1
|
McGovern KE, Sonar SA, Watanabe M, Coplen CP, Bradshaw CM, Nikolich JŽ. The aging of the immune system and its implications for transplantation. GeroScience 2023:10.1007/s11357-022-00720-2. [PMID: 36626019 PMCID: PMC9838392 DOI: 10.1007/s11357-022-00720-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
By the last third of life, most mammals, including humans, exhibit a decline in immune cell numbers, immune organ structure, and immune defense of the organism, commonly known as immunosenescence. This decline leads to clinical manifestations of increased susceptibility to infections, particularly those caused by emerging and reemerging microorganisms, which can reach staggering levels-infection with SARS-CoV-2 has been 270-fold more lethal to older adults over 80 years of age, compared to their 18-39-year-old counterparts. However, while this would be expected to be beneficial to situations where hyporeactivity of the immune system may be desirable, this is not always the case. Here, we discuss the cellular and molecular underpinnings of immunosenescence as they pertain to outcomes of solid organ and hematopoietic transplantation.
Collapse
Affiliation(s)
- Kathryn E McGovern
- Department of Immunobiology, University of Arizona, Tucson, AZ, 85724, USA
- Arizona Center On Aging, The University of Arizona, University of Arizona College of Medicine-Tucson, Tucson, AZ, 85724, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Sandip A Sonar
- Department of Immunobiology, University of Arizona, Tucson, AZ, 85724, USA
- Arizona Center On Aging, The University of Arizona, University of Arizona College of Medicine-Tucson, Tucson, AZ, 85724, USA
| | - Makiko Watanabe
- Department of Immunobiology, University of Arizona, Tucson, AZ, 85724, USA
- Arizona Center On Aging, The University of Arizona, University of Arizona College of Medicine-Tucson, Tucson, AZ, 85724, USA
| | - Christopher P Coplen
- Department of Immunobiology, University of Arizona, Tucson, AZ, 85724, USA
- Arizona Center On Aging, The University of Arizona, University of Arizona College of Medicine-Tucson, Tucson, AZ, 85724, USA
| | - Christine M Bradshaw
- Department of Immunobiology, University of Arizona, Tucson, AZ, 85724, USA
- Arizona Center On Aging, The University of Arizona, University of Arizona College of Medicine-Tucson, Tucson, AZ, 85724, USA
| | - Janko Ž Nikolich
- Department of Immunobiology, University of Arizona, Tucson, AZ, 85724, USA.
- Arizona Center On Aging, The University of Arizona, University of Arizona College of Medicine-Tucson, Tucson, AZ, 85724, USA.
- BIO5 Institute, University of Arizona, Tucson, AZ, USA.
- The Aegis Consortium for Pandemic-free Future, University of Arizona Health Sciences, University of Arizona, Tucson, 85719, USA.
| |
Collapse
|
2
|
Xu Q, Dong Y, Niu W, Zheng X, Li R, Zhang M, Wang Z, Qiu X. TLR10 genotypes affect long-term graft function in tacrolimus-treated solid organ transplant recipients. Int Immunopharmacol 2022; 111:109160. [PMID: 35994854 DOI: 10.1016/j.intimp.2022.109160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 11/05/2022]
Abstract
The present study was conducted to investigate the relationship between single nucleotide polymorphisms (SNPs) in TLR10 and the clinical outcomes of renal transplant patients who took tacrolimus (TAC) as an immunosuppressant, and further confirmed the results in liver transplant patients. A total of 172 renal transplant patients and 145 pairs of liver transplant recipients and donors were included. Nineteen SNPs of TLR10 gene were detected by matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS). The associations of recipient SNPs with TAC-related clinical outcomes were explored in renal transplant recipients. The relationship between recipient and donor SNPs and the clinical outcomes of liver transplant patients were investigated to confirm the results. Three SNPs (rs28393318, rs11466655 and rs11096957) in renal transplant recipients were found to influence the graft function after transplantation (P = 0.00003, 0.001 and 0.000003, respectively). The recipient rs11096957 was also found to affect the TBil, and DBil levels in liver transplant recipients (P = 0.001 and 0.002). In this study, we identified significant association signals from TLR10 polymorphisms with clinical outcomes in TAC-treated transplant patients in a Chinese Han-based sample. We provide some evidence for the effect between rs11096957 in TLR10 gene on the graft functions in both renal and liver transplantation.
Collapse
Affiliation(s)
- Qinxia Xu
- Department of Pharmacy, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China; Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Yue Dong
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Wanjie Niu
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Xinyi Zheng
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Ruidong Li
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Ming Zhang
- Department of Nephrology, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China.
| | - Zhengxin Wang
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China.
| | - Xiaoyan Qiu
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China.
| |
Collapse
|
3
|
Fan JW, Yan L, Wang XQ, Li YM, Bai YJ, Ou XQ, Wan ZL, Li Y. The diagnostic role of PD-1 + CXCR5 + follicular helper CD8 + T cell in renal allograft dysfunction. J Clin Lab Anal 2021; 36:e24200. [PMID: 34957609 PMCID: PMC8842189 DOI: 10.1002/jcla.24200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/04/2021] [Accepted: 12/13/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The roles of PD-1+ CXCR5+ follicular helper CD8+ T cell were reported in different disease conditions, but their roles in transplantation are unclear. In this study, the association between PD-1+ CXCR5+ follicular helper CD8+ T cell and renal allograft dysfunction in kidney transplant recipients (KTRs) was investigated. METHODS 82 KTRs were enrolled in this study. 45 KTRs were included in the chronic allograft dysfunction (CAD) group, and 37 KTRs were included in the stable recipients group. Among the CAD group, 12 cases of antibody-mediated rejection (ABMR) and 4 cases of T cell-mediated rejection (TCMR) were diagnosed by biopsy. The percentage of CXCR5+ CD8+ T cells and the co-expression of signal transducers and activators of transcription 4 (STAT4), STAT5, and PD-1 in peripheral blood were determined by flow cytometry. RESULTS The expression of CXCR5 on CD3+ CD8+ T cells and the percentage of STAT5+ CXCR5+ cells in the CD3+ CD8+ T-cell population were significantly lower in the CAD group (p < 0.05), while the expression of PD-1+ CXCR5+ CD8+ T cells was significantly higher (p < 0.05). Through logistic regression analysis, we concluded that the percentage of PD-1+ CXCR5+ CD8+ T cells was an independent risk factor for renal dysfunction. Grouping by pathological type, PD-1+ CXCR5+ CD8+ T cells showed relatively good diagnostic efficacy for ABMR by ROC analysis. CONCLUSIONS Our results suggested that PD-1+ CXCR5+ CD8+ T cells were a promising biomarker for distinguishing renal allograft dysfunction and different allograft pathological types. Also, our findings may provide new ways of identifying and treating allograft rejection.
Collapse
Affiliation(s)
- Ji-Wen Fan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan University, Chengdu, Sichuan Province, China
| | - Lin Yan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan University, Chengdu, Sichuan Province, China
| | - Xue-Qiao Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan University, Chengdu, Sichuan Province, China
| | - Ya-Mei Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan University, Chengdu, Sichuan Province, China
| | - Yang-Juan Bai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiao-Qi Ou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan University, Chengdu, Sichuan Province, China
| | - Zheng-Li Wan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan University, Chengdu, Sichuan Province, China
| | - Yi Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
4
|
Abstract
Elderly individuals with chronic disorders tend to develop inflammaging, a condition associated with elevated levels of blood inflammatory markers, and increased susceptibility to chronic disease progression. Native and adaptive immunity are both involved in immune system senescence, kidney fibrosis and aging. The innate immune system is characterized by a limited number of receptors, constantly challenged by self and non-self stimuli. Circulating and kidney resident myeloid and lymphoid cells are all equipped with pattern recognition receptors (PRRs). Recent reports on PRRs show kidney overexpression of toll-like receptors (TLRs) in inflammaging autoimmune renal diseases, vasculitis, acute kidney injury and kidney transplant rejection. TLR upregulation leads to proinflammatory cytokine induction, fibrosis, and chronic kidney disease progression. TLR2 blockade in a murine model of renal ischemia reperfusion injury prevented the escape of natural killer cells and neutrophils by inflammaging kidney injury. Tumor necrosis factor-α blockade in endothelial cells with senescence-associated secretory phenotype significantly reduced interleukin-6 release. These findings should encourage experimental and translational clinical trials aimed at modulating renal inflammaging by native immunity blockade.
Collapse
|
5
|
Lai X, Zheng X, Mathew JM, Gallon L, Leventhal JR, Zhang ZJ. Tackling Chronic Kidney Transplant Rejection: Challenges and Promises. Front Immunol 2021; 12:661643. [PMID: 34093552 PMCID: PMC8173220 DOI: 10.3389/fimmu.2021.661643] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/27/2021] [Indexed: 01/09/2023] Open
Abstract
Despite advances in post-transplant management, the long-term survival rate of kidney grafts and patients has not improved as approximately forty percent of transplants fails within ten years after transplantation. Both immunologic and non-immunologic factors contribute to late allograft loss. Chronic kidney transplant rejection (CKTR) is often clinically silent yet progressive allogeneic immune process that leads to cumulative graft injury, deterioration of graft function. Chronic active T cell mediated rejection (TCMR) and chronic active antibody-mediated rejection (ABMR) are classified as two principal subtypes of CKTR. While significant improvements have been made towards a better understanding of cellular and molecular mechanisms and diagnostic classifications of CKTR, lack of early detection, differential diagnosis and effective therapies continue to pose major challenges for long-term management. Recent development of high throughput cellular and molecular biotechnologies has allowed rapid development of new biomarkers associated with chronic renal injury, which not only provide insight into pathogenesis of chronic rejection but also allow for early detection. In parallel, several novel therapeutic strategies have emerged which may hold great promise for improvement of long-term graft and patient survival. With a brief overview of current understanding of pathogenesis, standard diagnosis and challenges in the context of CKTR, this mini-review aims to provide updates and insights into the latest development of promising novel biomarkers for diagnosis and novel therapeutic interventions to prevent and treat CKTR.
Collapse
Affiliation(s)
- Xingqiang Lai
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Organ Transplant Center, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xin Zheng
- Department of Urology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - James M. Mathew
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Lorenzo Gallon
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Medicine, Nephrology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Joseph R. Leventhal
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Zheng Jenny Zhang
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
6
|
Silvis MJM, Kaffka genaamd Dengler SE, Odille CA, Mishra M, van der Kaaij NP, Doevendans PA, Sluijter JPG, de Kleijn DPV, de Jager SCA, Bosch L, van Hout GPJ. Damage-Associated Molecular Patterns in Myocardial Infarction and Heart Transplantation: The Road to Translational Success. Front Immunol 2020; 11:599511. [PMID: 33363540 PMCID: PMC7752942 DOI: 10.3389/fimmu.2020.599511] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022] Open
Abstract
In the setting of myocardial infarction (MI), ischemia reperfusion injury (IRI) occurs due to occlusion (ischemia) and subsequent re-establishment of blood flow (reperfusion) of a coronary artery. A similar phenomenon is observed in heart transplantation (HTx) when, after cold storage, the donor heart is connected to the recipient's circulation. Although reperfusion is essential for the survival of cardiomyocytes, it paradoxically leads to additional myocardial damage in experimental MI and HTx models. Damage (or danger)-associated molecular patterns (DAMPs) are endogenous molecules released after cellular damage or stress such as myocardial IRI. DAMPs activate pattern recognition receptors (PRRs), and set in motion a complex signaling cascade resulting in the release of cytokines and a profound inflammatory reaction. This inflammatory response is thought to function as a double-edged sword. Although it enables removal of cell debris and promotes wound healing, DAMP mediated signalling can also exacerbate the inflammatory state in a disproportional matter, thereby leading to additional tissue damage. Upon MI, this leads to expansion of the infarcted area and deterioration of cardiac function in preclinical models. Eventually this culminates in adverse myocardial remodeling; a process that leads to increased myocardial fibrosis, gradual further loss of cardiomyocytes, left ventricular dilation and heart failure. Upon HTx, DAMPs aggravate ischemic damage, which results in more pronounced reperfusion injury that impacts cardiac function and increases the occurrence of primary graft dysfunction and graft rejection via cytokine release, cardiac edema, enhanced myocardial/endothelial damage and allograft fibrosis. Therapies targeting DAMPs or PRRs have predominantly been investigated in experimental models and are potentially cardioprotective. To date, however, none of these interventions have reached the clinical arena. In this review we summarize the current evidence of involvement of DAMPs and PRRs in the inflammatory response after MI and HTx. Furthermore, we will discuss various current therapeutic approaches targeting this complex interplay and provide possible reasons why clinical translation still fails.
Collapse
Affiliation(s)
- Max J. M. Silvis
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Clémence A. Odille
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mudit Mishra
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Niels P. van der Kaaij
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Pieter A. Doevendans
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
- Central Military Hospital, Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Joost P. G. Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
- UMC Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Saskia C. A. de Jager
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Netherlands
| | - Lena Bosch
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Gerardus P. J. van Hout
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
7
|
Ren Q, Cheng L, Yi J, Ma L, Pan J, Gou SJ, Fu P. Toll-like Receptors as Potential Therapeutic Targets in Kidney Diseases. Curr Med Chem 2020; 27:5829-5854. [PMID: 31161985 DOI: 10.2174/0929867325666190603110907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/15/2019] [Accepted: 05/13/2019] [Indexed: 02/08/2023]
Abstract
Toll-like Receptors (TLRs) are members of pattern recognition receptors and serve a pivotal role in host immunity. TLRs response to pathogen-associated molecular patterns encoded by pathogens or damage-associated molecular patterns released by dying cells, initiating an inflammatory cascade, where both beneficial and detrimental effects can be exerted. Accumulated evidence has revealed that TLRs are closely associated with various kidney diseases but their roles are still not well understood. This review updated evidence on the roles of TLRs in the pathogenesis of kidney diseases including urinary tract infection, glomerulonephritis, acute kidney injury, transplant allograft dysfunction and chronic kidney diseases.
Collapse
Affiliation(s)
- Qian Ren
- Kidney Research Laboratory, Division of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lu Cheng
- Kidney Research Laboratory, Division of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jing Yi
- Kidney Research Laboratory, Division of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Liang Ma
- Kidney Research Laboratory, Division of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jing Pan
- Kidney Research Laboratory, Division of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Shen-Ju Gou
- Kidney Research Laboratory, Division of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ping Fu
- Kidney Research Laboratory, Division of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Kulkarni HS, Scozzi D, Gelman AE. Recent advances into the role of pattern recognition receptors in transplantation. Cell Immunol 2020; 351:104088. [PMID: 32183988 DOI: 10.1016/j.cellimm.2020.104088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/19/2022]
Abstract
Pattern recognition receptors (PRRs) are germline-encoded sensors best characterized for their critical role in host defense. However, there is accumulating evidence that organ transplantation induces the release or display of molecular patterns of cellular injury and death that trigger PRR-mediated inflammatory responses. There are also new insights that indicate PRRs are able to distinguish between self and non-self, suggesting the existence of non-clonal mechanisms of allorecognition. Collectively, these reports have spurred considerable interest into whether PRRs or their ligands can be targeted to promote transplant survival. This review examines the mounting evidence that PRRs play in transplant-mediated inflammation. Given the large number of PRRs, we will focus on members from four families: the complement system, toll-like receptors, the formylated peptide receptor, and scavenger receptors through examining reports of their activity in experimental models of cellular and solid organ transplantation as well as in the clinical setting.
Collapse
Affiliation(s)
- Hrishikesh S Kulkarni
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Davide Scozzi
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew E Gelman
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA; Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
9
|
Yan L, Li Y, Li Y, Wu X, Wang X, Wang L, Shi Y, Tang J. Increased circulating Tfh to Tfr ratio in chronic renal allograft dysfunction: a pilot study. BMC Immunol 2019; 20:26. [PMID: 31382877 PMCID: PMC6683539 DOI: 10.1186/s12865-019-0308-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 07/24/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND T follicular helper (Tfh) cells play a control role in contribution of B cell differentiation and antibody production. T follicular regulatory (Tfr) cells inhibit Tfh-B cell interaction. METHODS To identify whether circulating Tfh (cTfh) and Tfr (cTfr) cells contribute to chronic renal allograft dysfunction (CAD), 67 kidney transplant recipients (34 recipients with CAD, 33 recipients with stable function) were enrolled. The frequency of cTfh and cTfr cells, the level of serum CXCL13 were measured. RESULTS The frequency of cTfr cells in CAD group was significantly lower than that in stable group (0.31% vs 0.68%, P = 0.002). The cTfh to cTfr ratio in CAD group was significantly higher than that in stable group (55.4 vs 25.3, P = 0.013). Serum CXCL13 in CAD group was significantly higher than stable group (30.4 vs 21.9 ng/ml, P = 0.025). After linear regression analysis, the cTfh to cTfr ratio was an independent risk factor for estimated glomerular filtration rate (eGFR) in recipients (standardized coefficient = - 0.420, P = 0.012). After logistic regression analysis, the cTfh to cTfr ratio was an independent risk factor for CAD (OR = 1.043, 95%CI = 1.004-1.085, P = 0.031). CONCLUSION The imbalance between cTfh and cTfr cells contribute to the development of CAD.
Collapse
Affiliation(s)
- Lin Yan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, No.37 Guoxue Xiang, Wuhou District, Chengdu, Sichuan, China
| | - Yamei Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, No.37 Guoxue Xiang, Wuhou District, Chengdu, Sichuan, China
| | - Yi Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, No.37 Guoxue Xiang, Wuhou District, Chengdu, Sichuan, China
| | - Xiaojuan Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, No.37 Guoxue Xiang, Wuhou District, Chengdu, Sichuan, China
| | - Xianding Wang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Lanlan Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, No.37 Guoxue Xiang, Wuhou District, Chengdu, Sichuan, China
| | - Yunying Shi
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiangtao Tang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, No.37 Guoxue Xiang, Wuhou District, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Sharbafi MH, Assadiasl S, Pour‐reza‐gholi F, Barzegari S, Mohammadi Torbati P, Samavat S, Nicknam MH, Amirzargar A. TLR‐2, TLR‐4 and MyD88 genes expression in renal transplant acute and chronic rejections. Int J Immunogenet 2019; 46:427-436. [DOI: 10.1111/iji.12446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/17/2019] [Accepted: 05/17/2019] [Indexed: 12/11/2022]
Affiliation(s)
| | - Sara Assadiasl
- Molecular Immunology Research Center Tehran University of Medical Sciences Tehran Iran
| | - Fatemeh Pour‐reza‐gholi
- Chronic Kidney Disease Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Saeed Barzegari
- Department of health information technology, Amol Faculty of Paramedical Sciences Mazandaran University of Medical Sciences Sari Iran
| | - Peyman Mohammadi Torbati
- Department of Pathology Labbafinejad Hospital, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Shiva Samavat
- Chronic Kidney Disease Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mohammad Hossein Nicknam
- Department of Immunology, School of Medicine Tehran University of Medical Sciences Tehran Iran
- Molecular Immunology Research Center Tehran University of Medical Sciences Tehran Iran
| | - Aliakbar Amirzargar
- Department of Immunology, School of Medicine Tehran University of Medical Sciences Tehran Iran
- Molecular Immunology Research Center Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
11
|
Tian SH, Yu DJ, Li ZY, Zhang WL. The inhibition of microRNA-203 on ischemic reperfusion injury after total knee arthroplasty via suppressing MYD88-mdiated toll-like receptor signaling pathway. Gene 2019; 697:175-183. [DOI: 10.1016/j.gene.2019.02.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/16/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023]
|