1
|
Lindstrom J, Ahlering M, Hamilton J. Seed sourcing for climate-resilient grasslands: The role of seed source diversity during early restoration establishment. Ecol Evol 2023; 13:e10756. [PMID: 38020697 PMCID: PMC10663101 DOI: 10.1002/ece3.10756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
Restoration advocates for the use of local seed in restoration, but theory suggests that diverse seed sources may enhance genetic diversity and longer term evolutionary potential within restored communities. However, few empirical studies have evaluated whether species and genetic diversity within species impacts plant community composition following restoration. The goal of this research is to compare the effects of single and multi-sourced seed mix treatments on plant community diversity following restoration. Species establishment, abundance, and diversity were compared following two restoration seed mix treatments created to include 14 species commonly used in grassland restoration. We compared the application of seed mixes designed using a single population per species with those containing five populations per species across sites in Minnesota and South Dakota, United States. Early plant establishment and richness mostly reflected non-seeded species across both sites, although seeded species established at a slightly higher rate in year two following restoration. At the South Dakota site, community composition largely reflected changes associated with establishment across the growing season as opposed to seed mix treatment. This contrasted with the Minnesota site, where community composition appeared to be strongly influenced by seed mix treatment. While there is some evidence seed mix treatment may be influencing the emergent community across sites, spatial heterogeneity across the Minnesota restoration site likely influenced diversity in early emergence over that of seed mix treatment. Indeed, varying land-use history across both sites likely contributed to differences in species composition observed at this early stage of the restoration. This suggests that seed mix treatment may have limited impact on early post-restoration emergence diversity relative to the importance of land-use history. However, future monitoring will be needed to evaluate whether the impact of seed mix treatment on community composition changes over time.
Collapse
Affiliation(s)
- Jessica Lindstrom
- Department of Biological SciencesNorth Dakota State UniversityFargoNorth DakotaUSA
| | | | - Jill Hamilton
- Department of Biological SciencesNorth Dakota State UniversityFargoNorth DakotaUSA
- Department of Ecosystem Science and ManagementPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
2
|
Raath‐Krüger MJ, Schöb C, McGeoch MA, Burger DA, Strydom T, le Roux PC. Long‐term spatially‐replicated data show no physical cost to a benefactor species in a facilitative plant–plant interaction. OIKOS 2022. [DOI: 10.1111/oik.09617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Morgan J. Raath‐Krüger
- Dept of Zoology, Centre for Ecological Genomics and Wildlife Conservation, Univ. of Johannesburg Auckland Park South Africa
| | - Christian Schöb
- Inst. of Agricultural Sciences, ETH Zürich Zürich Switzerland
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Móstoles Madrid Spain
| | - Melodie A. McGeoch
- Dept of Ecology, Environment and Evolution, School of Life Sciences, La Trobe Univ. Bundoora Victoria Australia
| | - Divan A. Burger
- Dept of Statistics, Univ. of Pretoria Pretoria South Africa
- Cytel Inc. Waltham MA USA
| | - Tanya Strydom
- Dept of Plant and Soil Sciences, Univ. of Pretoria Pretoria South Africa
| | - Peter C. le Roux
- Dept of Plant and Soil Sciences, Univ. of Pretoria Pretoria South Africa
| |
Collapse
|
3
|
Chen X, Chen H, Zhao J, Xin Y, Li Y. Bacterial community structure and diversity in the rhizospheric soil of Robinia pseudoacacia and Juniperus sabina planted in iron tailings matrix. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83404-83416. [PMID: 35763144 DOI: 10.1007/s11356-022-21669-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Iron tailings matrix is deficient in nutrients, and phytoremediation is one of the effective methods to improve tailings nutrients. The response of phytoremediation to tailings microorganisms remains to be studied. The present study analyzed rhizospheric soil of two kinds of plants bacterial diversity and community structure and their relationship with soil environmental factors. The results indicate that the rhizospheric soil bacteria species of Robinia pseudoacacia and Juniperus sabina were not significantly different from that of bare tailings, but rhizospheric soil bacterial community compositions and abundance were significantly different from that of bare tailings. Canonical correlation analysis (CCA) showed that soil alkali-hydrolyzable nitrogen (AN), soil total nitrogen (TN), and soil organic matter (SOM) were the main environmental factors affecting bacterial community diversity. Spearman's correlation analysis showed that AN, TN, and SOM were significantly positively correlated with the relative abundance of Gemmatimonadetes and Nitrospirae, and were significantly negatively correlated with that of Firmicutes, Fusobacteria, and Bacteroidetes. FAPROTAX function prediction showed that the functional microbial communities of rhizospheric soil of the two plants were significantly different from those of bare tailings. Overall, the findings support an increase of microbial diversity, SOM, and nitrogen in rhizospheric soil of revegetated tailings compared to bare tailings. These results provide theoretical support for the development and application of phytoremediation in abandoned mines.
Collapse
Affiliation(s)
- Xiaolin Chen
- College of Forestry, Hebei Agricultural University, No. 2596, Lekai South Street, Lianchi District, Baoding City, 071000, Hebei Province, China
| | - Haipeng Chen
- College of Forestry, Hebei Agricultural University, No. 2596, Lekai South Street, Lianchi District, Baoding City, 071000, Hebei Province, China
| | - Jiaqi Zhao
- College of Forestry, Hebei Agricultural University, No. 2596, Lekai South Street, Lianchi District, Baoding City, 071000, Hebei Province, China
| | - Yue Xin
- College of Forestry, Hebei Agricultural University, No. 2596, Lekai South Street, Lianchi District, Baoding City, 071000, Hebei Province, China
| | - Yuling Li
- College of Forestry, Hebei Agricultural University, No. 2596, Lekai South Street, Lianchi District, Baoding City, 071000, Hebei Province, China.
| |
Collapse
|
4
|
Dong L, Zheng Y, Wang J, Li J, Li Z, Zhang J, Wang L, Miao B, Liang C. Intra- and interannual dynamics of grassland community phylogenetic structure are influenced by meteorological conditions before the growing season. FRONTIERS IN PLANT SCIENCE 2022; 13:870526. [PMID: 36212278 PMCID: PMC9541524 DOI: 10.3389/fpls.2022.870526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
The impact of global climate change on ecosystem structure has attracted much attention from researchers. However, how climate change and meteorological conditions influence community phylogenetic structure remains poorly understood. In this research, we quantified the responses of grassland communities' phylogenetic structure to long- and short-term meteorological conditions in Inner Mongolia, China. The net relatedness index (NRI) was used to characterize phylogenetic structure, and the relationship between the NRI and climate data was analyzed to understand the dynamics of community phylogenetic structure and its relationship with extreme meteorological events. Furthermore, multiple linear regression and structural equation models (SEMs) were used to quantify the relative contributions of meteorological factors before and during the current growing season to short-term changes in community phylogenetic structure. In addition, we evaluated the effect of long-term meteorological factors on yearly NRI anomalies with classification and regression trees (CARTs). We found that 1) the degree of phylogenetic clustering of the community is relatively low in the peak growing season, when habitat filtering is relatively weak and competition is fiercer. 2) Extreme meteorological conditions (i.e., drought and cold) may change community phylogenetic structure and indirectly reduce the degree of phylogenetic clustering by reducing the proportion of dominant perennial grasses. 3) Meteorological conditions before the growing season rather than during the current growing season explain more variation in the NRI and interannual NRI anomalies. Our results may provide useful information for understanding grassland community species assembly and how climate change affects biodiversity.
Collapse
Affiliation(s)
- Lei Dong
- Yinshanbeilu Grassland Eco-hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing, China
- Institute of Water Resources for Pastoral Areas, Ministry of Water Resources, Hohhot, China
| | - Ying Zheng
- Yinshanbeilu Grassland Eco-hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing, China
- Institute of Water Resources for Pastoral Areas, Ministry of Water Resources, Hohhot, China
| | - Jian Wang
- Yinshanbeilu Grassland Eco-hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing, China
- Institute of Water Resources for Pastoral Areas, Ministry of Water Resources, Hohhot, China
| | - Jinrong Li
- Yinshanbeilu Grassland Eco-hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing, China
- Institute of Water Resources for Pastoral Areas, Ministry of Water Resources, Hohhot, China
| | - Zhiyong Li
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Jinghui Zhang
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Lixin Wang
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Bailing Miao
- Meteorological Research Institute of Inner Mongolia, Inner Mongolia Meteorological Service, Hohhot, China
| | - Cunzhu Liang
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| |
Collapse
|
5
|
Steinauer K, Heinen R, Hannula SE, De Long JR, Huberty M, Jongen R, Wang M, Bezemer TM. Above‐belowground linkages of functionally dissimilar plant communities and soil properties in a grassland experiment. Ecosphere 2020. [DOI: 10.1002/ecs2.3246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Katja Steinauer
- Department of Terrestrial Ecology Netherlands Institute of Ecology Droevendaalsesteeg 10 Wageningen6700 ABThe Netherlands
| | - Robin Heinen
- Department of Terrestrial Ecology Netherlands Institute of Ecology Droevendaalsesteeg 10 Wageningen6700 ABThe Netherlands
- Institute of Biology Section Plant Ecology and Phytochemistry Leiden University P.O. Box 9505 Leiden2300 RAThe Netherlands
- Lehrstuhl für Terrestrische Ökologie Landnutzung und Umwelt Technische Universität München Wissenschaftszentrum Weihenstephan für Ernährung, Hans‐Carl‐von‐Carlowitz‐Platz 2 FreisingD‐85354Germany
| | - S. Emilia Hannula
- Department of Terrestrial Ecology Netherlands Institute of Ecology Droevendaalsesteeg 10 Wageningen6700 ABThe Netherlands
| | - Jonathan R. De Long
- Department of Terrestrial Ecology Netherlands Institute of Ecology Droevendaalsesteeg 10 Wageningen6700 ABThe Netherlands
| | - Martine Huberty
- Department of Terrestrial Ecology Netherlands Institute of Ecology Droevendaalsesteeg 10 Wageningen6700 ABThe Netherlands
- Institute of Biology Section Plant Ecology and Phytochemistry Leiden University P.O. Box 9505 Leiden2300 RAThe Netherlands
| | - Renske Jongen
- Department of Terrestrial Ecology Netherlands Institute of Ecology Droevendaalsesteeg 10 Wageningen6700 ABThe Netherlands
| | - Minggang Wang
- Department of Plant Protection Biology Swedish University of Agricultural Sciences P.O. Box 102 AlnarpSE‐23053Sweden
| | - T. Martijn Bezemer
- Department of Terrestrial Ecology Netherlands Institute of Ecology Droevendaalsesteeg 10 Wageningen6700 ABThe Netherlands
- Institute of Biology Section Plant Ecology and Phytochemistry Leiden University P.O. Box 9505 Leiden2300 RAThe Netherlands
| |
Collapse
|
6
|
Reeb RA, Acevedo I, Heberling JM, Isaac B, Kuebbing SE. Nonnative old‐field species inhabit early season phenological niches and exhibit unique sensitivity to climate. Ecosphere 2020. [DOI: 10.1002/ecs2.3217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Rachel A. Reeb
- Department of Biological Sciences University of Pittsburgh 4249 Fifth Avenue Pittsburgh Pennsylvania15260USA
| | - Isabel Acevedo
- Institute for Environment and Society Brown University 85 Waterman Street Providence Rhode Island02912USA
| | - J. Mason Heberling
- Section of Botany Carnegie Museum of Natural History 4400 Forbes Avenue Pittsburgh Pennsylvania15213USA
| | - Bonnie Isaac
- Section of Botany Carnegie Museum of Natural History 4400 Forbes Avenue Pittsburgh Pennsylvania15213USA
| | - Sara E. Kuebbing
- Department of Biological Sciences University of Pittsburgh 4249 Fifth Avenue Pittsburgh Pennsylvania15260USA
- Section of Botany Carnegie Museum of Natural History 4400 Forbes Avenue Pittsburgh Pennsylvania15213USA
| |
Collapse
|
7
|
Schofield EJ, Rowntree JK, Paterson E, Brewer MJ, Price EAC, Brearley FQ, Brooker RW. Cultivar Differences and Impact of Plant-Plant Competition on Temporal Patterns of Nitrogen and Biomass Accumulation. FRONTIERS IN PLANT SCIENCE 2019; 10:215. [PMID: 30858863 PMCID: PMC6397874 DOI: 10.3389/fpls.2019.00215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/08/2019] [Indexed: 05/30/2023]
Abstract
Current niche models cannot explain multi-species plant coexistence in complex ecosystems. One overlooked explanatory factor is within-growing season temporal dynamism of resource capture by plants. However, the timing and rate of resource capture are themselves likely to be mediated by plant-plant competition. This study used Barley (Hordeum sp.) as a model species to examine the impacts of intra-specific competition, specifically inter- and intra-cultivar competition on the temporal dynamics of resource capture. Nitrogen and biomass accumulation of an early and late cultivar grown in isolation, inter- or intra- cultivar competition were investigated using sequential harvests. We did not find changes in the temporal dynamics of biomass accumulation in response to competition. However, peak nitrogen accumulation rate was significantly delayed for the late cultivar by 14.5 days and advanced in the early cultivar by 0.5 days when in intra-cultivar competition; there were no significant changes when in inter-cultivar competition. This may suggest a form of kin recognition as the target plants appeared to identify their neighbors and only responded temporally to intra-cultivar competition. The Relative Intensity Index found competition occurred in both the intra- and inter- cultivar mixtures, but a positive Land Equivalence Ratio value indicated complementarity in the inter-cultivar mixtures compared to intra-cultivar mixtures. The reason for this is unclear but may be due to the timing of the final harvest and may not be representative of the relationship between the competing plants. This study demonstrates neighbor-identity-specific changes in temporal dynamism in nutrient uptake. This contributes to our fundamental understanding of plant nutrient dynamics and plant-plant competition whilst having relevance to sustainable agriculture. Improved understanding of within-growing season temporal dynamism would also improve our understanding of coexistence in complex plant communities.
Collapse
Affiliation(s)
- Emily Jane Schofield
- The James Hutton Institute, Aberdeen, United Kingdom
- School of Science and the Environment, Manchester Metropolitan University, Manchester, United Kingdom
| | - Jennifer K. Rowntree
- School of Science and the Environment, Manchester Metropolitan University, Manchester, United Kingdom
| | - Eric Paterson
- The James Hutton Institute, Aberdeen, United Kingdom
| | - Mark J. Brewer
- Biomathematics and Statistics Scotland, Aberdeen, United Kingdom
| | - Elizabeth A. C. Price
- School of Science and the Environment, Manchester Metropolitan University, Manchester, United Kingdom
| | - Francis Q. Brearley
- School of Science and the Environment, Manchester Metropolitan University, Manchester, United Kingdom
| | | |
Collapse
|
8
|
Ventre-Lespiaucq A, Flanagan NS, Ospina-Calderón NH, Delgado JA, Escudero A. Midday Depression vs. Midday Peak in Diurnal Light Interception: Contrasting Patterns at Crown and Leaf Scales in a Tropical Evergreen Tree. FRONTIERS IN PLANT SCIENCE 2018; 9:727. [PMID: 29904391 PMCID: PMC5990892 DOI: 10.3389/fpls.2018.00727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/14/2018] [Indexed: 05/25/2023]
Abstract
Crown architecture usually is heterogeneous as a result of foraging in spatially and temporally heterogeneous light environments. Ecologists are only beginning to identify the importance of temporal heterogeneity for light acquisition in plants, especially at the diurnal scale. Crown architectural heterogeneity often leads to a diurnal variation in light interception. However, maximizing light interception during midday may not be an optimal strategy in environments with excess light. Instead, long-lived plants are expected to show crown architectures and leaf positions that meet the contrasting needs of light interception and avoidance of excess light on a diurnal basis. We expected a midday depression in the diurnal course of light interception both at the whole-crown and leaf scales, as a strategy to avoid the interception of excessive irradiance. We tested this hypothesis in a population of guava trees (Psidium guajava L.) growing in an open tropical grassland. We quantified three crown architectural traits: intra-individual heterogeneity in foliage clumping, crown openness, and leaf position angles. We estimated the diurnal course of light interception at the crown scale using hemispheric photographs, and at the leaf scale using the cosine of solar incidence. Crowns showed a midday depression in light interception, while leaves showed a midday peak. These contrasting patterns were related to architectural traits. At the crown scale, the midday depression of light interception was linked to a greater crown openness and foliage clumping in crown tops than in the lateral parts of the crown. At the leaf scale, an average inclination angle of 45° led to the midday peak in light interception, but with a huge among-leaf variation in position angles. The mismatch in diurnal course of light interception at crown and leaf scales can indicate that different processes are being optimized at each scale. These findings suggest that the diurnal course of light interception may be an important dimension of the resource acquisition strategies of long-lived woody plants. Using a temporal approach as the one applied here may improve our understanding of the diversity of crown architectures found across and within environments.
Collapse
Affiliation(s)
- Agustina Ventre-Lespiaucq
- Area of Biodiversity and Conservation, Department of Biology and Geology, Physics and Inorganic Chemistry, Universidad Rey Juan Carlos, Móstoles, Spain
| | - Nicola S Flanagan
- Department of Natural Sciences and Mathematics, Pontificia Universidad Javeriana Sede Cali, Cali, Colombia
| | - Nhora H Ospina-Calderón
- Department of Biology, Edificio 320, Ciudadela Universitaria Melendez, Universidad del Valle, Cali, Colombia
| | - Juan A Delgado
- Department of Ecology, Faculty of Biology, Universidad Complutense de Madrid, Madrid, Spain
| | - Adrián Escudero
- Area of Biodiversity and Conservation, Department of Biology and Geology, Physics and Inorganic Chemistry, Universidad Rey Juan Carlos, Móstoles, Spain
| |
Collapse
|