1
|
Solé R, Kempes CP, Corominas-Murtra B, De Domenico M, Kolchinsky A, Lachmann M, Libby E, Saavedra S, Smith E, Wolpert D. Fundamental constraints to the logic of living systems. Interface Focus 2024; 14:20240010. [PMID: 39464646 PMCID: PMC11503024 DOI: 10.1098/rsfs.2024.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/12/2024] [Accepted: 08/21/2024] [Indexed: 10/29/2024] Open
Abstract
It has been argued that the historical nature of evolution makes it a highly path-dependent process. Under this view, the outcome of evolutionary dynamics could have resulted in organisms with different forms and functions. At the same time, there is ample evidence that convergence and constraints strongly limit the domain of the potential design principles that evolution can achieve. Are these limitations relevant in shaping the fabric of the possible? Here, we argue that fundamental constraints are associated with the logic of living matter. We illustrate this idea by considering the thermodynamic properties of living systems, the linear nature of molecular information, the cellular nature of the building blocks of life, multicellularity and development, the threshold nature of computations in cognitive systems and the discrete nature of the architecture of ecosystems. In all these examples, we present available evidence and suggest potential avenues towards a well-defined theoretical formulation.
Collapse
Affiliation(s)
- Ricard Solé
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, Barcelona08003, Spain
- Institut de Biologia Evolutiva, CSIC-UPF, Pg Maritim de la Barceloneta 37, Barcelona08003, Spain
- European Centre for Living Technology, Sestiere Dorsoduro, 3911, Venezia VE30123, Italy
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM87501, USA
| | | | | | - Manlio De Domenico
- Complex Multilayer Networks Lab, Department of Physics and Astronomy ‘Galileo Galilei’, University of Padua, Via Marzolo 8, Padova35131, Italy
- Padua Center for Network Medicine, University of Padua, Via Marzolo 8, Padova35131, Italy
| | - Artemy Kolchinsky
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, Barcelona08003, Spain
- Universal Biology Institute, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | | | - Eric Libby
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM87501, USA
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå90187, Sweden
| | - Serguei Saavedra
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM87501, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eric Smith
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM87501, USA
- Department of Biology, Georgia Institute of Technology, Atlanta, GA30332, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo152-8550, Japan
| | - David Wolpert
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM87501, USA
| |
Collapse
|
2
|
Leon F, Espinoza-Esparza JM, Deng V, Coyle MC, Espinoza S, Booth DS. Cell differentiation controls iron assimilation in a choanoflagellate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.25.595918. [PMID: 39345370 PMCID: PMC11429873 DOI: 10.1101/2024.05.25.595918] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Marine microeukaryotes have evolved diverse cellular features that link their life histories to surrounding environments. How those dynamic life histories intersect with the ecological functions of microeukaryotes remains a frontier to understand their roles in essential biogeochemical cycles1,2. Choanoflagellates, phagotrophs that cycle nutrients through filter feeding, provide models to explore this intersection, for many choanoflagellate species transition between life history stages by differentiating into distinct cell types3-6. Here we report that cell differentiation in the marine choanoflagellate Salpingoeca rosetta endows one of its cell types with the ability to utilize insoluble ferric colloids for improved growth through the expression of a cytochrome b561 iron reductase (cytb561a). This gene is an ortholog of the mammalian duodenal cytochrome b561 (DCYTB) that reduces ferric cations prior to their uptake in gut epithelia7 and is part of an iron utilization toolkit that choanoflagellates and their closest living relatives, the animals, inherited from a last common eukaryotic ancestor. In a database of oceanic metagenomes8,9, the abundance of cytb561a transcripts from choanoflagellates positively correlates with upwellings, which are a major source of ferric colloids in marine environments10. As this predominant form of iron11,12 is largely inaccessible to cell-walled microbes13,14, choanoflagellates and other phagotrophic eukaryotes may serve critical ecological roles by first acquiring ferric colloids through phagocytosis and then cycling this essential nutrient through iron utilization pathways13-15. These findings provide insight into the ecological roles choanoflagellates perform and inform reconstructions of early animal evolution where functionally distinct cell types became an integrated whole at the origin of animal multicellularity16-22.
Collapse
Affiliation(s)
- Fredrick Leon
- Chan Zuckerberg Biohub & Department of Biochemistry and Biophysics, University of California, San Francisco School of Medicine, San Francisco, CA 94143
| | - Jesus M. Espinoza-Esparza
- Chan Zuckerberg Biohub & Department of Biochemistry and Biophysics, University of California, San Francisco School of Medicine, San Francisco, CA 94143
| | - Vicki Deng
- Chan Zuckerberg Biohub & Department of Biochemistry and Biophysics, University of California, San Francisco School of Medicine, San Francisco, CA 94143
- Current Address: Department of Molecular Biosciences, University of Texas, Austin, Austin, TX 78712
| | - Maxwell C. Coyle
- Howard Hughes Medical Institute & Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
- Current Address: Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Sarah Espinoza
- Howard Hughes Medical Institute & Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - David S. Booth
- Chan Zuckerberg Biohub & Department of Biochemistry and Biophysics, University of California, San Francisco School of Medicine, San Francisco, CA 94143
| |
Collapse
|
3
|
Ros-Rocher N. The evolution of multicellularity and cell differentiation symposium: bridging evolutionary cell biology and computational modelling using emerging model systems. Biol Open 2024; 13:bio061720. [PMID: 39373528 DOI: 10.1242/bio.061720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
'The evolution of multicellularity and cell differentiation' symposium, organized as part of the EuroEvoDevo 2024 meeting on June 25-28th in Helsinki (Finland), addressed recent advances on the molecular and mechanistic basis for the evolution of multicellularity and cell differentiation in eukaryotes. The symposium involved over 100 participants and brought together 10 speakers at diverse career stages. Talks covered various topics at the interface of developmental biology, evolutionary cell biology, comparative genomics, computational biology, and ecology using animal, protist, algal and mathematical models. This symposium offered a unique opportunity for interdisciplinary dialog among researchers working on different systems, especially in promoting collaborations and aligning strategies for studying emerging model species. Moreover, it fostered opportunities to promote early career researchers in the field and opened discussions of ongoing work and unpublished results. In this Meeting Review, we aim to promote the research, capture the spirit of the meeting, and present key topics discussed within this dynamic, growing and open community.
Collapse
Affiliation(s)
- Núria Ros-Rocher
- Institut Pasteur, Université Paris-Cité, CNRS UMR3691, Evolutionary Cell Biology and Evolution of Morphogenesis Unit, 25-28 Rue du Dr. Roux, 75015 Paris, France
| |
Collapse
|
4
|
Nanda P, Barrere J, LaBar T, Murray AW. A dynamic network model predicts the phenotypes of multicellular clusters from cellular properties. Curr Biol 2024; 34:2672-2683.e4. [PMID: 38823384 DOI: 10.1016/j.cub.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/20/2024] [Accepted: 05/08/2024] [Indexed: 06/03/2024]
Abstract
Cell division without cell separation produces multicellular clusters in budding yeast. Two fundamental characteristics of these clusters are their size (the number of cells per cluster) and cellular composition: the fractions of cells with different phenotypes. Using cells as nodes and links between mother and daughter cells as edges, we model cluster growth and breakage by varying three parameters: the cell division rate, the rate at which intercellular connections break, and the kissing number (the maximum number of connections to one cell). We find that the kissing number sets the maximum possible cluster size. Below this limit, the ratio of the cell division rate to the connection breaking rate determines the cluster size. If links have a constant probability of breaking per unit time, the probability that a link survives decreases exponentially with its age. Modeling this behavior recapitulates experimental data. We then use this framework to examine synthetic, differentiating clusters with two cell types, faster-growing germ cells and their somatic derivatives. The fraction of clusters that contain both cell types increases as either of two parameters increase: the kissing number and difference between the growth rate of germ and somatic cells. In a population of clusters, the variation in cellular composition is inversely correlated (r2 = 0.87) with the average fraction of somatic cells in clusters. Our results show how a small number of cellular features can control the phenotypes of multicellular clusters that were potentially the ancestors of more complex forms of multicellular development, organization, and reproduction.
Collapse
Affiliation(s)
- Piyush Nanda
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Julien Barrere
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Thomas LaBar
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Andrew W Murray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
5
|
Oszoli I, Zachar I. Group-selection via aggregative propagule-formation enables cooperative multicellularity in an individual based, spatial model. PLoS Comput Biol 2024; 20:e1012107. [PMID: 38713735 PMCID: PMC11101088 DOI: 10.1371/journal.pcbi.1012107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/17/2024] [Accepted: 04/24/2024] [Indexed: 05/09/2024] Open
Abstract
The emergence of multicellularity is one of the major transitions in evolution that happened multiple times independently. During aggregative multicellularity, genetically potentially unrelated lineages cooperate to form transient multicellular groups. Unlike clonal multicellularity, aggregative multicellular organisms do not rely on kin selection instead other mechanisms maintain cooperation against cheater phenotypes that benefit from cooperators but do not contribute to groups. Spatiality with limited diffusion can facilitate group selection, as interactions among individuals are restricted to local neighbourhoods only. Selection for larger size (e.g. avoiding predation) may facilitate the emergence of aggregation, though it is unknown, whether and how much role such selection played during the evolution of aggregative multicellularity. We have investigated the effect of spatiality and the necessity of predation on the stability of aggregative multicellularity via individual-based modelling on the ecological timescale. We have examined whether aggregation facilitates the survival of cooperators in a temporally heterogeneous environment against cheaters, where only a subset of the population is allowed to periodically colonize a new, resource-rich habitat. Cooperators constitutively produce adhesive molecules to promote aggregation and propagule-formation while cheaters spare this expense to grow faster but cannot aggregate on their own, hence depending on cooperators for long-term survival. We have compared different population-level reproduction modes with and without individual selection (predation) to evaluate the different hypotheses. In a temporally homogeneous environment without propagule-based colonization, cheaters always win. Predation can benefit cooperators, but it is not enough to maintain the necessary cooperator amount in successive dispersals, either randomly or by fragmentation. Aggregation-based propagation however can ensure the adequate ratio of cooperators-to-cheaters in the propagule and is sufficient to do so even without predation. Spatiality combined with temporal heterogeneity helps cooperators via group selection, thus facilitating aggregative multicellularity. External stress selecting for larger size (e.g. predation) may facilitate aggregation, however, according to our results, it is neither necessary nor sufficient for aggregative multicellularity to be maintained when there is effective group-selection.
Collapse
Affiliation(s)
- István Oszoli
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Budapest, Hungary
| | - István Zachar
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Budapest, Hungary
- HUN-REN Institute of Evolution, Centre for Ecological Research, Budapest, Hungary
| |
Collapse
|
6
|
Nanda P, Barrere J, LaBar T, Murray AW. Multicellular growth as a dynamic network of cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565242. [PMID: 37961646 PMCID: PMC10635083 DOI: 10.1101/2023.11.02.565242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cell division without cell separation produces multicellular clusters in budding yeast. Two fundamental characteristics of these clusters are their size (the number of cells per cluster) and cellular composition: the fractions of cells with different phenotypes. However, we do not understand how different cellular features quantitatively influence these two phenotypes. Using cells as nodes and links between mother and daughter cells as edges, we model cluster growth and breakage by varying three parameters: the cell division rate, the rate at which intercellular connections break, and the kissing number (the maximum number of connections to one cell). We find that the kissing number sets the maximum possible cluster size. Below this limit, the ratio of the cell division rate to the connection breaking rate determines the cluster size. If links have a constant probability of breaking per unit time, the probability that a link survives decreases exponentially with its age. Modeling this behavior recapitulates experimental data. We then use this framework to examine synthetic, differentiating clusters with two cell types, faster-growing germ cells and their somatic derivatives. The fraction of clusters that contain both cell types increases as either of two parameters increase: the kissing number and difference between the growth rate of germ and somatic cells. In a population of clusters, the variation in cellular composition is inversely correlated (r2=0.87) with the average fraction of somatic cells in clusters. Our results show how a small number of cellular features can control the phenotypes of multicellular clusters that were potentially the ancestors of more complex forms of multicellular development, organization, and reproduction.
Collapse
Affiliation(s)
- Piyush Nanda
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Julien Barrere
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Thomas LaBar
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Andrew W. Murray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
7
|
Craig JM, Kumar S, Hedges SB. The origin of eukaryotes and rise in complexity were synchronous with the rise in oxygen. FRONTIERS IN BIOINFORMATICS 2023; 3:1233281. [PMID: 37727796 PMCID: PMC10505794 DOI: 10.3389/fbinf.2023.1233281] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/07/2023] [Indexed: 09/21/2023] Open
Abstract
The origin of eukaryotes was among the most important events in the history of life, spawning a new evolutionary lineage that led to all complex multicellular organisms. However, the timing of this event, crucial for understanding its environmental context, has been difficult to establish. The fossil and biomarker records are sparse and molecular clocks have thus far not reached a consensus, with dates spanning 2.1-0.91 billion years ago (Ga) for critical nodes. Notably, molecular time estimates for the last common ancestor of eukaryotes are typically hundreds of millions of years younger than the Great Oxidation Event (GOE, 2.43-2.22 Ga), leading researchers to question the presumptive link between eukaryotes and oxygen. We obtained a new time estimate for the origin of eukaryotes using genetic data of both archaeal and bacterial origin, the latter rarely used in past studies. We also avoided potential calibration biases that may have affected earlier studies. We obtained a conservative interval of 2.2-1.5 Ga, with an even narrower core interval of 2.0-1.8 Ga, for the origin of eukaryotes, a period closely aligned with the rise in oxygen. We further reconstructed the history of biological complexity across the tree of life using three universal measures: cell types, genes, and genome size. We found that the rise in complexity was temporally consistent with and followed a pattern similar to the rise in oxygen. This suggests a causal relationship stemming from the increased energy needs of complex life fulfilled by oxygen.
Collapse
Affiliation(s)
- Jack M. Craig
- Center for Biodiversity, Temple University, Philadelphia, PA, United States
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, United States
- Department of Biology, Temple University, Philadelphia, PA, United States
| | - Sudhir Kumar
- Center for Biodiversity, Temple University, Philadelphia, PA, United States
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, United States
- Department of Biology, Temple University, Philadelphia, PA, United States
| | - S. Blair Hedges
- Center for Biodiversity, Temple University, Philadelphia, PA, United States
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, United States
- Department of Biology, Temple University, Philadelphia, PA, United States
| |
Collapse
|
8
|
Westfall AK, Gopalan SS, Perry BW, Adams RH, Saviola AJ, Mackessy SP, Castoe TA. Single-Cell Heterogeneity in Snake Venom Expression Is Hardwired by Co-Option of Regulators from Progressively Activated Pathways. Genome Biol Evol 2023; 15:evad109. [PMID: 37311204 PMCID: PMC10289209 DOI: 10.1093/gbe/evad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023] Open
Abstract
The ubiquitous cellular heterogeneity underlying many organism-level phenotypes raises questions about what factors drive this heterogeneity and how these complex heterogeneous systems evolve. Here, we use single-cell expression data from a Prairie rattlesnake (Crotalus viridis) venom gland to evaluate hypotheses for signaling networks underlying snake venom regulation and the degree to which different venom gene families have evolutionarily recruited distinct regulatory architectures. Our findings suggest that snake venom regulatory systems have evolutionarily co-opted trans-regulatory factors from extracellular signal-regulated kinase and unfolded protein response pathways that specifically coordinate expression of distinct venom toxins in a phased sequence across a single population of secretory cells. This pattern of co-option results in extensive cell-to-cell variation in venom gene expression, even between tandemly duplicated paralogs, suggesting this regulatory architecture has evolved to circumvent cellular constraints. While the exact nature of such constraints remains an open question, we propose that such regulatory heterogeneity may circumvent steric constraints on chromatin, cellular physiological constraints (e.g., endoplasmic reticulum stress or negative protein-protein interactions), or a combination of these. Regardless of the precise nature of these constraints, this example suggests that, in some cases, dynamic cellular constraints may impose previously unappreciated secondary constraints on the evolution of gene regulatory networks that favors heterogeneous expression.
Collapse
Affiliation(s)
| | | | - Blair W Perry
- Department of Biology, The University of Texas Arlington, Texas, USA
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Richard H Adams
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, USA
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, USA
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, USA
| | - Todd A Castoe
- Department of Biology, The University of Texas Arlington, Texas, USA
| |
Collapse
|
9
|
Jacques F, Baratchart E, Pienta KJ, Hammarlund EU. Origin and evolution of animal multicellularity in the light of phylogenomics and cancer genetics. Med Oncol 2022; 39:160. [PMID: 35972622 PMCID: PMC9381480 DOI: 10.1007/s12032-022-01740-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/23/2022] [Indexed: 11/07/2022]
Abstract
The rise of animals represents a major but enigmatic event in the evolutionary history of life. In recent years, numerous studies have aimed at understanding the genetic basis of this transition. However, genome comparisons of diverse animal and protist lineages suggest that the appearance of gene families that were previously considered animal specific indeed preceded animals. Animals' unicellular relatives, such as choanoflagellates, ichthyosporeans, and filastereans, demonstrate complex life cycles including transient multicellularity as well as genetic toolkits for temporal cell differentiation, cell-to-cell communication, apoptosis, and cell adhesion. This has warranted further exploration of the genetic basis underlying transitions in cellular organization. An alternative model for the study of transitions in cellular organization is tumors, which exploit physiological programs that characterize both unicellularity and multicellularity. Tumor cells, for example, switch adhesion on and off, up- or downregulate specific cell differentiation states, downregulate apoptosis, and allow cell migration within tissues. Here, we use insights from both the fields of phylogenomics and tumor biology to review the evolutionary history of the regulatory systems of multicellularity and discuss their overlap. We claim that while evolutionary biology has contributed to an increased understanding of cancer, broad investigations into tissue-normal and transformed-can also contribute the framework for exploring animal evolution.
Collapse
Affiliation(s)
- Florian Jacques
- Tissue Development and Evolution (TiDE), Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Etienne Baratchart
- Tissue Development and Evolution (TiDE), Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Kenneth J Pienta
- The Cancer Ecology Center, Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, USA
| | - Emma U Hammarlund
- Tissue Development and Evolution (TiDE), Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden.
| |
Collapse
|
10
|
Artime O, De Domenico M. From the origin of life to pandemics: emergent phenomena in complex systems. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20200410. [PMID: 35599559 PMCID: PMC9125231 DOI: 10.1098/rsta.2020.0410] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 05/31/2023]
Abstract
When a large number of similar entities interact among each other and with their environment at a low scale, unexpected outcomes at higher spatio-temporal scales might spontaneously arise. This non-trivial phenomenon, known as emergence, characterizes a broad range of distinct complex systems-from physical to biological and social-and is often related to collective behaviour. It is ubiquitous, from non-living entities such as oscillators that under specific conditions synchronize, to living ones, such as birds flocking or fish schooling. Despite the ample phenomenological evidence of the existence of systems' emergent properties, central theoretical questions to the study of emergence remain unanswered, such as the lack of a widely accepted, rigorous definition of the phenomenon or the identification of the essential physical conditions that favour emergence. We offer here a general overview of the phenomenon of emergence and sketch current and future challenges on the topic. Our short review also serves as an introduction to the theme issue Emergent phenomena in complex physical and socio-technical systems: from cells to societies, where we provide a synthesis of the contents tackled in the issue and outline how they relate to these challenges, spanning from current advances in our understanding on the origin of life to the large-scale propagation of infectious diseases. This article is part of the theme issue 'Emergent phenomena in complex physical and socio-technical systems: from cells to societies'.
Collapse
Affiliation(s)
- Oriol Artime
- Fondazione Bruno Kessler, Via Sommarive 18, Povo, TN 38123, Italy
| | - Manlio De Domenico
- Department of Physics and Astronomy ‘Galileo Galilei’, University of Padua, Padova, Veneto, Italy
| |
Collapse
|
11
|
Bonforti A, Solé R. Unicellular-multicellular evolutionary branching driven by resource limitations. J R Soc Interface 2022; 19:20220018. [PMID: 35642429 DOI: 10.1098/rsif.2022.0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Multicellular life forms have evolved many times on our planet, suggesting that this is a common evolutionary innovation. Multiple advantages have been proposed for the emergence of multicellularity (MC). In this paper, we address the problem of how the first precondition for MC, namely 'stay together', might have occurred under spatially limited resources exploited by a population of unicellular agents. Using a minimal model of evolved cell-cell adhesion among growing and dividing cells that exploit a localized resource with a given size, we show that a transition occurs at a critical resource size separating a phase of evolved multicellular aggregates from a phase where unicellularity (UC) is favoured. The two phases are separated by an intermediate domain where both UC and MC can be selected by evolution. This model provides a minimal approach to the early stages that were required to transition from individuality to cohesive groups of cells associated with a physical cooperative effect: when resources are present only in a localized portion of the habitat, MC is a desirable property as it helps cells to keep close to the available local nutrients.
Collapse
Affiliation(s)
- Adriano Bonforti
- ICREA-Complex Systems Lab, UPF-PRBB, Dr. Aiguader 80, 08003 Barcelona, Spain.,Institut de Biologia Evolutiva, CSIC-UPF, Passeig Maritim de la Barceloneta 37, 08003 Barcelona, Spain
| | - Ricard Solé
- ICREA-Complex Systems Lab, UPF-PRBB, Dr. Aiguader 80, 08003 Barcelona, Spain.,Institut de Biologia Evolutiva, CSIC-UPF, Passeig Maritim de la Barceloneta 37, 08003 Barcelona, Spain.,Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
12
|
Zhong J, Kong F. The control of compound inflorescences: insights from grasses and legumes. TRENDS IN PLANT SCIENCE 2022; 27:564-576. [PMID: 34973922 DOI: 10.1016/j.tplants.2021.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/16/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
A major challenge in biology is to understand how organisms have increased developmental complexity during evolution. Inflorescences, with remarkable variation in branching systems, are a fitting model to understand architectural complexity. Inflorescences bear flowers that may become fruits and/or seeds, impacting crop productivity and species fitness. Great advances have been achieved in understanding the regulation of complex inflorescences, particularly in economically and ecologically important grasses and legumes. Surprisingly, a synthesis is still lacking regarding the common or distinct principles underlying the regulation of inflorescence complexity. Here, we synthesize the similarities and differences in the regulation of compound inflorescences in grasses and legumes, and propose that the emergence of novel higher-order repetitive modules is key to the evolution of inflorescence complexity.
Collapse
Affiliation(s)
- Jinshun Zhong
- School of Life Sciences, South China Agricultural University, Wushan Street 483, Guangzhou 510642, China; Institute for Plant Genetics, Heinrich-Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany; Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Köln, Germany; Cluster of Excellence on Plant Sciences, 'SMART Plants for Tomorrow's Needs', Heinrich-Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany.
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
13
|
Fateh ST, Fateh ST, Shekari F, Mahdavi M, Aref AR, Salehi-Najafabadi A. The Effects of Sesquiterpene Lactones on the Differentiation of Human or Animal Cells Cultured In-Vitro: A Critical Systematic Review. Front Pharmacol 2022; 13:862446. [PMID: 35444549 PMCID: PMC9014292 DOI: 10.3389/fphar.2022.862446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/08/2022] [Indexed: 12/03/2022] Open
Abstract
Cellular differentiation is pivotal in health and disease. Interfering with the process of differentiation, such as inhibiting the differentiation of adipocytes and inducing the differentiation of cancer cells, is considered a therapeutic approach. Sesquiterpene lactones, primarily found in plants, have been attracted attention as differentiating/dedifferentiating agents tested on various human or animal cells. However, a consensus on sesquiterpene lactones’ effects and their mechanism of action is required. In this sense, through a systematic review, we have investigated the differentiating/dedifferentiating effects of sesquiterpene lactones on human or animal cells. 13 different cell lines originated from humans, mice, and rats, in addition to the effects of a total of 21 sesquiterpene lactones, were evaluated in the included studies. These components had either inducing, inhibiting, or no effect on the cells, mediating their effects through JAK-STAT, PI3K-Akt, mitogen-activated protein kinases, NFκB, PPARγ pathways. Although nearly all inducing and inhibiting effects were attributed to cancerous and normal cells, respectively, this is likely a result of a biased study design. Few studies reported negative results along with others, and no study was found reporting only negative results. As a result, not only are the effects and mechanism of action of sesquiterpene lactones not vivid but our knowledge and decisions are also misconducted. Moreover, there is a significant knowledge gap regarding the type of evaluated cells, other sesquiterpene lactones, and the involved signaling pathways. In conclusion, sesquiterpene lactones possess significant effects on differentiation status, leading to potentially efficient therapy of obesity, osteoporosis, and cancer. However, reporting negative results and further investigations on other cells, sesquiterpene lactones, and signaling pathways are highly suggested to pave the path of sesquiterpene lactones to the clinic more consciously.
Collapse
Affiliation(s)
- Sepand Tehrani Fateh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Majid Mahdavi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States.,Translational Sciences, Xsphera Biosciences Inc., Boston, MA, United States
| | - Amir Salehi-Najafabadi
- Department of Microbiology, School of Biology, University College of Science, University of Tehran, Tehran, Iran.,Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
14
|
Vanchurin V, Wolf YI, Katsnelson MI, Koonin EV. Toward a theory of evolution as multilevel learning. Proc Natl Acad Sci U S A 2022; 119:e2120037119. [PMID: 35121666 PMCID: PMC8833143 DOI: 10.1073/pnas.2120037119] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/03/2022] [Indexed: 12/28/2022] Open
Abstract
We apply the theory of learning to physically renormalizable systems in an attempt to outline a theory of biological evolution, including the origin of life, as multilevel learning. We formulate seven fundamental principles of evolution that appear to be necessary and sufficient to render a universe observable and show that they entail the major features of biological evolution, including replication and natural selection. It is shown that these cornerstone phenomena of biology emerge from the fundamental features of learning dynamics such as the existence of a loss function, which is minimized during learning. We then sketch the theory of evolution using the mathematical framework of neural networks, which provides for detailed analysis of evolutionary phenomena. To demonstrate the potential of the proposed theoretical framework, we derive a generalized version of the Central Dogma of molecular biology by analyzing the flow of information during learning (back propagation) and predicting (forward propagation) the environment by evolving organisms. The more complex evolutionary phenomena, such as major transitions in evolution (in particular, the origin of life), have to be analyzed in the thermodynamic limit, which is described in detail in the paper by Vanchurin et al. [V. Vanchurin, Y. I. Wolf, E. V. Koonin, M. I. Katsnelson, Proc. Natl. Acad. Sci. U.S.A. 119, 10.1073/pnas.2120042119 (2022)].
Collapse
Affiliation(s)
- Vitaly Vanchurin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894;
- Duluth Institute for Advanced Study, Duluth, MN 55804
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894
| | - Mikhail I Katsnelson
- Institute for Molecules and Materials, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894;
| |
Collapse
|
15
|
Abstract
High-throughput single-cell transcriptomic approaches have revolutionized our view of gene expression at the level of individual cells, providing new insights into their heterogeneity, identities, and functions. Recently, technical challenges to the application of single-cell transcriptomics to plants have been overcome, and many plant organs and tissues have now been subjected to analyses at single-cell resolution. In this review, we describe these studies and their impact on our understanding of the diversity, differentiation, and activities of plant cells. We particularly highlight their impact on plant cell identity, including unprecedented views of cell transitions and definitions of rare and novel cell types. We also point out current challenges and future opportunities for the application and analyses of single-cell transcriptomics in plants. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kook Hui Ryu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA; , ,
| | - Yan Zhu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA; , ,
| | - John Schiefelbein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA; , ,
| |
Collapse
|
16
|
Marshall PJ, Houser TM, Weiss SM. The Shared Origins of Embodiment and Development. Front Syst Neurosci 2021; 15:726403. [PMID: 34483853 PMCID: PMC8416067 DOI: 10.3389/fnsys.2021.726403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/21/2021] [Indexed: 11/13/2022] Open
Abstract
As a domain of study centering on the nature of the body in the functioning of the individual organism, embodiment encompasses a diverse array of topics and questions. One useful organizing framework places embodiment as a bridge construct connecting three standpoints on the body: the form of the body, the body as actively engaged in and with the world, and the body as lived experience. Through connecting these standpoints, the construct of embodiment shows that they are not mutually exclusive: inherent in form is the capacity for engagement, and inherent in engagement is a lived perspective that confers agency and meaning. Here, we employ this framework to underscore the deep connections between embodiment and development. We begin with a discussion of the origins of multicellularity, highlighting how the evolution of bodies was the evolution of development itself. The evolution of the metazoan (animal) body is of particular interest, because most animals possess complex bodies with sensorimotor capacities for perceiving and acting that bring forth a particular sort of embodiment. However, we also emphasize that the thread of embodiment runs through all living things, which share an organizational property of self-determination that endows them with a specific kind of autonomy. This realization moves us away from a Cartesian machine metaphor and instead puts an emphasis on the lived perspective that arises from being embodied. This broad view of embodiment presents opportunities to transcend the boundaries of individual disciplines to create a novel integrative vision for the scientific study of development.
Collapse
|
17
|
Why have aggregative multicellular organisms stayed simple? Curr Genet 2021; 67:871-876. [PMID: 34114051 DOI: 10.1007/s00294-021-01193-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
Multicellularity has evolved numerous times across the tree of life. One of the most fundamental distinctions among multicellular organisms is their developmental mode: whether they stay together during growth and develop clonally, or form a group through the aggregation of free-living cells. The five eukaryotic lineages to independently evolve complex multicellularity (animals, plants, red algae, brown algae, and fungi) all develop clonally. This fact has largely been explained through social evolutionary theory's lens of cooperation and conflict, where cheating within non-clonal groups has the potential to undermine multicellular adaptation. Multicellular organisms that form groups via aggregation could mitigate the costs of cheating by evolving kin recognition systems that prevent the formation of chimeric groups. However, recent work suggests that selection for the ability to aggregate quickly may constrain the evolution of highly specific kin recognition, sowing the seeds for persistent evolutionary conflict. Importantly, other features of aggregative multicellular life cycles may independently act to constrain the evolution of complex multicellularity. All known aggregative multicellular organisms are facultatively multicellular (as opposed to obligately multicellular), allowing unicellular-level adaptation to environmental selection. Because they primarily exist in a unicellular state, it may be difficult for aggregative multicellular organisms to evolve multicellular traits that carry pleiotropic cell-level fitness costs. Thus, even in the absence of social conflict, aggregative multicellular organisms may have limited potential for the evolution of complex multicellularity.
Collapse
|
18
|
van Gestel J, Wagner A. Cryptic surface-associated multicellularity emerges through cell adhesion and its regulation. PLoS Biol 2021; 19:e3001250. [PMID: 33983920 PMCID: PMC8148357 DOI: 10.1371/journal.pbio.3001250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/25/2021] [Accepted: 04/28/2021] [Indexed: 12/20/2022] Open
Abstract
The repeated evolution of multicellularity led to a wide diversity of organisms, many of which are sessile, including land plants, many fungi, and colonial animals. Sessile organisms adhere to a surface for most of their lives, where they grow and compete for space. Despite the prevalence of surface-associated multicellularity, little is known about its evolutionary origin. Here, we introduce a novel theoretical approach, based on spatial lineage tracking of cells, to study this origin. We show that multicellularity can rapidly evolve from two widespread cellular properties: cell adhesion and the regulatory control of adhesion. By evolving adhesion, cells attach to a surface, where they spontaneously give rise to primitive cell collectives that differ in size, life span, and mode of propagation. Selection in favor of large collectives increases the fraction of adhesive cells until a surface becomes fully occupied. Through kin recognition, collectives then evolve a central-peripheral polarity in cell adhesion that supports a division of labor between cells and profoundly impacts growth. Despite this spatial organization, nascent collectives remain cryptic, lack well-defined boundaries, and would require experimental lineage tracking technologies for their identification. Our results suggest that cryptic multicellularity could readily evolve and originate well before multicellular individuals become morphologically evident.
Collapse
Affiliation(s)
- Jordi van Gestel
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- The Santa Fe Institute, Santa Fe, New Mexico, United States of America
| |
Collapse
|
19
|
Hanna L, Abouheif E. The origin of wing polyphenism in ants: An eco-evo-devo perspective. Curr Top Dev Biol 2021; 141:279-336. [PMID: 33602491 DOI: 10.1016/bs.ctdb.2020.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The evolution of eusociality, where solitary individuals integrate into a single colony, is a major transition in individuality. In ants, the origin of eusociality coincided with the origin of a wing polyphenism approximately 160 million years ago, giving rise to colonies with winged queens and wingless workers. As a consequence, both eusociality and wing polyphenism are nearly universal features of all ants. Here, we synthesize fossil, ecological, developmental, and evolutionary data in an attempt to understand the factors that contributed to the origin of wing polyphenism in ants. We propose multiple models and hypotheses to explain how wing polyphenism is orchestrated at multiple levels, from environmental cues to gene networks. Furthermore, we argue that the origin of wing polyphenism enabled the subsequent evolution of morphological diversity across the ants. We finally conclude by outlining several outstanding questions for future work.
Collapse
Affiliation(s)
- Lisa Hanna
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Ehab Abouheif
- Department of Biology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
20
|
Almasi S, Jasmin BJ. The multifunctional RNA-binding protein Staufen1: an emerging regulator of oncogenesis through its various roles in key cellular events. Cell Mol Life Sci 2021; 78:7145-7160. [PMID: 34633481 PMCID: PMC8629789 DOI: 10.1007/s00018-021-03965-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/19/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022]
Abstract
The double-stranded multifunctional RNA-binding protein (dsRBP) Staufen was initially discovered in insects as a regulator of mRNA localization. Later, its mammalian orthologs have been described in different organisms, including humans. Two human orthologues of Staufen, named Staufen1 (STAU1) and Staufen2 (STAU2), share some structural and functional similarities. However, given their different spatio-temporal expression patterns, each of these orthologues plays distinct roles in cells. In the current review, we focus on the role of STAU1 in cell functions and cancer development. Since its discovery, STAU1 has mostly been studied for its involvement in various aspects of RNA metabolism. Given the pivotal role of RNA metabolism within cells, recent studies have explored the mechanistic impact of STAU1 in a wide variety of cell functions ranging from cell growth to cell death, as well as in various disease states. In particular, there has been increasing attention on the role of STAU1 in neuromuscular disorders, neurodegeneration, and cancer. Here, we provide an overview of the current knowledge on the role of STAU1 in RNA metabolism and cell functions. We also highlight the link between STAU1-mediated control of cellular functions and cancer development, progression, and treatment. Hence, our review emphasizes the potential of STAU1 as a novel biomarker and therapeutic target for cancer diagnosis and treatment, respectively.
Collapse
Affiliation(s)
- Shekoufeh Almasi
- grid.28046.380000 0001 2182 2255Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5 Canada
| | - Bernard J. Jasmin
- grid.28046.380000 0001 2182 2255Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5 Canada ,grid.28046.380000 0001 2182 2255The Eric J. Poulin Centre for Neuromuscular Diseases, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5 Canada
| |
Collapse
|
21
|
Abstract
A mathematical model shows how the shape of early multicellular organisms may have helped cells evolve specialized roles.
Collapse
Affiliation(s)
- Merlijn Staps
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
| | - Corina Tarnita
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
| |
Collapse
|