1
|
Chen X, Wang Y, Zhang M, Du Y, He Y, Li S. Selenomethionine alleviates kidney necroptosis and inflammation by restoring lipopolysaccharide-mediated mitochondrial dynamics imbalance via the TLR4/RIPK3/DRP1 signaling pathway in laying hens. Poult Sci 2024; 103:104439. [PMID: 39504830 DOI: 10.1016/j.psj.2024.104439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
Selenomethionine (SeMet) is a beneficial organic source of selenium that is extensively used as a food additive owing to its antioxidant and anti-inflammatory properties. Due to the sensitivity of the kidneys to noxious stimuli, they are more susceptible to various injuries. To investigate the protective mechanisms of SeMet supplementation against kidney injury, we established an in vivo experimental model using laying hens treated with SeMet (0.5 mg/kg diet) and/or lipopolysaccharide (LPS) (0.2 mg/kg. BW) and an in vitro model of chicken embryo primary kidney (CEK) cells treated with SeMet (0.075 mM) and with/ without LPS (60 μg/mL). SeMet treatment alleviated the LPS-induced kidney insufficiency and mitochondrial damage. Furthermore, it reduced the expression of TLR4, RIPK3, MLKL, DRP1, NLRP3, and IL-1β in the kidneys of laying hens. RIPK3 is known to induced necroptosis and inflammation by activating of the downstream factors DRP1 and MLKL. To investigate the mechanism whereby SeMet alleviates LPS-induced necroptosis in the kidney, we pretreated CEK cells with TLR4, RIPK3, and DRP1 inhibitors. The results demonstrated that RIPK3 inhibition resulted in a significantly increased in the mitochondrial membrane potential and downregulation of DRP1. Upon the inhibition of DRP1 expression, MLKL, NLRP3, and IL-1β expression also decreased. In summary, SeMet regulates the TLR4/RIPK3/DRP1 signaling pathway to restore the LPS-induced imbalances in mitochondrial dynamics, thereby alleviating necroptosis and inflammation in the kidneys of laying hen. Selenium also increases the expression of selenoproteins. This study provides valuable information for the development of new therapeutic strategies using SeMet to alleviate kidney injury.
Collapse
Affiliation(s)
- Xinzhang Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yixuan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Muyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yongzhen Du
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yujiao He
- Kekedala Animal Husbandry and Veterinary Workstation of the Fourth Division of Xinjiang Construction Corps, Kekedala 831304, PR China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
2
|
Rungratanawanich W, LeFort KR, Cho YE, Li X, Song BJ. Melatonin Prevents Thioacetamide-Induced Gut Leakiness and Liver Fibrosis Through the Gut-Liver Axis via Modulating Sirt1-Related Deacetylation of Gut Junctional Complex and Hepatic Proteins. J Pineal Res 2024; 76:e13007. [PMID: 39269018 PMCID: PMC11480967 DOI: 10.1111/jpi.13007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/11/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
Intestinal barrier dysfunction with high serum endotoxin is common in patients with liver fibrosis, but the mechanisms underlying liver fibrosis remain unclear. Melatonin is a well-recognized antioxidant and an anti-inflammatory agent that benefits multiple organs. However, the beneficial effects of melatonin on gut leakiness-associated liver fibrosis have not been systemically studied. Here, we investigated the protective mechanisms of melatonin against thioacetamide (TAA)-induced gut barrier dysfunction and hepatic fibrosis by focusing on posttranslational protein modifications through the gut-liver axis. Our results showed that gut leakiness markers, including decreased gut tight/adherens junction proteins (TJ/AJs) with increased intestinal deformation, apoptosis, and serum endotoxin, were observed early at 1 week after TAA exposure. Liver injury, apoptosis, and fibrosis were prominent at 2 and 4 weeks. Mechanistically, we found that gut TJ/AJs were hyper-acetylated, followed by ubiquitin-dependent proteolysis, leading to their degradation and gut leakiness. Gut dysbiosis, hepatic protein hyper-acetylation, and SIRT1 downregulation were also observed. Consistently, intestinal Sirt1 deficiency greatly enhanced protein hyper-acetylation, gut leakiness, endotoxemia, and liver fibrosis. Pretreatment with melatonin prevented or improved all these changes in both the gut and liver. Furthermore, melatonin blunted protein acetylation and injury in TAA-exposed T84 human intestinal and AML12 mouse liver cells. Overall, this study demonstrated novel mechanisms by which melatonin prevents gut leakiness and liver fibrosis through the gut-liver axis by attenuating the acetylation of intestinal and hepatic proteins. Thus, melatonin consumption can become a potentially safe supplement for liver fibrosis patients by preventing protein hyper-acetylation and gut leakiness.
Collapse
Affiliation(s)
- Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Karli Rae LeFort
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, Andong, Republic of Korea
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, BG 101, Research Triangle Park, NC 27709, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Liu X, Yao Y, Zhu Y, Lu F, Chen X. Inhibition of Adipocyte Necroptosis Alleviates Fat Necrosis and Fibrosis After Grafting in a Murine Model. Aesthet Surg J 2024; 44:NP585-NP605. [PMID: 38796831 DOI: 10.1093/asj/sjae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Because of the delicate structure of the adipose tissue, fat necrosis accounts for 43.7% of all complications after autologous fat grafting; however, its regulation remains unclear. OBJECTIVES The purpose of this study was to examine the role of necroptosis in fat graft remodeling after grafting. METHODS Clinical fat graft necrosis samples were collected, and the expression levels of the necroptosis marker phosphorylated(p)-MLKL were analyzed. Transcriptome analysis was performed on fat grafts before and 1 week after transplantation in C57BL/6 mouse fat grafting models. Additionally, the in vivo effects of RIPK1 inhibitor Nec-1s or RIPK3 inhibitor GSK'872 on the fat grafting complications, including fat necrosis and fibrosis, were investigated. RESULTS Necroptosis markers were observed and associated with higher occurrence of fibrosis in clinical fat graft necrosis samples compared to normal fat tissue. Amplification and RNA-Seq were conducted on RNA isolated from fat grafts before and after grafting. MLKL, RIPK1, and RIPK3's expression levels were significantly upregulated in comparison to controls. Higher expression levels of necroptotic RNAs were associated with higher levels of DAMPs, including Cxcl2, HMGB1, S100a8, S100a9, Nlrp3, and IL33, and activated proinflammatory signaling pathways, including the TNF, NF-kappa B, and chemokine signaling pathways. Necroptotic inhibitor Nec-1s and GSK'872 robustly suppressed the p-MLKL expression level and significantly inhibited necroptotic cell death, especially in adipocytes. Moreover, administration of Nec-1s and GSK'872 significantly alleviated fat necrosis and subsequent fibrosis in fat grafts. CONCLUSIONS Collectively, our study findings highlight the potential therapeutic applications of necroptosis inhibitors in preventing fat necrosis and fibrosis after grafting. LEVEL OF EVIDENCE: 4
Collapse
|
4
|
Yuan J, Guo L, Ma J, Zhang H, Xiao M, Li N, Gong H, Yan M. HMGB1 as an extracellular pro-inflammatory cytokine: Implications for drug-induced organic damage. Cell Biol Toxicol 2024; 40:55. [PMID: 39008169 PMCID: PMC11249443 DOI: 10.1007/s10565-024-09893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Drug-induced organic damage encompasses various intricate mechanisms, wherein HMGB1, a non-histone chromosome-binding protein, assumes a significant role as a pivotal hub gene. The regulatory functions of HMGB1 within the nucleus and extracellular milieu are interlinked. HMGB1 exerts a crucial regulatory influence on key biological processes including cell survival, inflammatory regulation, and immune response. HMGB1 can be released extracellularly from the cell during these processes, where it functions as a pro-inflammation cytokine. HMGB1 interacts with multiple cell membrane receptors, primarily Toll-like receptors (TLRs) and receptor for advanced glycation end products (RAGE), to stimulate immune cells and trigger inflammatory response. The excessive or uncontrolled HMGB1 release leads to heightened inflammatory responses and cellular demise, instigating inflammatory damage or exacerbating inflammation and cellular demise in different diseases. Therefore, a thorough review on the significance of HMGB1 in drug-induced organic damage is highly important for the advancement of pharmaceuticals, ensuring their effectiveness and safety in treating inflammation as well as immune-related diseases. In this review, we initially outline the characteristics and functions of HMGB1, emphasizing their relevance in disease pathology. Then, we comprehensively summarize the prospect of HMGB1 as a promising therapeutic target for treating drug-induced toxicity. Lastly, we discuss major challenges and propose potential avenues for advancing the development of HMGB1-based therapeutics.
Collapse
Affiliation(s)
- JianYe Yuan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, The Eight Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Lin Guo
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - JiaTing Ma
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - HeJian Zhang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - MingXuan Xiao
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Ning Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Hui Gong
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Miao Yan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, China.
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China.
| |
Collapse
|
5
|
Mansoori R, Kazemi S, Almasi D, Hosseini SM, Karim B, Nabipour M, Moghadamnia AA. Therapeutic benefit of melatonin in 5-fluorouracil-induced renal and hepatic injury. Basic Clin Pharmacol Toxicol 2024; 134:397-411. [PMID: 38129993 DOI: 10.1111/bcpt.13976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
Nephrotoxicity and hepatotoxicity include increased oxidative stress and apoptosis; as a result, liver and kidney damage are related to its pathogenesis. These are significant side effects caused in cancer patients treated with 5-FU. In the research, 25 rats were divided into five groups, including control, 5-FU and 5-FU + 2.5, 5 and 10 mg/kg melatonin (MEL), and the protective impact of MEL against 5-FU-induced hepatorenal damage in rats was investigated. 5-FU caused significant harm, resulting in severe renal failure and histopathological changes. It also increased BUN, creatinine and hepatic function markers levels while decreasing superoxide dismutase and glutathione peroxidase activity. Additionally, 5-FU led to a notable increase in malondialdehyde content. However, MEL co-administration to rats reversed most biochemical and histologic effects. In the control and MEL + 5-FU groups, the values were comparable. The doses of MEL treatment had a significant positive impact on 5-FU-induced oxidative stress, apoptosis, lipid peroxidation and kidney damage. Our data concluded that MEL has an ameliorative effect on hepatorenal damage caused by 5-FU.
Collapse
Affiliation(s)
- Razieh Mansoori
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Darya Almasi
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
- Pharmaceutical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Bardia Karim
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Majid Nabipour
- Cancer Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ali Akbar Moghadamnia
- Pharmaceutical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
6
|
Hosseinzadeh A, Pourhanifeh MH, Amiri S, Sheibani M, Irilouzadian R, Reiter RJ, Mehrzadi S. Therapeutic potential of melatonin in targeting molecular pathways of organ fibrosis. Pharmacol Rep 2024; 76:25-50. [PMID: 37995089 DOI: 10.1007/s43440-023-00554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023]
Abstract
Fibrosis, the excessive deposition of fibrous connective tissue in an organ in response to injury, is a pathological condition affecting many individuals worldwide. Fibrosis causes the failure of tissue function and is largely irreversible as the disease progresses. Pharmacologic treatment options for organ fibrosis are limited, but studies suggest that antioxidants, particularly melatonin, can aid in preventing and controlling fibrotic damage to the organs. Melatonin, an indole nocturnally released from the pineal gland, is commonly used to regulate circadian and seasonal biological rhythms and is indicated for treating sleep disorders. While it is often effective in treating sleep disorders, melatonin's anti-inflammatory and antioxidant properties also make it a promising molecule for treating other disorders such as organ fibrosis. Melatonin ameliorates the necrotic and apoptotic changes that lead to fibrosis in various organs including the heart, liver, lung, and kidney. Moreover, melatonin reduces the infiltration of inflammatory cells during fibrosis development. This article outlines the protective effects of melatonin against fibrosis, including its safety and potential therapeutic effects. The goal of this article is to provide a summary of data accumulated to date and to encourage further experimentation with melatonin and increase its use as an anti-fibrotic agent in clinical settings.
Collapse
Affiliation(s)
- Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Shiva Amiri
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rana Irilouzadian
- Clinical Research Development Unit of Shohada-e Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Liu C, Li S, Zhang C, Jin CH. Recent Advances in Research on Active Compounds Against Hepatic Fibrosis. Curr Med Chem 2024; 31:2571-2628. [PMID: 37497688 DOI: 10.2174/0929867331666230727102016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/14/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Almost all chronic liver diseases cause fibrosis, which can lead to cirrhosis and eventually liver cancer. Liver fibrosis is now considered to be a reversible pathophysiological process and suppression of fibrosis is necessary to prevent liver cancer. At present, no specific drugs have been found that have hepatic anti-fibrotic activity. OBJECTIVE The research progress of anti-hepatic fibrosis compounds in recent ten years was reviewed to provide a reference for the design and development of anti-hepatic fibrosis drugs. METHODS According to the structure of the compounds, they are divided into monocyclic compounds, fused-heterocyclic compounds, and acyclic compounds. RESULTS In this article, the natural products and synthetic compounds with anti-fibrotic activity in recent ten years were reviewed, with emphasis on their pharmacological activity and structure-activity relationship (SAR). CONCLUSION Most of these compounds are natural active products and their derivatives, and there are few researches on synthetic compounds and SAR studies on natural product.
Collapse
Affiliation(s)
- Chuang Liu
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Siqi Li
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Changhao Zhang
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Cheng-Hua Jin
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
- Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, Jilin, 133002, China
| |
Collapse
|
8
|
Hassanein EHM, Ibrahim IM, Abd El-Maksoud MS, Abd El-Aziz MK, Abd-Alhameed EK, Althagafy HS. Targeting necroptosis in fibrosis. Mol Biol Rep 2023; 50:10471-10484. [PMID: 37910384 PMCID: PMC10676318 DOI: 10.1007/s11033-023-08857-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023]
Abstract
Necroptosis, a type of programmed cell death that resembles necrosis, is now known to depend on a different molecular mechanism from apoptosis, according to several recent studies. Many efforts have reported the possible influence of necroptosis in human disorders and concluded the crucial role in the pathophysiology of various diseases, including liver diseases, renal injuries, cancers, and others. Fibrosis is the most common end-stage pathological cascade of several chronic inflammatory disorders. In this review, we explain the impact of necroptosis and fibrosis, for which necroptosis has been demonstrated to be a contributing factor. We also go over the inhibitors of necroptosis and how they have been applied to fibrosis models. This review helps to clarify the role of necroptosis in fibrosis and will encourage clinical efforts to target this pathway of programmed cell death.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| | - Islam M Ibrahim
- Graduated Student, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Mostafa S Abd El-Maksoud
- Graduated Student, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Mostafa K Abd El-Aziz
- Graduated Student, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Atef MM, Abou Hashish NA, Hafez YM, Selim AF, Ibrahim HA, Eltabaa EF, Rizk FH, Shalaby AM, Ezzat N, Alabiad MA, Elshamy AM. The potential protective effect of liraglutide on valproic acid induced liver injury in rats: Targeting HMGB1/RAGE axis and RIPK3/MLKL mediated necroptosis. Cell Biochem Funct 2023; 41:1209-1219. [PMID: 37771193 DOI: 10.1002/cbf.3855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/30/2023]
Abstract
Valproic acid (VPA) is a commonly used drug for management of epilepsy. Prolonged VPA administration increases the risk of hepatotoxicity. Liraglutide is a glucagon-like peptide 1 receptor (GLP-1R) agonist that act as a novel antidiabetic drug with broad-spectrum anti-inflammatory and antioxidant effects. This study tested the protective effect of liraglutide against VPA-induced hepatotoxicity elucidating the possible underlying molecular mechanisms. Forty adult male rats were allocated in to four equally sized groups; Group I (control group) received oral distilled water and subcutaneous normal saline for 2 weeks followed by subcutaneous normal saline only for 2 weeks. Group II (liraglutide group) received subcutaneous liraglutide dissolved in normal saline daily for 4 weeks. Group III (valproic acid-treated group) received sodium valproate dissolved in distilled water for 2 weeks. Group IV (Combined valproic acid & liraglutide treated group) received valproic acid plus liraglutide daily for 2 weeks which was continued for additional 2 weeks after valproic acid administration. The hepatic index was calculated. Serum AST, ALT, GGT, and ALP activities were estimated. Hepatic tissue homogenate MDA, GSH, SOD, HMGB1, MAPK, RIPK1, and RIPK3 levels were evaluated using ELISA. However, hepatic RAGE and MLKL messenger RNA expression levels using the QRT-PCR technique. Hepatic NF-κB and TNF-α were detected immunohistochemically. Results proved that liraglutide coadministration significantly decreased liver enzymes, MDA, HMGB1, MAPK, RIPK1 RIPK3, RAGE, and MLKL with concomitant increased GSH and SOD in comparison to the correspondent values in VPA-hepatotoxicity group. Conclusions: Liraglutide's protective effects against VPA-induced hepatotoxicity are triggered by ameliorating oxidative stress, inflammation, and necroptosis.
Collapse
Affiliation(s)
- Marwa Mohamed Atef
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Yasser Mostafa Hafez
- Department of Internal Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ahmed Fawzy Selim
- Department of Internal Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hoda A Ibrahim
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Eman Fawzy Eltabaa
- Department of Medical Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Fatma H Rizk
- Department of Medical Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Nadia Ezzat
- Department of Toxicology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohamed Ali Alabiad
- Department of Pathology, Faculty of Medicine, Zagazig University, Tanta, Egypt
| | - Amira M Elshamy
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
10
|
Hao M, Han X, Yao Z, Zhang H, Zhao M, Peng M, Wang K, Shan Q, Sang X, Wu X, Wang L, Lv Q, Yang Q, Bao Y, Kuang H, Zhang H, Cao G. The pathogenesis of organ fibrosis: Focus on necroptosis. Br J Pharmacol 2023; 180:2862-2879. [PMID: 36111431 DOI: 10.1111/bph.15952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/20/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
Fibrosis is a common process of tissue repair response to multiple injuries in all chronic progressive diseases, which features with excessive deposition of extracellular matrix. Fibrosis can occur in all organs and tends to be nonreversible with the progress of the disease. Different cells types in different organs are involved in the occurrence and development of fibrosis, that is, hepatic stellate cells, pancreatic stellate cells, fibroblasts and myofibroblasts. Various types of programmed cell death, including apoptosis, autophagy, ferroptosis and necroptosis, are closely related to organ fibrosis. Among these programmed cell death types, necroptosis, an emerging regulated cell death type, is regarded as a huge potential target to ameliorate organ fibrosis. In this review, we summarize the role of necroptosis signalling in organ fibrosis and collate the small molecule compounds targeting necroptosis. In addition, we discuss the potential challenges, opportunities and open questions in using necroptosis signalling as a potential target for antifibrotic therapies. LINKED ARTICLES: This article is part of a themed issue on Translational Advances in Fibrosis as a Therapeutic Target. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.22/issuetoc.
Collapse
Affiliation(s)
- Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhouhui Yao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Han Zhang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengting Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengyun Peng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kuilong Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiyuan Shan
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Wu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiang Lv
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yini Bao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haodan Kuang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongyan Zhang
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
11
|
Didamoony MA, Atwa AM, Ahmed LA. Modulatory effect of rupatadine on mesenchymal stem cell-derived exosomes in hepatic fibrosis in rats: A potential role for miR-200a. Life Sci 2023; 324:121710. [PMID: 37084952 DOI: 10.1016/j.lfs.2023.121710] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
AIMS Mesenchymal stem cell-derived exosomes (MSC-EXOs) have emerged as a promising approach in regenerative medicine for management of different diseases. However, the maintenance of their efficacy after in vivo transplantation is still a major concern. The present investigation aimed to assess the modulatory effect of rupatadine (RUP) on MSC-EXOs in diethylnitrosamine (DEN)-induced liver fibrosis (LF), and to explore the possible underlying mechanism. MAIN METHODS LF was induced in rats by i.p. injection of DEN (100 mg/kg) once per week for 6 successive weeks. Rats were then treated with RUP (4 mg/kg/day, p.o.) for 4 weeks with or without a single i.v. administration of MSC-EXOs. At the end of the experiment, animals were euthanized and serum and liver were separated for biochemical, and histological measurements. KEY FINDINGS The combined MSC-EXOs/RUP therapy provided an additional improvement towards inhibition of DEN-induced LF compared to MSC-EXOs group alone. These outcomes could be mediated through antioxidant, anti-inflammatory, and anti-fibrotic effects of RUP which created a more favorable environment for MSC-EXOs homing, and action. This in turn would enhance more effectively miR-200a expression which reduced oxidative stress, inflammation, necroptosis pathway, and subsequently fibrosis as revealed by turning off TGF-β1/α-SMA expression, and hedgehog axis. SIGNIFICANCE The present findings reveal that RUP enhanced the anti-fibrotic efficacy of MSC-EXOs when used as a combined therapy. This was revealed through attenuation of PAF/RIPK3/MLKL/HMGB1, and TGF-β1/hedgehog signaling pathways with a significant role for miR-200a.
Collapse
Affiliation(s)
- Manar A Didamoony
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt.
| | - Ahmed M Atwa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Lamiaa A Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| |
Collapse
|
12
|
RIPK1 in Liver Parenchymal Cells Limits Murine Hepatitis during Acute CCl4-Induced Liver Injury. Int J Mol Sci 2022; 23:ijms23137367. [PMID: 35806372 PMCID: PMC9266426 DOI: 10.3390/ijms23137367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/10/2022] Open
Abstract
Some life-threatening acute hepatitis originates from drug-induced liver injury (DILI). Carbon tetrachloride (CCl4)-induced acute liver injury in mice is the widely used model of choice to study acute DILI, which pathogenesis involves a complex interplay of oxidative stress, necrosis, and apoptosis. Since the receptor interacting protein kinase-1 (RIPK1) is able to direct cell fate towards survival or death, it may potentially affect the pathological process of xenobiotic-induced liver damage. Two different mouse lines, either deficient for Ripk1 specifically in liver parenchymal cells (Ripk1LPC-KO) or for the kinase activity of RIPK1 (Ripk1K45A, kinase dead), plus their respective wild-type littermates (Ripk1fl/fl, Ripk1wt/wt), were exposed to single toxic doses of CCl4. This exposure led in similar injury in Ripk1K45A mice and their littermate controls. However, Ripk1LPC-KO mice developed more severe symptoms with massive hepatocyte apoptosis as compared to their littermate controls. A pretreatment with a TNF-α receptor decoy exacerbated liver apoptosis in both Ripk1fl/fl and Ripk1LPC-KO mice. Besides, a FasL antagonist promoted hepatocyte apoptosis in Ripk1fl/fl mice but reduced it in Ripk1LPC-KO mice. Thus, the scaffolding properties of RIPK1 protect hepatocytes from apoptosis during CCl4 intoxication. TNF-α and FasL emerged as factors promoting hepatocyte survival. These protective effects appeared to be independent of RIPK1, at least in part, for TNF-α, but dependent on RIPK1 for FasL. These new data complete the deciphering of the molecular mechanisms involved in DILI in the context of research on their prevention or cure.
Collapse
|
13
|
Jie L, Hong RT, Zhang YJ, Sha LL, Chen W, Ren XF. Melatonin Alleviates Liver Fibrosis by Inhibiting Autophagy. Curr Med Sci 2022; 42:498-504. [PMID: 35583587 DOI: 10.1007/s11596-022-2530-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 06/18/2021] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Melatonin has been reported to suppress inflammation and alleviate liver fibrosis, but its effect on autophagy in liver fibrosis has not been studied. This study investigated the effect of melatonin on autophagy in an animal model of liver fibrosis and the hepatic stellate cell (HSC)-T6 cell line. METHODS The model was established in rats through carbon tetrachloride treatment, and melatonin was administered at three doses (2.5, 5.0, and 10.0 mg/kg). Haematoxylin and eosin staining and Van Gieson's staining were performed to examine the pathological changes of liver. The expression of alpha-smooth muscle actin (α-SMA) and Beclin1 in liver tissues was detected by immunohistochemical staining. The protein levels of α-SMA, Beclin1 and LC3 in the animal model were detected by Western blot analysis, and gene levels of Beclin1 and LC3 were detected by quantitative real-time PCR (qRT-PCR) in the animal model. HSC-T6 cells were activated by platelet-derived growth factor-BB (PDGF-BB). The expression of α-SMA, Beclin1 and collagen I was detected by Western blot analysis, and the gene expression of Beclin1 and LC3 was detected by qRT-PCR. RESULTS Melatonin reduced the expression of α-SMA, Beclin1 and LC3 in liver tissues. In addition, melatonin inhibited the activation of HSC-T6 cells and the expression of α-SMA, Beclin1 and LC3 in these cells. These results revealed that melatonin could inhibit autophagy and HSC activation. CONCLUSION Melatonin might ameliorate liver fibrosis by regulating autophagy, suggesting that melatonin is a potential therapeutic agent for liver fibrosis.
Collapse
Affiliation(s)
- Lei Jie
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Key Laboratory of Digestive Disease of Anhui Province, Hefei, 230022, China
| | - Ru-Tao Hong
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Key Laboratory of Digestive Disease of Anhui Province, Hefei, 230022, China.
| | - Yu-Jie Zhang
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Key Laboratory of Digestive Disease of Anhui Province, Hefei, 230022, China
| | - Lu-Lin Sha
- Department of Critical Care Medicine of Cardiothoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Wei Chen
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Key Laboratory of Digestive Disease of Anhui Province, Hefei, 230022, China
| | - Xiao-Fei Ren
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Key Laboratory of Digestive Disease of Anhui Province, Hefei, 230022, China
| |
Collapse
|
14
|
San‐Miguel B, Fernández‐Palanca P, Mauriz JL, Tuñón MJ, González‐Gallego J. Beneficial effects of melatonin on liver fibrosis: A systematic review of current biological evidence. J Cell Physiol 2022; 237:2740-2757. [PMID: 35404472 PMCID: PMC9542733 DOI: 10.1002/jcp.30735] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 12/16/2022]
Abstract
Hepatic fibrosis is a reversible response to either acute or chronic cellular injury from a wide variety of etiologies, characterized by excessive deposition of extracellular matrix resulting in liver dysfunction and cirrhosis. Melatonin (N‐acetyl‐5‐methoxytryptamine), the main product secreted by the pineal gland, is a multitasking indolamine with important physiological functions such as anti‐inflammatory and antioxidant actions, modulation of circadian rhythms, and immune system enhancement. Among the numerous biological activities of melatonin, its antifibrotic effects have received increasingly more attention. In this study, we performed a systematic review of publications of the last 10 years evaluating the mechanisms of action of melatonin against liver fibrosis. The study protocol was registered at PROSPERO (CRD42022304744). Literature research was performed employing PubMed, Scopus, and Web of Science (WOS) databases, and after screening, 29 articles were included. Results from the selected studies provided denoted the useful actions of melatonin on the development, progression, and evolution of liver fibrosis. Melatonin antifibrotic effects in the liver involved the reduction of profibrogenic markers and modulation of several cellular processes and molecular pathways, mainly acting as an antioxidant and anti‐inflammatory agent. In addition, the indolamine influenced different molecular processes, such as hepatocyte apoptosis, modulation of autophagy and mitophagy, restoration of circadian rhythms, and modulation of microRNAs, among others. Although some limitations have been found regarding variability in the study design, the findings here summarized display the potential role of melatonin in ameliorating the development of liver fibrosis and its possible progression to liver cirrhosis and hepatocarcinoma.
Collapse
Affiliation(s)
- Beatriz San‐Miguel
- Institute of Biomedicine, (IBIOMED) University of León León Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) Instituto de Salud Carlos III Madrid Spain
| | - Paula Fernández‐Palanca
- Institute of Biomedicine, (IBIOMED) University of León León Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) Instituto de Salud Carlos III Madrid Spain
| | - José L. Mauriz
- Institute of Biomedicine, (IBIOMED) University of León León Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) Instituto de Salud Carlos III Madrid Spain
| | - María J. Tuñón
- Institute of Biomedicine, (IBIOMED) University of León León Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) Instituto de Salud Carlos III Madrid Spain
| | - Javier González‐Gallego
- Institute of Biomedicine, (IBIOMED) University of León León Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) Instituto de Salud Carlos III Madrid Spain
| |
Collapse
|
15
|
Akhzari M, Barazesh M, Jalili S. Melatonin as an antioxidant agent in disease prevention: A biochemical focus. LETT ORG CHEM 2022. [DOI: 10.2174/1570178619666220325124451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Abstract:
In the recent years, free radicals and oxidative stress have been found to be associated with aging, cancer, atherosclerosis, neurodegenerative disorders, diabetes, and inflammatory diseases. Confirming the role of oxidants in numerous pathological situations including cancer, developing antioxidants as therapeutic platforms is needed. It has been well established that melatonin and its derived metabolites function as endogenous free-radical scavengers and broad spectrum antioxidants. To achieve this function, melatonin can directly detoxify reactive oxygen and reactive nitrogen species and indirectly overexpress antioxidant enzymes while suppressing the activity of pro-oxidant enzymes. Many investigations have also confirmed the role of melatonin and its derivatives in different physiological processes and therapeutic functions such as controlling the circadian rhythm and immune functions. This review aimed to focus on melatonin as a beneficial agent for the stimulation of antioxidant enzymes and inhibition of lipid peroxidation and to evaluate its contribution to protection against oxidative damages. In addition, the clinical application of melatonin in several diseases is discussed. Finally, the safety and efficacy of melatonin in clinical backgrounds is also reviewed.
Collapse
Affiliation(s)
- Morteza Akhzari
- School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| | - Mahdi Barazesh
- School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| | - Sajad Jalili
- Department of Orthopedics, Faculty of Medicine, Ahvaz, Jundishapour University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
16
|
Gong X, Shan L, Cao S, Li K, Wu Y, Zhang Q. Notoginsenoside R1, An Active Compound from Panax notoginseng, Inhibits Hepatic Stellate Cell Activation and Liver Fibrosis via MAPK Signaling Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:511-523. [PMID: 35114912 DOI: 10.1142/s0192415x22500197] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Activation of the hepatic stellate cell is implicated in pathological vascularization during development of liver fibrosis. MAPK signaling is involved in the activation of hepatic stellate cell. Oxidative stress and inflammation are also involved in the pathogenesis of liver fibrosis. Notoginsenoside R1 is an effective saponin isolated from the roots of Panax notoginseng (Burk) F. H. Chen and exerts anti-oxidant, anti-inflammatory and anti-fibrotic roles in various diseases. However, the role of Notoginsenoside R1 in liver fibrosis has not been investigated yet. First, a rat model with liver fibrosis was established through oral gavage administration with carbon tetrachloride. Data from hematoxylin and eosin (H&E) and Masson's trichrome stainings showed that carbon tetrachloride induced severe hepatic damages, including inflammatory cell infiltration, lipid droplets deposition in hepatocytes and liver centrilobular necrosis. Meanwhile, the rats were also intraperitoneal injected with different concentrations of Notoginsenoside R1. Results demonstrated that Notoginsenoside R1 treatment suppressed the pathological changes in the livers with enhanced levels of ALB and TP, and reduced levels of ALP, AST and ALT. Second, Notoginsenoside R1 also significantly attenuated carbon tetrachloride-induced decrease in PPAR-[Formula: see text] and increase in Coll-a1, [Formula: see text]-SMA and TIMP1 in liver tissues ([Formula: see text][Formula: see text] 0.001). Third, the decrease in GSH, SOD and GST and increase in MDA, IL-1[Formula: see text], IL-6 and TNF-[Formula: see text] induced by carbon tetrachloride were markedly restored by Notoginsenoside R1 ([Formula: see text][Formula: see text] 0.001). Lastly, Notoginsenoside R1 counteracted with the promotive effects of carbon tetrachloride on levels of proteins involved in MAPK signaling, including phosphorylated p65 (p-p65), p-ERK, p-JNK and p-p38. In conclusion, Notoginsenoside R1 suppressed the activation of hepatic stellate cells and exerted anti- oxidant and anti-inflammatory to attenuate carbon tetrachloride-induced liver fibrosis through inactivation of NF-[Formula: see text]B and MAPK signaling.
Collapse
Affiliation(s)
- Xu Gong
- Department of Infectious Diseases, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, Jiangsu Province 222004, P. R. China
| | - Linlin Shan
- Department of Infectious Diseases, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, Jiangsu Province 222004, P. R. China
| | - Sisi Cao
- Department of Infectious Diseases, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, Jiangsu Province 222004, P. R. China
| | - Kaitao Li
- Department of Infectious Diseases, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, Jiangsu Province 222004, P. R. China
| | - Yanli Wu
- Department of Infectious Diseases, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, Jiangsu Province 222004, P. R. China
| | - Qing Zhang
- Department of Gastroenterology, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, Jiangsu Province 222004, P. R. China
| |
Collapse
|
17
|
Huang K, Luo X, Zhong Y, Deng L, Feng J. New insights into the role of melatonin in diabetic cardiomyopathy. Pharmacol Res Perspect 2022; 10:e00904. [PMID: 35005848 PMCID: PMC8929360 DOI: 10.1002/prp2.904] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetic cardiovascular complications and impaired cardiac function are considered to be the main causes of death in diabetic patients worldwide, especially patients with type 2 diabetes mellitus (T2DM). An increasing number of studies have shown that melatonin, as the main product secreted by the pineal gland, plays a vital role in the occurrence and development of diabetes. Melatonin improves myocardial cell metabolism, reduces vascular endothelial cell death, reverses microcirculation disorders, reduces myocardial fibrosis, reduces oxidative and endoplasmic reticulum stress, regulates cell autophagy and apoptosis, and improves mitochondrial function, all of which are the characteristics of diabetic cardiomyopathy (DCM). This review focuses on the role of melatonin in DCM. We also discuss new molecular findings that might facilitate a better understanding of the underlying mechanism. Finally, we propose potential new therapeutic strategies for patients with T2DM.
Collapse
Affiliation(s)
- Keming Huang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xianling Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yi Zhong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Li Deng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
18
|
Dai W, Cheng J, Leng X, Hu X, Ao Y. The potential role of necroptosis in clinical diseases (Review). Int J Mol Med 2021; 47:89. [PMID: 33786617 PMCID: PMC8012024 DOI: 10.3892/ijmm.2021.4922] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
As an important type of programmed cell death in addition to apoptosis, necroptosis occurs in a variety of pathophysiological processes, including infections, liver diseases, kidney injury, neurodegenerative diseases, cardiovascular diseases, and human tumors. It can be triggered by a variety of factors, such as tumor necrosis factor receptor and Toll‑like receptor families, intracellular DNA and RNA sensors, and interferon, and is mainly mediated by receptor‑interacting protein kinase 1 (RIP1), RIP3, and mixed lineage kinase domain‑like protein. A better understanding of the mechanism of necroptosis may be useful in the development of novel drugs for necroptosis‑related diseases. In this review, the focus is on the molecular mechanisms of necroptosis, exploring the role of necroptosis in different pathologies, discussing their potential as a novel therapeutic target for disease therapy, and providing suggestions for further study in this area.
Collapse
Affiliation(s)
- Wenli Dai
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Jin Cheng
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Xi Leng
- Medical Imaging Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Xiaoqing Hu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Yingfang Ao
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, P.R. China
| |
Collapse
|
19
|
Chen X, Deng Z, Feng J, Chang Q, Lu F, Yuan Y. Necroptosis in Macrophage Foam Cells Promotes Fat Graft Fibrosis in Mice. Front Cell Dev Biol 2021; 9:651360. [PMID: 33842478 PMCID: PMC8027326 DOI: 10.3389/fcell.2021.651360] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/04/2021] [Indexed: 01/02/2023] Open
Abstract
Background: Fibrosis is a major grafting-related complication that leads to fat tissue dysfunction. Macrophage-induced inflammation is related to the development of fat tissue fibrosis. Necroptosis is a recently discovered pathway of programmed cell necrosis that results in severe inflammation and subsequent tissue fibrosis. Thus, in this study, we investigated the role of macrophage necroptosis in fat graft fibrosis and the underlying mechanisms. Methods: Fibrosis and necroptosis were investigated in mouse fat tissue before and after grafting. An in vitro “crown-like” structure (CLS) cell culture model was developed by co-culturing RAW 264.7 macrophages with apoptotic adipocytes to reproduce in vivo CLS macrophage-adipocyte interactions. Lipid uptake and necroptosis in CLS macrophages were analyzed using Oil-Red-O staining, western blotting, and immunofluorescence. RAW264.7 macrophages were cultured alone or with apoptotic adipocytes and treated with a necroptosis inhibitor (Nec-1 or GSK872) to explore the paracrine effect of necroptotic CLS macrophages on collagen synthesis in fibroblasts in vitro. Mice were treated with Nec-1 to analyze the effect of blocking necroptosis on fat graft fibrosis. Results: Fibrosis was increased after grafting in fat grafts of mice. Macrophages clustered around apoptotic adipocytes or large oil droplets to form a typical CLS in fibrotic depots. This was accompanied by formation and necroptosis of macrophage foam cells (MFCs) in CLSs. RAW 264.7 macrophages co-cultured with apoptotic adipocytes induced CLS formation in vitro, and lipid accumulation in CLS macrophages resulted in the formation and necroptosis of MFCs. Necroptosis of MFCs altered the expression of collagen I and VI in fibroblasts via a paracrine mechanism involving inflammatory cytokines/chemokines, which was reversed by GSK872 or Nec-1 treatment. Furthermore, treatment with Nec-1 ameliorated fat graft fibrosis in mice. Conclusion: Apoptotic adipocytes induced necroptosis of MFCs, and necroptosis of these cells activated collagen synthesis in fibroblasts via a paracrine mechanism. Inhibition of necroptosis in macrophages is a potential approach to prevent fibrosis in fat grafts.
Collapse
Affiliation(s)
- Xihang Chen
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zilong Deng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingwei Feng
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiang Chang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Yuan
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
Li X, Dong G, Xiong H, Diao H. A narrative review of the role of necroptosis in liver disease: a double-edged sword. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:422. [PMID: 33842643 PMCID: PMC8033311 DOI: 10.21037/atm-20-5162] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Acute and chronic liver injuries lead to hepatocyte death and turnover. When injuries become chronic, continuous cell death and transformation lead to chronic inflammation, fibrosis, cirrhosis, and eventually carcinoma. A therapeutic strategy of great significance for liver disease is to control hepatocyte death in acute and chronic injuries. This strategy prevents hepatocytes from causing liver failure and inhibits both secondary inflammation and fibrosis. Both apoptosis and necrosis have been proven to occur in the liver, but the role of necroptosis in liver diseases is controversial. Necroptosis, which has features of necrosis and apoptosis, is a regulatory process that occurs in some cell types when caspases are inhibited. The signaling pathway of necroptosis is characterized by the activation of receptor-interacting proteins kinase (RIPK) and mixed lineage kinase domain-like (MLKL). Necroptosis is associated with a variety of inflammatory diseases and has been the focus of research in recent years. The incidence of necroptosis in liver tissues has been studied recently in several liver injury models, but the results of the studies are not consistent. The purpose of this review is to summarize the published data on the involvement of necroptosis in liver injury, focusing on the controversies, issues remaining to be discussed, and potential therapeutic applications in this area.
Collapse
Affiliation(s)
- Xuehui Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Bonmati-Carrion MA, Tomas-Loba A. Melatonin and Cancer: A Polyhedral Network Where the Source Matters. Antioxidants (Basel) 2021; 10:antiox10020210. [PMID: 33535472 PMCID: PMC7912767 DOI: 10.3390/antiox10020210] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Melatonin is one of the most phylogenetically conserved signals in biology. Although its original function was probably related to its antioxidant capacity, this indoleamine has been “adopted” by multicellular organisms as the “darkness signal” when secreted in a circadian manner and is acutely suppressed by light at night by the pineal gland. However, melatonin is also produced by other tissues, which constitute its extrapineal sources. Apart from its undisputed chronobiotic function, melatonin exerts antioxidant, immunomodulatory, pro-apoptotic, antiproliferative, and anti-angiogenic effects, with all these properties making it a powerful antitumor agent. Indeed, this activity has been demonstrated to be mediated by interfering with various cancer hallmarks, and different epidemiological studies have also linked light at night (melatonin suppression) with a higher incidence of different types of cancer. In 2007, the World Health Organization classified night shift work as a probable carcinogen due to circadian disruption, where melatonin plays a central role. Our aim is to review, from a global perspective, the role of melatonin both from pineal and extrapineal origin, as well as their possible interplay, as an intrinsic factor in the incidence, development, and progression of cancer. Particular emphasis will be placed not only on those mechanisms related to melatonin’s antioxidant nature but also on the recently described novel roles of melatonin in microbiota and epigenetic regulation.
Collapse
Affiliation(s)
- Maria-Angeles Bonmati-Carrion
- Chronobiology Laboratory, Department of Physiology, IMIB-Arrixaca, University of Murcia, 30100 Murcia, Spain
- Ciber Fragilidad y Envejecimiento Saludable, 28090 Madrid, Spain
- Correspondence: (M.-A.B.-C.); (A.T.-L.)
| | - Antonia Tomas-Loba
- Circadian Rhythm and Cancer Laboratory, Department of Physiology, IMIB-Arrixaca, University of Murcia, 30120 Murcia, Spain
- Correspondence: (M.-A.B.-C.); (A.T.-L.)
| |
Collapse
|
22
|
Tian RD, Chen YQ, He YH, Tang YJ, Chen GM, Yang FW, Li Y, Huang WG, Chen H, Liu X, Lin SD. Phosphorylation of eIF2α mitigates endoplasmic reticulum stress and hepatocyte necroptosis in acute liver injury. Ann Hepatol 2021; 19:79-87. [PMID: 31548168 DOI: 10.1016/j.aohep.2019.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/26/2019] [Accepted: 05/27/2019] [Indexed: 02/06/2023]
Abstract
INTRODUCTION AND OBJECTIVES Necroptosis and endoplasmic reticulum (ER) stress has been implicated in acute and chronic liver injury. Activated eukaryotic initiation factor 2 alpha (eIF2α) attenuates protein synthesis and relieves the load of protein folding in the ER. In this study, we aimed to analyze the impact of eIF2α phosphorylation on hepatocyte necroptosis in acute liver injury. MATERIALS AND METHODS Male BALB/c mice were injected with tunicamycin or d-galactosamine, and LO2 cells were incubated with tunicamycin to induce acute liver injury. 4-Phenylbutyric acid (PBA) and salubrinal were used to inhibit ER stress and eIF2α dephosphorylation, respectively. We analyzed the eIF2α phosphorylation, ER stress, and hepatocyte necroptosis in mice and cells model. RESULTS Tunicamycin or d-galactosamine significantly induced ER stress and necroptosis, as well as eIF2α phosphorylation, in mice and LO2 cells (p<0.05). ER stress aggravated tunicamycin-induced hepatocyte necroptosis in mice and LO2 cells (p<0.05). Elevated eIF2α phosphorylation significantly mitigated hepatocyte ER stress (p<0.05) and hepatocyte necroptosis in mice (34.37±3.39% vs 22.53±2.18%; p<0.05) and LO2 cells (1±0.11 vs 0.33±0.05; p<0.05). Interestingly, tumor necrosis factor receptor (TNFR) 1 protein levels were not completely synchronized with necroptosis. TNFR1 expression was reduced in d-galactosamine-treated mice (p<0.05) and cells incubated with tunicamycin for 12 and 24h (p<0.05). ER stress partially restored TNFR1 expression and increased necroptosis in tunicamycin-incubated cells (p<0.05). CONCLUSIONS These results imply that ER stress can mediate hepatocyte necroptosis independent of TNFR1 signaling and elevated eIF2α phosphorylation can mitigate ER stress during acute liver injury.
Collapse
Affiliation(s)
- Ren-Dong Tian
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical College, ZunyiGuizhou, China
| | - Yi-Qun Chen
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical College, ZunyiGuizhou, China
| | - Yi-Huai He
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical College, ZunyiGuizhou, China.
| | - Yong-Jing Tang
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical College, ZunyiGuizhou, China
| | - Gui-Mei Chen
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical College, ZunyiGuizhou, China
| | - Fang-Wan Yang
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical College, ZunyiGuizhou, China
| | - Ying Li
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical College, ZunyiGuizhou, China
| | - Wen-Ge Huang
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical College, ZunyiGuizhou, China
| | - Huan Chen
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical College, ZunyiGuizhou, China
| | - Xia Liu
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical College, ZunyiGuizhou, China
| | - Shi-De Lin
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical College, ZunyiGuizhou, China
| |
Collapse
|
23
|
Lu J, Luo Y, Mei S, Fang Y, Zhang J, Chen S. The Effect of Melatonin Modulation of Non-coding RNAs on Central Nervous System Disorders: An Updated Review. Curr Neuropharmacol 2020; 19:3-23. [PMID: 32359338 PMCID: PMC7903498 DOI: 10.2174/1570159x18666200503024700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/06/2020] [Accepted: 04/25/2020] [Indexed: 01/19/2023] Open
Abstract
Melatonin is a hormone produced in and secreted by the pineal gland. Besides its role in regulating circadian rhythms, melatonin has a wide range of protective functions in the central nervous system (CNS) disorders. The mechanisms underlying this protective function are associated with the regulatory effects of melatonin on related genes and proteins. In addition to messenger ribonucleic acid (RNA) that can be translated into protein, an increasing number of non-coding RNAs in the human body are proven to participate in many diseases. This review discusses the current progress of research on the effects of melatonin modulation of non-coding RNAs (ncRNAs), including microRNA, long ncRNA, and circular RNA. The role of melatonin in regulating common pathological mechanisms through these ncRNAs is also summarized. Furthermore, the ncRNAs, currently shown to be involved in melatonin signaling in CNS diseases, are discussed. The information compiled in this review will open new avenues for future research into melatonin mechanisms and provide a further understanding of ncRNAs in the CNS.
Collapse
Affiliation(s)
- Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Yujie Luo
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Shuhao Mei
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| |
Collapse
|
24
|
Zhirong Z, Qiaojian Z, Chunjing X, Shengchen W, Jiahe L, Zhaoyi L, Shu L. Methionine selenium antagonizes LPS-induced necroptosis in the chicken liver via the miR-155/TRAF3/MAPK axis. J Cell Physiol 2020; 236:4024-4035. [PMID: 33151563 DOI: 10.1002/jcp.30145] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 10/05/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022]
Abstract
Organic selenium has antioxidation and disease treatment effects. To explore the mechanisms of how methionine selenium alleviates necroptosis in the liver and whether this process is related to microRNA (miRNA) and the mitogen-activated protein kinase (MAPK) pathway, an animal model of methionine selenium and the lipopolysaccharide (LPS) interaction was established. The morphology, inflammatory factor (tumor necrosis factor-α [TNF-α]), necroptosis-related genes (RIP1, RIP3, MLKL, and caspase 8), MAPK pathway-related genes (JNK, ERK, and p38, p-JNK, p-ERK, and p-p38), gga-miR-155, TRAF3 (predicted target of gga-miR-155), and oxidative stress-related indicators (SOD, MDA, CAT, GSH, and GSH-Px) were analyzed from the perspective of the miR-155/TRAF3/MAPK axis to elucidate the mechanism of methionine selenium on the LPS-induced necroptosis mechanism in the chicken liver. The current results suggested that methionine selenium antagonizes oxidative stress, inflammation, and the MAPK pathway, thereby antagonizing the occurrence of necroptosis through multiple mechanisms. At the same time, methionine selenium affects miR-155/TRAF3/MAPK signaling, reduces miR-155 expression, and upregulates TRAF3 expression to inhibit necroptosis. This information provided new ideas and a theoretical basis for the practical application of methionine selenium, and it also enriched the study of miRNAs in birds and provided a reference for comparative medicine.
Collapse
Affiliation(s)
- Zhao Zhirong
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Zhang Qiaojian
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xu Chunjing
- National Selenium-Rich Product Quality Supervision and Inspection Center, Enshi, People's Republic of China
| | - Wang Shengchen
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Li Jiahe
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Liu Zhaoyi
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Li Shu
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
25
|
Melatonin regulates Aβ production/clearance balance and Aβ neurotoxicity: A potential therapeutic molecule for Alzheimer's disease. Biomed Pharmacother 2020; 132:110887. [PMID: 33254429 DOI: 10.1016/j.biopha.2020.110887] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease with multiple predisposing factors and complicated pathogenesis. Aβ peptide is one of the most important pathogenic factors in the etiology of AD. Accumulating evidence indicates that the imbalance of Aβ production and Aβ clearance in the brain of AD patients leads to Aβ deposition and neurotoxic Aβ oligomer formation. Melatonin shows a potent neuroprotective effect and can prevent or slow down the progression of AD, supporting the view that melatonin is a potential therapeutic molecule for AD. Melatonin modulates the regulatory network of secretase expression and affects the function of secretase, thereby inhibiting amyloidogenic APP processing and Aβ production. Additionally, melatonin ameliorates Aβ-induced neurotoxicity and probably promotes Aβ clearance through glymphatic-lymphatic drainage, BBB transportation and degradation pathways. In this review, we summarize and discuss the role of melatonin against Aβ-dependent AD pathogenesis. We explore the potential cellular and molecular mechanisms of melatonin on Aβ production and assembly, Aβ clearance, Aβ neurotoxicity and circadian cycle disruption. We summarize multiple clinical trials of melatonin treatment in AD patients, showing that melatonin has a promising effect on improving sleep quality and cognitive function. This review aims to stimulate further research on melatonin as a potential therapeutic agent for AD.
Collapse
|
26
|
Fang Y, Zhao C, Xiang H, Jia G, Zhong R. Melatonin improves cryopreservation of ram sperm by inhibiting mitochondrial permeability transition pore opening. Reprod Domest Anim 2020; 55:1240-1249. [DOI: 10.1111/rda.13771] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/04/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Yi Fang
- Jilin Provincial Key Laboratory of Grassland Farming Northeast Institute of Geography and Agoecology Chinese Academy of Sciences Changchun, Jilin China
| | - Chengzhen Zhao
- Jilin Provincial Key Laboratory of Grassland Farming Northeast Institute of Geography and Agoecology Chinese Academy of Sciences Changchun, Jilin China
| | - Hai Xiang
- Jilin Provincial Key Laboratory of Grassland Farming Northeast Institute of Geography and Agoecology Chinese Academy of Sciences Changchun, Jilin China
| | - GongXue Jia
- Key Laboratory of Adaptation and Evolution of Plateau Biota Northwest Institute of Plateau Biology Chinese Academy of Sciences Xining China
| | - Rongzhen Zhong
- Jilin Provincial Key Laboratory of Grassland Farming Northeast Institute of Geography and Agoecology Chinese Academy of Sciences Changchun, Jilin China
| |
Collapse
|
27
|
Origin and role of hepatic myofibroblasts in hepatocellular carcinoma. Oncotarget 2020; 11:1186-1201. [PMID: 32284794 PMCID: PMC7138168 DOI: 10.18632/oncotarget.27532] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/03/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and is the second leading cause of cancer-related death worldwide. Fibrosis and cirrhosis are important risk factors for the development of HCC. Hepatic myofibroblasts are the cells responsible for extracellular matrix deposition, which is the hallmark of liver fibrosis. It is believed that myofibroblasts are predominantly derived from hepatic stellate cells (HSCs), also known as Ito cells. Nevertheless, depending on the nature of insult to the liver, it is thought that myofibroblasts may also originate from a variety of other cell types such as the portal fibroblasts (PFs), fibrocytes, hepatocytes, hepatic progenitor cells (HPCs), and mesothelial cells. Liver myofibroblasts are believed to transform into cancer-associated fibroblasts (CAFs) while HCC is developing. There is substantial evidence suggesting that activated HSCs (aHSCs)/cancer-associated fibroblasts (CAFs) may play an important role in HCC initiation and progression. In this paper, we aim to review current literature on cellular origins of myofibroblasts with a focus on hepatitis B virus (HBV)- and hepatitis C virus (HCV)-induced hepatic fibrosis. We also address the role of aHSCs/CAFs in HCC progression through the regulation of immune cells as well as mechanisms of evolvement of drug resistance.
Collapse
|
28
|
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and is the second leading cause of cancer-related death worldwide. Fibrosis and cirrhosis are important risk factors for the development of HCC. Hepatic myofibroblasts are the cells responsible for extracellular matrix deposition, which is the hallmark of liver fibrosis. It is believed that myofibroblasts are predominantly derived from hepatic stellate cells (HSCs), also known as Ito cells. Nevertheless, depending on the nature of insult to the liver, it is thought that myofibroblasts may also originate from a variety of other cell types such as the portal fibroblasts (PFs), fibrocytes, hepatocytes, hepatic progenitor cells (HPCs), and mesothelial cells. Liver myofibroblasts are believed to transform into cancer-associated fibroblasts (CAFs) while HCC is developing. There is substantial evidence suggesting that activated HSCs (aHSCs)/cancer-associated fibroblasts (CAFs) may play an important role in HCC initiation and progression. In this paper, we aim to review current literature on cellular origins of myofibroblasts with a focus on hepatitis B virus (HBV)- and hepatitis C virus (HCV)-induced hepatic fibrosis. We also address the role of aHSCs/CAFs in HCC progression through the regulation of immune cells as well as mechanisms of evolvement of drug resistance.
Collapse
|
29
|
Ma JQ, Sun YZ, Ming QL, Tian ZK, Zhang YJ, Liu CM. Effects of gastrodin against carbon tetrachloride induced kidney inflammation and fibrosis in mice associated with the AMPK/Nrf2/HMGB1 pathway. Food Funct 2020; 11:4615-4624. [DOI: 10.1039/d0fo00711k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Gastrodin (GAS), the main phenolic glycoside extracted from Gastrodia elata Blume, exhibits potential renoprotective properties.
Collapse
Affiliation(s)
- Jie-Qiong Ma
- School of Chemistry Engineering
- Sichuan University of Science and Engineering
- Zigong City
- PR China
| | - Yun-Zhi Sun
- College of Integrated Chinese and Western Medicine
- Shandong Liming Polytechnic Vocational College
- Jinan City
- PR China
| | - Qing-Lei Ming
- School of Life Science
- Jiangsu Normal University
- Xuzhou City
- PR China
| | - Zhi-Kai Tian
- School of Life Science
- Jiangsu Normal University
- Xuzhou City
- PR China
| | - Yu-Jia Zhang
- School of Life Science
- Jiangsu Normal University
- Xuzhou City
- PR China
| | - Chan-Min Liu
- School of Life Science
- Jiangsu Normal University
- Xuzhou City
- PR China
| |
Collapse
|
30
|
Bao Z, Fan L, Zhao L, Xu X, Liu Y, Chao H, Liu N, You Y, Liu Y, Wang X, Ji J. Silencing of A20 Aggravates Neuronal Death and Inflammation After Traumatic Brain Injury: A Potential Trigger of Necroptosis. Front Mol Neurosci 2019; 12:222. [PMID: 31607859 PMCID: PMC6761256 DOI: 10.3389/fnmol.2019.00222] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023] Open
Abstract
Programmed cell death is an important biological process that plays an indispensable role in traumatic brain injury (TBI). Inhibition of necroptosis, a type of programmed cell death, is pivotal in neuroprotection and in preventing associated inflammatory responses. Our results showed that necroptosis occurred in human brain tissues after TBI. Necroptosis was also induced by controlled cortical impact (CCI) injury in a rat model of TBI and was accompanied by high translocation of high-mobility group box-1 (HMGB1) to the cytoplasm. HMGB1 was then passed through the impaired cell membrane to upregulate the receptor for advanced glycation end-products (RAGE), nuclear factor (NF)-κB, and inflammatory factors such as interleukin-6 (IL-6), interleukin-1 (IL-1β), as well as NACHT, LRR and PYD domains-containing protein 3 (NLRP3). Necroptosis was alleviated by necrostatin-1 and melatonin but not Z-VAD (a caspase inhibitor), which is consistent with the characteristic of caspase-independent signaling. This study also demonstrated that tumor necrosis factor, alpha-induced protein 3 (TNFAIP3, also known as A20) was indispensable for regulating and controlling necroptosis and inflammation after CCI. We found that a lack of A20 in a CCI model led to aggressive necroptosis and attenuated the anti-necroptotic effects of necrostatin-1 and melatonin.
Collapse
Affiliation(s)
- Zhongyuan Bao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Fan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Neurosurgery, The Third Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lin Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiupeng Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yinlong Liu
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Honglu Chao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Liu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Xiaoming Wang
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Jing Ji
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
31
|
Hu C, Zhao L, Tao J, Li L. Protective role of melatonin in early-stage and end-stage liver cirrhosis. J Cell Mol Med 2019; 23:7151-7162. [PMID: 31475778 PMCID: PMC6815834 DOI: 10.1111/jcmm.14634] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/13/2019] [Accepted: 07/28/2019] [Indexed: 02/06/2023] Open
Abstract
The liver is composed of hepatocytes, cholangiocytes, Kupffer cells, sinusoidal endothelial cells, hepatic stellate cells (HSCs) and dendritic cells; all these functional and interstitial cells contribute to the synthesis and secretion functions of liver tissue. However, various hepatotoxic factors including infection, chemicals, high‐fat diet consumption, surgical procedures and genetic mutations, as well as biliary tract diseases such as sclerosing cholangitis and bile duct ligation, ultimately progress into liver cirrhosis after activation of fibrogenesis. Melatonin (MT), a special hormone isolated from the pineal gland, participates in regulating multiple physiological functions including sleep promotion, circadian rhythms and neuroendocrine processes. Current evidence shows that MT protects against liver injury by inhibiting oxidation, inflammation, HSC proliferation and hepatocyte apoptosis, thereby inhibiting the progression of liver cirrhosis. In this review, we summarize the circadian rhythm of liver cirrhosis and its potential mechanisms as well as the therapeutic effects of MT on liver cirrhosis and earlier‐stage liver diseases including liver steatosis, nonalcoholic fatty liver disease and liver fibrosis. Given that MT is an antioxidative and anti‐inflammatory agent that is effective in eliminating liver injury, it is a potential agent with which to reverse liver cirrhosis in its early stage.
Collapse
Affiliation(s)
- Chenxia Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lingfei Zhao
- Kidney Disease Center, College of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingjing Tao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lanjuan Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
32
|
Necroptosis signaling in liver diseases: An update. Pharmacol Res 2019; 148:104439. [PMID: 31476369 DOI: 10.1016/j.phrs.2019.104439] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/11/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
The apoptosis alternate cell death pathways are extensively studied in recent years and their significance has been well recognized. With identification of newer cell death pathways, the therapeutic opportunities to modulate cell death have indeed further extended. Necroptosis, among other apoptosis alternate pathways, has been immensely studied recently in different hepatic disease models. Receptor-interacting protein 1 (RIPK1), RIPK3 and mixed lineage kinase domain like (MLKL) seemed to be the key players to mediate necroptosis pathway. Initially, necroptosis seemed to be following the typical pathway. But recently diverse pathways and outcomes have been observed. With recent studies reporting diverse outcomes, the necroptosis signalling has become a lot more interesting and intricate. The typical RIPK1 signalling followed by RIPK3 and MLKL might not always be strictly followed. Although, necroptosis signalling has been intensively investigated in various disease conditions; however, there is still a need to further elaborate and understand the unique scaffolding and kinase properties and other signalling interactions of necroptosis signalling molecules.
Collapse
|
33
|
Melatonin Attenuates Cisplatin-Induced Acute Kidney Injury through Dual Suppression of Apoptosis and Necroptosis. BIOLOGY 2019; 8:biology8030064. [PMID: 31480317 PMCID: PMC6784065 DOI: 10.3390/biology8030064] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/19/2019] [Accepted: 08/28/2019] [Indexed: 01/17/2023]
Abstract
Melatonin is well known to modulate the sleep-wake cycle. Accumulating evidence suggests that melatonin also has favorable effects such as anti-oxidant and anti-inflammatory properties in numerous disease models. It has been reported that melatonin has therapeutic effects against cisplatin-induced acute kidney injury (AKI). However, mechanisms underlying the therapeutic action of melatonin on the renal side-effects of cisplatin therapy remain poorly understood. In this study, we showed that melatonin treatment significantly ameliorates cisplatin-induced acute renal failure and histopathological alterations. Increased expression of tubular injury markers was largely reduced by melatonin. Melatonin treatment inhibited caspase-3 activation and apoptotic cell death. Moreover, protein levels of key components of the molecular machinery for necroptosis were decreased by melatonin. Melatonin also attenuated nuclear factor-κB activation and suppressed expression of pro-inflammatory cytokines. Consistent with in vivo findings, melatonin dose-dependently decreased apoptosis and necroptosis in cisplatin-treated mouse renal tubular epithelial cells. Collectively, our findings suggest that melatonin ameliorates cisplatin-induced acute renal failure and structural damages through dual suppression of apoptosis and necroptosis. These results reveal a novel mechanism underlying the therapeutic effect of melatonin against cisplatin-induced AKI and strengthen the idea that melatonin might be a promising therapeutic agent for the renal side-effects of cisplatin therapy.
Collapse
|
34
|
Liu XW, Wang CD. Melatonin alleviates circadian rhythm disruption exacerbating DSS-induced colitis by inhibiting the distribution of HMGB1 in intestinal tissues. Int Immunopharmacol 2019; 73:108-117. [DOI: 10.1016/j.intimp.2019.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 02/07/2023]
|
35
|
Shi S, Verstegen MMA, Mezzanotte L, de Jonge J, Löwik CWGM, van der Laan LJW. Necroptotic Cell Death in Liver Transplantation and Underlying Diseases: Mechanisms and Clinical Perspective. Liver Transpl 2019; 25:1091-1104. [PMID: 31077562 PMCID: PMC6617733 DOI: 10.1002/lt.25488] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
Abstract
Cell death is a natural process for the turnover of aged cells, but it can also arise as a result of pathological conditions. Cell death is recognized as a key feature in both acute and chronic hepatobiliary diseases caused by drug, alcohol, and fat uptake; by viral infection; or after surgical intervention. In the case of chronic disease, cell death can lead to (chronic) secondary inflammation, cirrhosis, and the progression to liver cancer. In liver transplantation, graft preservation and ischemia/reperfusion injury are associated with acute cell death. In both cases, so-called programmed cell death modalities are involved. Several distinct types of programmed cell death have been described of which apoptosis and necroptosis are the most well known. Parenchymal liver cells, including hepatocytes and cholangiocytes, are susceptible to both apoptosis and necroptosis, which are triggered by distinct signal transduction pathways. Apoptosis is dependent on a proteolytic cascade of caspase enzymes, whereas necroptosis induction is caspase-independent. Moreover, different from the "silent" apoptotic cell death, necroptosis can cause a secondary inflammatory cascade, so-called necroinflammation, triggered by the release of various damage-associated molecular patterns (DAMPs). These DAMPs activate the innate immune system, leading to both local and systemic inflammatory responses, which can even cause remote organ failure. Therapeutic targeting of necroptosis by pharmacological inhibitors, such as necrostatin-1, shows variable effects in different disease models.
Collapse
Affiliation(s)
- Shaojun Shi
- Department of SurgeryErasmus MC ‐ University Medical CenterRotterdamthe Netherlands
| | | | - Laura Mezzanotte
- Department of RadiologyErasmus MC ‐ University Medical CenterRotterdamthe Netherlands
| | - Jeroen de Jonge
- Department of SurgeryErasmus MC ‐ University Medical CenterRotterdamthe Netherlands
| | | | | |
Collapse
|
36
|
Liu Y, Liu T, Lei T, Zhang D, Du S, Girani L, Qi D, Lin C, Tong R, Wang Y. RIP1/RIP3-regulated necroptosis as a target for multifaceted disease therapy (Review). Int J Mol Med 2019; 44:771-786. [PMID: 31198981 PMCID: PMC6658002 DOI: 10.3892/ijmm.2019.4244] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 06/11/2019] [Indexed: 12/27/2022] Open
Abstract
Necroptosis is a type of programmed cell death with necrotic morphology, occurring in a variety of biological processes, including inflammation, immune response, embryonic development and metabolic abnormalities. The current nomenclature defines necroptosis as cell death mediated by signal transduction from receptor‑interacting serine/threonine kinase (RIP) 1 to RIP3 (hereafter called RIP1/RIP3). However, RIP3‑dependent cell death would be a more precise definition of necroptosis. RIP3 is indispensable for necroptosis, while RIP1 is not consistently involved in the signal transduction. Notably, deletion of RIP1 even promotes RIP3‑mediated necroptosis under certain conditions. Necroptosis was previously thought as an alternate process of cell death in case of apoptosis inhibition. Currently, necroptosis is recognized to serve a pivotal role in regulating various physiological processes. Of note, it mediates a variety of human diseases, such as ischemic brain injury, immune system disorders and cancer. Targeting and inhibiting necroptosis, therefore, has the potential to be used for therapeutic purposes. To date, research has elucidated the suppression of RIP1/RIP3 via effective inhibitors and highlighted their potential application in disease therapy. The present review focused on the molecular mechanisms of RIP1/RIP3‑mediated necroptosis, explored the functions of RIP1/RIP3 in necroptosis, discussed their potential as a novel therapeutic target for disease therapy, and provided valuable suggestions for further study in this field.
Collapse
Affiliation(s)
- Yuping Liu
- Health Management Center, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Ting Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, P.R. China
| | - Tiantian Lei
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, P.R. China
| | - Dingding Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, P.R. China
| | - Suya Du
- Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, P.R. China
| | - Lea Girani
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Dandan Qi
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, P.R. China
| | - Chen Lin
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, P.R. China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Yi Wang
- Health Management Center, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
37
|
Lu J, Sun Z, Fang Y, Zheng J, Xu S, Xu W, Shi L, Mei S, Wu H, Liang F, Zhang J. Melatonin Suppresses Microglial Necroptosis by Regulating Deubiquitinating Enzyme A20 After Intracerebral Hemorrhage. Front Immunol 2019; 10:1360. [PMID: 31258534 PMCID: PMC6587666 DOI: 10.3389/fimmu.2019.01360] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/29/2019] [Indexed: 11/19/2022] Open
Abstract
Cell death is deeply involved in pathophysiology of brain injury after intracerebral hemorrhage (ICH). Necroptosis, one of the recently discovered forms of cell death, plays an important role in various diseases, including ICH. Previous studies have suggested that a considerable number of neurons undergoes necroptosis after ICH. However, necroptosis of microglia after ICH has not been reported to date. The present study demonstrated for the first time that necroptosis occurred in the microglia surrounding the hematoma after ICH in C57 mice, and melatonin, a hormone that is predominantly synthesized in and secreted from the pineal gland, exerted a neuroprotective effect by suppressing this process. When we further explored the potential underlying mechanism, we found that melatonin inhibits RIP3-mediated necroptosis by regulating the deubiquitinating enzyme A20 (also known as TNFAIP3) expression after ICH. In summary, we have demonstrated the role of microglial necroptosis in the pathogenesis of ICH. More importantly, A20 was identified as a novel target of melatonin, which opens perspectives for future research.
Collapse
Affiliation(s)
- Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zeyu Sun
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingwei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shenbin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weilin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ligen Shi
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuhao Mei
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Liang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
Xiong Y, Li L, Zhang L, Cui Y, Wu C, Li H, Chen K, Yang Q, Xiang R, Hu Y, Huang S, Wei Y, Yang S. The bromodomain protein BRD4 positively regulates necroptosis via modulating MLKL expression. Cell Death Differ 2019; 26:1929-1941. [PMID: 30644439 DOI: 10.1038/s41418-018-0262-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 02/05/2023] Open
Abstract
Necroptosis is a programmed form of necrotic cell death, which is tightly regulated by the necroptotic signaling pathway containing receptor-interacting protein (RIP)1, RIP3, and mixed-lineage kinase domain-like (MLKL) protein. In addition to the RIP1-RIP3-MLKL axis, other factors regulating necroptosis are still largely unknown. Here a cell-based small-molecule screening led to the finding that BET inhibitors protected cells from necroptosis in the TNFα/Smac-mimetic/Z-VAD-FMK (TSZ)-induced cell necroptosis model. Mechanistic studies revealed that BET inhibitors acted by downregulating MLKL expression. Further research demonstrated that BRD4, IRF1, P-TEFb, and RNA polymerase II formed a transcription complex to regulate the expression of MLKL, and BET inhibitors interfered with the transcription complex formation. In necroptosis-related disease model, the BET inhibitor JQ-1 showed promising therapeutic effects. Collectively, our studies establish, for the first time, BRD4 as a new epigenetic factor regulating necroptosis, and highlight the potential of BET inhibitors in the treatment of necroptosis-related diseases.
Collapse
Affiliation(s)
- Yu Xiong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Linli Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Liting Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Yangyang Cui
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Chengyong Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Hui Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Kai Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Qiuyuan Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Rong Xiang
- Department of Clinical Medicine, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yiguo Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
39
|
Lu J, Sun Z, Fang Y, Zheng J, Xu S, Xu W, Shi L, Mei S, Wu H, Liang F, Zhang J. Melatonin Suppresses Microglial Necroptosis by Regulating Deubiquitinating Enzyme A20 After Intracerebral Hemorrhage. Front Immunol 2019. [PMID: 31258534 DOI: 10.3389/fimmu.2019.01360/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Cell death is deeply involved in pathophysiology of brain injury after intracerebral hemorrhage (ICH). Necroptosis, one of the recently discovered forms of cell death, plays an important role in various diseases, including ICH. Previous studies have suggested that a considerable number of neurons undergoes necroptosis after ICH. However, necroptosis of microglia after ICH has not been reported to date. The present study demonstrated for the first time that necroptosis occurred in the microglia surrounding the hematoma after ICH in C57 mice, and melatonin, a hormone that is predominantly synthesized in and secreted from the pineal gland, exerted a neuroprotective effect by suppressing this process. When we further explored the potential underlying mechanism, we found that melatonin inhibits RIP3-mediated necroptosis by regulating the deubiquitinating enzyme A20 (also known as TNFAIP3) expression after ICH. In summary, we have demonstrated the role of microglial necroptosis in the pathogenesis of ICH. More importantly, A20 was identified as a novel target of melatonin, which opens perspectives for future research.
Collapse
Affiliation(s)
- Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zeyu Sun
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingwei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shenbin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weilin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ligen Shi
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuhao Mei
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Liang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
40
|
Luo C, Yang Q, Liu Y, Zhou S, Jiang J, Reiter RJ, Bhattacharya P, Cui Y, Yang H, Ma H, Yao J, Lawler SE, Zhang X, Fu J, Rozental R, Aly H, Johnson MD, Chiocca EA, Wang X. The multiple protective roles and molecular mechanisms of melatonin and its precursor N-acetylserotonin in targeting brain injury and liver damage and in maintaining bone health. Free Radic Biol Med 2019; 130:215-233. [PMID: 30315933 DOI: 10.1016/j.freeradbiomed.2018.10.402] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/01/2018] [Accepted: 10/02/2018] [Indexed: 12/20/2022]
Abstract
Melatonin is a neurohormone associated with sleep and wakefulness and is mainly produced by the pineal gland. Numerous physiological functions of melatonin have been demonstrated including anti-inflammation, suppressing neoplastic growth, circadian and endocrine rhythm regulation, and its potent antioxidant activity as well as its role in regeneration of various tissues including the nervous system, liver, bone, kidney, bladder, skin, and muscle, among others. In this review, we summarize the recent advances related to the multiple protective roles of melatonin receptor agonists, melatonin and N-acetylserotonin (NAS), in brain injury, liver damage, and bone health. Brain injury, including traumatic brain injury, ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage, and newborn perinatal hypoxia-ischemia encephalopathy, is a major cause of mortality and disability. Liver disease causes serious public health problems and various factors including alcohol, chemical pollutants, and drugs induce hepatic damage. Osteoporosis is the most common bone disease in humans. Due in part to an aging population, both the cost of care of fracture patients and the annual fracture rate have increased steadily. Despite the discrepancy in the pathophysiological processes of these disorders, time frames and severity, they may share several common molecular mechanisms. Oxidative stress is considered to be a critical factor in these pathogeneses. We update the current state of knowledge related to the molecular processes, mainly including anti-oxidative stress, anti-apoptosis, autophagy dysfunction, and anti-inflammation as well as other properties of melatonin and NAS. Particularly, the abilities of melatonin and NAS to directly scavenge oxygen-centered radicals and toxic reactive oxygen species, and indirectly act through antioxidant enzymes are disscussed. In this review, we summarize the similarities and differences in the protection provided by melatonin and/or NAS in brain, liver and bone damage. We analyze the involvement of melatonin receptor 1A (MT1), melatonin receptor 1B (MT2), and melatonin receptor 1C (MT3) in the protection of melatonin and/or NAS. Additionally, we evaluate their potential clinical applications. The multiple mechanisms of action and multiple organ-targeted properties of melatonin and NAS may contribute to development of promising therapies for clinical trials.
Collapse
Affiliation(s)
- Chengliang Luo
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Qiang Yang
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Daye, Hubei, China
| | - Yuancai Liu
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Daye, Hubei, China
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jiying Jiang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University Texas Health Science Center, San Antonio, TX, USA
| | - Pallab Bhattacharya
- National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| | - Yongchun Cui
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hongwei Yang
- Department of Neurosurgery, University of Massachusetts Medical School, Worcester, MA, USA
| | - He Ma
- Third Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiemin Yao
- Third Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Sean E Lawler
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xinmu Zhang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jianfang Fu
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Renato Rozental
- Lab Neuroproteção & Estratégias Regenerativas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Hany Aly
- Department of Neonatology, Cleveland Clinic Children's Hospital, Cleveland, OH, USA
| | - Mark D Johnson
- Department of Neurosurgery, University of Massachusetts Medical School, Worcester, MA, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
41
|
Zhou H, Li D, Zhu P, Ma Q, Toan S, Wang J, Hu S, Chen Y, Zhang Y. Inhibitory effect of melatonin on necroptosis via repressing the Ripk3-PGAM5-CypD-mPTP pathway attenuates cardiac microvascular ischemia-reperfusion injury. J Pineal Res 2018; 65:e12503. [PMID: 29770487 DOI: 10.1111/jpi.12503] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022]
Abstract
The molecular features of necroptosis in cardiac ischemia-reperfusion (IR) injury have been extensively explored. However, there have been no studies investigating the physiological regulatory mechanisms of melatonin acting on necroptosis in cardiac IR injury. This study was designed to determine the role of necroptosis in microvascular IR injury, and investigate the contribution of melatonin in repressing necroptosis and preventing IR-mediated endothelial system collapse. Our results demonstrated that Ripk3 was primarily activated by IR injury and consequently aggravated endothelial necroptosis, microvessel barrier dysfunction, capillary hyperpermeability, the inflammation response, microcirculatory vasospasms, and microvascular perfusion defects. However, administration of melatonin prevented Ripk3 activation and provided a pro-survival advantage for the endothelial system in the context of cardiac IR injury, similar to the results obtained via genetic ablation of Ripk3. Functional investigations clearly illustrated that activated Ripk3 upregulated PGAM5 expression, and the latter increased CypD phosphorylation, which obligated endothelial cells to undergo necroptosis via augmenting mPTP (mitochondrial permeability transition pore) opening. Interestingly, melatonin supplementation suppressed mPTP opening and interrupted endothelial necroptosis via blocking the Ripk3-PGAM5-CypD signal pathways. Taken together, our studies identified the Ripk3-PGAM5-CypD-mPTP axis as a new pathway responsible for reperfusion-mediated microvascular damage via initiating endothelial necroptosis. In contrast, melatonin treatment inhibited the Ripk3-PGAM5-CypD-mPTP cascade and thus reduced cellular necroptosis, conferring a protective advantage to the endothelial system in IR stress. These findings establish a new paradigm in microvascular IR injury and update the concept for cell death management handled by melatonin under the burden of reperfusion attack.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Dandan Li
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Pingjun Zhu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Qiang Ma
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Sam Toan
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, California
| | - Jin Wang
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Shunying Hu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Yundai Chen
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Yingmei Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Zhang Z, Yao Z, Wang L, Ding H, Shao J, Chen A, Zhang F, Zheng S. Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells. Autophagy 2018; 14:2083-2103. [PMID: 30081711 DOI: 10.1080/15548627.2018.1503146] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ferroptosis is a recently recognized form of regulated cell death that is characterized by lipid peroxidation. However, the molecular mechanisms regulating ferroptosis are largely unknown. In this study, we report that the RNA-binding protein ELAVL1/HuR plays a crucial role in regulating ferroptosis in liver fibrosis. Upon exposure to ferroptosis-inducing compounds, ELAVL1 protein expression was remarkably increased through the inhibition of the ubiquitin-proteasome pathway. ELAVL1 siRNA led to ferroptosis resistance, whereas ELAVL1 plasmid contributed to classical ferroptotic events. Interestingly, upregulated ELAVL1 expression also appeared to increase autophagosome generation and macroautophagic/autophagic flux, which was the underlying mechanism for ELAVL1-enhanced ferroptosis. Autophagy depletion completely impaired ELAVL1-mediated ferroptotic events, whereas autophagy induction showed a synergistic effect with ELAVL1. Importantly, ELAVL1 promoted autophagy activation via binding to the AU-rich elements within the F3 of the 3'-untranslated region of BECN1/Beclin1 mRNA. The internal deletion of the F3 region abrogated the ELAVL1-mediated BECN1 mRNA stability, and, in turn, prevented ELAVL1-enhanced ferroptosis. In mice, treatment with sorafenib alleviated murine liver fibrosis by inducing hepatic stellate cell (HSC) ferroptosis. HSC-specific knockdown of ELAVL1 impaired sorafenib-induced HSC ferroptosis in murine liver fibrosis. Noteworthy, we retrospectively analyzed the effect of sorafenib on HSC ferroptosis in advanced fibrotic patients with hepatocellular carcinoma receiving sorafenib monotherapy. Attractively, ELAVL1 upregulation, ferritinophagy activation, and ferroptosis induction occurred in primary human HSCs from the collected human liver tissue. Overall, these results reveal novel molecular mechanisms and signaling pathways of ferroptosis, and also identify ELAVL1-autophagy-dependent ferroptosis as a potential target for the treatment of liver fibrosis. Abbreviations: ACTA2/alpha-SMA: actin, alpha 2, smooth muscle, aorta; ACTB/beta-actin: actin beta; ARE: AU-rich element; ATG: autophagy related; BDL: bile duct ligation; BECN1: beclin 1; BSO: buthionine sulfoximine; COL1A1: collagen type I alpha 1 chain; ELAVL1/HuR: ELAV like RNA binding protein 1; FDA: fluorescein diacetate; FTH1: ferritin heavy chain 1; GOT1/AST: glutamic-oxaloacetic transaminase 1; GPT/ALT: glutamic-pyruvic transaminase; GPX4: glutathione peroxidase 4; GSH: glutathione; HCC: hepatocellular carcinoma; HSC: hepatic stellate cell; LCM: laser capture microdissection; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MDA: malondialdehydep; NCOA4: nuclear receptor coactivator 4; PTGS2: prostaglandin-endoperoxide synthase 2; ROS: reactive oxygen species; SQSTM1/p62: sequestosome 1; TBIL: total bilirubin; TEM: transmission electron microscopy; TGFB1: trasforming growth factor beta 1; UTR: untranslated region; VA-Lip-ELAVL1-siRNA: vitamin A-coupled liposomes carrying ELAVL1-siRNA.
Collapse
Affiliation(s)
- Zili Zhang
- a Department of Pharmacology, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing , China
| | - Zhen Yao
- a Department of Pharmacology, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing , China
| | - Ling Wang
- a Department of Pharmacology, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing , China
| | - Hai Ding
- b Department of Pathogenic biology and Immunology, Medical School , Southeast University , Nanjing , China
| | - Jiangjuan Shao
- a Department of Pharmacology, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing , China.,c Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica , Nanjing University of Chinese Medicine , Nanjing , China.,d Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine , Nanjing University of Chinese Medicine , Nanjing , China
| | - Anping Chen
- e Department of Pathology, School of Medicine , Saint Louis University , St Louis , MO , USA
| | - Feng Zhang
- a Department of Pharmacology, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing , China.,c Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica , Nanjing University of Chinese Medicine , Nanjing , China.,d Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine , Nanjing University of Chinese Medicine , Nanjing , China
| | - Shizhong Zheng
- a Department of Pharmacology, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing , China.,c Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica , Nanjing University of Chinese Medicine , Nanjing , China.,d Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine , Nanjing University of Chinese Medicine , Nanjing , China
| |
Collapse
|
43
|
Ebrahimi H, Naderian M, Sohrabpour AA. New Concepts on Reversibility and Targeting of Liver Fibrosis; A Review Article. Middle East J Dig Dis 2018; 10:133-148. [PMID: 30186577 PMCID: PMC6119836 DOI: 10.15171/mejdd.2018.103] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/10/2018] [Indexed: 12/12/2022] Open
Abstract
Currently, liver fibrosis and its complications are regarded as critical health problems.
With the studies showing the reversible nature of liver fibrogenesis, scientists have focused
on understanding the underlying mechanism of this condition in order to develop new
therapeutic strategies. Although hepatic stellate cells are known as the primary cells
responsible for liver fibrogenesis, studies have shown contributing roles for other cells,
pathways, and molecules in the development of fibrosis depending on the etiology of
liver fibrosis. Hence, interventions could be directed in the proper way for each type of
liver diseases to better address this complication. There are two main approaches in clinical
reversion of liver fibrosis; eliminating the underlying insult and targeting the fibrosis
process, which have variable clinical importance in the treatment of this disease. In this
review, we present recent concepts in molecular pathways of liver fibrosis reversibility
and their clinical implications.
Collapse
Affiliation(s)
- Hedyeh Ebrahimi
- The Liver, Pancreatic, and Biliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Naderian
- The Liver, Pancreatic, and Biliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Sohrabpour
- Associate Professor, The Liver, Pancreatic, and Biliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Yoshioka H, Ichimaru Y, Fukaya S, Nagatsu A, Nonogaki T. Potentiating effect of acetaminophen and carbon tetrachloride-induced hepatotoxicity is mediated by activation of receptor interaction protein in mice. Toxicol Mech Methods 2018; 28:615-621. [PMID: 29873576 DOI: 10.1080/15376516.2018.1485804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
When multiple drugs or chemicals are used in combination, it is important to understand the risk of their interactions and predict potential additive effects. The aim of the current study was to investigate the molecular mechanism(s) accounting for the additive/synergistic effect of combination treatment with acetaminophen (APAP) and carbon tetrachloride (CCl4). Mice were intraperitoneally administered vehicle or 100 mg/kg (5 mL/kg) APAP and 30 min after vehicle or 15 mg/kg (5 mL/kg) CCl4. Sixteen hours after treatment, mice from each group were sacrificed and the livers were removed. CCl4 administration caused slight glycogen depletion; this effect was more pronounced following co-administration of APAP and CCl4. ATP and NADPH levels showed the same trend as glycogen levels. The levels of receptor interacting protein 1 and 3 increased following combination treatment with APAP and CCl4. In contrast, levels of the glutamate cysteine ligase catalytic subunit and glutamate cysteine ligase modifier subunits were not significantly affected by combination treatment. APAP and CCl4 co-administration potentiated the phosphorylation of c-Jun N-terminal kinase and p38 kinases, although phosphorylated activation of extracellular signal-regulated kinase was not changed. Our results suggest that APAP and CCl4 co-administration potentiates hepatotoxicity in an additive/synergistic manner via receptor interacting protein activation.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- a Department of Pharmacy, College of Pharmacy , Kinjo Gakuin University , Nagoya , Japan
| | - Yoshimi Ichimaru
- a Department of Pharmacy, College of Pharmacy , Kinjo Gakuin University , Nagoya , Japan
| | - Shiori Fukaya
- a Department of Pharmacy, College of Pharmacy , Kinjo Gakuin University , Nagoya , Japan
| | - Akito Nagatsu
- a Department of Pharmacy, College of Pharmacy , Kinjo Gakuin University , Nagoya , Japan
| | - Tsunemasa Nonogaki
- a Department of Pharmacy, College of Pharmacy , Kinjo Gakuin University , Nagoya , Japan
| |
Collapse
|
45
|
Wang YR, Hong RT, Xie YY, Xu JM. Melatonin Ameliorates Liver Fibrosis Induced by Carbon Tetrachloride in Rats via Inhibiting TGF-β1/Smad Signaling Pathway. Curr Med Sci 2018; 38:236-244. [DOI: 10.1007/s11596-018-1871-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 12/28/2017] [Indexed: 12/18/2022]
|
46
|
Zhou H, Ma Q, Zhu P, Ren J, Reiter RJ, Chen Y. Protective role of melatonin in cardiac ischemia-reperfusion injury: From pathogenesis to targeted therapy. J Pineal Res 2018; 64. [PMID: 29363153 DOI: 10.1111/jpi.12471] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/16/2018] [Indexed: 02/06/2023]
Abstract
Acute myocardial infarction (MI) is a major cause of mortality and disability worldwide. In patients with MI, the treatment option for reducing acute myocardial ischemic injury and limiting MI size is timely and effective myocardial reperfusion using either thombolytic therapy or primary percutaneous coronary intervention (PCI). However, the procedure of reperfusion itself induces cardiomyocyte death, known as myocardial reperfusion injury, for which there is still no effective therapy. Recent evidence has depicted a promising role of melatonin, which possesses powerful antioxidative and anti-inflammatory properties, in the prevention of ischemia-reperfusion (IR) injury and the protection against cardiomyocyte death. A number of reports explored the mechanism of action behind melatonin-induced beneficial effects against myocardial IR injury. In this review, we summarize the research progress related to IR injury and discuss the unique actions of melatonin as a protective agent. Furthermore, the possible mechanisms responsible for the myocardial benefits of melatonin against reperfusion injury are listed with the prospect of the use of melatonin in clinical application.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Qiang Ma
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Pingjun Zhu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Yundai Chen
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
47
|
Hosseinzadeh A, Javad-Moosavi SA, Reiter RJ, Hemati K, Ghaznavi H, Mehrzadi S. Idiopathic pulmonary fibrosis (IPF) signaling pathways and protective roles of melatonin. Life Sci 2018; 201:17-29. [PMID: 29567077 DOI: 10.1016/j.lfs.2018.03.032] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by the progressive loss of lung function due to tissue scarring. A variety of pro-inflammatory and pro-fibrogenic factors including interleukin‑17A, transforming growth factor β, Wnt/β‑catenin, vascular endothelial growth factor, platelet-derived growth factor, fibroblast growth factors, endotelin‑1, renin angiotensin system and impaired caveolin‑1 function are involved in the IPF pathogenesis. Current therapies for IPF have some limitations and this highlights the need for effective therapeutic agents to treat this fatal disease. Melatonin and its metabolites are broad-spectrum antioxidants that not only remove reactive oxygen and nitrogen species by radical scavenging but also up-regulate the expression and activity of endogenous antioxidants. Via these actions, melatonin and its metabolites modulate a variety of molecular pathways in different pathophysiological conditions. Herein, we review the signaling pathways involved in the pathophysiology of IPF and the potentially protective effects of melatonin on these pathways.
Collapse
Affiliation(s)
- Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health, San Antonio, TX, USA
| | - Karim Hemati
- Department of Anesthesiology, Iran University of Medical Sciences, Tehran, Iran; Department of Anesthesiology, Ilam University of Medical Sciences, Ilam, Iran
| | - Habib Ghaznavi
- Department of Pharmacology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
48
|
Arıcıgil M, Dündar MA, Yücel A, Eryılmaz MA, Aktan M, Alan MA, Fındık S, Kılınç İ. Melatonin prevents possible radiotherapy-induced thyroid injury. Int J Radiat Biol 2017; 93:1350-1356. [DOI: 10.1080/09553002.2017.1397296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mitat Arıcıgil
- Department of Otorhinolaryngology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Mehmet Akif Dündar
- Department of Otorhinolaryngology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Abitter Yücel
- Department of Otorhinolaryngology, Horasan State Hospital, Erzurum, Turkey
| | - Mehmet Akif Eryılmaz
- Department of Otorhinolaryngology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Meryem Aktan
- Department of Radiation Oncology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Mehmet Akif Alan
- Department of Otorhinolaryngology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Sıdıka Fındık
- Department of Pathology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - İbrahim Kılınç
- Department of Medical Biochemistry, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
49
|
McMillin M, DeMorrow S, Glaser S, Venter J, Kyritsi K, Zhou T, Grant S, Giang T, Greene JF, Wu N, Jefferson B, Meng F, Alpini G. Melatonin inhibits hypothalamic gonadotropin-releasing hormone release and reduces biliary hyperplasia and fibrosis in cholestatic rats. Am J Physiol Gastrointest Liver Physiol 2017; 313:G410-G418. [PMID: 28751425 PMCID: PMC5792219 DOI: 10.1152/ajpgi.00421.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 06/23/2017] [Accepted: 07/05/2017] [Indexed: 01/31/2023]
Abstract
Melatonin is a hormone produced by the pineal gland with increased circulating levels shown to inhibit biliary hyperplasia and fibrosis during cholestatic liver injury. Melatonin also has the capability to suppress the release of hypothalamic gonadotropin-releasing hormone (GnRH), a hormone that promotes cholangiocyte proliferation when serum levels are elevated. However, the interplay and contribution of neural melatonin and GnRH to cholangiocyte proliferation and fibrosis in bile duct-ligated (BDL) rats have not been investigated. To test this, cranial levels of melatonin were increased by implanting osmotic minipumps that performed an intracerebroventricular (ICV) infusion of melatonin or saline for 7 days starting at the time of BDL. Hypothalamic GnRH mRNA and cholangiocyte secretion of GnRH and melatonin were assessed. Cholangiocyte proliferation and fibrosis were measured. Primary human hepatic stellate cells (HSCs) were treated with cholangiocyte supernatants, GnRH, or the GnRH receptor antagonist cetrorelix acetate, and cell proliferation and fibrosis gene expression were assessed. Melatonin infusion reduced hypothalamic GnRH mRNA expression and led to decreased GnRH and increased melatonin secretion from cholangiocytes. Infusion of melatonin was found to reduce hepatic injury, cholangiocyte proliferation, and fibrosis during BDL-induced liver injury. HSCs supplemented with BDL cholangiocyte supernatant had increased proliferation, and this increase was reversed when HSCs were supplemented with supernatants from melatonin-infused rats. GnRH stimulated fibrosis gene expression in HSCs, and this was reversed by cetrorelix acetate cotreatment. Increasing bioavailability of melatonin in the brain may improve outcomes during cholestatic liver disease.NEW & NOTEWORTHY We have previously demonstrated that GnRH is expressed in cholangiocytes and promotes their proliferation during cholestasis. In addition, dark therapy, which increases melatonin, reduced cholangiocyte proliferation and fibrosis during cholestasis. This study expands these findings by investigating neural GnRH regulation by melatonin during BDL-induced cholestasis by infusing melatonin into the brain. Melatonin infusion reduced cholangiocyte proliferation and fibrosis, and these effects are due to GNRH receptor 1-dependent paracrine signaling between cholangiocytes and hepatic stellate cells.
Collapse
Affiliation(s)
- Matthew McMillin
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - Sharon DeMorrow
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - Julie Venter
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - Konstantina Kyritsi
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - Tianhao Zhou
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - Stephanie Grant
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - Thao Giang
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - John F Greene
- Department of Pathology, Baylor Scott & White Health, Temple, Texas; and
| | - Nan Wu
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - Brandi Jefferson
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
- Research Foundation, Baylor Scott & White Health, Temple, Texas
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Temple, Texas;
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas
- Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center and Baylor Scott & White Health, Temple, Texas
| |
Collapse
|
50
|
Seo MJ, Hong JM, Kim SJ, Lee SM. Genipin protects d -galactosamine and lipopolysaccharide-induced hepatic injury through suppression of the necroptosis-mediated inflammasome signaling. Eur J Pharmacol 2017; 812:128-137. [DOI: 10.1016/j.ejphar.2017.07.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/08/2017] [Accepted: 07/10/2017] [Indexed: 01/17/2023]
|