1
|
Sanmartín-Vivar K, Guachizaca-Macas J, Marín-Armijos D. The Impact of Eucalyptus and Pine Plantations on the Taxonomic and Functional Diversity of Dung Beetles (Coleoptera: Scarabaeidae) in the Southern Region of Ecuador. BIOLOGY 2024; 13:841. [PMID: 39452149 PMCID: PMC11504286 DOI: 10.3390/biology13100841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
This study sheds light on the complex relationship between land use, biodiversity, and the functional traits of dung beetles in Ecuador. The results indicate that the richness and abundance of dung beetles vary across different land uses and regions, with forests generally having a positive impact, while eucalyptus and pine plantations have a negative effect in certain areas. Specific indicator species, such as Homocopris buckleyi for forest areas and Onthophagus curvicornis for eucalyptus plantations, were identified. This study also found that functional diversity analysis, based on morphological traits, revealed that certain traits, such as biomass, pronotum width, head width, and elytra length, were significant contributors to differences in dung beetle communities across various land uses and regions. This study highlights the potential conservation value of certain modified habitats and emphasizes the importance of considering both taxonomic and functional diversity when assessing the impact of land use on the ecosystem services provided by dung beetles. It underscores the potential value of plantations as refuges for dung beetle communities and the need for long-term assessments to better understand biodiversity changes over time.
Collapse
Affiliation(s)
| | | | - Diego Marín-Armijos
- Colección de Invertebrados Sur del Ecuador, Museo de Zoología CISEC-MUTPL, Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, Loja 110160, Ecuador; (K.S.-V.); (J.G.-M.)
| |
Collapse
|
2
|
Rosa AHB, Freitas AVL. The importance of protected areas for threatened Brazilian butterflies. AN ACAD BRAS CIENC 2024; 96:e20231344. [PMID: 39383349 DOI: 10.1590/0001-3765202420231344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/28/2024] [Indexed: 10/11/2024] Open
Abstract
The present study aims to disclose the importance existing protected areas (PAs) and their level of protection for the conservation of the threatened Brazilian butterflies. A total of 898 occurrence records were found for all 63 species of butterflies present in the current Brazilian Red list. For all studied taxa, at least one occurrence record is within the limits of a PA. More than half of the occurrence records (61.9%) are within the limits of PAs, but less than half (41.7%) of these records are present in fully protected areas. For 17 taxa (27%), less than 50% of their records are within PAs, thus being completely unprotected. For butterfly taxa in the category "critically endangered", 42.6% of their occurrence records falls outside PAs. Almost 99% of the records are concentrated in the Atlantic Forest and the Cerrado, the two most threatened Brazilian biomes and global hostspots of biodiversity. In conclusion, the present study showed an important panorama of how threatened Brazilian butterflies are protected (or not). Anyway, it is important to highlight that for any record inside a PA, some level of protection is provided for these taxa against the advance of environmental destruction caused by human activities.
Collapse
Affiliation(s)
- Augusto H B Rosa
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal and Museu de Diversidade Biológica, Rua Monteiro Lobato, 255, 13083-862 Campinas, SP, Brazil
| | - André V L Freitas
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal and Museu de Diversidade Biológica, Rua Monteiro Lobato, 255, 13083-862 Campinas, SP, Brazil
| |
Collapse
|
3
|
Svenningsen CS, Schigel D. Sharing insect data through GBIF: novel monitoring methods, opportunities and standards. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230104. [PMID: 38705176 PMCID: PMC11070266 DOI: 10.1098/rstb.2023.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 03/12/2024] [Indexed: 05/07/2024] Open
Abstract
Technological advancements in biological monitoring have facilitated the study of insect communities at unprecedented spatial scales. The progress allows more comprehensive coverage of the diversity within a given area while minimizing disturbance and reducing the need for extensive human labour. Compared with traditional methods, these novel technologies offer the opportunity to examine biological patterns that were previously beyond our reach. However, to address the pressing scientific inquiries of the future, data must be easily accessible, interoperable and reusable for the global research community. Biodiversity information standards and platforms provide the necessary infrastructure to standardize and share biodiversity data. This paper explores the possibilities and prerequisites of publishing insect data obtained through novel monitoring methods through GBIF, the most comprehensive global biodiversity data infrastructure. We describe the essential components of metadata standards and existing data standards for occurrence data on insects, including data extensions. By addressing the current opportunities, limitations, and future development of GBIF's publishing framework, we hope to encourage researchers to both share data and contribute to the further development of biodiversity data standards and publishing models. Wider commitments to open data initiatives will promote data interoperability and support cross-disciplinary scientific research and key policy indicators. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Collapse
Affiliation(s)
- Cecilie S. Svenningsen
- Global Biodiversity Information Facility, Universitetsparken 15, 2100 København Ø, Denmark
| | - Dmitry Schigel
- Global Biodiversity Information Facility, Universitetsparken 15, 2100 København Ø, Denmark
| |
Collapse
|
4
|
Huang JP, Wu SP, Chen WY, Pham GJ, Kuan YH. Genomic data revealed inbreeding despite a geographically connected stable effective population size since the Holocene in the protected Formosan Long-Arm Scarab beetle, Cheirotonus formosanus. J Hered 2024; 115:292-301. [PMID: 38364316 DOI: 10.1093/jhered/esae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/08/2024] [Indexed: 02/18/2024] Open
Abstract
Biodiversity conservation is a top priority in the face of global environmental change, and the practical restoration of biodiversity has emerged as a key objective. Nevertheless, the question of how to effectively contribute to biodiversity restoration and identify suitable systems for such efforts continues to present major challenges. By using genome-wide SNP data, our study revealed that populations from different mountain ranges of the Formosan Long-Arm Scarab beetle, a flagship species that receives strict protection, exhibited a single genetic cluster with no subdivision. Additionally, our result implied an association between the demographic history and historical fluctuations in climate and environmental conditions. Furthermore, we showed that, despite a stable and moderately sized effective population over recent history, all the individuals we studied exhibited signs of genetic inbreeding. We argued that the current practice of protecting the species as one evolutionarily significant unit remains the best conservation plan and that recent habitat change may have led to the pattern of significant inbreeding. We closed by emphasizing the importance of conservation genetic studies in guiding policy decisions and highlighting the potential of genomic data for identifying ideal empirical systems for genetic rescue, or assisted gene flow studies.
Collapse
Affiliation(s)
- Jen-Pan Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Shu-Ping Wu
- Department of Earth and Life Science, University of Taipei, Taipei, Taiwan
| | - Wei-Yun Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Guan Jie Pham
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hsiu Kuan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
5
|
Rebolloso-Hernández CA, Vallejo-Pérez MR, Carrizales-Yáñez L, Garrigos-Lomelí GJ, Razo-Soto I, Diaz-Barriga F. Arsenic and mercury exposure in different insect trophic guilds from mercury mining areas in Mexico. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:422. [PMID: 38570386 DOI: 10.1007/s10661-024-12571-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
The exposure to arsenic and mercury in various insect trophic guilds from two mercury mining sites in Mexico was assessed. The two study sites were La Laja (LL) and La Soledad (LS) mines. Additionally, a reference site (LSR) was evaluated for LS. The terrestrial ecosystem was studied at LL, whereas both the terrestrial ecosystem and a stream called El Cedral (EC) were assessed at LS. The study sites are situated in the Biosphere Reserve Sierra Gorda (BRSG). Mercury vapor concentrations were measured with a portable analyzer, and concentrations of arsenic and mercury in environmental and biological samples were determined through atomic absorption spectrophotometry. Both pollutants were detected in all terrestrial ecosystem components (soil, air, leaves, flowers, and insects) from the two mines. The insect trophic guilds exposed included pollinivores, rhizophages, predators, coprophages, and necrophages. In LS, insects accumulated arsenic at levels 29 to 80 times higher than those found in specimens from LSR, and 10 to 46 times higher than those from LL. Similarly, mercury exposure in LS was 13 to 62 times higher than LSR, and 15 to 54 times higher than in LL. The analysis of insect exposure routes indicated potential exposure through air, soil, leaves, flowers, animal prey, carrion, and excrement. Water and sediment from EC exhibited high levels of arsenic and mercury compared to reference values, and predatory aquatic insects were exposed to both pollutants. In conclusion, insects from mercury mining sites in the BRSG are at risk.
Collapse
Affiliation(s)
- Carlos Alberto Rebolloso-Hernández
- Programa Multidisciplinario de Posgrado en Ciencias Ambientales, Universidad Autónoma de San Luis Potosí, 78000, San Luis Potosí, Mexico
| | - Moisés Roberto Vallejo-Pérez
- Programa Multidisciplinario de Posgrado en Ciencias Ambientales, Universidad Autónoma de San Luis Potosí, 78000, San Luis Potosí, Mexico.
- CONAHCYT-Universidad Autónoma de San Luis Potosí, 78000, San Luis Potosí, Mexico.
| | - Leticia Carrizales-Yáñez
- Facultad de Medicina-Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Universidad Autónoma de San Luis Potosí, 78210, San Luis Potosí, Mexico
| | - Giulio Jordan Garrigos-Lomelí
- Licenciatura en Ciencias Ambientales-Facultad de Medicina, Universidad Autónoma de San Luis Potosí, 78210, San Luis Potosí, Mexico
| | - Israel Razo-Soto
- Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, 78210, San Luis Potosí, Mexico
| | - Fernando Diaz-Barriga
- División de Estudios Superiores para la Paz, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, 78210, San Luis Potosí, Mexico
| |
Collapse
|
6
|
Ghisbain G, Thiery W, Massonnet F, Erazo D, Rasmont P, Michez D, Dellicour S. Projected decline in European bumblebee populations in the twenty-first century. Nature 2024; 628:337-341. [PMID: 37704726 DOI: 10.1038/s41586-023-06471-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/21/2023] [Indexed: 09/15/2023]
Abstract
Habitat degradation and climate change are globally acting as pivotal drivers of wildlife collapse, with mounting evidence that this erosion of biodiversity will accelerate in the following decades1-3. Here, we quantify the past, present and future ecological suitability of Europe for bumblebees, a threatened group of pollinators ranked among the highest contributors to crop production value in the northern hemisphere4-8. We demonstrate coherent declines of bumblebee populations since 1900 over most of Europe and identify future large-scale range contractions and species extirpations under all future climate and land use change scenarios. Around 38-76% of studied European bumblebee species currently classified as 'Least Concern' are projected to undergo losses of at least 30% of ecologically suitable territory by 2061-2080 compared to 2000-2014. All scenarios highlight that parts of Scandinavia will become potential refugia for European bumblebees; it is however uncertain whether these areas will remain clear of additional anthropogenic stressors not accounted for in present models. Our results underline the critical role of global change mitigation policies as effective levers to protect bumblebees from manmade transformation of the biosphere.
Collapse
Affiliation(s)
- Guillaume Ghisbain
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium.
- Laboratory of Zoology, Research Institute for Biosciences, Université de Mons, Mons, Belgium.
| | - Wim Thiery
- Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - François Massonnet
- Earth and Climate Research Center, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Diana Erazo
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium
| | - Pierre Rasmont
- Laboratory of Zoology, Research Institute for Biosciences, Université de Mons, Mons, Belgium
| | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, Université de Mons, Mons, Belgium
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium.
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Melo MC, Castro-Huertas V, Minghetti E, Olivera L, Serrano A, Dellap PM. Diversity of true bugs (Insecta: Hemiptera: Heteroptera) from the El Impenetrable National Park, Argentina. Zootaxa 2024; 5424:1-43. [PMID: 38480302 DOI: 10.11646/zootaxa.5424.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Indexed: 05/12/2024]
Abstract
The study of the Heteroptera (Hemiptera) fauna of the El Impenetrable National Park, resulted in an inventory composed of: Alydidae (2 spp.), Aradidae (1 sp.), Belostomatidae (5 spp.), Berytidae (1 sp.), Blissidae (1 sp.), Coreidae (11 spp.), Corixidae (2 spp.), Geocoridae (1 sp.), Gerridae (1 sp.), Hebridae (1 sp.), Largidae (4 spp.), Lygaeidae (5 spp.), Miridae (17 spp.), Nabidae (1 sp.), Notonectidae (1 sp.), Oxycarenidae (1 sp.), Pachygronthidae (1 sp.), Pachynomidae (2 spp.), Pentatomidae (16 spp.), Pleidae (1 sp.), Pyrrhocoridae (1 sp.), Reduviidae (30 spp.), Rhopalidae (5 spp.), Rhyparochromidae (12 spp.), Saldidae (1 sp.), Scutelleridae (2 spp.), Tingidae (1 sp.), and Veliidae (1 sp.). These findings include six new records for the Argentinean fauna: Prytanes foedus (Stl), Saldula pallipes (Fabricius), Camirus brevilinea (Walker), Atopozelus opsimus Elkins, Doldina bicarinata Stl, Rocconota sextuberculata St and 39 new records for Chaco Province.
Collapse
Affiliation(s)
- Mara C Melo
- Divisin Entomolog Universidad Nacional de la Plata; Museo de La Plata; Paseo del Bosque s/n; B1900FWA; La Plata; Buenos Aires; Argentina; Consejo Nacional de Investigaciones Cientficas y Tcnicas (CONICET); La Plata; Argentina.
| | - Valentina Castro-Huertas
- Divisin Entomolog Universidad Nacional de la Plata; Museo de La Plata; Paseo del Bosque s/n; B1900FWA; La Plata; Buenos Aires; Argentina; Consejo Nacional de Investigaciones Cientficas y Tcnicas (CONICET); La Plata; Argentina.
| | - Eugenia Minghetti
- Divisin Entomolog Universidad Nacional de la Plata; Museo de La Plata; Paseo del Bosque s/n; B1900FWA; La Plata; Buenos Aires; Argentina; Consejo Nacional de Investigaciones Cientficas y Tcnicas (CONICET); La Plata; Argentina.
| | - Leonela Olivera
- Facultad de Ciencias Naturales y Museo; Universidad Nacional de La Plata; Av. 122 y 60; La Plata; Buenos Aires; Argentina.
| | | | - Pablo M Dellap
- Divisin Entomolog Universidad Nacional de la Plata; Museo de La Plata; Paseo del Bosque s/n; B1900FWA; La Plata; Buenos Aires; Argentina; Consejo Nacional de Investigaciones Cientficas y Tcnicas (CONICET); La Plata; Argentina.
| |
Collapse
|
8
|
Singh AP, De K, Uniyal VP, Sathyakumar S. Unveiling of climate change-driven decline of suitable habitat for Himalayan bumblebees. Sci Rep 2024; 14:4983. [PMID: 38424143 PMCID: PMC10904386 DOI: 10.1038/s41598-024-52340-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 01/17/2024] [Indexed: 03/02/2024] Open
Abstract
Insect pollinators, especially bumblebees are rapidly declining from their natural habitat in the mountain and temperate regions of the world due to climate change and other anthropogenic activities. We still lack reliable information about the current and future habitat conditions of bumblebees in the Himalaya. In this study, we used the maximum entropy algorithm for SDM to look at current and future (in 2050 and 2070) suitable habitats for bumblebees in the Himalaya. We found that the habitat conditions in the Himalayan mountain range do not have a very promising future as suitable habitat for most species will decrease over the next 50 years. By 2050, less than 10% of the Himalayan area will remain a suitable habitat for about 72% of species, and by 2070 this number will be raised to 75%. During this time period, the existing suitable habitat of bumblebees will be declined but some species will find new suitable habitat which clearly indicates possibility of habitat range shift by Himalayan bumblebees. Overall, about 15% of the Himalayan region is currently highly suitable for bumblebees, which should be considered as priority areas for the conservation of these pollinators. Since suitable habitats for bumblebees lie between several countries, nations that share international borders in the Himalayan region should have international agreements for comprehensive pollinator diversity conservation to protect these indispensable ecosystem service providers.
Collapse
Affiliation(s)
- Amar Paul Singh
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, 248001, India.
| | - Kritish De
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, 248001, India
- Department of Life Sciences, Sri Sathya Sai University for Human Excellence, Navanihal, Okali Post, Kamalapur, Kalaburagi, Karnataka, 585313, India
| | - Virendra Prasad Uniyal
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, 248001, India
- Graphic Era (Deemed to be) University, Bell Road, Clement Town, Dehradun, Uttarakhand, 248002, India
| | | |
Collapse
|
9
|
Chowdhury S, Fuller RA, Ahmed S, Alam S, Callaghan CT, Das P, Correia RA, Di Marco M, Di Minin E, Jarić I, Labi MM, Ladle RJ, Rokonuzzaman M, Roll U, Sbragaglia V, Siddika A, Bonn A. Using social media records to inform conservation planning. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14161. [PMID: 37551776 DOI: 10.1111/cobi.14161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/11/2023] [Accepted: 07/17/2023] [Indexed: 08/09/2023]
Abstract
Citizen science plays a crucial role in helping monitor biodiversity and inform conservation. With the widespread use of smartphones, many people share biodiversity information on social media, but this information is still not widely used in conservation. Focusing on Bangladesh, a tropical megadiverse and mega-populated country, we examined the importance of social media records in conservation decision-making. We collated species distribution records for birds and butterflies from Facebook and Global Biodiversity Information Facility (GBIF), grouped them into GBIF-only and combined GBIF and Facebook data, and investigated the differences in identifying critical conservation areas. Adding Facebook data to GBIF data improved the accuracy of systematic conservation planning assessments by identifying additional important conservation areas in the northwest, southeast, and central parts of Bangladesh, extending priority conservation areas by 4,000-10,000 km2 . Community efforts are needed to drive the implementation of the ambitious Kunming-Montreal Global Biodiversity Framework targets, especially in megadiverse tropical countries with a lack of reliable and up-to-date species distribution data. We highlight that conservation planning can be enhanced by including available data gathered from social media platforms.
Collapse
Affiliation(s)
- Shawan Chowdhury
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
- Department of Ecosystem Services, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Richard A Fuller
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Sultan Ahmed
- Department of Zoology, University of Dhaka, Dhaka, Bangladesh
| | - Shofiul Alam
- Department of Zoology, University of Dhaka, Dhaka, Bangladesh
| | - Corey T Callaghan
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, Davie, Florida, USA
| | - Priyanka Das
- Department of Zoology, University of Dhaka, Dhaka, Bangladesh
| | - Ricardo A Correia
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
- Biodiversity Unit, University of Turku, Turku, Finland
| | - Moreno Di Marco
- Department of Biology and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Enrico Di Minin
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ivan Jarić
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czech Republic
| | | | - Richard J Ladle
- CIBIO/InBIO, Centro de Investigação Em Biodiversidade E Recursos Genéticos, Universidade Do Porto, Vairão, Portugal
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
| | - M Rokonuzzaman
- Department of Zoology, University of Dhaka, Dhaka, Bangladesh
| | - Uri Roll
- Mitrani Department of Desert Ecology, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Valerio Sbragaglia
- Department of Marine Renewable Resources, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - Asma Siddika
- Department of Zoology, University of Dhaka, Dhaka, Bangladesh
| | - Aletta Bonn
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
- Department of Ecosystem Services, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
10
|
Vaz S, Manes S, Khattar G, Mendes M, Silveira L, Mendes E, de Morais Rodrigues E, Gama-Maia D, Lorini ML, Macedo M, Paiva PC. Global meta-analysis of urbanization stressors on insect abundance, richness, and traits. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:165967. [PMID: 37543317 DOI: 10.1016/j.scitotenv.2023.165967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
Anthropic stressors are among the greatest concerns in nature conservation. Among these, deforestation and urban expansion are major drivers of habitat loss, which is a major threat to biodiversity. Insects, the largest and most abundant group of animals, are declining at alarming rates. However, global estimates of the impact of anthropic stressors on insect abundance, richness, and traits are still lacking. Here, we performed a meta-analysis to estimate the impact of urbanization stressors on insect abundance, diversity, and traits. Our design focused on the effects of urbanization on moderators such as insects' activity periods, climatic zones, development stages, ecosystem, functional roles, mobility, orders, and life history. We found that insects are negatively affected by urban stressors across most moderators evaluated. Our research estimated that in insects, urbanization resulted in a mean decrease of 42 % in abundance, 40 % in richness, and 24 % in trait effects, compared to a conserved area. Even though in general there was greater loss in abundance than in richness, each moderator was affected by different means and to varying degrees, which results from artificial lighting at night as well as land use. Our study highlights the importance of promoting better protection of insect biodiversity in the future from the enormous loss in biodiversity reported in >500 papers assessed.
Collapse
Affiliation(s)
- Stephanie Vaz
- Graduate Program in Ecology, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Bloco A, Rio de Janeiro, RJ 21941-590, Brazil.
| | - Stella Manes
- Graduate Program in Ecology, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Bloco A, Rio de Janeiro, RJ 21941-590, Brazil; International Institute for Sustainability (IIS), Rio de Janeiro, RJ, Brazil
| | - Gabriel Khattar
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Mariana Mendes
- Graduate Program in Ecology, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Bloco A, Rio de Janeiro, RJ 21941-590, Brazil
| | - Luiz Silveira
- Department of Biology, Western Carolina University, Apodaca Science Building, 122 Central Dr, Cullowhee, NC 28723, United States of America
| | - Eduardo Mendes
- Graduate Program in Ecology, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Bloco A, Rio de Janeiro, RJ 21941-590, Brazil
| | - Erimágna de Morais Rodrigues
- Graduate Program in Ecology, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Bloco A, Rio de Janeiro, RJ 21941-590, Brazil
| | - Danielle Gama-Maia
- Graduate Program in Ecology, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Bloco A, Rio de Janeiro, RJ 21941-590, Brazil
| | - Maria Lucia Lorini
- Departamento de Ciências Naturais, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ, Brazil
| | - Margarete Macedo
- Departamento de Ecologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Bloco A, Rio de Janeiro, RJ 21941-590, Brazil
| | - Paulo Cesar Paiva
- Departamento de Zoologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Bloco A, Rio de Janeiro, RJ 21941-590, Brazil
| |
Collapse
|
11
|
Korkmaz R, Rajabi H, Eshghi S, Gorb SN, Büscher TH. The frequency of wing damage in a migrating butterfly. INSECT SCIENCE 2023; 30:1507-1517. [PMID: 36434816 DOI: 10.1111/1744-7917.13153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
The ability to fly is crucial for migratory insects. Consequently, the accumulation of damage on the wings over time can affect survival, especially for species that travel long distances. We examined the frequency of irreversible wing damage in the migratory butterfly Vanessa cardui to explore the effect of wing structure on wing damage frequency, as well as the mechanisms that might mitigate wing damage. An exceptionally high migration rate driven by high precipitation levels in their larval habitats in the winter of 2018-2019 provided us with an excellent opportunity to collect data on the frequency of naturally occurring wing damage associated with long-distance flights. Digital images of 135 individuals of V. cardui were collected and analyzed in Germany. The results show that the hindwings experienced a greater frequency of damage than the forewings. Moreover, forewings experienced more severe damage on the lateral margin, whereas hindwings experienced more damage on the trailing margin. The frequency of wing margin damage was higher in the painted lady butterfly than in the migrating monarch butterfly and in the butterfly Pontia occidentalis following artificially induced wing collisions. The results of this study could be used in future comparative studies of patterns of wing damage in butterflies and other insects. Additional studies are needed to clarify whether the strategies for coping with wing damage differ between migratory and nonmigratory species.
Collapse
Affiliation(s)
- Rabiya Korkmaz
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| | - Hamed Rajabi
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
- Division of Mechanical Engineering and Design, School of Engineering, London South Bank University, London, UK
| | - Shahab Eshghi
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| | - Thies H Büscher
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| |
Collapse
|
12
|
Leandro C. Insect and arthropod conservation policies: the need for a paradigm shift. CURRENT OPINION IN INSECT SCIENCE 2023; 58:101075. [PMID: 37327945 DOI: 10.1016/j.cois.2023.101075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023]
Abstract
To date, insect conservation policy mainly consists of species protection lists, with some requiring habitat or ecosystem preservation to protect insect ecology. While a landscape or habitat approach seems the most appropriate for insect conservation, cases are rare of protected areas designated specifically for insects or other arthropods. Moreover, neither of these conservation approaches (species or habitat protection) have halted the worldwide decline in insects: species protection lists and reserves at best serve as band-aids for a massive hemorrhage. The main drivers of insect decline (global changes) are only loosely addressed by national and international policies. So, if we know the causes, what stands in the way of prevention and treatment for the problem? To save insects, our civilization needs psychotherapy rather than first-aid gestures: a paradigm shift that would place value on insects, and give rise to ecocentric policies informed by a wide range of stakeholders.
Collapse
Affiliation(s)
- Camila Leandro
- CEFE, Univ Paul Valéry Montpellier 3, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France.
| |
Collapse
|
13
|
Chowdhury S, Aich U, Rokonuzzaman M, Alam S, Das P, Siddika A, Ahmed S, Labi MM, Marco MD, Fuller RA, Callaghan CT. Increasing biodiversity knowledge through social media: A case study from tropical Bangladesh. Bioscience 2023; 73:453-459. [PMID: 37397834 PMCID: PMC10308356 DOI: 10.1093/biosci/biad042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 07/04/2023] Open
Abstract
Citizen science programs are becoming increasingly popular among naturalists but remain heavily biased taxonomically and geographically. However, with the explosive popularity of social media and the near-ubiquitous availability of smartphones, many post wildlife photographs on social media. Here, we illustrate the potential of harvesting these data to enhance our biodiversity understanding using Bangladesh, a tropical biodiverse country, as a case study. We compared biodiversity records extracted from Facebook with those from the Global Biodiversity Information Facility (GBIF), collating geospatial records for 1013 unique species, including 970 species from Facebook and 712 species from GBIF. Although most observation records were biased toward major cities, the Facebook records were more evenly spatially distributed. About 86% of the Threatened species records were from Facebook, whereas the GBIF records were almost entirely Of Least Concern species. To reduce the global biodiversity data shortfall, a key research priority now is the development of mechanisms for extracting and interpreting social media biodiversity data.
Collapse
Affiliation(s)
- Shawan Chowdhury
- School of Biological Sciences, University of Queensland, in Saint Lucia, Queensland, Australia
- Institute of Biodiversity, Friedrich Schiller University Jena, in Jena, Germany
- Helmholtz Centre for Environmental Research—UFZ, Department of Ecosystem Services, in Leipzig, Germany
- German Centre for Integrative Biodiversity Research, in Leipzig, Germany
| | - Upama Aich
- School of Biological Sciences, Monash University, in Clayton, Victoria, Australia
| | - Md Rokonuzzaman
- Department of Zoology, University of Dhaka, in Dhaka, Bangladesh
| | - Shofiul Alam
- Department of Zoology, University of Dhaka, in Dhaka, Bangladesh
| | - Priyanka Das
- Department of Zoology, University of Dhaka, in Dhaka, Bangladesh
| | - Asma Siddika
- Department of Zoology, University of Dhaka, in Dhaka, Bangladesh
| | - Sultan Ahmed
- Department of Zoology, University of Dhaka, in Dhaka, Bangladesh
| | | | - Moreno Di Marco
- Department of Biology and Biotechnologies, Sapienza University of Rome, in Rome, Italy
| | - Richard A Fuller
- School of Biological Sciences, University of Queensland, in Saint Lucia, Queensland, Australia
| | - Corey T Callaghan
- Department of Wildlife Ecology and Conservation, Fort Lauderdale, Florida, United States
- Research and Education Center, University of Florida, Davie, Florida, United States
| |
Collapse
|
14
|
Quinto J, Díaz-Castelazo C, Ramírez-Hernández A, Padilla A, Sánchez-Almodóvar E, Galante E, Micó E. Interaction Networks Help to Infer the Vulnerability of the Saproxylic Beetle Communities That Inhabit Tree Hollows in Mediterranean Forests. INSECTS 2023; 14:insects14050446. [PMID: 37233074 DOI: 10.3390/insects14050446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Insect communities are facing contrasting responses due to global change. However, knowledge on impacts of communities' reorganizations is scarce. Network approaches could help to envision community changes in different environmental scenarios. Saproxylic beetles were selected to examine long-term variations in insect interaction/diversity patterns and their vulnerability to global change. We evaluated interannual differences in network patterns in the tree hollow-saproxylic beetle interaction using absolute samplings over an 11-year interval in three Mediterranean woodland types. We explored saproxylic communities' vulnerability to microhabitat loss via simulated extinctions and by recreating threat scenarios based on decreasing microhabitat suitability. Although temporal diversity patterns varied between woodland types, network descriptors showed an interaction decline. The temporal beta-diversity of interactions depended more on interaction than on species turnover. Interaction and diversity temporal shifts promoted less specialized and more vulnerable networks, which is particularly worrisome in the riparian woodland. Network procedures evidenced that saproxylic communities are more vulnerable today than 11 years ago irrespective of whether species richness increased or decreased, and the situation could worsen in the future depending on tree hollow suitability. Network approaches were useful for predicting saproxylic communities' vulnerability across temporal scenarios and, thus, for providing valuable information for management and conservation programs.
Collapse
Affiliation(s)
- Javier Quinto
- Instituto de Investigación CIBIO (Centro Iberoamericano de la Biodiversidad), Universidad de Alicante, 03690 Alicante, Spain
| | | | | | - Ascensión Padilla
- Instituto de Investigación CIBIO (Centro Iberoamericano de la Biodiversidad), Universidad de Alicante, 03690 Alicante, Spain
- Instituto Interuniversitario de Geografía, Universidad de Alicante, 03690 Alicante, Spain
| | | | - Eduardo Galante
- Instituto de Investigación CIBIO (Centro Iberoamericano de la Biodiversidad), Universidad de Alicante, 03690 Alicante, Spain
| | - Estefanía Micó
- Instituto de Investigación CIBIO (Centro Iberoamericano de la Biodiversidad), Universidad de Alicante, 03690 Alicante, Spain
| |
Collapse
|
15
|
Riva F, Barbero F, Balletto E, Bonelli S. Combining environmental niche models, multi-grain analyses, and species traits identifies pervasive effects of land use on butterfly biodiversity across Italy. GLOBAL CHANGE BIOLOGY 2023; 29:1715-1728. [PMID: 36695553 DOI: 10.1111/gcb.16615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/10/2022] [Accepted: 01/03/2023] [Indexed: 05/28/2023]
Abstract
Understanding how species respond to human activities is paramount to ecology and conservation science, one outstanding question being how large-scale patterns in land use affect biodiversity. To facilitate answering this question, we propose a novel analytical framework that combines environmental niche models, multi-grain analyses, and species traits. We illustrate the framework capitalizing on the most extensive dataset compiled to date for the butterflies of Italy (106,514 observations for 288 species), assessing how agriculture and urbanization have affected biodiversity of these taxa from landscape to regional scales (3-48 km grains) across the country while accounting for its steep climatic gradients. Multiple lines of evidence suggest pervasive and scale-dependent effects of land use on butterflies in Italy. While land use explained patterns in species richness primarily at grains ≤12 km, idiosyncratic responses in species highlighted "winners" and "losers" across human-dominated regions. Detrimental effects of agriculture and urbanization emerged from landscape (3-km grain) to regional (48-km grain) scales, disproportionally affecting small butterflies and butterflies with a short flight curve. Human activities have therefore reorganized the biogeography of Italian butterflies, filtering out species with poor dispersal capacity and narrow niche breadth not only from local assemblages, but also from regional species pools. These results suggest that global conservation efforts neglecting large-scale patterns in land use risk falling short of their goals, even for taxa typically assumed to persist in small natural areas (e.g., invertebrates). Our study also confirms that consideration of spatial scales will be crucial to implementing effective conservation actions in the Post-2020 Global Biodiversity Framework. In this context, applications of the proposed analytical framework have broad potential to identify which mechanisms underlie biodiversity change at different spatial scales.
Collapse
Affiliation(s)
- Federico Riva
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Francesca Barbero
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Turin, Italy
| | - Emilio Balletto
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Turin, Italy
| | - Simona Bonelli
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Turin, Italy
| |
Collapse
|
16
|
Yu XT, Yang FL, Da W, Li YC, Xi HM, Cotton AM, Zhang HH, Duan K, Xu ZB, Gong ZX, Wang WL, Hu SJ. Species Richness of Papilionidae Butterflies (Lepidoptera: Papilionoidea) in the Hengduan Mountains and Its Future Shifts under Climate Change. INSECTS 2023; 14:259. [PMID: 36975944 PMCID: PMC10058169 DOI: 10.3390/insects14030259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
The family of Papilionidae (Lepidoptera: Papilionoidea) is a group of butterflies with high ecological and conservation value. The Hengduan Mountains (HMDs) in Southwest China is an important diversity centre for these butterflies. However, the spatial distribution pattern and the climate vulnerability of Papilionidae butterflies in the HDMs remain unknown to date. The lack of such knowledge has already become an obstacle in formulating effective butterfly conservation strategies. The present research compiled a 59-species dataset with 1938 occurrence points. The Maxent model was applied to analyse the spatial pattern of species richness in subfamilies Parnassiinae and Papilioninae, as well as to predict the response under the influence of climate change. The spatial pattern of both subfamilies in the HDMs has obvious elevation prevalence, with Parnassiinae concentrated in the subalpine to alpine areas (2500-5500 m) in western Sichuan, northwestern Yunnan and eastern Tibet, while Papilioninae is concentrated in the low- to medium-elevation areas (1500-3500 m) in the river valleys of western Yunnan and western Sichuan. Under the influence of climate change, both subfamilies would exhibit northward and upward range shifts. The majority of Parnassiinae species would experience drastic habitat contraction, resulting in lower species richness across the HDMs. In contrast, most Papilioninae species would experience habitat expansion, and the species richness would also increase significantly. The findings of this research should provide new insights and a clue for butterfly diversity and climatic vulnerability in southwestern China. Future conservation efforts should be focused on species with habitat contraction, narrow-ranged distribution and endemicity with both in situ and ex situ measures, especially in protected areas. Commercialised collecting targeting these species must also be regulated by future legislation.
Collapse
Affiliation(s)
- Xin-Tong Yu
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, Kunming 650500, China
- Asian International River Center, Kunming 650500, China
| | - Fei-Ling Yang
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, Kunming 650500, China
- Asian International River Center, Kunming 650500, China
| | - Wa Da
- Tibet Plateau Institute of Biology, Lhasa 850008, China
| | - Yu-Chun Li
- Yulong Xueshan Provincial Nature Reserve, Yulong, Lijiang 674100, China
| | - Hong-Mei Xi
- Yulong Xueshan Provincial Nature Reserve, Yulong, Lijiang 674100, China
| | - Adam M. Cotton
- 86/2 Moo 5, Tambon Nong Kwai, Hang Dong, Chiang Mai 50230, Thailand
| | - Hui-Hong Zhang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Kuang Duan
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Zhen-Bang Xu
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Zhi-Xian Gong
- Yulong Xueshan Provincial Nature Reserve, Yulong, Lijiang 674100, China
| | - Wen-Ling Wang
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, Kunming 650500, China
- Asian International River Center, Kunming 650500, China
| | - Shao-Ji Hu
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, Kunming 650500, China
- Asian International River Center, Kunming 650500, China
| |
Collapse
|
17
|
Calheiros-Nogueira B, Aguiar C, Villa M. Plant Functional Dispersion, Vulnerability and Originality Increase Arthropod Functions from a Protected Mountain Mediterranean Area in Spring. PLANTS (BASEL, SWITZERLAND) 2023; 12:889. [PMID: 36840238 PMCID: PMC9960503 DOI: 10.3390/plants12040889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Plant diversity often contributes to the shape of arthropod communities, which in turn supply important ecosystem services. However, the current biodiversity loss scenario, particularly worrying for arthropods, constitutes a threat for sustainability. From a trait-based ecology approach, our goal was to evaluate the bottom-up relationships to obtain a better understanding of the conservation of the arthropod function within the ecosystem. Specifically, we aim: (i) to describe the plant taxonomic and functional diversity in spring within relevant habitats of a natural protected area from the Mediterranean basin; and (ii) to evaluate the response of the arthropod functional community to plants. Plants and arthropods were sampled and identified, taxonomic and functional indices calculated, and the plant-arthropod relationships analyzed. Generally, oak forests and scrublands showed a higher plant functional diversity while the plant taxonomic richness was higher in grasslands and chestnut orchards. The abundance of arthropod functional groups increased with the plant taxonomic diversity, functional dispersion, vulnerability and originality, suggesting that single traits (e.g., flower shape or color) may be more relevant for the arthropod function. Results indicate the functional vulnerability of seminatural habitats, the relevance of grasslands and chestnut orchards for arthropod functions and pave the way for further studies about plant-arthropod interactions from a trait-based ecology approach.
Collapse
Affiliation(s)
- Bruno Calheiros-Nogueira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Carlos Aguiar
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - María Villa
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
18
|
Using Botanical Gardens as Butterfly Gardens: Insights from a Pilot Project in the Gran Sasso and Monti Della Laga National Park (Italy). CONSERVATION 2023. [DOI: 10.3390/conservation3010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
Butterfly gardens are green spaces designed as places where butterflies can feed, mate, and rest. Here, we present some perspectives on the possible use of botanical gardens in natural areas as butterfly gardens to promote insect conservation through science dissemination and citizen science activities. We explored this possibility with a project developed in the Botanical Garden of the Gran Sasso and Monti della Laga National Park (Italy). We found an extremely high butterfly richness as a result of favorable conditions which can be common in botanical gardens. To promote awareness of insect conservation in the general public and citizen science activities, we have installed within the garden several posters illustrating the butterfly fauna of the park, the species that visitors can easily observe, and the importance of butterfly conservation. Using this case study, we provided reflections and guidelines for the realization and management of butterfly gardens in already existing botanical gardens, especially in natural areas. The realization of butterfly gardens in protected areas to promote awareness of insect conservation, as well as to perform scientific research (namely insect monitoring), may help to ensure that insects will exert a pivotal role in expanding the global network of protected areas under the Post-2020 Global Biodiversity Framework.
Collapse
|
19
|
Wang L, Wang H, Zha Y, Wei H, Chen F, Zeng J. Forest Quality and Available Hostplant Abundance Limit the Canopy Butterfly of Teinopalpus aureus. INSECTS 2022; 13:1082. [PMID: 36554992 PMCID: PMC9780839 DOI: 10.3390/insects13121082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 06/17/2023]
Abstract
Hostplant limitation is a key focus of the spatial interaction between a phytophagous butterfly and a hostplant. The possible drivers related to the hostplants are species richness, abundance, or availability, but no consensus has been reached. In this study, we investigated the butterfly-hostplant interaction using the case of the forest canopy butterfly T. aureus in Asia, whose narrow distribution is assumed to be limited by its exclusive hostplant, Magnoliaceae, in tropic and subtropic regions. We recorded the Magnoliaceae species, as well as plant and butterfly individuals in transect, and we collected tree traits and topography variables. The results confirm that this butterfly is limited by the hostplants of their larval stage. The hostplants occurred exclusively in the middle-mountain region, with preference only for primeval forests. The hostplant resource was superior in the middle-mountain region, particularly concentrating in primeval forests. The hostplant's abundance, together with altitude and habitat types, was critical to this butterfly's occurrence, while those hostplant trees with an exposed crown, which are demanded by this butterfly in its oviposition, were the best drivers of positive butterfly-hostplant interactions. Therefore, the hostplant's limitation was mainly determined by the availability of the hostplant. This case study supports the hypothesis that the limitation on this butterfly's occurrence was driven by the hostplant's availability, and it suggests that protecting high-quality forests is a valuable activity and essential in the conservation of canopy butterflies.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of National Forestry and Grass and Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
- The Station of Observation and Research of Jiulianshan, Longnan 341701, China
| | - Hui Wang
- The Station of Observation and Research of Jiulianshan, Longnan 341701, China
- Jiulianshan National Nature Reserve of Jiangxi, Longnan 341701, China
| | - Yuhang Zha
- Key Laboratory of National Forestry and Grass and Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
- The Station of Observation and Research of Jiulianshan, Longnan 341701, China
| | - Heyi Wei
- Geodesign Research Centre, Jiangxi Normal University, Nanchang 330022, China
| | - Fusheng Chen
- Key Laboratory of National Forestry and Grass and Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
- The Station of Observation and Research of Jiulianshan, Longnan 341701, China
| | - Juping Zeng
- Key Laboratory of National Forestry and Grass and Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
- The Station of Observation and Research of Jiulianshan, Longnan 341701, China
| |
Collapse
|