1
|
Jin C, Cherian RM, Liu J, Playà-Albinyana H, Galli C, Karlsson NG, Breimer ME, Holgersson J. Identification by mass spectrometry and immunoblotting of xenogeneic antigens in the N- and O-glycomes of porcine, bovine and equine heart tissues. Glycoconj J 2020; 37:485-498. [PMID: 32542517 PMCID: PMC7329767 DOI: 10.1007/s10719-020-09931-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/06/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
Abstract
Animal bioprosthetic heart valves (BHV) are used to replace defective valves in patients with valvular heart disease. Especially young BHV recipients may experience a structural valve deterioration caused by an immune reaction in which α-Gal and Neu5Gc are potential target antigens. The expression of these and other carbohydrate antigens in animal tissues used for production of BHV was explored. Protein lysates of porcine aortic and pulmonary valves, and porcine, bovine and equine pericardia were analyzed by Western blotting using anti-carbohydrate antibodies and lectins. N-glycans were released by PNGase F digestion and O-glycans by β-elimination. Released oligosaccharides were analyzed by liquid chromatography – tandem mass spectrometry. In total, 102 N-glycans and 40 O-glycans were identified in animal heart tissue lysates. The N- and O-glycan patterns were different between species. α-Gal and Neu5Gc were identified on both N- and O-linked glycans, N,N´-diacetyllactosamine (LacdiNAc) on N-glycans only and sulfated O-glycans. The relative amounts of α-Gal-containing N-glycans were higher in bovine compared to equine and porcine pericardia. In contrast to the restricted number of proteins carrying α-Gal and LacdiNAc, the distribution of proteins carrying Neu5Gc-determinants varied between species and between different tissues of the same species. Porcine pericardium carried the highest level of Neu5Gc-sialylated O-glycans, and bovine pericardium the highest level of Neu5Gc-sialylated N-glycans. The identified N- and O-linked glycans, some of which may be immunogenic and remain in BHVs manufactured for clinical use, could direct future genetic engineering to prevent glycan expression rendering the donor tissues less immunogenic in humans.
Collapse
Affiliation(s)
- Chunsheng Jin
- Department of Medical Biochemistry, Institute of Biomedicine Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Reeja Maria Cherian
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Jining Liu
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Heribert Playà-Albinyana
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Biochemistry and Biotechnology, Faculty of Chemistry, Rovira i Virgili University, Tarragona, Spain
| | - Cesare Galli
- Avantea Laboratory of Reproductive Technologies, Cremona, Italy.,Avantea Foundation, Cremona, Italy
| | - Niclas G Karlsson
- Department of Medical Biochemistry, Institute of Biomedicine Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Michael E Breimer
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Jan Holgersson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Xenotransplantation tolerance: applications for recent advances in modified swine. Curr Opin Organ Transplant 2019; 23:642-648. [PMID: 30379724 DOI: 10.1097/mot.0000000000000585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The aim of this study was to review the recent progress in xenotransplantation achieved through genetic engineering and discuss the potential of tolerance induction to overcome remaining barriers to extended xenograft survival. RECENT FINDINGS The success of life-saving allotransplantation has created a demand for organ transplantation that cannot be met by the supply of human organs. Xenotransplantation is one possible solution that would allow for a nearly unlimited supply of organs. Recent genetic engineering of swine has decreased the reactivity of preformed antibodies to some, but not all, potential human recipients. Experiments using genetically modified swine organs have now resulted in survival of life-supporting kidneys for over a year. However, the grafts show evidence of antibody-mediated rejection on histology, suggesting additional measures will be required for further extension of graft survival. Tolerance induction through mixed chimerism or thymic transplantation across xenogeneic barriers would be well suited for patients with a positive crossmatch to genetically modified swine or relatively negative crossmatches to genetically modified swine, respectively. SUMMARY This review highlights the current understanding of the immunologic processes in xenotransplantation and describes the development and application of strategies designed to overcome them from the genetic modification of the source animal to the induction of tolerance to xenografts.
Collapse
|
3
|
Rajab TK, Tchantchaleishvili V. Can tissue engineering produce bioartificial organs for transplantation? Artif Organs 2019; 43:536-541. [PMID: 30891801 DOI: 10.1111/aor.13443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/22/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Taufiek Konrad Rajab
- Division of Cardiac Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
4
|
Cheng W, Zhao H, Yu H, Xin J, Wang J, Zeng L, Yuan Z, Qing Y, Li H, Jia B, Yang C, Shen Y, Zhao L, Pan W, Zhao HY, Wang W, Wei HJ. Efficient generation of GGTA1-null Diannan miniature pigs using TALENs combined with somatic cell nuclear transfer. Reprod Biol Endocrinol 2016; 14:77. [PMID: 27821126 PMCID: PMC5100250 DOI: 10.1186/s12958-016-0212-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/26/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND α1,3-Galactosyltransferase (GGTA1) is essential for the biosynthesis of glycoproteins and therefore a simple and effective target for disrupting the expression of galactose α-1,3-galactose epitopes, which mediate hyperacute rejection (HAR) in xenotransplantation. Miniature pigs are considered to have the greatest potential as xenotransplantation donors. A GGTA1-knockout (GTKO) miniature pig might mitigate or prevent HAR in xenotransplantation. METHODS Transcription activator-like effector nucleases (TALENs) were designed to target exon 6 of porcine GGTA1 gene. The targeting activity was evaluated using a luciferase SSA recombination assay. Biallelic GTKO cell lines were established from single-cell colonies of fetal fibroblasts derived from Diannan miniature pigs following transfection by electroporation with TALEN plasmids. One cell line was selected as donor cell line for somatic cell nuclear transfer (SCNT) for the generation of GTKO pigs. GTKO aborted fetuses, stillborn fetuses and live piglets were obtained. Genotyping of the collected cloned individuals was performed. The Gal expression in the fibroblasts and one piglet was analyzed by fluorescence activated cell sorting (FACS), confocal microscopy, immunohistochemical (IHC) staining and western blotting. RESULTS The luciferase SSA recombination assay revealed that the targeting activities of the designed TALENs were 17.1-fold higher than those of the control. Three cell lines (3/126) showed GGTA1 biallelic knockout after modification by the TALENs. The GGTA1 biallelic modified C99# cell line enabled high-quality SCNT, as evidenced by the 22.3 % (458/2068) blastocyst developmental rate of the reconstructed embryos. The reconstructed GTKO embryos were subsequently transferred into 18 recipient gilts, of which 12 became pregnant, and six miscarried. Eight aborted fetuses were collected from the gilts that miscarried. One live fetus was obtained from one surrogate by caesarean after 33 d of gestation for genotyping. In total, 12 live and two stillborn piglets were collected from six surrogates by either caesarean or natural birth. Sequencing analyses of the target site confirmed the homozygous GGTA1-null mutation in all fetuses and piglets, consistent with the genotype of the donor cells. Furthermore, FACS, confocal microscopy, IHC and western blotting analyses demonstrated that Gal epitopes were completely absent from the fibroblasts, kidneys and pancreas of one GTKO piglet. CONCLUSIONS TALENs combined with SCNT were successfully used to generate GTKO Diannan miniature piglets.
Collapse
Affiliation(s)
- Wenmin Cheng
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
| | - Heng Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201 China
| | - Honghao Yu
- Research Center of Life Science, Yulin University, Yulin, 719000 China
| | - Jige Xin
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
| | - Jia Wang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
- Hunan Xeno Life Science Co., Ltd, Changsha, 410600 China
| | - Luyao Zeng
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201 China
| | - Zaimei Yuan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201 China
| | - Yubo Qing
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201 China
| | - Honghui Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201 China
| | - Baoyu Jia
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201 China
| | - Cejun Yang
- Institute for Cell Transplantation and Gene Therapy, The Third Xiangya Hospital Central-South University, Changsha, 410013 China
| | - Youfeng Shen
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
| | - Lu Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
| | - Weirong Pan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
| | - Hong-Ye Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201 China
| | - Wei Wang
- Hunan Xeno Life Science Co., Ltd, Changsha, 410600 China
- Institute for Cell Transplantation and Gene Therapy, The Third Xiangya Hospital Central-South University, Changsha, 410013 China
| | - Hong-Jiang Wei
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201 China
- Key Laboratory of Animal Nutrition and Feed of Yunnan Province, Yunnan Agricultural University, Kunming, 650201 China
| |
Collapse
|
5
|
Cinti A, De Giorgi M, Chisci E, Arena C, Galimberti G, Farina L, Bugarin C, Rivolta I, Gaipa G, Smolenski RT, Cerrito MG, Lavitrano M, Giovannoni R. Simultaneous Overexpression of Functional Human HO-1, E5NT and ENTPD1 Protects Murine Fibroblasts against TNF-α-Induced Injury In Vitro. PLoS One 2015; 10:e0141933. [PMID: 26513260 PMCID: PMC4626094 DOI: 10.1371/journal.pone.0141933] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/14/2015] [Indexed: 12/17/2022] Open
Abstract
Several biomedical applications, such as xenotransplantation, require multiple genes simultaneously expressed in eukaryotic cells. Advances in genetic engineering technologies have led to the development of efficient polycistronic vectors based on the use of the 2A self-processing oligopeptide. The aim of this work was to evaluate the protective effects of the simultaneous expression of a novel combination of anti-inflammatory human genes, ENTPD1, E5NT and HO-1, in eukaryotic cells. We produced an F2A system-based multicistronic construct to express three human proteins in NIH3T3 cells exposed to an inflammatory stimulus represented by tumor necrosis factor alpha (TNF-α), a pro-inflammatory cytokine which plays an important role during inflammation, cell proliferation, differentiation and apoptosis and in the inflammatory response during ischemia/reperfusion injury in several organ transplantation settings. The protective effects against TNF-α-induced cytotoxicity and cell death, mediated by HO-1, ENTPD1 and E5NT genes were better observed in cells expressing the combination of genes as compared to cells expressing each single gene and the effect was further improved by administrating enzymatic substrates of the human genes to the cells. Moreover, a gene expression analyses demonstrated that the expression of the three genes has a role in modulating key regulators of TNF-α signalling pathway, namely Nemo and Tnfaip3, that promoted pro-survival phenotype in TNF-α injured cells. These results could provide new insights in the research of protective mechanisms in transplantation settings.
Collapse
Affiliation(s)
- Alessandro Cinti
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza, Italy
| | - Marco De Giorgi
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza, Italy
- Medical University of Gdansk, Gdansk, Poland
| | - Elisa Chisci
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza, Italy
| | - Claudia Arena
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza, Italy
| | - Gloria Galimberti
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza, Italy
| | - Laura Farina
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza, Italy
| | - Cristina Bugarin
- M. Tettamanti Research Center, Pediatric Clinic, University of Milano Bicocca, Monza, Italy
| | - Ilaria Rivolta
- Department of Health Sciences, University of Milano-Bicocca, Monza, Italy
| | - Giuseppe Gaipa
- M. Tettamanti Research Center, Pediatric Clinic, University of Milano Bicocca, Monza, Italy
| | - Ryszard Tom Smolenski
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza, Italy
- Medical University of Gdansk, Gdansk, Poland
| | - Maria Grazia Cerrito
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza, Italy
| | - Marialuisa Lavitrano
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza, Italy
| | - Roberto Giovannoni
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, Monza, Italy
- * E-mail:
| |
Collapse
|
6
|
De Giorgi M, Cinti A, Pelikant-Malecka I, Chisci E, Lavitrano M, Giovannoni R, Smolenski RT. Co-expression of functional human Heme Oxygenase 1, Ecto-5′-Nucleotidase and ecto-nucleoside triphosphate diphosphohydrolase-1 by “self-cleaving” 2A peptide system. Plasmid 2015; 79:22-9. [DOI: 10.1016/j.plasmid.2015.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 03/05/2015] [Accepted: 03/09/2015] [Indexed: 11/26/2022]
|
7
|
Griesemer A, Yamada K, Sykes M. Xenotransplantation: immunological hurdles and progress toward tolerance. Immunol Rev 2015; 258:241-58. [PMID: 24517437 DOI: 10.1111/imr.12152] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The discrepancy between organ need and organ availability represents one of the major limitations in the field of transplantation. One possible solution to this problem is xenotransplantation. Research in this field has identified several obstacles that have so far prevented the successful development of clinical xenotransplantation protocols. The main immunologic barriers include strong T-cell and B-cell responses to solid organ and cellular xenografts. In addition, components of the innate immune system can mediate xenograft rejection. Here, we review these immunologic and physiologic barriers and describe some of the strategies that we and others have developed to overcome them. We also describe the development of two strategies to induce tolerance across the xenogeneic barrier, namely thymus transplantation and mixed chimerism, from their inception in rodent models through their current progress in preclinical large animal models. We believe that the addition of further beneficial transgenes to Gal knockout swine, combined with new therapies such as Treg administration, will allow for successful clinical application of xenotransplantation.
Collapse
Affiliation(s)
- Adam Griesemer
- Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | | | | |
Collapse
|
8
|
Zeyland J, Woźniak A, Gawrońska B, Juzwa W, Jura J, Nowak A, Słomski R, Smorąg Z, Szalata M, Mazurek U, Lipiński D. Double transgenic pigs with combined expression of human α1,2-fucosyltransferase and α-galactosidase designed to avoid hyperacute xenograft rejection. Arch Immunol Ther Exp (Warsz) 2014; 62:411-22. [PMID: 24554032 PMCID: PMC4164832 DOI: 10.1007/s00005-014-0280-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 12/04/2013] [Indexed: 01/25/2023]
Abstract
Hyperacute rejection (HAR) depends on the response of xenoreactive antibodies principally against porcine α-Gal epitope. Methods eliminating HAR include GGTA1 inactivation, regulation of the complement system and modification of the oligosaccharide structure of surface proteins in donor's cells. Transgenic animals designed for the purpose of xenotransplantation with single modification do not display full reduction of the α-Gal epitope level, which means that a accumulation of several modifications in one transgenic individual is needed. The aim of the study was to create a molecular and cytogenetic profile of a double transgenic animal with α1,2-fucosyltransferase and α-galactosidase expression. As a result of interbreeding of an individual with α1,2-fucosyltransferase expression with an individual with α-galactosidase expression 12 living piglets were obtained. PCR revealed the pCMVFUT gene construct was present in four individuals and pGAL-GFPBsd in three, including one with a confirmed integration of both the gene constructs. Fluorescence in situ hybridization confirmed the site of transgene integration, which corresponded to the mapping site of the transgenes which occurred in the parental generations. Karyotype analysis did not show any changes in the structure or the number of chromosomes (2n = 38, XX). As for the results pertaining to the single transgenic individuals, expression analysis demonstrated a high extent of α-Gal epitope level reduction on the surface of cells, whereas human serum cytotoxicity tests revealed the smallest decrease in longevity of cells in the obtained double transgenic individual (4.35 %). The tests suggest that the co-expression of both the transgenes leads to a considerable reduction of the α-Gal antigen level on the surface of cells and a decrease of xenotransplant immunogenicity.
Collapse
Affiliation(s)
- Joanna Zeyland
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632, Poznan, Poland,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Garas LC, Murray JD, Maga EA. Genetically engineered livestock: ethical use for food and medical models. Annu Rev Anim Biosci 2014; 3:559-75. [PMID: 25387117 DOI: 10.1146/annurev-animal-022114-110739] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent advances in the production of genetically engineered (GE) livestock have resulted in a variety of new transgenic animals with desirable production and composition changes. GE animals have been generated to improve growth efficiency, food composition, and disease resistance in domesticated livestock species. GE animals are also used to produce pharmaceuticals and as medical models for human diseases. The potential use of these food animals for human consumption has prompted an intense debate about food safety and animal welfare concerns with the GE approach. Additionally, public perception and ethical concerns about their use have caused delays in establishing a clear and efficient regulatory approval process. Ethically, there are far-reaching implications of not using genetically engineered livestock, at a detriment to both producers and consumers, as use of this technology can improve both human and animal health and welfare.
Collapse
|
10
|
Song Y, Hai T, Wang Y, Guo R, Li W, Wang L, Zhou Q. Epigenetic reprogramming, gene expression and in vitro development of porcine SCNT embryos are significantly improved by a histone deacetylase inhibitor--m-carboxycinnamic acid bishydroxamide (CBHA). Protein Cell 2014; 5:382-93. [PMID: 24627095 PMCID: PMC3996156 DOI: 10.1007/s13238-014-0034-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/12/2013] [Indexed: 10/27/2022] Open
Abstract
Insufficient epigenetic reprogramming of donor nuclei is believed to be one of the most important causes of low development efficiency of mammalian somatic cell nuclear transfer (SCNT). Previous studies have shown that both the in vitro and in vivo development of mouse SCNT embryos could be increased significantly by treatment with various histone deacetylase inhibitors (HDACi), including Trichostatin A, Scriptaid, and m-carboxycinnamic acid bishydroxamide (CBHA), in which only the effect of CBHA has not yet been tested in other species. In this paper we examine the effect of CBHA treatment on the development of porcine SCNT embryos. We have discovered the optimum dosage and time for CBHA treatment: incubating SCNT embryos with 2 μmol/L CBHA for 24 h after activation could increase the blastocyst rate from 12.7% to 26.5%. Immunofluorescence results showed that the level of acetylation at histone 3 lysine 9 (AcH3K9), acetylation at histone 3 lysine 18 (AcH3K18), and acetylation at histone 4 lysine 16 (AcH4K16) was raised after CBHA treatment. Meanwhile, CBHA treatment improved the expression of development relating genes such as pou5f1, cdx2, and the imprinted genes like igf2. Despite these promising in vitro results and histone reprogramming, the full term development was not significantly increased after treatment. In conclusion, CBHA improves the in vitro development of pig SCNT embryos, increases the global histone acetylation and corrects the expression of some developmentally important genes at early stages. As in mouse SCNT, we have shown that nuclear epigenetic reprogramming in pig early SCNT embryos can be modified by CBHA treatment.
Collapse
Affiliation(s)
- Yuran Song
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- Graduate University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Tang Hai
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Ying Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Runfa Guo
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Wei Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Liu Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Qi Zhou
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
11
|
Ricci JL. Why we cannot grow a human arm. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:2639-2643. [PMID: 24113888 DOI: 10.1007/s10856-013-5046-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 08/30/2013] [Indexed: 06/02/2023]
Abstract
There are several significant issues that prevent us from growing a human arm now, or within the next 10-20 years. From a tissue engineering perspective, while we can grow many of the components necessary for construction of a human arm, we can only grow them in relatively small volumes, and when scaled up to large volumes we lack the ability to develop adequate blood/nerve supply. From a genetic engineering perspective, we will probably never be able to turn on the specific genes necessary to "grow an arm" unless it is attached to a fetus and this presents enormous ethical issues related to farming of human organs and structures. Perhaps the most daunting problem facing the transplantation of a tissue engineered or transplanted arm is that of re-innervation of the structure. Since the sensory and motor nerve cells of the arm are located outside of the structure, re-innervation requires those nerves to regenerate over relatively large distances to repopulate the nervous system of the arm. This is something with which we have had little success. We can grow repair parts, but "growing an arm" presents too many insurmountable problems. The best we could possibly do with tissue engineering or genetic engineering would be the equivalent of a fetal arm and the technical problems, costs, and ethical hurdles are enormous. A more likely solution is a functional, permanent, neuroelectronically-controlled prosthesis. These are nearly a reality today.
Collapse
Affiliation(s)
- John L Ricci
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, 345 E. 24th Street, New York, NY, USA,
| |
Collapse
|
12
|
Zeyland J, Gawrońska B, Juzwa W, Jura J, Nowak A, Słomski R, Smorąg Z, Szalata M, Woźniak A, Lipiński D. Transgenic pigs designed to express human α-galactosidase to avoid humoral xenograft rejection. J Appl Genet 2013; 54:293-303. [PMID: 23780397 PMCID: PMC3720986 DOI: 10.1007/s13353-013-0156-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 04/18/2013] [Accepted: 05/27/2013] [Indexed: 12/01/2022]
Abstract
The use of animals as a source of organs and tissues for xenotransplantation can overcome the growing shortage of human organ donors. However, the presence of xenoreactive antibodies in humans directed against swine Gal antigen present on the surface of xenograft donor cells leads to the complement activation and immediate xenograft rejection as a consequence of hyperacute reaction. To prevent hyperacute rejection, it is possible to change the swine genome by a human gene modifying the set of donor’s cell surface proteins. The gene construct pGal-GFPBsd containing the human gene encoding α-galactosidase enzyme under the promoter of EF-1α elongation factor ensuring systemic expression was introduced by microinjection into a male pronucleus of the fertilised porcine oocyte. As a result, the founder male pig was obtained with the transgene mapping to chromosome 11p12. The polymerase chain reaction (PCR) analysis revealed and the Southern analysis confirmed transgene integration estimating the approximate number of transgene copies as 16. Flow cytometry analysis revealed a reduction in the level of epitope Gal on the cell surface of cells isolated from F0 and F1 transgenic animals. The complement-mediated cytotoxicity assay showed increased viability of the transgenic cells in comparison with the wild-type, which confirmed the protective influence of α-galactosidase expression.
Collapse
Affiliation(s)
- J Zeyland
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632, Poznan, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Quantitative analysis of porcine endogenous retroviruses in different organs of transgenic pigs generated for xenotransplantation. Curr Microbiol 2013; 67:505-14. [PMID: 23728786 DOI: 10.1007/s00284-013-0397-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
Abstract
The pig appears to be the most promising animal donor of organs for use in human recipients. Among several types of pathogens found in pigs, one of the greatest problems is presented by porcine endogenous retroviruses (PERVs). Screening of the source pig herd for PERVs should include analysis of both PERV DNA and RNA. Therefore, the present study focuses on quantitative analysis of PERVs in different organs such as the skin, heart, muscle, and liver and blood of transgenic pigs generated for xenotransplantation. Transgenic pigs were developed to express the human α-galactosidase, the human α-1,2-fucosyltransferase gene, or both genetic modifications of the genome (Lipinski et al., Medycyna Wet 66:316-322, 2010; Lipinski et al., Ann Anim Sci 12:349-356, 2012; Wieczorek et al., Medycyna Wet 67:462-466, 2011). The copy numbers of PERV DNA and RNA were evaluated using real-time Q-PCR and QRT-PCR, respectively. Comparative analysis of all PERV subtypes revealed the following relationships: PERV A > PERV B > PERV C. PERV A and B were found in all samples, whereas PERV C was detected in 47 % of the tested animals. The lowest level of PERV DNA was shown in the muscles for PERV A and B and in blood samples for PERV C. The lowest level of PERV A RNA was found in the skin, whereas those of PERV B and C RNA were found in liver specimens. Quantitative analysis revealed differences in the copy number of PERV subtypes between various organs of transgenic pigs generated for xenotransplantation. Our data support the idea that careful pig selection for organ donation with low PERV copy number may limit the risk of retrovirus transmission to the human recipients.
Collapse
|
14
|
A shift to Th2 immune response caused by constitutive expression of IPSE/alpha-1 in transfected pig fibroblasts in mice. Vet Immunol Immunopathol 2013; 152:269-76. [PMID: 23340445 DOI: 10.1016/j.vetimm.2012.12.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 12/14/2012] [Accepted: 12/28/2012] [Indexed: 01/23/2023]
Abstract
The IPSE/alpha-1 gene (IL-4-inducing principle of Schistosoma mansoni eggs) is a major secreted glycoprotein of S. mansoni eggs that has a potent IL-4-inducing effect. To test the hypothesis that the immune evasion mechanism can be used to overcome the xenograft immune response, the IPSE/alpha-1 gene was transferred into pig fibroblasts, and the transgenic cells were transplanted into KM mice by subcutaneously injecting 10(5)cells per mouse. Cytokine levels were measured to examine the immune response polarization by real-time PCR and ELISA. Mice injected with pig fibroblasts containing a pIRES2-EGFP expression vector were used as a control group. In this group, both cellular and humoral immune responses were activated to reject the grafts alongside increases in all measured cytokine levels. In contrast, the experimental group injected with cells constitutively expressing the IPSE/alpha-1 gene demonstrated a significant decrease in Th1 response cytokines and a significant increase in Th2 response cytokines compared with the control group. These results imply that constitutive IPSE/alpha-1 expression can shift the Th1/Th2 balance of xenograft rejections toward the Th2 response while suppressing the Th1 response. In conclusion, IPSE/alpha-1 could influence the polarization of immune responses during xenograft rejection and suppress the Th1 response. Therefore, this parasitic immune evasion mechanism could be helpful in overcoming xenograft rejection.
Collapse
|
15
|
Yazaki S, Iwamoto M, Onishi A, Miwa Y, Hashimoto M, Oishi T, Suzuki S, Fuchimoto DI, Sembon S, Furusawa T, Liu D, Nagasaka T, Kuzuya T, Ogawa H, Yamamoto K, Iwasaki K, Haneda M, Maruyama S, Kobayashi T. Production of cloned pigs expressing human thrombomodulin in endothelial cells. Xenotransplantation 2012; 19:82-91. [PMID: 22497510 DOI: 10.1111/j.1399-3089.2012.00696.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
For long-term xenograft survival, coagulation control is one of the remaining critical issues. Our attention has been directed toward human thrombomodulin (hTM), because it is expected to exhibit the following beneficial effects on coagulation control and cytoprotection: (i) to solve the problem of molecular incompatibility in protein C activation; (ii) to exert a role as a physiological regulator, only when thrombin is formed; (iii) to suppress direct prothrombinase activity; and (iv) to have anti-inflammatory properties. hTM gene was transfected into pig (Landrace/Yorkshire) fibroblasts using pCAGGS expression vector and pPGK-puro vector. After puromycin selection, only fibroblasts expressing a high level of hTM were collected by cell sorting and then applied to nuclear transfer. Following electroactivation and subsequent culture, a total of 1547 cleaved embryos were transferred to seven surrogate mother pigs. Two healthy cloned piglets expressing hTM were born, successfully grew to maturity and produced normal progeny. Immunohistochemical staining of organs from F1 generation pigs demonstrated hTM expression in endothelial cells as well as parenchymal cells. High expression was observed particularly in endothelial cells of kidney and liver. Aortic endothelial cells from cloned pigs were found to express hTM levels similar to human umbilical vein endothelial cells (HUVEC) and to make it possible to convert protein C into activated protein C. The blockade of human endothelial cell protein C receptor (hEPCR) significantly reduced APC production in HUVEC, but not in hTM-PAEC. Although no bleeding tendency was observed in hTM-cloned pigs, activated partial thromboplastin time (APTT) was slightly prolonged and soluble hTM was detected in pig plasma. hTM was expressed in platelets and mononuclear cells, but not in RBC. Cloned pigs expressing hTM in endothelial cells at a comparable level to HUVEC were produced. As complete suppression of antigen-antibody reaction in the graft is essential for accurate assessment of transgene related to coagulation control, production of genetically engineered pigs expressing hTM and complement regulatory protein based on galactosyltransferase knockout is desired.
Collapse
|
16
|
Black SM, Benson BA, Idossa D, Vercellotti GM, Dalmasso AP. Protection of porcine endothelial cells against apoptosis with interleukin-4. Xenotransplantation 2012; 18:343-54. [PMID: 22168141 DOI: 10.1111/j.1399-3089.2011.00678.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Apoptosis is crucial for tissue development and homeostasis, and insufficient apoptosis is pivotal in cancer pathogenesis. Apoptosis may also be important in tissue injury and in this case, it is of interest to induce protection against apoptosis. In organ transplantation, apoptosis has been implicated in acute vascular rejection (AVR); in xenotransplantation, the inducers of apoptosis of relevance in AVR, such as tumor necrosis factor-α (TNF-α), also cause endothelial cell (EC) activation. We have previously shown that interleukin (IL)-4 and IL-13 induced protection in porcine ECs against activation and apoptosis triggered by TNF-α. Now we define signaling processes activated by IL-4 in porcine ECs and mechanisms required for IL-4-induced protection against apoptosis. METHODS Porcine aortic ECs were used as primary cultures or as virus-induced immortalized cells derived from galactosyl transferase-deficient (Gal(-/-) ) or wild-type pigs. ECs were stimulated with porcine IL-4, either extrinsically or transduced with recombinant adenovirus (adeno) IL-4, and analyzed using immunoblotting. Apoptosis was induced with TNF-α plus cycloheximide and assessed using neutral red uptake or flow cytometry. The role of various signaling proteins in IL-4-induced protection was established using pharmacologic inhibitors and siRNA downregulation of protein expression. RESULTS IL-4 induced similar degrees of phosphorylation of STAT6 in all 3 types of ECs, and STAT6 was phosphorylated through Jak3. IL-4 induced phosphorylation of Bad through Jak3. Stimulation of ECs with IL-4 caused protection of ECs against apoptosis with an absolute requirement of Jak3/STAT6 activation and major participation of mammalian target of rapamycin complex 2 (mTORC2), Akt, and extracellular signal-regulated kinase 1/2. IL-4 caused no increase in EC levels of protective proteins hemoxygenase-1, inhibitor of apoptosis protein, heat shock protein 70, Bcl-2, and Bcl-xL. ECs transduced with adenoIL-4 exhibited strong and durable protection from apoptosis. Gal(-/-) ECs were as susceptible to induction of protection with IL-4 as wild-type ECs. CONCLUSIONS IL-4 induces activation of Jak3/STAT6 and phosphorylation of Bad in porcine ECs, ultimately resulting in effective protection of the ECs from apoptosis. Delineation of downstream signals activated by IL-4 that are required for induction of protection suggests possible sites of intervention to design effective therapeutic agents. This is of interest because substances such as IL-4 have pleiotropic effects and cannot be used directly due to potential deleterious effects. Inducing resistance to apoptosis in porcine vascular endothelium may be important to facilitate xenograft survival and accommodation.
Collapse
Affiliation(s)
- Sylvester M Black
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW This review assesses the recent progress in xenograft rejection by innate immune responses, with a focus on innate cellular xenoreactivity. RECENT FINDINGS Current literature was reviewed for new insights into the role of innate cellular immunity in xenograft rejection. Increasing evidence confirms that vigorous innate immune cell activation is accounted for by a combination of xenoantigen recognition by activating receptors, and incompatibility in inhibitory receptor-ligand interactions. Although both innate humoral and cellular xenoimmune responses are predominantly elicited by preformed and induced xenoreactive antibodies in nonhuman primates following porcine xenotransplantation, innate immune cells can also be activated by xenografts in the absence of antibodies. The latter antibody-independent response will likely persist in recipients even when adaptive xenoimmune responses are suppressed. In addition to xenograft rejection by recipient innate immune cells, phagocytic cells within liver xenografts are also deleterious to recipients by causing thrombocytopenia. SUMMARY Strategies of overcoming innate immune responses are required for successful clinical xenotransplantation. In addition to developing better immunosuppressive and tolerance induction protocols, endeavors towards further genetic modifications of porcine source animals are ultimately important for successful clinical xenotransplantation.
Collapse
Affiliation(s)
- Hui Wang
- Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, New York 10032, USA
| | | |
Collapse
|
18
|
Schneider MKJ, Seebach JD. Xenotransplantation literature update, January-February 2011. Xenotransplantation 2011; 18:147-50. [PMID: 21496121 DOI: 10.1111/j.1399-3089.2011.00630.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mårten K J Schneider
- Laboratory of Vascular Immunology, Division of Internal Medicine, University Hospital Zurich, Zurich, Switzerland.
| | | |
Collapse
|