleQTL database, the annotation was carried out after finding the relevant areas under balancing selection. The number of genomic regions undergoing balancing selection in Ayrshire, Brown-Swiss, Frieswal, Gir, Guernsey, Hariana, Holstein Friesian, Jersey, Kankrej, Nelore, Ongole, Red Sindhi, Sahiwal, Tharparkar, and Vrindavani was 11, 13, 13, 19, 18, 11, 17, 14, 14, 12, 10, 12, 13, 13, and 11, respectively. We have observed multiple immune system-related genes going through balancing selection, including KIT, NFATC2, GBP4, LRRC32, SYT7, RAG1, RAG2, LOC513659, and ZBTB17. In our study, we found that the majority of the immune-related genes and a few genes associated with growth, reproduction, production, and adaptation are undergoing balancing selection.
Collapse
Affiliation(s)
- Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Karan Jain
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Anurodh Sharma
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| |
Collapse
|
10
|
Angelakopoulos R, Tsipourlianos A, Giannoulis T, Mamuris Z, Moutou KA. MassArray Genotyping as a Selection Tool for Extending the Shelf-Life of Fresh Gilthead Sea Bream and European Seabass. Animals (Basel) 2024; 14:205. [PMID: 38254374 PMCID: PMC10812826 DOI: 10.3390/ani14020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/12/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
In modern aquaculture, genomics-driven breeding programs have emerged as powerful tools for optimizing fish quality. This study focused on two emblematic Mediterranean fish species, the European seabass (Dicentrarchus labrax) and the gilthead sea bream (Sparus aurata), with a primary aim of exploring the genetic basis of white muscle/fillet degradation in fresh fish following harvest. We identified 57 and 44 missense SNPs in gilthead sea bream and European seabass, respectively, located within genes encoding for endogenous proteases responsible for fillet quality. These SNPs were cherry-picked based on their strategic location within the catalytic/regulatory domains of endogenous proteases that are expressed in the white muscle. Using MassArray technology, we successfully associated differentiated enzymatic activity of those endogenous proteases post-harvest as a phenotypic trait with genetic polymorphism of six SNPs in gilthead sea bream and nine in European seabass. These findings can be valuable attributes in selective breeding programs toward the extension of freshness and shelf life of these species. The integration of MassArray technology into breeding programs offers a cost-effective strategy for harnessing the potential of these genetic variants to enhance the overall quality of the final product. Recognizing that fresh fish perishability is a challenge, extending shelf-life is pivotal in reducing losses and production costs.
Collapse
Affiliation(s)
- Rafael Angelakopoulos
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, School of Medical Sciences, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece; (R.A.); (A.T.); (Z.M.)
| | - Andreas Tsipourlianos
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, School of Medical Sciences, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece; (R.A.); (A.T.); (Z.M.)
| | - Themistoklis Giannoulis
- Laboratory of Biology, Genetics and Bioinformatics, Department of Animal Science, University of Thessaly, Greece Gaiopolis, 41334 Larissa, Greece;
| | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, School of Medical Sciences, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece; (R.A.); (A.T.); (Z.M.)
| | - Katerina A. Moutou
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, School of Medical Sciences, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece; (R.A.); (A.T.); (Z.M.)
| |
Collapse
|
11
|
Ojeda-Marín C, Cervantes I, Formoso-Rafferty N, Gutiérrez JP. Genomic inbreeding measures applied to a population of mice divergently selected for birth weight environmental variance. Front Genet 2023; 14:1303748. [PMID: 38155710 PMCID: PMC10752941 DOI: 10.3389/fgene.2023.1303748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
This study aimed to compare different inbreeding measures estimated from pedigree and molecular data from two divergent mouse lines selected for environmental birth weight during 26 generations. Furthermore, the performance of different approaches and both molecular and pedigree data sources for estimating Ne were tested in this population. A total of 1,699 individuals were genotyped using a high-density genotyping array. Genomic relationship matrices were used to calculate molecular inbreeding: Nejati-Javaremi (F NEJ), Li and Horvitz (F L&H), Van Raden method 1 (F VR1) and method 2 (F VR2), and Yang (F YAN). Inbreeding based on runs of homozygosity (F ROH) and pedigree inbreeding (F PED) were also computed. F ROH, F NEJ, and F L&H were also adjusted for their average values in the first generation of selection and named F ROH0, F NEJ0, and F L&H0. ∆F was calculated from pedigrees as the individual inbreeding rate between the individual and his parents (∆F PEDt) and individual increases in inbreeding (∆F PEDi). Moreover, individual ∆F was calculated from the different molecular inbreeding coefficients (∆F NEJ0, ∆F L&H, ∆F L&H0, ∆F VR1, ∆F VR2, ∆F YAN, and ∆F ROH0). The Ne was obtained from different ∆F, such as Ne PEDt, Ne PEDi, Ne NEJ0, Ne L&H, Ne L&H0, Ne VR1, Ne VR2, Ne YAN, and Ne ROH0. Comparing with F PED , F ROH , F NEJ and F VR2 overestimated inbreeding while F NEJ0 , F L&H , F L&H0 , F VR1 and F YAN underestimated inbreeding. Correlations between inbreeding coefficients and ∆F were calculated. F ROH had the highest correlation with F PED (0.89); F YAN had correlations >0.95 with all the other molecular inbreeding coefficients. Ne PEDi was more reliable than Ne PEDt and presented similar behaviour to Ne L&H0 and Ne NEJ0. Stable trends in Ne were not observed until the 10th generation. In the 10th generation Ne PEDi was 42.20, Ne L&H0 was 45.04 and Ne NEJ0 was 45.05 and in the last generation these Ne were 35.65, 35.94 and 35.93, respectively F ROH presented the highest correlation with F PED, which addresses the identity by descent probability (IBD). The evolution of Ne L&H0 and Ne NEJ0 was the most similar to that of Ne PEDi. Data from several generations was necessary to reach a stable trend for Ne, both with pedigree and molecular data. This population was useful to test different approaches to computing inbreeding coefficients and Ne using molecular and pedigree data.
Collapse
Affiliation(s)
- Candela Ojeda-Marín
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Isabel Cervantes
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Nora Formoso-Rafferty
- Departamento de Producción Agraria, E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Juan Pablo Gutiérrez
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
12
|
Promy NT, Newberry M, Gulisija D. Rapid evolution of phenotypic plasticity in patchy habitats. Sci Rep 2023; 13:19158. [PMID: 37932330 PMCID: PMC10628295 DOI: 10.1038/s41598-023-45912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
Phenotypic plasticity may evolve rapidly, enabling a population's persistence in the face of sudden environmental change. Rapid evolution can occur when there is considerable genetic polymorphism at selected loci. We propose that balancing selection could be one of the mechanisms that sustain such polymorphism for plasticity. We use stochastic Monte Carlo simulations and deterministic analysis to investigate the evolution of a plasticity modifier locus in structured populations inhabiting favorable and adverse environments, i.e. patchy habitats. We survey a wide range of parameters including selective pressures on a target (structural) locus, plasticity effects, population sizes, and migration patterns between demes including periodic or continuous bidirectional and source-sink dynamics. We find that polymorphism in phenotypic plasticity can be maintained under a wide range of environmental scenarios in both favorable and adverse environments due to the balancing effect of population structure in patchy habitats. This effect offers a new plausible explanation for the rapid evolution of plasticity in nature: Phenotypic plasticity may rapidly evolve from genetic variation maintained by balancing selection if the population has experienced immigration from populations under different selection regimes.
Collapse
Affiliation(s)
- Nawsheen T Promy
- Department of Computer Science, University of New Mexico, Albuquerque, USA
| | - Mitchell Newberry
- Center for the Study of Complex Systems, University of Michigan, Ann Arbor, USA
- Department of Biology, University of New Mexico, 219 Yale Boulevard NE, 3566 Castetter Hall, Albuquerque, NM, 87131, USA
| | - Davorka Gulisija
- Department of Computer Science, University of New Mexico, Albuquerque, USA.
- Department of Biology, University of New Mexico, 219 Yale Boulevard NE, 3566 Castetter Hall, Albuquerque, NM, 87131, USA.
| |
Collapse
|
13
|
Wang H, Lu J, Stevens T, Roberts A, Mandel J, Avula R, Ma B, Wu Y, Wang J, Land CV, Finkel T, Vockley JE, Airik M, Airik R, Muzumdar R, Gong Z, Torbenson MS, Prochownik EV. Premature aging and reduced cancer incidence associated with near-complete body-wide Myc inactivation. Cell Rep 2023; 42:112830. [PMID: 37481724 PMCID: PMC10591215 DOI: 10.1016/j.celrep.2023.112830] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/18/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
MYC proto-oncogene dysregulation alters metabolism, translation, and other functions in ways that support tumor induction and maintenance. Although Myc+/- mice are healthier and longer-lived than control mice, the long-term ramifications of more complete Myc loss remain unknown. We now describe the chronic consequences of body-wide Myc inactivation initiated postnatally. "MycKO" mice acquire numerous features of premature aging, including altered body composition and habitus, metabolic dysfunction, hepatic steatosis, and dysregulation of gene sets involved in functions that normally deteriorate with aging. Yet, MycKO mice have extended lifespans that correlate with a 3- to 4-fold lower lifetime cancer incidence. Aging tissues from normal mice and humans also downregulate Myc and gradually alter many of the same Myc target gene sets seen in MycKO mice. Normal aging and its associated cancer predisposition are thus highly linked via Myc.
Collapse
Affiliation(s)
- Huabo Wang
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Jie Lu
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Taylor Stevens
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Alexander Roberts
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Jordan Mandel
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Raghunandan Avula
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; The University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Bingwei Ma
- Tongji University School of Medicine, Shanghai, China
| | - Yijen Wu
- Department of Developmental Biology, The University of Pittsburgh, Pittsburgh, PA, USA
| | - Jinglin Wang
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Central South University, Xiangya School of Medicine, Changsha, Hunan 410013, P.R. China
| | - Clinton Van't Land
- Division of Medical Genetics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Toren Finkel
- Division of Cardiology, The Department of Internal Medicine and the UPMC Aging Institute, Pittsburgh, PA 15224, USA
| | - Jerry E Vockley
- Division of Medical Genetics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Merlin Airik
- Division of Nephrology, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Rannar Airik
- Division of Nephrology, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Radhika Muzumdar
- Division of Endocrinology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Zhenwei Gong
- Division of Endocrinology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Michel S Torbenson
- Division of Laboratory Medicine and Pathology, The Mayo Clinic, Rochester, MN 55905, USA
| | - Edward V Prochownik
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Microbiology and Molecular Genetics, UPMC, Pittsburgh, PA 15261, USA; Hillman Cancer Center of UPMC, Pittsburgh, PA 15232, USA; Pittsburgh Liver Research Center, UPMC, Pittsburgh, PA 15261, USA.
| |
Collapse
|
14
|
Prochownik EV, Wang H. Lessons in aging from Myc knockout mouse models. Front Cell Dev Biol 2023; 11:1244321. [PMID: 37621775 PMCID: PMC10446843 DOI: 10.3389/fcell.2023.1244321] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Despite MYC being among the most intensively studied oncogenes, its role in normal development has not been determined as Myc-/- mice do not survival beyond mid-gestation. Myc ± mice live longer than their wild-type counterparts and are slower to accumulate many age-related phenotypes. However, Myc haplo-insufficiency likely conceals other important phenotypes as many high-affinity Myc targets genes continue to be regulated normally. By delaying Myc inactivation until after birth it has recently been possible to study the consequences of its near-complete total body loss and thus to infer its normal function. Against expectation, these "MycKO" mice lived significantly longer than control wild-type mice but manifested a marked premature aging phenotype. This seemingly paradoxical behavior was potentially explained by a >3-fold lower lifetime incidence of cancer, normally the most common cause of death in mice and often Myc-driven. Myc loss accelerated the accumulation of numerous "Aging Hallmarks", including the loss of mitochondrial and ribosomal structural and functional integrity, the generation of reactive oxygen species, the acquisition of genotoxic damage, the detrimental rewiring of metabolism and the onset of senescence. In both mice and humans, normal aging in many tissues was accompaniued by the downregulation of Myc and the loss of Myc target gene regulation. Unlike most mouse models of premature aging, which are based on monogenic disorders of DNA damage recognition and repair, the MycKO mouse model directly impacts most Aging Hallmarks and may therefore more faithfully replicate the normal aging process of both mice and humans. It further establishes that the strong association between aging and cancer can be genetically separated and is maintained by a single gene.
Collapse
Affiliation(s)
- Edward V. Prochownik
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
- The Department of Microbiology and Molecular Genetics, UPMC, Pittsburgh, PA, United States
- The Hillman Cancer Center of UPMC, Pittsburgh, PA, United States
- The Pittsburgh Liver Research Center, UPMC, Pittsburgh, PA, United States
| | - Huabo Wang
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
15
|
Abstract
Evolutionary biology provides a crucial foundation for medicine and behavioral science that has been missing from psychiatry. Its absence helps to explain slow progress; its advent promises major advances. Instead of offering a new kind of treatment, evolutionary psychiatry provides a scientific foundation useful for all kinds of treatment. It expands the search for causes from mechanistic explanations for disease in some individuals to evolutionary explanations for traits that make all members of a species vulnerable to disease. For instance, capacities for symptoms such as pain, cough, anxiety and low mood are universal because they are useful in certain situations. Failing to recognize the utility of anxiety and low mood is at the root of many problems in psychiatry. Determining if an emotion is normal and if it is useful requires understanding an individual's life situation. Conducting a review of social systems, parallel to the review of systems in the rest of medicine, can help achieve that understanding. Coping with substance abuse is advanced by acknowledging how substances available in modern environments hijack chemically mediated learning mechanisms. Understanding why eating spirals out of control in modern environments is aided by recognizing the motivations for caloric restriction and how it arouses famine protection mechanisms that induce binge eating. Finally, explaining the persistence of alleles that cause serious mental disorders requires evolutionary explanations of why some systems are intrinsically vulnerable to failure. The thrill of finding functions for apparent diseases is evolutionary psychiatry's greatest strength and weakness. Recognizing bad feelings as evolved adaptations corrects psychiatry's pervasive mistake of viewing all symptoms as if they were disease manifestations. However, viewing diseases such as panic disorder, melancholia and schizophrenia as if they are adaptations is an equally serious mistake in evolutionary psychiatry. Progress will come from framing and testing specific hypotheses about why natural selection left us vulnerable to mental disorders. The efforts of many people over many years will be needed before we will know if evolutionary biology can provide a new paradigm for understanding and treating mental disorders.
Collapse
Affiliation(s)
- Randolph M Nesse
- Departments of Psychiatry and Psychology, University of Michigan, Ann Arbor, MI, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
16
|
Huang G, Wu W, Chen Y, Zhi X, Zou P, Ning Z, Fan Q, Liu Y, Deng S, Zeng K, Zhou R. Balancing selection on an MYB transcription factor maintains the twig trichome color variation in Melastoma normale. BMC Biol 2023; 21:122. [PMID: 37226197 DOI: 10.1186/s12915-023-01611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 05/03/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND The factors that maintain phenotypic and genetic variation within a population have received long-term attention in evolutionary biology. Here the genetic basis and evolution of the geographically widespread variation in twig trichome color (from red to white) in a shrub Melastoma normale was investigated using Pool-seq and evolutionary analyses. RESULTS The results show that the twig trichome coloration is under selection in different light environments and that a 6-kb region containing an R2R3 MYB transcription factor gene is the major region of divergence between the extreme red and white morphs. This gene has two highly divergent groups of alleles, one of which likely originated from introgression from another species in this genus and has risen to high frequency (> 0.6) within each of the three populations under investigation. In contrast, polymorphisms in other regions of the genome show no sign of differentiation between the two morphs, suggesting that genomic patterns of diversity have been shaped by homogenizing gene flow. Population genetics analysis reveals signals of balancing selection acting on this gene, and it is suggested that spatially varying selection is the most likely mechanism of balancing selection in this case. CONCLUSIONS This study demonstrate that polymorphisms on a single transcription factor gene largely confer the twig trichome color variation in M. normale, while also explaining how adaptive divergence can occur and be maintained in the face of gene flow.
Collapse
Affiliation(s)
- Guilian Huang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wei Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yongmei Chen
- College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan, 643000, China
| | - Xueke Zhi
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Peishan Zou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zulin Ning
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Qiang Fan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ying Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shulin Deng
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Kai Zeng
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.
| | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
17
|
Luo D, Zeng Z, Wu Z, Chen C, Zhao T, Du H, Miao Y, Liu D. Intraspecific variation in genome size in Artemisia argyi determined using flow cytometry and a genome survey. 3 Biotech 2023; 13:57. [PMID: 36698769 PMCID: PMC9868218 DOI: 10.1007/s13205-022-03412-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/26/2022] [Indexed: 01/23/2023] Open
Abstract
Different collections and accessions of Artemisia argyi (Chinese mugwort) harbour considerable diversity in morphology and bioactive compounds, but no mechanisms have been reported that explain these variations. We studied genome size in A. argyi accessions from different regions of China by flow cytometry. Genome size was significantly distinct among origins of these 42 Chinese mugwort accessions, ranging from 8.428 to 11.717 pg. There were no significant intraspecific differences among the 42 accessions from the five regions of China. The clustering analysis showed that these 42 A. argyi accessions could be divided into three groups, which had no significant relationship with geographical location. In a genome survey, the total genome size of A. argyi (A15) was estimated to be 7.852 Gb (or 8.029 pg) by K-mer analysis. This indicated that the results from the two independent methods are consistent, and that the genome survey can be used as an adjunct to flow cytometry to compensate for its deficiencies. In addition, genome survey can provide the information about heterozygosity, repeat sequences, GC content and ploidy of A. argyi genome. The nuclear DNA contents determined here provide a new reference for intraspecific variation in genome size in A. argyi, and may also be a potential resource for the study of genetic diversity and for breeding new cultivar.
Collapse
Affiliation(s)
- Dandan Luo
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065 China
| | - Zeyi Zeng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065 China
| | - Zongqi Wu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065 China
| | - Changjie Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065 China
| | - Tingting Zhao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065 China
| | - Hongzhi Du
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065 China
| | - Yuhuan Miao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065 China
| | - Dahui Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065 China
| |
Collapse
|
18
|
Gefaell J, Galindo J, Rolán‐Alvarez E. Shell color polymorphism in marine gastropods. Evol Appl 2023; 16:202-222. [PMID: 36793692 PMCID: PMC9923496 DOI: 10.1111/eva.13416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 12/01/2022] Open
Abstract
Marine gastropods are characterized by an incredible variation in shell color. In this review, we aim to introduce researchers to previous studies of shell color polymorphism in this group of animals, trying to provide an overview of the topic and highlighting some potential avenues for future research. For this, we tackle the different aspects of shell color polymorphism in marine gastropods: its biochemical and genetic basis, its patterns of spatial and temporal distribution, as well as its potential evolutionary causes. In particular, we put special emphasis on the evolutionary studies that have been conducted so far to reveal the evolutionary mechanisms responsible for the maintenance of shell color polymorphism in this group of animals, as it constitutes the least addressed aspect in existing literature reviews. Several general conclusions can be drawn from our review: First, natural selection is commonly involved in the maintenance of gastropod color polymorphism; second, although the contribution of neutral forces (gene flow-genetic drift equilibrium) to shell color polymorphism maintenance do not seem to be particularly important, it has rarely been studied systematically; third, a relationship between shell color polymorphism and mode of larval development (related to dispersal capability) may exist. As for future studies, we suggest that a combination of both classical laboratory crossing experiments and -Omics approaches may yield interesting results on the molecular basis of color polymorphism. We believe that understanding the various causes of shell color polymorphism in marine gastropods is of great importance not only to understand how biodiversity works, but also for protecting such biodiversity, as knowledge of its evolutionary causes may help implement conservation measures in those species or ecosystems that are threatened.
Collapse
Affiliation(s)
- Juan Gefaell
- Departamento de BioquímicaGenética e InmunologíaCentro de Investigación MariñaUniversidade de VigoVigoSpain
| | - Juan Galindo
- Departamento de BioquímicaGenética e InmunologíaCentro de Investigación MariñaUniversidade de VigoVigoSpain
| | - Emilio Rolán‐Alvarez
- Departamento de BioquímicaGenética e InmunologíaCentro de Investigación MariñaUniversidade de VigoVigoSpain
| |
Collapse
|
19
|
Emura N, Muranaka T, Iwasaki T, Honjo MN, Nagano AJ, Isagi Y, Kudoh H. Effects of fruit dimorphism on genetic structure and gene flow in the coastal shrub Scaevola taccada. ANNALS OF BOTANY 2022; 130:1029-1040. [PMID: 36534688 PMCID: PMC9851332 DOI: 10.1093/aob/mcac138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND AIMS Plant propagules often possess specialized morphologies that facilitate dispersal across specific landscapes. In the fruit dimorphism of a coastal shrub, Scaevola taccada, individual plants produce either cork-morph or pulp-morph fruits. The former is buoyant and common on sandy beaches, whereas the latter does not float, is bird-dispersed, and is common on elevated sites such as slopes on sea cliffs and behind rocky shores. We hypothesized that beach populations bridge the heterogeneous landscapes by serving as a source of both fruit types, while dispersal is biased for the pulp morph on elevated sites within the islands and for the cork morph between beaches of different islands. Based on this hypothesis, we predicted that populations in elevated sites would diverge genetically over time due to isolation by distance, whereas beach populations would maintain high genetic similarity via current gene flow. METHODS The genetic structure and gene flow in S. taccada were evaluated by investigating genome-wide single nucleotide polymorphisms in plants from 17 sampling sites on six islands (belonging to the Ryukyu, Daito and Ogasawara Islands) in Japan. KEY RESULTS Geographical isolation was detected among the three distant island groups. Analyses within the Ryukyu Islands suggested that sandy beach populations were characterized by genetic admixture, whereas populations in elevated sites were relatively isolated between the islands. Pairwise FST values between islands were lowest between sandy beaches, intermediate between sandy beaches and elevated sites, and highest between elevated sites. CONCLUSIONS Dispersal across the ocean by cork morphs is sufficiently frequent to prevent genetic divergence between beaches of different islands. Stronger genetic isolation of elevated sites between islands suggests that bird dispersal by pulp morphs is restricted mainly within islands. These contrasting patterns of gene flow realized by fruit dimorphism provide evidence that fruit characteristics can strongly mediate genetic structure.
Collapse
Affiliation(s)
- Naoko Emura
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu 520-2113, Japan
- Department of Environmental Sciences and Technology, Faculty of Agriculture, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Tomoaki Muranaka
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu 520-2113, Japan
- Department of Environmental Sciences and Technology, Faculty of Agriculture, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Takaya Iwasaki
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu 520-2113, Japan
- Natural Science Division, Faculty of Core Research, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Mie N Honjo
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu 520-2113, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Yokotani, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | - Yuji Isagi
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu 520-2113, Japan
| |
Collapse
|
20
|
Caballero A, Fernández A, Villanueva B, Toro MA. A comparison of marker-based estimators of inbreeding and inbreeding depression. Genet Sel Evol 2022; 54:82. [PMID: 36575379 PMCID: PMC9793638 DOI: 10.1186/s12711-022-00772-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The availability of genome-wide marker data allows estimation of inbreeding coefficients (F, the probability of identity-by-descent, IBD) and, in turn, estimation of the rate of inbreeding depression (ΔID). We investigated, by computer simulations, the accuracy of the most popular estimators of inbreeding based on molecular markers when computing F and ΔID in populations under random mating, equalization of parental contributions, and artificially selected populations. We assessed estimators described by Li and Horvitz (FLH1 and FLH2), VanRaden (FVR1 and FVR2), Yang and colleagues (FYA1 and FYA2), marker homozygosity (FHOM), runs of homozygosity (FROH) and estimates based on pedigree (FPED) in comparison with estimates obtained from IBD measures (FIBD). RESULTS If the allele frequencies of a base population taken as a reference for the computation of inbreeding are known, all estimators based on marker allele frequencies are highly correlated with FIBD and provide accurate estimates of the mean ΔID. If base population allele frequencies are unknown and current frequencies are used in the estimations, the largest correlation with FIBD is generally obtained by FLH1 and the best estimator of ΔID is FYA2. The estimators FVR2 and FLH2 have the poorest performance in most scenarios. The assumption that base population allele frequencies are equal to 0.5 results in very biased estimates of the average inbreeding coefficient but they are highly correlated with FIBD and give relatively good estimates of ΔID. Estimates obtained directly from marker homozygosity (FHOM) substantially overestimated ΔID. Estimates based on runs of homozygosity (FROH) provide accurate estimates of inbreeding and ΔID. Finally, estimates based on pedigree (FPED) show a lower correlation with FIBD than molecular estimators but provide rather accurate estimates of ΔID. An analysis of data from a pig population supports the main findings of the simulations. CONCLUSIONS When base population allele frequencies are known, all marker-allele frequency-based estimators of inbreeding coefficients generally show a high correlation with FIBD and provide good estimates of ΔID. When base population allele frequencies are unknown, FLH1 is the marker frequency-based estimator that is most correlated with FIBD, and FYA2 provides the most accurate estimates of ΔID. Estimates from FROH are also very precise in most scenarios. The estimators FVR2 and FLH2 have the poorest performances.
Collapse
Affiliation(s)
- Armando Caballero
- grid.6312.60000 0001 2097 6738Centro de Investigación Mariña, Universidade de Vigo, Facultade de Bioloxía, 36310 Vigo, Spain
| | - Almudena Fernández
- Departamento de Mejora Genética Animal, INIA-CSIC, Ctra. de La Coruña, Km 7.5, 28040 Madrid, Spain
| | - Beatriz Villanueva
- Departamento de Mejora Genética Animal, INIA-CSIC, Ctra. de La Coruña, Km 7.5, 28040 Madrid, Spain
| | - Miguel A. Toro
- grid.5690.a0000 0001 2151 2978Departamento de Producción Agraria, ETSI Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
21
|
Nabutanyi P, Wittmann MJ. Modeling minimum viable population size with multiple genetic problems of small populations. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13940. [PMID: 35674090 DOI: 10.1111/cobi.13940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 06/15/2023]
Abstract
An important goal for conservation is to define minimum viable population (MVP) sizes for long-term persistence of a species. There is increasing evidence of the role of genetics in population extinction; thus, conservation practitioners are starting to consider the effects of deleterious mutations (DM), in particular the effects of inbreeding depression on fitness. We sought to develop methods to account for genetic problems other than inbreeding depression in MVP estimates, quantify the effect of the interaction of multiple genetic problems on MVP sizes, and find ways to reduce the arbitrariness of time and persistence probability thresholds in MVP analyses. To do so, we developed ecoevolutionary quantitative models to track population size and levels of genetic diversity. We assumed a biallelic multilocus genome with loci under single or multiple, interacting genetic forces. We included mutation-selection-drift balance (for loci with DM) and 3 forms of balancing selection for loci for which variation is lost through genetic drift. We defined MVP size as the lowest population size that avoids an ecoevolutionary extinction vortex. For populations affected by only balancing selection, MVP size decreased rapidly as mutation rates increased. For populations affected by mutation-selection-drift balance, the MVP size increased rapidly. In addition, MVP sizes increased rapidly as the number of loci increased under the same or different selection mechanisms until even arbitrarily large populations could not survive. In the case of fixed number of loci under selection, interaction of genetic problems did not always increase MVP sizes. To further enhance understanding about interaction of genetic problems, there is need for more empirical studies to reveal how different genetic processes interact in the genome.
Collapse
Affiliation(s)
- Peter Nabutanyi
- Department of Theoretical Biology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Meike J Wittmann
- Department of Theoretical Biology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
22
|
De Pasqual C, Suisto K, Kirvesoja J, Gordon S, Ketola T, Mappes J. Heterozygote advantage and pleiotropy contribute to intraspecific color trait variability. Evolution 2022; 76:2389-2403. [PMID: 35984008 PMCID: PMC9805086 DOI: 10.1111/evo.14597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 01/22/2023]
Abstract
The persistence of intrapopulation phenotypic variation typically requires some form of balancing selection because drift and directional selection eventually erode genetic variation. Heterozygote advantage remains a classic explanation for the maintenance of genetic variation in the face of selection. However, examples of heterozygote advantage, other than those associated with disease resistance, are rather uncommon. Across most of its distribution, males of the aposematic moth Arctia plantaginis have two hindwing phenotypes determined by a heritable one locus-two allele polymorphism (genotypes: WW/Wy = white morph, yy = yellow morph). Using genotyped moths, we show that the presence of one or two copies of the yellow allele affects several life-history traits. Reproductive output of both males and females and female mating success are negatively affected by two copies of the yellow allele. Females carrying one yellow allele (i.e., Wy) have higher fertility, hatching success, and offspring survival than either homozygote, thus leading to strong heterozygote advantage. Our results indicate strong female contribution especially at the postcopulatory stage in maintaining the color polymorphism. The interplay between heterozygote advantage, yellow allele pleiotropic effect, and morph-specific predation pressure may exert balancing selection on the color locus, suggesting that color polymorphism may be maintained through complex interactions between natural and sexual selection.
Collapse
Affiliation(s)
- Chiara De Pasqual
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskylä40014Finland
- Organismal and Evolutionary Biology Research ProgramUniversity of HelsinkiHelsinki00014Finland
| | - Kaisa Suisto
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskylä40014Finland
| | - Jimi Kirvesoja
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskylä40014Finland
| | - Swanne Gordon
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNew York14853
| | - Tarmo Ketola
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskylä40014Finland
| | - Johanna Mappes
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskylä40014Finland
- Organismal and Evolutionary Biology Research ProgramUniversity of HelsinkiHelsinki00014Finland
| |
Collapse
|
23
|
Female birds disguised as males get extra food. Nature 2022; 610:259-260. [PMID: 36216910 DOI: 10.1038/d41586-022-03177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Rau D, Attene G, Rodriguez M, Baghino L, Pisanu AB, Sanna D, Acquadro A, Portis E, Comino C. The Population Structure of a Globe Artichoke Worldwide Collection, as Revealed by Molecular and Phenotypic Analyzes. FRONTIERS IN PLANT SCIENCE 2022; 13:898740. [PMID: 35865281 PMCID: PMC9294547 DOI: 10.3389/fpls.2022.898740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/13/2022] [Indexed: 05/27/2023]
Abstract
The knowledge of the organization of the domesticated gene pool of crop species is an essential requirement to understand crop evolution, to rationalize conservation programs, and to support practical decisions in plant breeding. Here, we integrate simple sequence repeat (SSR) analysis and phenotypic characterization to investigate a globe artichoke collection that comprises most of the varieties cultivated worldwide. We show that the cultivated gene pool of globe artichoke includes five distinct genetic groups associated with the major phenotypic typologies: Catanesi (which based on our analysis corresponds to Violetti di Provenza), Spinosi, Violetti di Toscana, Romaneschi, and Macau. We observed that 17 and 11% of the molecular and phenotypic variance, respectively, is between these groups, while within groups, strong linkage disequilibrium and heterozygote excess are evident. The divergence between groups for quantitative traits correlates with the average broad-sense heritability within the groups. The phenotypic divergence between groups for both qualitative and quantitative traits is strongly and positively correlated with SSR divergence (FST) between groups. All this implies a low population size and strong bottleneck effects, and indicates a long history of clonal propagation and selection during the evolution of the domesticated gene pool of globe artichoke. Moreover, the comparison between molecular and phenotypic population structures suggests that harvest time, plant architecture (i.e., plant height, stem length), leaf spininess, head morphology (i.e., head shape, bract shape, spininess) together with the number of heads per plant were the main targets of selection during the evolution of the cultivated germplasm. We emphasize our findings in light of the potential exploitation of this collection for association mapping studies.
Collapse
Affiliation(s)
- Domenico Rau
- Dipartimento di Agraria, Sezione di Agronomia, Coltivazioni Erbacee e Genetica (SACEG), Università degli Studi di Sassari, Sassari, Italy
| | - Giovanna Attene
- Dipartimento di Agraria, Sezione di Agronomia, Coltivazioni Erbacee e Genetica (SACEG), Università degli Studi di Sassari, Sassari, Italy
| | - Monica Rodriguez
- Dipartimento di Agraria, Sezione di Agronomia, Coltivazioni Erbacee e Genetica (SACEG), Università degli Studi di Sassari, Sassari, Italy
| | - Limbo Baghino
- Agenzia AGRIS Sardegna (Servizio Ricerca sui Sistemi Colturali Erbacei, Settore Innovazione dei Modelli Gestionali e Studio Della Biodiversità Nelle Colture Intensive), Oristano, Italy
| | - Anna Barbara Pisanu
- Agenzia AGRIS Sardegna (Servizio Ricerca sui Sistemi Colturali Erbacei, Settore Innovazione dei Modelli Gestionali e Studio Della Biodiversità Nelle Colture Intensive), Oristano, Italy
| | - Davide Sanna
- Agenzia AGRIS Sardegna (Servizio Ricerca sui Sistemi Colturali Erbacei, Settore Innovazione dei Modelli Gestionali e Studio Della Biodiversità Nelle Colture Intensive), Oristano, Italy
| | - Alberto Acquadro
- Dipartimento di Scienze Agrarie, Forestali ed Alimentari (DISAFA), Genetica Vegetale (Plant Genetics), Università degli Studi di Torino, Turin, Italy
| | - Ezio Portis
- Dipartimento di Scienze Agrarie, Forestali ed Alimentari (DISAFA), Genetica Vegetale (Plant Genetics), Università degli Studi di Torino, Turin, Italy
| | - Cinzia Comino
- Dipartimento di Scienze Agrarie, Forestali ed Alimentari (DISAFA), Genetica Vegetale (Plant Genetics), Università degli Studi di Torino, Turin, Italy
| |
Collapse
|
25
|
Pérez‐Pereira N, López‐Cortegano E, García‐Dorado A, Caballero A. Prediction of fitness under different breeding designs in conservation programs. Anim Conserv 2022. [DOI: 10.1111/acv.12804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- N. Pérez‐Pereira
- Centro de Investigación Mariña Universidade de Vigo, Facultade de Bioloxía Vigo Spain
| | - E. López‐Cortegano
- Centro de Investigación Mariña Universidade de Vigo, Facultade de Bioloxía Vigo Spain
| | - A. García‐Dorado
- Departamento de Genética, Facultad de Ciencias Biológicas Universidad Complutense Madrid Spain
| | - A. Caballero
- Centro de Investigación Mariña Universidade de Vigo, Facultade de Bioloxía Vigo Spain
| |
Collapse
|
26
|
Minias P, Vinkler M. Selection balancing at innate immune genes: adaptive polymorphism maintenance in Toll-like receptors. Mol Biol Evol 2022; 39:6586215. [PMID: 35574644 PMCID: PMC9132207 DOI: 10.1093/molbev/msac102] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Balancing selection is a classic mechanism for maintaining variability in immune genes involved in host–pathogen interactions. However, it remains unclear how widespread the mechanism is across immune genes other than the major histocompatibility complex (MHC). Although occasional reports suggest that balancing selection (heterozygote advantage, negative frequency-dependent selection, and fluctuating selection) may act on other immune genes, the current understanding of the phenomenon in non-MHC immune genes is far from solid. In this review, we focus on Toll-like receptors (TLRs), innate immune genes directly involved in pathogen recognition and immune response activation, as there is a growing body of research testing the assumptions of balancing selection in these genes. After reviewing infection- and fitness-based evidence, along with evidence based on population allelic frequencies and heterozygosity levels, we conclude that balancing selection maintains variation in TLRs, though it tends to occur under specific conditions in certain evolutionary lineages rather than being universal and ubiquitous. Our review also identifies key gaps in current knowledge and proposes promising areas for future research. Improving our understanding of host–pathogen interactions and balancing selection in innate immune genes are increasingly important, particularly regarding threats from emerging zoonotic diseases.
Collapse
|
27
|
Muralidhar P, Veller C. Dominance shifts increase the likelihood of soft selective sweeps. Evolution 2022; 76:966-984. [PMID: 35213740 PMCID: PMC9928167 DOI: 10.1111/evo.14459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/04/2022] [Indexed: 01/21/2023]
Abstract
Genetic models of adaptation to a new environment have typically assumed that the alleles involved maintain a constant fitness dominance across the old and new environments. However, theories of dominance suggest that this should often not be the case. Instead, the alleles involved should frequently shift from recessive deleterious in the old environment to dominant beneficial in the new environment. Here, we study the consequences of these expected dominance shifts for the genetics of adaptation to a new environment. We find that dominance shifts increase the likelihood that adaptation occurs from standing variation, and that multiple alleles from the standing variation are involved (a soft selective sweep). Furthermore, we find that expected dominance shifts increase the haplotypic diversity of selective sweeps, rendering soft sweeps more detectable in small genomic samples. In cases where an environmental change threatens the viability of the population, we show that expected dominance shifts of newly beneficial alleles increase the likelihood of evolutionary rescue and the number of alleles involved. Finally, we apply our results to a well-studied case of adaptation to a new environment: the evolution of pesticide resistance at the Ace locus in Drosophila melanogaster. We show that, under reasonable demographic assumptions, the expected dominance shift of resistant alleles causes soft sweeps to be the most frequent outcome in this case, with the primary source of these soft sweeps being the standing variation at the onset of pesticide use, rather than recurrent mutation thereafter.
Collapse
Affiliation(s)
- Pavitra Muralidhar
- Center for Population Biology, University of California,
Davis, CA 95616,Department of Evolution and Ecology, University of
California, Davis, CA 95616,corresponding author:
| | - Carl Veller
- Center for Population Biology, University of California,
Davis, CA 95616,Department of Evolution and Ecology, University of
California, Davis, CA 95616
| |
Collapse
|
28
|
Selection and demography drive range-wide patterns of MHC-DRB variation in mule deer. BMC Ecol Evol 2022; 22:42. [PMID: 35387584 PMCID: PMC8988406 DOI: 10.1186/s12862-022-01998-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Standing genetic variation is important especially in immune response-related genes because of threats to wild populations like the emergence of novel pathogens. Genetic variation at the major histocompatibility complex (MHC), which is crucial in activating the adaptive immune response, is influenced by both natural selection and historical population demography, and their relative roles can be difficult to disentangle. To provide insight into the influences of natural selection and demography on MHC evolution in large populations, we analyzed geographic patterns of variation at the MHC class II DRB exon 2 locus in mule deer (Odocoileus hemionus) using sequence data collected across their entire broad range. RESULTS We identified 31 new MHC-DRB alleles which were phylogenetically similar to other cervid MHC alleles, and one allele that was shared with white-tailed deer (Odocoileus virginianus). We found evidence for selection on the MHC including high dN/dS ratios, positive neutrality tests, deviations from Hardy-Weinberg Equilibrium (HWE) and a stronger pattern of isolation-by-distance (IBD) than expected under neutrality. Historical demography also shaped variation at the MHC, as indicated by similar spatial patterns of variation between MHC and microsatellite loci and a lack of association between genetic variation at either locus type and environmental variables. CONCLUSIONS Our results show that both natural selection and historical demography are important drivers in the evolution of the MHC in mule deer and work together to shape functional variation and the evolution of the adaptive immune response in large, well-connected populations.
Collapse
|
29
|
Mylona I, Floros GD. Blue Light Blocking Treatment for the Treatment of Bipolar Disorder: Directions for Research and Practice. J Clin Med 2022; 11:jcm11051380. [PMID: 35268469 PMCID: PMC8911317 DOI: 10.3390/jcm11051380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/16/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Recent results from a small number of clinical studies have resulted in the suggestion that the process of blocking the transmission of shorter-wavelength light (‘blue light’ with a wave length of 450 nm to 470 nm) may have a beneficial role in the treatment of bipolar disorder. This critical review will appraise the quality of evidence so far as to these claims, assess the neurobiology that could be implicated in the underlying processes while introducing a common set of research criteria for the field.
Collapse
Affiliation(s)
- Ioanna Mylona
- 2nd Department of Ophthalmology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Georgios D. Floros
- 2nd Department of Psychiatry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
- Correspondence: ; Tel.: +30-69-4432-4565
| |
Collapse
|
30
|
Ruan D, Yang J, Zhuang Z, Ding R, Huang J, Quan J, Gu T, Hong L, Zheng E, Li Z, Cai G, Wang X, Wu Z. Assessment of Heterozygosity and Genome-Wide Analysis of Heterozygosity Regions in Two Duroc Pig Populations. Front Genet 2022; 12:812456. [PMID: 35154256 PMCID: PMC8830653 DOI: 10.3389/fgene.2021.812456] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/15/2021] [Indexed: 01/02/2023] Open
Abstract
Heterozygosity can effectively reflect the diverse models of population structure and demographic history. However, the genomic distribution of heterozygotes and the correlation between regions of heterozygosity (runs of heterozygosity, ROHet) and phenotypes are largely understudied in livestock. The objective of this study was to identify ROHet in the Duroc pig genome, and investigate the relationships between ROHet and eight important economic traits. Here, we genotyped 3,770 American Duroc (S21) and 2,096 Canadian Duroc (S22) pigs using 50 K single nucleotide polymorphism array to analyze heterozygosity. A total of 145,010 and 84,396 ROHets were characterized for S21 and S22 populations, respectively. ROHet segments were mostly enriched in 1–2 Mb length classification (75.48% in S21 and 72.25% in S22). The average genome length covered by ROHet was 66.53 ± 12.20 Mb in S21 and 73.32 ± 13.77 Mb in S22 pigs. Additionally, we detected 20 and 13 ROHet islands in S21 and S22 pigs. Genes in these genomic regions were mainly involved in the biological processes of immunity and reproduction. Finally, the genome-wide ROHet-phenotypes association analysis revealed that 130 ROHets of S21 and 84 ROHets of S22 were significantly associated with eight economic traits. Among the candidate genes in the significant ROHet regions, 16 genes related to growth, metabolism, and meat quality were considered as candidate genes for important economic traits of pigs. This work preliminarily explores the effect of heterozygosity-rich regions in the pig genome on production performance and provides new insights for subsequent research on pig genetic improvement.
Collapse
Affiliation(s)
- Donglin Ruan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, China
| | - Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, China
| | - Jinyan Huang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Jianping Quan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Ting Gu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Linjun Hong
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Zicong Li
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, China
| | - Xiaopeng Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- *Correspondence: Xiaopeng Wang, ; Zhenfang Wu,
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, China
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, China
- *Correspondence: Xiaopeng Wang, ; Zhenfang Wu,
| |
Collapse
|
31
|
Derks MFL, Steensma M. Review: Balancing Selection for Deleterious Alleles in Livestock. Front Genet 2021; 12:761728. [PMID: 34925454 PMCID: PMC8678120 DOI: 10.3389/fgene.2021.761728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/19/2021] [Indexed: 01/04/2023] Open
Abstract
Harmful alleles can be under balancing selection due to an interplay of artificial selection for the variant in heterozygotes and purifying selection against the variant in homozygotes. These pleiotropic variants can remain at moderate to high frequency expressing an advantage for favorable traits in heterozygotes, while harmful in homozygotes. The impact on the population and selection strength depends on the consequence of the variant both in heterozygotes and homozygotes. The deleterious phenotype expressed in homozygotes can range from early lethality to a slightly lower fitness in the population. In this review, we explore a range of causative variants under balancing selection including loss-of-function variation (i.e., frameshift, stop-gained variants) and regulatory variation (affecting gene expression). We report that harmful alleles often affect orthologous genes in different species, often influencing analogous traits. The recent discoveries are mainly driven by the increasing genomic and phenotypic resources in livestock populations. However, the low frequency and sometimes subtle effects in homozygotes prevent accurate mapping of such pleiotropic variants, which requires novel strategies to discover. After discovery, the selection strategy for deleterious variants under balancing selection is under debate, as variants can contribute to the heterosis effect in crossbred animals in various livestock species, compensating for the loss in purebred animals. Nevertheless, gene-assisted selection is a useful tool to decrease the frequency of the harmful allele in the population, if desired. Together, this review marks various deleterious variants under balancing selection and describing the functional consequences at the molecular, phenotypic, and population level, providing a resource for further study.
Collapse
Affiliation(s)
- Martijn F L Derks
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, Netherlands.,Topigs Norsvin Research Center, Beuningen, Netherlands
| | - Marije Steensma
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
32
|
Xie HX, Liang XX, Chen ZQ, Li WM, Mi CR, Li M, Wu ZJ, Zhou XM, Du WG. Ancient demographics determine the effectiveness of genetic purging in endangered lizards. Mol Biol Evol 2021; 39:6468625. [PMID: 34919713 PMCID: PMC8788223 DOI: 10.1093/molbev/msab359] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The purging of deleterious alleles has been hypothesized to mitigate inbreeding depression, but its effectiveness in endangered species remains debatable. To understand how deleterious alleles are purged during population contractions, we analyzed genomes of the endangered Chinese crocodile lizard (Shinisaurus crocodilurus), which is the only surviving species of its family and currently isolated into small populations. Population genomic analyses revealed four genetically distinct conservation units and sharp declines in both effective population size and genetic diversity. By comparing the relative genetic load across populations and conducting genomic simulations, we discovered that seriously deleterious alleles were effectively purged during population contractions in this relict species, although inbreeding generally enhanced the genetic burden. However, despite with the initial purging, our simulations also predicted that seriously deleterious alleles will gradually accumulate under prolonged bottlenecking. Therefore, we emphasize the importance of maintaining a minimum population capacity and increasing the functional genetic diversity in conservation efforts to preserve populations of the crocodile lizard and other endangered species.
Collapse
Affiliation(s)
- Hong-Xin Xie
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi-Xi Liang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhi-Qiang Chen
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Wei-Ming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chun-Rong Mi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zheng-Jun Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education (Guangxi Normal University, Guilin, 541004, China ).,Guangxi Key Laboratory of Rare and Endangered Animal Ecology, College of Life Science, Guangxi Normal University, Guilin, 541006, China
| | - Xu-Ming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
33
|
Takemura C, Senuma W, Hayashi K, Minami A, Terazawa Y, Kaneoka C, Sakata M, Chen M, Zhang Y, Nobori T, Sato M, Kiba A, Ohnishi K, Tsuda K, Kai K, Hikichi Y. PhcQ mainly contributes to the regulation of quorum sensing-dependent genes, in which PhcR is partially involved, in Ralstonia pseudosolanacearum strain OE1-1. MOLECULAR PLANT PATHOLOGY 2021; 22:1538-1552. [PMID: 34423519 PMCID: PMC8578825 DOI: 10.1111/mpp.13124] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 05/29/2023]
Abstract
The gram-negative plant-pathogenic β-proteobacterium Ralstonia pseudosolanacearum strain OE1-1 produces methyl 3-hydroxymyristate as a quorum sensing (QS) signal via the methyltransferase PhcB and senses the chemical through the sensor histidine kinase PhcS. This leads to functionalization of the LysR family transcriptional regulator PhcA, regulating QS-dependent genes responsible for the QS-dependent phenotypes including virulence. The phc operon consists of phcB, phcS, phcR, and phcQ, with the latter two encoding regulator proteins with a receiver domain and a histidine kinase domain and with a receiver domain, respectively. To elucidate the function of PhcR and PhcQ in the regulation of QS-dependent genes, we generated phcR-deletion and phcQ-deletion mutants. Though the QS-dependent phenotypes of the phcR-deletion mutant were largely unchanged, deletion of phcQ led to a significant change in the QS-dependent phenotypes. Transcriptome analysis coupled with quantitative reverse transcription-PCR and RNA-sequencing revealed that phcB, phcK, and phcA in the phcR-deletion and phcQ-deletion mutants were expressed at similar levels as in strain OE1-1. Compared with strain OE1-1, expression of 22.9% and 26.4% of positively and negatively QS-dependent genes, respectively, was significantly altered in the phcR-deletion mutant. However, expression of 96.8% and 66.9% of positively and negatively QS-dependent genes, respectively, was significantly altered in the phcQ-deletion mutant. Furthermore, a strong positive correlation of expression of these QS-dependent genes was observed between the phcQ-deletion and phcA-deletion mutants. Our results indicate that PhcQ mainly contributes to the regulation of QS-dependent genes, in which PhcR is partially involved.
Collapse
Affiliation(s)
- Chika Takemura
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Wakana Senuma
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
- Present address:
Central Research InstituteIshihara Sangyo Kaisha, LTD.KusatsuShigaJapan
| | - Kazusa Hayashi
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
- Present address:
Agriculture Research CenterKochi PrefecturalNankokuJapan
| | - Ayaka Minami
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Yuki Terazawa
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Chisaki Kaneoka
- Graduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiJapan
| | - Megumi Sakata
- Graduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiJapan
| | - Min Chen
- College of Resources and EnvironmentSouthwest UniversityChongqingChina
| | - Yong Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River BasinSouthwest UniversityChongqingChina
| | - Tatsuya Nobori
- Salk Institute for Biological StudiesLa JollaCaliforniaUSA
| | - Masanao Sato
- Graduate School of AgricultureHokkaido UniversitySapporoJapan
| | - Akinori Kiba
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Kouhei Ohnishi
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Kenichi Tsuda
- State Key Laboratory of Agricultural Microbiology, Interdisciplinary Sciences Research Institute, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Kenji Kai
- Graduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiJapan
| | - Yasufumi Hikichi
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| |
Collapse
|
34
|
Abstract
AbstractGenetic rescue is increasingly considered a promising and underused conservation strategy to reduce inbreeding depression and restore genetic diversity in endangered populations, but the empirical evidence supporting its application is limited to a few generations. Here we discuss on the light of theory the role of inbreeding depression arising from partially recessive deleterious mutations and of genetic purging as main determinants of the medium to long-term success of rescue programs. This role depends on two main predictions: (1) The inbreeding load hidden in populations with a long stable demography increases with the effective population size; and (2) After a population shrinks, purging tends to remove its (partially) recessive deleterious alleles, a process that is slower but more efficient for large populations than for small ones. We also carry out computer simulations to investigate the impact of genetic purging on the medium to long term success of genetic rescue programs. For some scenarios, it is found that hybrid vigor followed by purging will lead to sustained successful rescue. However, there may be specific situations where the recipient population is so small that it cannot purge the inbreeding load introduced by migrants, which would lead to increased fitness inbreeding depression and extinction risk in the medium to long term. In such cases, the risk is expected to be higher if migrants came from a large non-purged population with high inbreeding load, particularly after the accumulation of the stochastic effects ascribed to repeated occasional migration events. Therefore, under the specific deleterious recessive mutation model considered, we conclude that additional caution should be taken in rescue programs. Unless the endangered population harbors some distinctive genetic singularity whose conservation is a main concern, restoration by continuous stable gene flow should be considered, whenever feasible, as it reduces the extinction risk compared to repeated occasional migration and can also allow recolonization events.
Collapse
|
35
|
Pérez-Pereira N, Pouso R, Rus A, Vilas A, López-Cortegano E, García-Dorado A, Quesada H, Caballero A. Long-term exhaustion of the inbreeding load in Drosophila melanogaster. Heredity (Edinb) 2021; 127:373-383. [PMID: 34400819 PMCID: PMC8478893 DOI: 10.1038/s41437-021-00464-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Inbreeding depression, the decline in fitness of inbred individuals, is a ubiquitous phenomenon of great relevance in evolutionary biology and in the fields of animal and plant breeding and conservation. Inbreeding depression is due to the expression of recessive deleterious alleles that are concealed in heterozygous state in noninbred individuals, the so-called inbreeding load. Genetic purging reduces inbreeding depression by removing these alleles when expressed in homozygosis due to inbreeding. It is generally thought that fast inbreeding (such as that generated by full-sib mating lines) removes only highly deleterious recessive alleles, while slow inbreeding can also remove mildly deleterious ones. However, a question remains regarding which proportion of the inbreeding load can be removed by purging under slow inbreeding in moderately large populations. We report results of two long-term slow inbreeding Drosophila experiments (125-234 generations), each using a large population and a number of derived lines with effective sizes about 1000 and 50, respectively. The inbreeding load was virtually exhausted after more than one hundred generations in large populations and between a few tens and over one hundred generations in the lines. This result is not expected from genetic drift alone, and is in agreement with the theoretical purging predictions. Computer simulations suggest that these results are consistent with a model of relatively few deleterious mutations of large homozygous effects and partially recessive gene action.
Collapse
Affiliation(s)
- Noelia Pérez-Pereira
- grid.6312.60000 0001 2097 6738Centro de Investigación Mariña, Universidade de Vigo, Facultade de Bioloxía, Vigo, Spain
| | - Ramón Pouso
- grid.6312.60000 0001 2097 6738Centro de Investigación Mariña, Universidade de Vigo, Facultade de Bioloxía, Vigo, Spain
| | - Ana Rus
- grid.6312.60000 0001 2097 6738Centro de Investigación Mariña, Universidade de Vigo, Facultade de Bioloxía, Vigo, Spain
| | - Ana Vilas
- grid.6312.60000 0001 2097 6738Centro de Investigación Mariña, Universidade de Vigo, Facultade de Bioloxía, Vigo, Spain
| | - Eugenio López-Cortegano
- grid.6312.60000 0001 2097 6738Centro de Investigación Mariña, Universidade de Vigo, Facultade de Bioloxía, Vigo, Spain ,grid.4305.20000 0004 1936 7988Present Address: Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Aurora García-Dorado
- grid.4795.f0000 0001 2157 7667Facultad de Ciencias Biológicas, Departamento de Genética, Universidad Complutense, Madrid, Spain
| | - Humberto Quesada
- grid.6312.60000 0001 2097 6738Centro de Investigación Mariña, Universidade de Vigo, Facultade de Bioloxía, Vigo, Spain
| | - Armando Caballero
- grid.6312.60000 0001 2097 6738Centro de Investigación Mariña, Universidade de Vigo, Facultade de Bioloxía, Vigo, Spain
| |
Collapse
|
36
|
Fisher KJ, Vignogna RC, Lang GI. Overdominant Mutations Restrict Adaptive Loss of Heterozygosity at Linked Loci. Genome Biol Evol 2021; 13:6345346. [PMID: 34363476 PMCID: PMC8382679 DOI: 10.1093/gbe/evab181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2021] [Indexed: 12/29/2022] Open
Abstract
Loss of heterozygosity is a common mode of adaptation in asexual diploid populations. Because mitotic recombination frequently extends the full length of a chromosome arm, the selective benefit of loss of heterozygosity may be constrained by linked heterozygous mutations. In a previous laboratory evolution experiment with diploid yeast, we frequently observed homozygous mutations in the WHI2 gene on the right arm of Chromosome XV. However, when heterozygous mutations arose in the STE4 gene, another common target on Chromosome XV, loss of heterozygosity at WHI2 was not observed. Here, we show that mutations at WHI2 are partially dominant and that mutations at STE4 are overdominant. We test whether beneficial heterozygous mutations at these two loci interfere with one another by measuring loss of heterozygosity at WHI2 over 1,000 generations for ∼300 populations that differed initially only at STE4 and WHI2. We show that the presence of an overdominant mutation in STE4 reduces, but does not eliminate, loss of heterozygosity at WHI2. By sequencing 40 evolved clones, we show that populations with linked overdominant and partially dominant mutations show less parallelism at the gene level, more varied evolutionary outcomes, and increased rates of aneuploidy. Our results show that the degree of dominance and the phasing of heterozygous beneficial mutations can constrain loss of heterozygosity along a chromosome arm, and that conflicts between partially dominant and overdominant mutations can affect evolutionary outcomes.
Collapse
Affiliation(s)
- Kaitlin J Fisher
- Department of Biological Sciences, Lehigh University, USA.,Laboratory of Genetics, University of Wisconsin-Madison, USA
| | | | - Gregory I Lang
- Department of Biological Sciences, Lehigh University, USA
| |
Collapse
|
37
|
Nebel C, Sumasgutner P, Rodseth E, Ingle RA, Childs DZ, Curtis‐Scott O, Amar A. Multigenerational pedigree analysis of wild individually marked black sparrowhawks suggests that dark plumage coloration is a dominant autosomal trait. J Zool (1987) 2021. [DOI: 10.1111/jzo.12913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- C. Nebel
- FitzPatrick Institute of African Ornithology DSI‐NRF Centre of Excellence University of Cape Town Cape Town South Africa
- Department of Biology University of Turku Turku Finland
| | - P. Sumasgutner
- FitzPatrick Institute of African Ornithology DSI‐NRF Centre of Excellence University of Cape Town Cape Town South Africa
- Department of Behavioral & Cognitive Biology Konrad Lorenz Research Centre (KLF) Core Facility for Behaviour and Cognition University of Vienna Vienna Austria
| | - E. Rodseth
- Department of Molecular and Cell Biology University of Cape Town Cape Town South Africa
| | - R. A. Ingle
- Department of Molecular and Cell Biology University of Cape Town Cape Town South Africa
| | - D. Z. Childs
- School of Biosciences University of Sheffield Sheffield UK
| | - O. Curtis‐Scott
- Department of Biological Sciences University of Cape Town Cape Town South Africa
| | - A. Amar
- FitzPatrick Institute of African Ornithology DSI‐NRF Centre of Excellence University of Cape Town Cape Town South Africa
| |
Collapse
|
38
|
Gutiérrez J, Seguel M, Saenz‐Agudelo P, Acosta‐Jamett G, Verdugo C. Genetic diversity and kinship relationships in one of the largest South American fur seal (
Arctocephalus australis
) populations of the Pacific Ocean. Ecol Evol 2021. [DOI: 10.1002/ece3.7683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Josefina Gutiérrez
- Instituto de Patología Animal Facultad de Ciencias Veterinarias Universidad Austral de Chile Valdivia Chile
- Programa de Investigación Aplicada a la Fauna Silvestre Facultad de Ciencias Veterinarias Universidad Austral de Chile Valdivia Chile
| | - Mauricio Seguel
- Department of Pathobiology Ontario Veterinary College University of Guelph ON Canada
| | - Pablo Saenz‐Agudelo
- Instituto de Ciencias Ambientales y Evolutivas Facultad de Ciencias Universidad Austral de Chile Valdivia Chile
| | - Gerardo Acosta‐Jamett
- Programa de Investigación Aplicada a la Fauna Silvestre Facultad de Ciencias Veterinarias Universidad Austral de Chile Valdivia Chile
- Instituto de Medicina Preventiva Veterinaria Facultad de Ciencias Veterinarias Universidad Austral de Chile Valdivia Chile
| | - Claudio Verdugo
- Instituto de Patología Animal Facultad de Ciencias Veterinarias Universidad Austral de Chile Valdivia Chile
- Programa de Investigación Aplicada a la Fauna Silvestre Facultad de Ciencias Veterinarias Universidad Austral de Chile Valdivia Chile
| |
Collapse
|
39
|
Quéméré E, Hessenauer P, Galan M, Fernandez M, Merlet J, Chaval Y, Morellet N, Verheyden H, Gilot-Fromont E, Charbonnel N. Pathogen-mediated selection favours the maintenance of innate immunity gene polymorphism in a widespread wild ungulate. J Evol Biol 2021; 34:1156-1166. [PMID: 34062025 DOI: 10.1111/jeb.13876] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/07/2021] [Accepted: 05/15/2021] [Indexed: 12/11/2022]
Abstract
Toll-like receptors (TLR) play a central role in recognition and host frontline defence against a wide range of pathogens. A number of recent studies have shown that TLR genes (Tlrs) often exhibit large polymorphism in natural populations. Yet, there is little knowledge on how this polymorphism is maintained and how it influences disease susceptibility in the wild. In previous work, we showed that some Tlrs exhibit similarly high levels of genetic diversity as genes of the Major Histocompatibility Complex (MHC), and signatures of contemporary balancing selection in roe deer (Capreolus capreolus), the most abundant cervid species in Europe. Here, we investigated the evolutionary mechanisms by which pathogen-mediated selection could shape this innate immunity genetic diversity by examining the relationships between Tlr (Tlr2, Tlr4 and Tlr5) genotypes (heterozygosity status and presence of specific alleles) and infections with Toxoplasma and Chlamydia, two widespread intracellular pathogens known to cause reproductive failure in ungulates. We showed that Toxoplasma and Chlamydia exposures vary significantly across years and landscape features with few co-infection events detected and that the two pathogens exert antagonistic selection on Tlr2 polymorphism. By contrast, we found limited support for Tlr heterozygote advantage. Our study confirmed the importance of looking beyond Mhc genes in wildlife immunogenetic studies. It also emphasized the necessity to consider multiple pathogen challenges and their spatiotemporal variation to improve our understanding of vertebrate defence evolution against pathogens.
Collapse
Affiliation(s)
- Erwan Quéméré
- Université de Toulouse, INRAE, CEFS, Castanet-Tolosan, France.,LTSER ZA PYRénées GARonne, Auzeville-Tolosane, France.,ESE, Ecology and Ecosystems Health, INRAE, Rennes, France
| | | | - Maxime Galan
- Département de Foresterie, Université Laval, Quebec, QC, Canada
| | - Marie Fernandez
- Université de Toulouse, INRAE, CEFS, Castanet-Tolosan, France.,LTSER ZA PYRénées GARonne, Auzeville-Tolosane, France
| | - Joël Merlet
- Université de Toulouse, INRAE, CEFS, Castanet-Tolosan, France.,LTSER ZA PYRénées GARonne, Auzeville-Tolosane, France
| | - Yannick Chaval
- Université de Toulouse, INRAE, CEFS, Castanet-Tolosan, France.,LTSER ZA PYRénées GARonne, Auzeville-Tolosane, France
| | - Nicolas Morellet
- Université de Toulouse, INRAE, CEFS, Castanet-Tolosan, France.,LTSER ZA PYRénées GARonne, Auzeville-Tolosane, France
| | - Hélène Verheyden
- Université de Toulouse, INRAE, CEFS, Castanet-Tolosan, France.,LTSER ZA PYRénées GARonne, Auzeville-Tolosane, France
| | - Emmanuelle Gilot-Fromont
- Université de Lyon, Université Lyon 1, UMR CNRS 5558, Villeurbanne, France.,Université de Lyon, VetAgro Sup, Marcy l'Etoile, France
| | - Nathalie Charbonnel
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ Montpellier, Montpellier, France
| |
Collapse
|
40
|
Stoffel MA, Johnston SE, Pilkington JG, Pemberton JM. Genetic architecture and lifetime dynamics of inbreeding depression in a wild mammal. Nat Commun 2021; 12:2972. [PMID: 34016997 PMCID: PMC8138023 DOI: 10.1038/s41467-021-23222-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 03/29/2021] [Indexed: 02/03/2023] Open
Abstract
Inbreeding depression is ubiquitous, but we still know little about its genetic architecture and precise effects in wild populations. Here, we combine long-term life-history data with 417 K imputed SNP genotypes for 5952 wild Soay sheep to explore inbreeding depression on a key fitness component, annual survival. Inbreeding manifests in long runs of homozygosity (ROH), which make up nearly half of the genome in the most inbred individuals. The ROH landscape varies widely across the genome, with islands where up to 87% and deserts where only 4% of individuals have ROH. The fitness consequences of inbreeding are severe; a 10% increase in individual inbreeding FROH is associated with a 60% reduction in the odds of survival in lambs, though inbreeding depression decreases with age. Finally, a genome-wide association scan on ROH shows that many loci with small effects and five loci with larger effects contribute to inbreeding depression in survival.
Collapse
Affiliation(s)
- M A Stoffel
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | - S E Johnston
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - J G Pilkington
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - J M Pemberton
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
41
|
Meisel RP. The maintenance of polygenic sex determination depends on the dominance of fitness effects which are predictive of the role of sexual antagonism. G3 (BETHESDA, MD.) 2021; 11:6261074. [PMID: 33930135 PMCID: PMC8496315 DOI: 10.1093/g3journal/jkab149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022]
Abstract
In species with polygenic sex determination (PSD), multiple male- and female-determining loci on different proto-sex chromosomes segregate as polymorphisms within populations. The extent to which these polymorphisms are at stable equilibria is not yet resolved. Previous work demonstrated that PSD is most likely to be maintained as a stable polymorphism when the proto-sex chromosomes have opposite (sexually antagonistic) fitness effects in males and females. However, these models usually consider PSD systems with only two proto-sex chromosomes, or they do not broadly consider the dominance of the alleles under selection. To address these shortcomings, I used forward population genetic simulations to identify selection pressures that can maintain PSD under different dominance scenarios in a system with more than two proto-sex chromosomes (modeled after the house fly). I found that overdominant fitness effects of male-determining proto-Y chromosomes are more likely to maintain PSD than dominant, recessive, or additive fitness effects. The overdominant fitness effects that maintain PSD tend to have proto-Y chromosomes with sexually antagonistic effects (male-beneficial and female-detrimental). In contrast, dominant fitness effects that maintain PSD tend to have sexually antagonistic multi-chromosomal genotypes, but the individual proto-sex chromosomes do not have sexually antagonistic effects. These results demonstrate that sexual antagonism can be an emergent property of the multi-chromosome genotype without individual sexually antagonistic chromosomes. My results further illustrate how the dominance of fitness effects has consequences for both the likelihood that PSD will be maintained as well as the role sexually antagonistic selection is expected to play in maintaining the polymorphism.
Collapse
Affiliation(s)
- Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
42
|
Oldroyd BP, Yagound B. Parent-of-origin effects, allele-specific expression, genomic imprinting and paternal manipulation in social insects. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200425. [PMID: 33866807 DOI: 10.1098/rstb.2020.0425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Haplo-diploidy and the relatedness asymmetries it generates mean that social insects are prime candidates for the evolution of genomic imprinting. In single-mating social insect species, some genes may be selected to evolve genomic mechanisms that enhance reproduction by workers when they are inherited from a female. This situation reverses in multiple mating species, where genes inherited from fathers can be under selection to enhance the reproductive success of daughters. Reciprocal crosses between subspecies of honeybees have shown strong parent-of-origin effects on worker reproductive phenotypes, and this could be evidence of such genomic imprinting affecting genes related to worker reproduction. It is also possible that social insect fathers directly affect gene expression in their daughters, for example, by placing small interfering RNA molecules in semen. Gene expression studies have repeatedly found evidence of parent-specific gene expression in social insects, but it is unclear at this time whether this arises from genomic imprinting, paternal manipulation, an artefact of cyto-nuclear interactions, or all of these. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Benjamin P Oldroyd
- Wissenschaftskolleg zu Berlin, Wallotstrasse 19, 14193 Berlin, Germany.,BEE Lab, School of Life and Environmental Sciences A12, University of Sydney, New South Wales 2006, Australia
| | - Boris Yagound
- BEE Lab, School of Life and Environmental Sciences A12, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
43
|
Leitwein M, Cayuela H, Bernatchez L. Associative Overdominance and Negative Epistasis Shape Genome-Wide Ancestry Landscape in Supplemented Fish Populations. Genes (Basel) 2021; 12:genes12040524. [PMID: 33916757 PMCID: PMC8065892 DOI: 10.3390/genes12040524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
The interplay between recombination rate, genetic drift and selection modulates variation in genome-wide ancestry. Understanding the selective processes at play is of prime importance toward predicting potential beneficial or negative effects of supplementation with domestic strains (i.e., human-introduced strains). In a system of lacustrine populations supplemented with a single domestic strain, we documented how population genetic diversity and stocking intensity produced lake-specific patterns of domestic ancestry by taking the species’ local recombination rate into consideration. We used 552 Brook Charr (Salvelinus fontinalis) from 22 small lacustrine populations, genotyped at ~32,400 mapped SNPs. We observed highly variable patterns of domestic ancestry between each of the 22 populations without any consistency in introgression patterns of the domestic ancestry. Our results suggest that such lake-specific ancestry patterns were mainly due to variable associative overdominance (AOD) effects among populations (i.e., potential positive effects due to the masking of possible deleterious alleles in low recombining regions). Signatures of AOD effects were also emphasized by highly variable patterns of genetic diversity among and within lakes, potentially driven by predominant genetic drift in those small isolated populations. Local negative effects such as negative epistasis (i.e., potential genetic incompatibilities between the native and the introduced population) potentially reflecting precursory signs of outbreeding depression were also observed at a chromosomal scale. Consequently, in order to improve conservation practices and management strategies, it became necessary to assess the consequences of supplementation at the population level by taking into account both genetic diversity and stocking intensity when available.
Collapse
|
44
|
Strickland LR, Fuller RC, Windsor D, Cáceres CE. A potential role for overdominance in the maintenance of colour variation in the Neotropical tortoise beetle, Chelymorpha alternans. J Evol Biol 2021; 34:779-791. [PMID: 33704867 DOI: 10.1111/jeb.13779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 11/29/2022]
Abstract
The presence of persistent polymorphisms within natural populations elicits the question of how such polymorphisms are maintained. All else equal, genetic drift and natural selection should remove genetic variants from populations. Disassortative mating and overdominance are potential mechanisms for maintaining variation within populations. Here, we consider the potential role of these mechanisms in maintaining variation in colour pattern in the tortoise beetle, Chelymorpha alternans. Five colour morphs distinguished by elytral and pronotal coloration are largely determined by a single locus of large effect with four segregating alleles. As many as four morphs co-occur in natural populations. We first assessed whether disassortative mating might maintain this polymorphism. To test for assortative and disassortative mating, we paired females with two males, one with the same colour pattern as the female and one with a different colour pattern and examined the colour patterns of the offspring. We found strong evidence for random mating as a function of colour pattern. We next assessed whether differences in offspring survival among assortative and disassortative male-female pairs maintain colour variation. Crosses involving disassortative pairings had significantly higher offspring survival during development and resulted in more adult progeny. This result is consistent with the effects of overdominance, whereby outcrossed individuals have higher fitness than their homozygous counterparts. Overall, differences in offspring survival appear to play a greater role in maintaining polymorphisms than nonrandom mating in species.
Collapse
Affiliation(s)
- Lynette R Strickland
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rebecca C Fuller
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Donald Windsor
- Smithsonian Tropical Research Institute, Panama, Republic of Panama
| | - Carla E Cáceres
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
45
|
Bizarria Dos Santos W, Pimenta Schettini G, Fonseca MG, Pereira GL, Loyola Chardulo LA, Rodrigues Machado Neto O, Baldassini WA, Nunes de Oliveira H, Abdallah Curi R. Fine-scale estimation of inbreeding rates, runs of homozygosity and genome-wide heterozygosity levels in the Mangalarga Marchador horse breed. J Anim Breed Genet 2021; 138:161-173. [PMID: 32949478 DOI: 10.1111/jbg.12508] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022]
Abstract
With the availability of high-density SNP panels and the establishment of approaches for characterizing homozygosity and heterozygosity sites, it is possible to access fine-scale information regarding genomes, providing more than just comparisons of different inbreeding coefficients. This is the first study that seeks to access such information for the Mangalarga Marchador (MM) horse breed on a genomic scale. To this end, we aimed to assess inbreeding levels using different coefficients, as well as to characterize homozygous and heterozygous runs in the population. Using Axiom ® Equine Genotyping Array-670k SNP (Thermo Fisher), 192 horses were genotyped. Our results showed different estimates: inbreeding from genomic coefficients (FROH ) = 0.16; pedigree-based (FPED ) = 0.008; and a method based on excess homozygosity (FHOM ) = 0.010. The correlations between the inbreeding coefficients were low to moderate, and some comparisons showed negative correlations, being practically null. In total, 85,295 runs of homozygosity (ROH) and 10,016 runs of heterozygosity (ROHet) were characterized for the 31 horse autosomal chromosomes. The class with the highest percentage of ROH was 0-2 Mbps, with 92.78% of the observations. In the ROHet results, only the 0-2 class presented observations, with chromosome 11 highlighted in a region with high genetic variability. Three regions from the ROHet analyses showed genes with known functions: tripartite motif-containing 37 (TRIM37), protein phosphatase, Mg2+ /Mn2+ dependent 1E (PPM1E) and carbonic anhydrase 10 (CA10). Therefore, our findings suggest moderate inbreeding, possibly attributed to breed formation, annulling possible recent inbreeding. Furthermore, regions with high variability in the MM genome were identified (ROHet), associated with the recent selection and important events in the development and performance of MM horses over generations.
Collapse
Affiliation(s)
| | - Gustavo Pimenta Schettini
- School of Agricultural and Veterinary Sciences (FCAV), São Paulo State University (Unesp), Jaboticabal, Brazil
| | | | - Guilherme Luis Pereira
- School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (Unesp), Botucatu, Brazil
| | - Luis Artur Loyola Chardulo
- School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (Unesp), Botucatu, Brazil
| | | | - Welder Angelo Baldassini
- School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (Unesp), Botucatu, Brazil
| | - Henrique Nunes de Oliveira
- School of Agricultural and Veterinary Sciences (FCAV), São Paulo State University (Unesp), Jaboticabal, Brazil
| | - Rogério Abdallah Curi
- School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (Unesp), Botucatu, Brazil
| |
Collapse
|
46
|
Waller DM. Addressing Darwin's dilemma: Can pseudo-overdominance explain persistent inbreeding depression and load? Evolution 2021; 75:779-793. [PMID: 33598971 DOI: 10.1111/evo.14189] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 01/06/2021] [Accepted: 01/30/2021] [Indexed: 01/01/2023]
Abstract
Darwin spent years investigating the effects of self-fertilization, concluding that "nature abhors perpetual self-fertilization." Given that selection purges inbred populations of strongly deleterious mutations and drift fixes mild mutations, why does inbreeding depression (ID) persist in highly inbred taxa and why do no purely selfing taxa exist? Background selection, associations and interference among loci, and drift within small inbred populations all limit selection while often increasing fixation. These mechanisms help to explain why more inbred populations in most species consistently show more fixed load. This drift load is manifest in the considerable heterosis regularly observed in between-population crosses. Such heterosis results in subsequent high ID, suggesting a mechanism by which small populations could retain variation and inbreeding load. Multiple deleterious recessive mutations linked in repulsion generate pseudo-overdominance. Many tightly linked load loci could generate a balanced segregating load high enough to sustain ID over many generations. Such pseudo-overdominance blocks (or "PODs") are more likely to occur in regions of low recombination. They should also result in clear genetic signatures including genomic hotspots of heterozygosity; distinct haplotypes supporting alleles at intermediate frequency; and high linkage disequilibrium in and around POD regions. Simulation and empirical studies tend to support these predictions. Additional simulations and comparative genomic analyses should explore POD dynamics in greater detail to resolve whether PODs exist in sufficient strength and number to account for why ID and load persist within inbred lineages.
Collapse
Affiliation(s)
- Donald M Waller
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| |
Collapse
|
47
|
Engen S, Sæther BE. Structure of the G-matrix in relation to phenotypic contributions to fitness. Theor Popul Biol 2021; 138:43-56. [PMID: 33610661 DOI: 10.1016/j.tpb.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
Classical theory in population genetics includes derivation of the stationary distribution of allele frequencies under balance between selection, genetic drift, and mutation. Here we investigate the simplest generalization of these single locus models to quantitative genetics with many loci, assuming simple additive effects on a set of phenotypes and a linear approximation to the fitness function. Genetic effects and pleiotropy are simulated by a prescribed stochastic model. Our goal is to analyze the structure of the G-matrix at stasis when the model is not very close to being neutral. The smallest eigenvalue of the G-matrix is practically zero by Fisher's fundamental theorem for natural selection and the fitness function is approximately a linear function of the corresponding eigenvector. Evolution of genetic trade-offs is closely linked to the fitness function. If a single locus never codes for more than two traits, then additive genetic covariance between two phenotype components always has the opposite sign of the product of their coefficients in the fitness function under no mutation, a pattern that is likely to occur frequently also in more complex models. In our major examples only 1-2 percent of the loci are over-dominant for fitness, but they still account for practically all dominance variance in fitness as well as all contributions to the G-matrix. These analyses show that the structure of the G-matrix reveals important information about the contribution of different traits to fitness.
Collapse
Affiliation(s)
- Steinar Engen
- Centre for Biodiversity Dynamics, Department of Mathematical Sciences, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | - Bernt-Erik Sæther
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| |
Collapse
|
48
|
Yan T, Shen C, Jiang P, Yu C, Guo F, Tian X, Zhu X, Lu S, Han B, Zhong M, Chen J, Liu Q, Chen Y, Zhang J, Hong J, Chen H, Fang JY. Risk SNP-induced lncRNA-SLCC1 drives colorectal cancer through activating glycolysis signaling. Signal Transduct Target Ther 2021; 6:70. [PMID: 33602893 PMCID: PMC7892549 DOI: 10.1038/s41392-020-00446-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/16/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play key roles in colorectal carcinogenesis. Here, we aimed to identify the risk SNP-induced lncRNAs and to investigate their roles in colorectal carcinogenesis. First, we identified rs6695584 as the causative SNP in 1q41 locus. The A>G mutation of rs6695584 created a protein-binding motif of BATF, altered the enhancer activity, and subsequently activated lncSLCC1 expression. Further validation in two independent CRC cohorts confirmed the upregulation of lncSLCC1 in CRC tissues, and revealed that increased lncSLCC1 expression was associated with poor survival in CRC patients. Mechanistically, lncRNA-SLCC1 interacted with AHR and transcriptionally activated HK2 expression, the crucial enzyme in glucose metabolism, thereby driving the glycolysis pathway and accelerating CRC tumor growth. The functional assays revealed that lncSLCC1 induced glycolysis activation and tumor growth in CRC mediated by HK2. In addition, HK2 was upregulated in colorectal cancer tissues and positively correlated with lncSLCC1 expression and patient survival. Taken together, our findings reveal a risk SNP-mediated oncogene lncRNA-SLCC1 promotes CRC through activating the glycolysis pathway.
Collapse
Affiliation(s)
- Tingting Yan
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Chaoqin Shen
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Penglei Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fishery and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Chenyang Yu
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Fangfang Guo
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Xianglong Tian
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Xiaoqiang Zhu
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Shiyuan Lu
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Bingshe Han
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fishery and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Ming Zhong
- Division of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Jinxian Chen
- Division of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Qiang Liu
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Yingxuan Chen
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Junfang Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fishery and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| | - Jie Hong
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shandong Road, 200001, Shanghai, China.
| | - Haoyan Chen
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shandong Road, 200001, Shanghai, China.
| | - Jing-Yuan Fang
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shandong Road, 200001, Shanghai, China.
| |
Collapse
|
49
|
Caballero A, Villanueva B, Druet T. On the estimation of inbreeding depression using different measures of inbreeding from molecular markers. Evol Appl 2021; 14:416-428. [PMID: 33664785 PMCID: PMC7896712 DOI: 10.1111/eva.13126] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/09/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022] Open
Abstract
The inbreeding coefficient (F) of individuals can be estimated from molecular marker data, such as SNPs, using measures of homozygosity of individual markers or runs of homozygosity (ROH) across the genome. These different measures of F can then be used to estimate the rate of inbreeding depression (ID) for quantitative traits. Some recent simulation studies have investigated the accuracy of this estimation with contradictory results. Whereas some studies suggest that estimates of inbreeding from ROH account more accurately for ID, others suggest that inbreeding measures from SNP-by-SNP homozygosity giving a large weight to rare alleles are more accurate. Here, we try to give more light on this issue by carrying out a set of computer simulations considering a range of population genetic parameters and population sizes. Our results show that the previous studies are indeed not contradictory. In populations with low effective size, where relationships are more tight and selection is relatively less intense, F measures based on ROH provide very accurate estimates of ID whereas SNP-by-SNP-based F measures with high weight to rare alleles can show substantial upwardly biased estimates of ID. However, in populations of large effective size, with more intense selection and trait allele frequencies expected to be low if they are deleterious for fitness because of purifying selection, average estimates of ID from SNP-by-SNP-based F values become unbiased or slightly downwardly biased and those from ROH-based F values become slightly downwardly biased. The noise attached to all these estimates, nevertheless, can be very high in large-sized populations. We also investigate the relationship between the different F measures and the homozygous mutation load, which has been suggested as a proxy of inbreeding depression.
Collapse
Affiliation(s)
- Armando Caballero
- Centro de Investigación Mariña, Departamento de Bioquímica, Genética e Inmunología, Edificio CC ExperimentaisUniversidade de VigoVigoSpain
| | - Beatriz Villanueva
- Departamento de Mejora GenéticaInstituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadridSpain
| | - Tom Druet
- Unit of Animal GenomicsGIGA‐R & Faculty of Veterinary MedicineUniversity of LiègeLiègeBelgium
| |
Collapse
|
50
|
Gerstein AC, Sharp NP. The population genetics of ploidy change in unicellular fungi. FEMS Microbiol Rev 2021; 45:6121427. [PMID: 33503232 DOI: 10.1093/femsre/fuab006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/14/2021] [Indexed: 12/23/2022] Open
Abstract
Changes in ploidy are a significant type of genetic variation, describing the number of chromosome sets per cell. Ploidy evolves in natural populations, clinical populations, and lab experiments, particularly in fungi. Despite a long history of theoretical work on this topic, predicting how ploidy will evolve has proven difficult, as it is often unclear why one ploidy state outperforms another. Here, we review what is known about contemporary ploidy evolution in diverse fungal species through the lens of population genetics. As with typical genetic variants, ploidy evolution depends on the rate that new ploidy states arise by mutation, natural selection on alternative ploidy states, and random genetic drift. However, ploidy variation also has unique impacts on evolution, with the potential to alter chromosomal stability, the rate and patterns of point mutation, and the nature of selection on all loci in the genome. We discuss how ploidy evolution depends on these general and unique factors and highlight areas where additional experimental evidence is required to comprehensively explain the ploidy transitions observed in the field and the lab.
Collapse
Affiliation(s)
- Aleeza C Gerstein
- Dept. of Microbiology, Dept. of Statistics, University of Manitoba Canada
| | | |
Collapse
|