1
|
Goncalves MB, Wu Y, Clarke E, Grist J, Moehlin J, Mendoza-Parra MA, Hobbs C, Kalindjian B, Fok H, Mander AP, Hassanin H, Bendel D, Täubel J, Mant T, Carlstedt T, Jack J, Corcoran JPT. C286, an orally available retinoic acid receptor β agonist drug, regulates multiple pathways to achieve spinal cord injury repair. Front Mol Neurosci 2024; 17:1411384. [PMID: 39228795 PMCID: PMC11368863 DOI: 10.3389/fnmol.2024.1411384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Retinoic acid receptor β2 (RARβ2) is an emerging therapeutic target for spinal cord injuries (SCIs) with a unique multimodal regenerative effect. We have developed a first-in-class RARβ agonist drug, C286, that modulates neuron-glial pathways to induce functional recovery in a rodent model of sensory root avulsion. Here, using genome-wide and pathway enrichment analysis of avulsed rats' spinal cords, we show that C286 also influences the extracellular milieu (ECM). Protein expression studies showed that C286 upregulates tenascin-C, integrin-α9, and osteopontin in the injured cord. Similarly, C286 remodulates these ECM molecules, hampers inflammation and prevents tissue loss in a rodent model of spinal cord contusion C286. We further demonstrate C286's efficacy in human iPSC-derived neurons, with treatment resulting in a significant increase in neurite outgrowth. Additionally, we identify a putative efficacy biomarker, S100B, which plasma levels correlated with axonal regeneration in nerve-injured rats. We also found that other clinically available retinoids, that are not RARβ specific agonists, did not lead to functional recovery in avulsed rats, demonstrating the requirement for RARβ specific pathways in regeneration. In a Phase 1 trial, the single ascending dose (SAD) cohorts showed increases in expression of RARβ2 in white blood cells correlative to increased doses and at the highest dose administered, the pharmacokinetics were similar to the rat proof of concept (POC) studies. Collectively, our data suggests that C286 signalling in neurite/axonal outgrowth is conserved between species and across nerve injuries. This warrants further clinical testing of C286 to ascertain POC in a broad spectrum of neurodegenerative conditions.
Collapse
Affiliation(s)
- Maria B. Goncalves
- Neuroscience Drug Discovery Unit, Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, United Kingdom
| | - Yue Wu
- Neuroscience Drug Discovery Unit, Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, United Kingdom
| | - Earl Clarke
- Neuroscience Drug Discovery Unit, Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, United Kingdom
| | - John Grist
- Neuroscience Drug Discovery Unit, Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, United Kingdom
| | - Julien Moehlin
- UMR 8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Évry-val-d'Essonne, University Paris-Saclay, Évry, France
| | - Marco Antonio Mendoza-Parra
- UMR 8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Évry-val-d'Essonne, University Paris-Saclay, Évry, France
| | - Carl Hobbs
- Neuroscience Drug Discovery Unit, Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, United Kingdom
| | - Barret Kalindjian
- Neuroscience Drug Discovery Unit, Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, United Kingdom
| | - Henry Fok
- NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, London, United Kingdom
| | - Adrian P. Mander
- Centre for Trials Research, Cardiff University, Cardiff, United Kingdom
| | - Hana Hassanin
- Surrey Clinical Research Centre, University of Surrey, Guildford, United Kingdom
| | - Daryl Bendel
- Surrey Clinical Research Centre, University of Surrey, Guildford, United Kingdom
| | - Jörg Täubel
- Richmond Pharmacology Limited, London, United Kingdom
| | - Tim Mant
- NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, London, United Kingdom
| | - Thomas Carlstedt
- Neuroscience Drug Discovery Unit, Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, United Kingdom
| | - Julian Jack
- Neuroscience Drug Discovery Unit, Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, United Kingdom
| | - Jonathan P. T. Corcoran
- Neuroscience Drug Discovery Unit, Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, United Kingdom
| |
Collapse
|
2
|
Khodaie SA, Razavi R, Nikkhah H, Namiranian N, Kamalinejad M. Nigella sativa L. and its bioactive and nutraceutical components in the management of diabetic peripheral neuropathy. Inflammopharmacology 2024:10.1007/s10787-024-01528-6. [PMID: 39143432 DOI: 10.1007/s10787-024-01528-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/05/2024] [Indexed: 08/16/2024]
Abstract
Diabetes-induced hyperglycemia leads to excessive production of oxygen free radicals, inflammatory cytokines, and oxidative stress, which initiates diabetic peripheral neuropathy (DPN). Currently, this condition affects 20% of adults with diabetes. Despite significant advances in the treatment of diabetes, the incidence of its complications, including DPN, is still high. Thus, there is a growing research interest in developing more effective and treatment approaches with less side effects for diabetes and its complications. Nigella sativa L. (NS) has received much research attention as an antioxidant, anti-yperglycemic factor, and anti-inflammatory agent. This natural compound demonstrates its antidiabetic neuropathy effect through various pathways, including the reduction of lipid peroxidation, the enhancement of catalase and superoxide dismutase enzyme activity, and the decrease in inflammatory cytokine levels. The present review focuses on the bioactive and nutraceutical components of black cumin (Nigella sativa L.) and their effects on DPN. In addition, we have also summarized the findings obtained from several experimental and clinical studies regarding the antidiabetic neuropathy effect of NS in animal models and human subjects.
Collapse
Affiliation(s)
- Seyed-Ali Khodaie
- Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Roghaye Razavi
- Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Haniyeh Nikkhah
- Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nasim Namiranian
- Community & Preventive Medicine, Yazd Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Kamalinejad
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Behdane Baran Salem Abi Company, Tehran, Iran.
- AB Pharma inc267 Esplanade West, North Vancouver, BC, Canada.
| |
Collapse
|
3
|
Elsayed HRH, Ali EMT, Rabei MR, El Nashar EM, Alghamdi MA, Al-Zahrani NS, Alshehri SH, Aldahhan RA, Morsy AI. Angiotensin II Type 1 receptor blockade attenuates the neuropathological changes in the spinal cords of diabetic rats with modulation of nuclear factor erythroid 2-related factor 2/ heme oxygenase 1 system. Tissue Cell 2024; 88:102420. [PMID: 38795506 DOI: 10.1016/j.tice.2024.102420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Peripheral and central neuropathies frequently complicate worldwide diabetes. Compared to peripheral neuropathy, central neuropathy didn`t gain a major research interest. Angiotensin II is reported to be involved in diabetic neuropathic pain but its role in the central pathological changes in the spinal cord is not clear. Here, we study the role of Losartan; an Angiotensin II receptor 1 (AT1) antagonist in suppression of the diabetes-induced changes in the spinal cord. Three groups of rats were applied; a negative control group, a streptozotocin (STZ) diabetic group, and a group receiving STZ and Losartan. After two months, the pathological alteration in the spinal cord was investigated, and an immunohistochemical study was performed for neuronal, astrocytic, and microglial markers; nuclear protein (NeuN), Glial fibrillary acidic protein (GFAP), and Ionized calcium-binding adaptor molecule 1 (Iba1), respectively, and for an apoptosis marker; caspase-3, and the inflammatory marker; nuclear factor kappa B (NF-kB) signaling, heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2); physiological antioxidant system. The results showed that Losartan caused recovery of spinal cord changes, by inhibiting the microglial and astrocytic activation, suppressing neuronal apoptosis and NF-kB expression with activation of Nrf2/HO-1 (P<0.0005). It is suggested, herein, that Losartan can suppress diabetes-induced glial activation, inflammation, neuronal apoptosis, and oxidative stress in the spinal cord; the mechanisms that may underlie the role of AT1 antagonism in suppressing diabetic neuropathic pain.
Collapse
Affiliation(s)
- Hassan Reda Hassan Elsayed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Department of Anatomy and Neurobiology, College of Medicine & Health Sciences, National University of Science and Technology, Sohar, Oman.
| | - Eyad Mohamed Tolba Ali
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Department of Anatomy, Faculty of Medicine, Taibah University, Madinah, Saudi Arabia
| | - Mohammed Rami Rabei
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Department of Basic Medical Sciences, Faculty of Medicine, Ibn Sina University for Medical Sciences, Amman, Jordan
| | | | - Mansour Abdullah Alghamdi
- Department of Anatomy, College Medicine, King Khalid University, Abha, Saudi Arabia; Genomics and Personalized Medicine Unit, The Center for Medical and Health Research, King Khalid University, Abha, Saudi Arabia
| | - Norah Saeed Al-Zahrani
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Shaker Hassan Alshehri
- Department of Orthopedics, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Rashid A Aldahhan
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Amira Ibrahim Morsy
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Li K, Chen Y, Xie J, Cai W, Pang C, Cui C, Huan Y, Deng B. How vitamins act as novel agents for ameliorating diabetic peripheral neuropathy: A comprehensive overview. Ageing Res Rev 2023; 91:102064. [PMID: 37689144 DOI: 10.1016/j.arr.2023.102064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/10/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is a pervasive and incapacitating sequela of diabetes, affecting a significant proportion of those diagnosed with the disease, yet an effective treatment remains elusive. Vitamins have been extensively studied, emerging as a promising target for diagnosing and treating various systemic diseases, but their role in DPN is not known. This review collates and synthesizes knowledge regarding the interplay between vitamins and DPN, drawing on bibliographies from prior studies and relevant articles, and stratifying the therapeutic strategies from prophylactic to interventional. In addition, the clinical evidence supporting the use of vitamins to ameliorate DPN is also evaluated, underscoring the potential of vitamins as putative therapeutic agents. We anticipate that this review will offer novel insights for developing and applying vitamin-based therapies for DPN.
Collapse
Affiliation(s)
- Kezheng Li
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China; First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, PR China
| | - Yinuo Chen
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China; First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, PR China
| | - Jiali Xie
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Weiwei Cai
- Department of Rheumatology and Immunology, Beijing Hospital, Beijing, PR China
| | - Chunyang Pang
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Can Cui
- Department of Clinical Sciences Malmö, Lund University, Skåne, Sweden
| | - Yu Huan
- Department of Pediatrics, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Binbin Deng
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China; First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, PR China.
| |
Collapse
|
5
|
Food Aversion Leading to Nutritional Optic Neuropathy in a Child With Severe Vitamin A Deficiency. J Neuroophthalmol 2021; 41:e718-e719. [PMID: 33136685 DOI: 10.1097/wno.0000000000001142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Abstract
Recently, research data have shown that vitamin A (VA, retinol) as a micronutrient participates in the regulation of glucose and lipid metabolism. Since diabetes is a metabolic disease, it is imperative to reveal the relationship of VA and diabetes. This review was aimed to summarize the current understanding of VA and its metabolites in diabetes. Since April of 2020, the authors have searched the PubMed using key words and retrieved articles that focused on diabetes and VA or its metabolites. Based on the published data, it appears that the development of type 1 diabetes leads to reduction of blood VA level in human and animals, and increase of hepatic VA store in experimental animals. On the other hand, the mutual impacts of type 2 diabetes and VA intake and blood VA level on each other appear to be uncertain. Retinoic acid, the active metabolite of VA, has been studied extensively for the treatment of diabetic complications. The current data appear to indicate that the development of diabetes is associated with changes of VA metabolism. More carefully designed clinical and laboratory experiments are needed to reveal the impacts of diabetes on VA metabolism and the role of VA in the development and treatment of diabetes.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Gastroenterology, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan, China
| | - Tiannan Wang
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| | - Xinge Hu
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| |
Collapse
|
7
|
Muñiz-Hernández S, Velázquez-Fernández JB, Díaz-Chávez J, Mondragón-Fonseca O, Mayén-Lobo Y, Ortega A, López-López M, Arrieta O. STRA6 Polymorphisms Are Associated With EGFR Mutations in Locally-Advanced and Metastatic Non-Small Cell Lung Cancer Patients. Front Oncol 2020; 10:579561. [PMID: 33324556 PMCID: PMC7723324 DOI: 10.3389/fonc.2020.579561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/13/2020] [Indexed: 01/11/2023] Open
Abstract
Retinol plays a significant role in several physiological processes through their nuclear receptors, whose expression depends on retinol cytoplasmic concentration. Loss of expression of nuclear receptors and low retinol levels have been correlated with lung cancer development. Stimulated by retinoic acid 6 (STRA6) is the only described cell membrane receptor for retinol uptake. Some chronic diseases have been linked with specific polymorphisms in STRA6. This study aimed to evaluate four STRA6 single nucleotide polymorphisms (SNPs) (rs4886578, rs736118, rs351224, and rs97445) among 196 patients with locally-advanced and metastatic non-small cell lung cancer (NSCLC) patients. Genotyping, through a validated SNP assay and determined using real time-PCR, was correlated with clinical features and outcomes. NSCLC patients with a TT SNP rs4886578 and rs736118 genotype were more likely to be >60 years, non-smokers, and harboring EGFR mutations. Patients with a TT genotype compared with a CC/CT SNP rs974456 genotype had a median progression-free survival (PFS) of 3.2 vs. 4.8 months, p = 0.044, under a platinum-based regimen in the first-line. Furthermore, patients with a TT rs351224 genotype showed a prolonged overall survival (OS), 47.5 months vs. 32.0 months, p = 0.156. This study showed a correlation between clinical characteristics, such as age, non-smoking history, and EGFR mutational status and oncological outcomes depending on STRA6 SNPs. The STRA6 TT genotype SNP rs4886578 and rs736118 might be potential biomarkers in locally-advanced and metastatic NSCLC patients.
Collapse
Affiliation(s)
- Saé Muñiz-Hernández
- Laboratorio de Oncología Experimental, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | | | - José Díaz-Chávez
- Laboratorio de Carcinogénesis, Dirección de Investigación, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Omar Mondragón-Fonseca
- Laboratorio de Oncología Experimental, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Yerye Mayén-Lobo
- Laboratorio de Oncología Experimental, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico.,Laboratorio de Genética Molecular, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México, Mexico
| | - Alberto Ortega
- Laboratorio de Genética Molecular, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México, Mexico
| | - Marisol López-López
- Laboratorio de Genética Molecular, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México, Mexico
| | - Oscar Arrieta
- Laboratorio de Oncología Experimental, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico.,Unidad de Oncología Torácica, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| |
Collapse
|
8
|
Regulation of Myelination by Exosome Associated Retinoic Acid Release from NG2-Positive Cells. J Neurosci 2019; 39:3013-3027. [PMID: 30760627 PMCID: PMC6468108 DOI: 10.1523/jneurosci.2922-18.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/15/2019] [Accepted: 02/03/2019] [Indexed: 02/07/2023] Open
Abstract
In the CNS, oligodendrocytes are responsible for myelin formation and maintenance. Following spinal cord injury, oligodendrocyte loss and an inhibitory milieu compromise remyelination and recovery. Here, we explored the role of retinoic acid receptor-beta (RARβ) signaling in remyelination. Using a male Sprague Dawley rat model of PNS-CNS injury, we show that oral treatment with a novel drug like RARβ agonist, C286, induces neuronal expression of the proteoglycan decorin and promotes myelination and differentiation of oligodendrocyte precursor cells (NG2+ cells) in a decorin-mediated neuron–glia cross talk. Decorin promoted the activation of RARα in NG2+ cells by increasing the availability of the endogenous ligand RA. NG2+ cells synthesize RA, which is released in association with exosomes. We found that decorin prevents this secretion through regulation of the EGFR–calcium pathway. Using functional and pharmacological studies, we further show that RARα signaling is both required and sufficient for oligodendrocyte differentiation. These findings illustrate that RARβ and RARα are important regulators of oligodendrocyte differentiation, providing new targets for myelination. SIGNIFICANCE STATEMENT This study identifies novel therapeutic targets for remyelination after PNS-CNS injury. Pharmacological and knock-down experiments show that the retinoic acid (RA) signaling promotes differentiation of oligodendrocyte precursor cells (OPCs) and remyelination in a cross talk between neuronal RA receptor-beta (RARβ) and RARα in NG2+ cells. We show that stimulation of RARα is required for the differentiation of OPCs and we describe for the first time how oral treatment with a RARβ agonist (C286, currently being tested in a Phase 1 trial, ISRCTN12424734) leads to the endogenous synthesis of RA through retinaldehyde dehydrogenase 2 (Raldh2) in NG2 cells and controls exosome-associated-RA intracellular levels through a decorin–Ca2+ pathway. Although RARβ has been implicated in distinct aspects of CNS regeneration, this study identifies a novel function for both RARβ and RARα in remyelination.
Collapse
|
9
|
Sun Q, Tang DD, Yin EG, Wei LL, Chen P, Deng SP, Tu LL. Diagnostic Significance of Serum Levels of Nerve Growth Factor and Brain Derived Neurotrophic Factor in Diabetic Peripheral Neuropathy. Med Sci Monit 2018; 24:5943-5950. [PMID: 30145601 PMCID: PMC6122271 DOI: 10.12659/msm.909449] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background Our study aimed to explore the levels of nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) in healthy participants, type 2 diabetes mellitus (T2DM) patients, and diabetic peripheral neuropathy (DPN) patients in order to find their effects on DPN. Material/Methods The clinical data of 110 healthy participants (age: 57.3±8.2 year, height: 165.4±5.5 cm, weight: 64.1±7.5 kg), 83 T2DM patients (age: 56.5±7.9 year, height: 164.8±6.2 cm, and weight: 63.6±6.6 kg), and 65 DPN patients (age: 58.2±7.3 year, height: 166.7±6.7 cm, weight: 63.1±5.8 kg) were observed. ELISA was applied to detect serum NGF and BDNF levels. Receiver operating characteristic (ROC) curve analysis was performed to evaluate diagnostic value of serum NGF and BDNF levels in DPN. Logistic regression analysis was performed to analyze risk factors for DPN. Results Serum NGF and BDNF levels decreased most in DPN patients. Subsequently, we determined that serum NGF and BDNF levels were correlated with: the course of disease for patients, fasting C-peptide (FCP), 2-hour postprandial C-peptide level (2-h PCP), glycosylated hemoglobin level (HbAlc), and 24-hour urinary microalbumin excretion (24-h UME). ROC curve analysis identified high sensitivity, specificity, and accuracy of NGF and BDNF levels on DPN. Serum levels of NGF and BDNF, course of disease, 2-h PCP level, and postprandial blood glucose level were determined to be risk factors for DPN. Conclusions Our study highlights that serum levels of NGF and BDNF might be associated with the occurrence and development of DPN.
Collapse
Affiliation(s)
- Qin Sun
- Center of Diabetes Mellitus, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China (mainland)
| | - Da-Dong Tang
- Department of Endocrinology, People's Hospital of Aba Tibetan and Qiang Autonomous Prefecture, Barkam, Qiang, China (mainland)
| | - E-Gao Yin
- Department of Endocrinology, People's Hospital of Aba Tibetan and Qiang Autonomous Prefecture, Barkam, Qiang, China (mainland)
| | - Ling-Ling Wei
- Center of Diabetes Mellitus, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China (mainland)
| | - Ping Chen
- Department of Elderly Endocrinology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China (mainland)
| | - Shao-Ping Deng
- Center of Diabetes Mellitus, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China (mainland)
| | - Li-Li Tu
- Department of Elderly Endocrinology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China (mainland)
| |
Collapse
|
10
|
Danhong Injection Alleviates Mechanical Allodynia via Inhibiting ERK1/2 Activation and Elevates BDNF Level in Sciatic Nerve in Diabetic Rat. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5798453. [PMID: 29552083 PMCID: PMC5820641 DOI: 10.1155/2018/5798453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 11/22/2022]
Abstract
Danhong injection (DHI) has been widely used in China for cardiocerebrovascular diseases treatments. And in this study, we demonstrated the therapeutic effect of DHI on experimental diabetic neuropathy for the first time. Methods. Streptozotocin- (STZ-) induced SD rats were used. In experiment 1, 4-week treatment with DHI or saline started 4 weeks after STZ injection; mechanical allodynia was measured before and every 2 weeks after STZ injection. In experiment 2, chronic intrathecal infusion of U0126 was conducted during the 8th week of diabetes. Phosphorylated and total ERK1/2 in spinal cord were analyzed by western blot. BDNF level in sciatic nerve was evaluated by ELISA. Results. DHI treatment significantly alleviated mechanical allodynia at the end of the study and downregulated the expression of phosphorylated ERK1/2 in spinal cord. In addition, DHI treatment also elevated brain-derived neurotrophic factor (BDNF) level in sciatic nerve of DPN rat. In experiment 2, inhibition of ERK1/2 activation was confirmed to result in the alleviation of mechanical allodynia. Conclusions. We demonstrated that DHI was able to alleviate mechanical allodynia in diabetic neuropathy rat through inhibiting the activation of ERK1/2. The reduction of BDNF content in sciatic nerve was also partially reversed by DHI treatment.
Collapse
|
11
|
Shen Q, Yasmeen R, Marbourg J, Xu L, Yu L, Fadda P, Flechtner A, Lee LJ, Popovich PG, Ziouzenkova O. Induction of innervation by encapsulated adipocytes with engineered vitamin A metabolism. Transl Res 2018; 192:1-14. [PMID: 29144959 PMCID: PMC5811336 DOI: 10.1016/j.trsl.2017.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/26/2017] [Accepted: 10/13/2017] [Indexed: 12/13/2022]
Abstract
Innervation is a fundamental basis for function and survival of tissues. In the peripheral tissues, degenerative diseases create a neurotoxic metabolic milieu that either causes neurodegeneration or fails to sustain regenerative growth and reinnervation of injured/diseased tissues. Encapsulation of cells producing neurotrophic factors can augment axon growth and neuron survival; however, sustained innervation in vivo requires a combination of factors promoting axon growth and guidance pathway that are released in a tissue-specific context. Using novel encapsulation techniques and genetic tools, we manipulated retinoic acid-generating enzyme aldehyde dehydrogenase 1a1 (Aldh1a1) in adipocytes that are capable of promoting growth and innervation of white adipose tissue by sympathetic neurons. Aldh1a1-/- adipocytes secrete molecules that regulate axon guidance and markedly stimulate neurite outgrowth in vitro and in vivo. Based on studies with natural and synthetic RAR agonists and antagonists, gene microarray and nanostring arrays, we concluded that ephrin A5/ephrin A4 is a downstream pathway regulated by Aldh1a1. Encapsulation of Aldh1a1-/- adipocytes into alginate poly-L-lysine microcapsules induced functional innervation of adipose tissue in obese wild-type mice. We propose that encapsulated Aldh1a1-/- adipocytes could provide a therapeutic solution for the reinnervation of damaged tissues.
Collapse
Affiliation(s)
- Qiwen Shen
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - Rumana Yasmeen
- Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - Jessica Marbourg
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio; Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Lu Xu
- Department of Human Sciences, The Ohio State University, Columbus, Ohio; Department of Minimally Invasive Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lianbo Yu
- Department of Statistics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Paolo Fadda
- Nucleic Acid Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Alan Flechtner
- Histology and Immunohistochemistry Laboratory, The Ohio State University, Columbus, Ohio
| | - L James Lee
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Phillip G Popovich
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio; Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | | |
Collapse
|
12
|
Rani J, Mittal I, Pramanik A, Singh N, Dube N, Sharma S, Puniya BL, Raghunandanan MV, Mobeen A, Ramachandran S. T2DiACoD: A Gene Atlas of Type 2 Diabetes Mellitus Associated Complex Disorders. Sci Rep 2017; 7:6892. [PMID: 28761062 PMCID: PMC5537262 DOI: 10.1038/s41598-017-07238-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 06/28/2017] [Indexed: 12/11/2022] Open
Abstract
We performed integrative analysis of genes associated with type 2 Diabetes Mellitus (T2DM) associated complications by automated text mining with manual curation and also gene expression analysis from Gene Expression Omnibus. They were analysed for pathogenic or protective role, trends, interaction with risk factors, Gene Ontology enrichment and tissue wise differential expression. The database T2DiACoD houses 650 genes, and 34 microRNAs associated with T2DM complications. Seven genes AGER, TNFRSF11B, CRK, PON1, ADIPOQ, CRP and NOS3 are associated with all 5 complications. Several genes are studied in multiple years in all complications with high proportion in cardiovascular (75.8%) and atherosclerosis (51.3%). T2DM Patients' skeletal muscle tissues showed high fold change in differentially expressed genes. Among the differentially expressed genes, VEGFA is associated with several complications of T2DM. A few genes ACE2, ADCYAP1, HDAC4, NCF1, NFE2L2, OSM, SMAD1, TGFB1, BDNF, SYVN1, TXNIP, CD36, CYP2J2, NLRP3 with details of protective role are catalogued. Obesity is clearly a dominant risk factor interacting with the genes of T2DM complications followed by inflammation, diet and stress to variable extents. This information emerging from the integrative approach used in this work could benefit further therapeutic approaches. The T2DiACoD is available at www.http://t2diacod.igib.res.in/ .
Collapse
Affiliation(s)
- Jyoti Rani
- G N Ramachandran Knowledge of Centre, Council of Scientific and Industrial Research - Institute of Genomics and Integrative Biology (CSIR-IGIB), Room No. 130, Mathura Road, New Delhi, 110025, India
| | - Inna Mittal
- G N Ramachandran Knowledge of Centre, Council of Scientific and Industrial Research - Institute of Genomics and Integrative Biology (CSIR-IGIB), Room No. 130, Mathura Road, New Delhi, 110025, India
| | - Atreyi Pramanik
- G N Ramachandran Knowledge of Centre, Council of Scientific and Industrial Research - Institute of Genomics and Integrative Biology (CSIR-IGIB), Room No. 130, Mathura Road, New Delhi, 110025, India
| | - Namita Singh
- G N Ramachandran Knowledge of Centre, Council of Scientific and Industrial Research - Institute of Genomics and Integrative Biology (CSIR-IGIB), Room No. 130, Mathura Road, New Delhi, 110025, India
| | - Namita Dube
- G N Ramachandran Knowledge of Centre, Council of Scientific and Industrial Research - Institute of Genomics and Integrative Biology (CSIR-IGIB), Room No. 130, Mathura Road, New Delhi, 110025, India
| | - Smriti Sharma
- G N Ramachandran Knowledge of Centre, Council of Scientific and Industrial Research - Institute of Genomics and Integrative Biology (CSIR-IGIB), Room No. 130, Mathura Road, New Delhi, 110025, India
| | - Bhanwar Lal Puniya
- G N Ramachandran Knowledge of Centre, Council of Scientific and Industrial Research - Institute of Genomics and Integrative Biology (CSIR-IGIB), Room No. 130, Mathura Road, New Delhi, 110025, India
| | - Muthukurussi Varieth Raghunandanan
- G N Ramachandran Knowledge of Centre, Council of Scientific and Industrial Research - Institute of Genomics and Integrative Biology (CSIR-IGIB), Room No. 130, Mathura Road, New Delhi, 110025, India
| | - Ahmed Mobeen
- G N Ramachandran Knowledge of Centre, Council of Scientific and Industrial Research - Institute of Genomics and Integrative Biology (CSIR-IGIB), Room No. 130, Mathura Road, New Delhi, 110025, India
- Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, New Delhi, 110025, India
| | - Srinivasan Ramachandran
- G N Ramachandran Knowledge of Centre, Council of Scientific and Industrial Research - Institute of Genomics and Integrative Biology (CSIR-IGIB), Room No. 130, Mathura Road, New Delhi, 110025, India.
- Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, New Delhi, 110025, India.
| |
Collapse
|
13
|
Latasa MJ, Jiménez-Lara AM, Cosgaya JM. Retinoic acid regulates Schwann cell migration via NEDD9 induction by transcriptional and post-translational mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1510-8. [PMID: 27085739 DOI: 10.1016/j.bbamcr.2016.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/30/2016] [Accepted: 04/11/2016] [Indexed: 12/14/2022]
Abstract
Schwann cell migration is essential during the regenerative response to nerve injury, however, the factors that regulate this phenomenon are not yet clear. Here we describe that retinoic acid (RA), whose production and signaling activity are greatly enhanced during nerve regeneration, increases Schwann cell migration. This is accompanied by the up-regulation of NEDD9, a member of the CAS family of scaffold proteins previously implicated in migratory and invasive behavior in gliomas, melanomas and the neural crest cells from which Schwann cells derive. This RA-induced NEDD9 accumulation is due to augmented mRNA levels, as well as an increase of NEDD9 protein stability. Although all NEDD9 phospho-isoforms present in Schwann cells are induced by the retinoid, the hormone also changes its phosphorylation status, thus altering the ratio between the different isoforms. Silencing NEDD9 in Schwann cells had no effect on basal migratory ability, but completely abrogated RA-induced enhanced migration. Collectively, our results indicate that RA could be a major regulator of Schwann cell migration after nerve injury, thus offering a new insight into peripheral nerve repair.
Collapse
Affiliation(s)
- Maria-Jesus Latasa
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Spain; Department of Endocrine and Nervous System Physiopathology, Arturo Duperier, 4, 28029 Madrid, Spain
| | - Ana María Jiménez-Lara
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Spain; Department of Endocrine and Nervous System Physiopathology, Arturo Duperier, 4, 28029 Madrid, Spain
| | - Jose Miguel Cosgaya
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Spain; Department of Endocrine and Nervous System Physiopathology, Arturo Duperier, 4, 28029 Madrid, Spain.
| |
Collapse
|
14
|
Lane JT. The role of retinoids in the induction of nerve growth factor: a potential treatment for diabetic neuropathy. Transl Res 2014; 164:193-5. [PMID: 24995388 DOI: 10.1016/j.trsl.2014.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 06/05/2014] [Indexed: 01/08/2023]
Affiliation(s)
- James T Lane
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK; Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK.
| |
Collapse
|