1
|
Sun S, Guo H, Chen G, Zhang H, Zhang Z, Wang X, Li D, Li X, Zhao G, Lin F. Peroxisome proliferator‑activated receptor γ coactivator‑1α in heart disease (Review). Mol Med Rep 2025; 31:17. [PMID: 39513608 PMCID: PMC11551696 DOI: 10.3892/mmr.2024.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
Heart disease (HD) is a general term for various diseases affecting the heart. An increasing body of evidence suggests that the pathogenesis of HD is closely related to mitochondrial dysfunction. Peroxisome proliferator‑activated receptor γ coactivator‑1α (PGC‑1α) is a transcriptional coactivator that plays an important role in mitochondrial function by regulating mitochondrial biogenesis, energy metabolism and oxidative stress. The present review shows that PGC‑1α expression and activity in the heart are controlled by multiple signaling pathways, including adenosine monophosphate‑activated protein kinase, sirtuin 1/3 and nuclear factor κB. These can mediate the activation or inhibition of transcription and post‑translational modifications (such as phosphorylation and acetylation) of PGC‑1α. Furthermore, it highlighted the recent progress of PGC‑1α in HD, including heart failure, coronary heart disease, diabetic cardiomyopathy, drug‑induced cardiotoxicity and arrhythmia. Understanding the mechanisms underlying PGC‑1α in response to pathological stimulation may prove to be beneficial in developing new ideas and strategies for preventing and treating HDs. Meanwhile, the present review explored why the opposite results occurred when PGC‑1α was used as a target therapy.
Collapse
Affiliation(s)
- Siyu Sun
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, Henan 453100, P.R. China
| | - Huige Guo
- Department of Cardiology, Xinxiang Central Hospital, Xinxiang, Henan 453000, P.R. China
| | - Guohui Chen
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, Henan 453100, P.R. China
| | - Hui Zhang
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, Henan 453100, P.R. China
| | - Zhanrui Zhang
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, Henan 453100, P.R. China
| | - Xiulong Wang
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, Henan 453100, P.R. China
| | - Dongxu Li
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, Henan 453100, P.R. China
| | - Xuefang Li
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, Henan 453100, P.R. China
| | - Guoan Zhao
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, Henan 453100, P.R. China
| | - Fei Lin
- Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
- Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, Henan 453100, P.R. China
| |
Collapse
|
2
|
Qian L, Zhu Y, Deng C, Liang Z, Chen J, Chen Y, Wang X, Liu Y, Tian Y, Yang Y. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family in physiological and pathophysiological process and diseases. Signal Transduct Target Ther 2024; 9:50. [PMID: 38424050 PMCID: PMC10904817 DOI: 10.1038/s41392-024-01756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family (PGC-1s), consisting of three members encompassing PGC-1α, PGC-1β, and PGC-1-related coactivator (PRC), was discovered more than a quarter-century ago. PGC-1s are essential coordinators of many vital cellular events, including mitochondrial functions, oxidative stress, endoplasmic reticulum homeostasis, and inflammation. Accumulating evidence has shown that PGC-1s are implicated in many diseases, such as cancers, cardiac diseases and cardiovascular diseases, neurological disorders, kidney diseases, motor system diseases, and metabolic disorders. Examining the upstream modulators and co-activated partners of PGC-1s and identifying critical biological events modulated by downstream effectors of PGC-1s contribute to the presentation of the elaborate network of PGC-1s. Furthermore, discussing the correlation between PGC-1s and diseases as well as summarizing the therapy targeting PGC-1s helps make individualized and precise intervention methods. In this review, we summarize basic knowledge regarding the PGC-1s family as well as the molecular regulatory network, discuss the physio-pathological roles of PGC-1s in human diseases, review the application of PGC-1s, including the diagnostic and prognostic value of PGC-1s and several therapies in pre-clinical studies, and suggest several directions for future investigations. This review presents the immense potential of targeting PGC-1s in the treatment of diseases and hopefully facilitates the promotion of PGC-1s as new therapeutic targets.
Collapse
Affiliation(s)
- Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yanli Zhu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou, 450052, China
| | - Junmin Chen
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Xue Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Yanqing Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Ye Tian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yang Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China.
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
3
|
Hui W, Wenhua S, Shuojie Z, Lulin W, Panpan Z, Tongtong Z, Xiaoli X, Juhua D. How does NFAT3 regulate the occurrence of cardiac hypertrophy? IJC HEART & VASCULATURE 2023; 48:101271. [PMID: 37753338 PMCID: PMC10518445 DOI: 10.1016/j.ijcha.2023.101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023]
Abstract
Cardiac hypertrophy is initially an adaptive response to physiological and pathological stimuli. Although pathological myocardial hypertrophy is the main cause of morbidity and mortality, our understanding of its mechanism is still weak. NFAT3 (nuclear factor of activated T-cell-3) is a member of the nuclear factor of the activated T cells (NFAT) family. NFAT3 plays a critical role in regulating the expression of cardiac hypertrophy genes by inducing their transcription. Recently, accumulating evidence has indicated that NFAT3 is a potent regulator of the progression of cardiac hypertrophy. This review, for the first time, summarizes the current studies on NFAT3 in cardiac hypertrophy, including the pathophysiological processes and the underlying pathological mechanism, focusing on the nuclear translocation and transcriptional function of NFAT3. This review will provide deep insight into the pathogenesis of cardiac hypertrophy and a theoretical basis for identifying new therapeutic targets in the NFAT3 network.
Collapse
Affiliation(s)
- Wang Hui
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Su Wenhua
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Cardiology, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Zhang Shuojie
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wang Lulin
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhao Panpan
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhang Tongtong
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xie Xiaoli
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Dan Juhua
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
4
|
SUMOylation of SIRT1 activating PGC-1α/PPARα pathway mediates the protective effect of LncRNA-MHRT in cardiac hypertrophy. Eur J Pharmacol 2022; 930:175155. [PMID: 35863508 DOI: 10.1016/j.ejphar.2022.175155] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022]
Abstract
Long noncoding RNA-Myosin heavy chain associated RNA transcript (LncRNA-MHRT) has been reported to prevent pathological cardiac hypertrophy. However, the underlying inhibition mechanism has not been fully elucidated. Further, whether MHRT inhibits hypertrophy by regulating post-translational modification of certain proteins remains unclear. Therefore, this study aims to find potential role of MHRT in inhibiting cardiac hypertrophy via regulating modification of certain proteins. Here, Angiotensin II (Ang II) -treated neonatal rat cardiomyocytes and transverse aortic constriction (TAC) mice were used to investigate the effect and mechanism of MHRT in cardiac hypertrophy in vitro and in vivo. Moreover, the regulatory effects of MHRT on SUMOylation of NAD-dependent protein deacetylase sirtuin-1 (SIRT1), peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1α)/peroxisome proliferator-activated receptor-α (PPARα), specificity protein 1 (SP1)/histone deacetylase 4 (HDAC4) pathway were investigated. Here, we found that MHRT improved heart function by attenuating pathological cardiac hypertrophy in vivo and in vitro. MHRT also promoted the SUMOylation of SIRT1 protein that activated PGC1-α/PPAR-α pathway. Furthermore, MHRT enhanced SUMOylation of SIRT1 by upregulating SP1/HDAC4. Our findings suggested that SUMOylation of SIRT1 could mediate the protective effect of MHRT in cardiac hypertrophy. The new regulatory pathway provides a potential new therapeutic target for pathological cardiac hypertrophy.
Collapse
|
5
|
Zhong QH, Zha SW, Lau ATY, Xu YM. Recent knowledge of NFATc4 in oncogenesis and cancer prognosis. Cancer Cell Int 2022; 22:212. [PMID: 35698138 PMCID: PMC9190084 DOI: 10.1186/s12935-022-02619-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/20/2022] [Indexed: 02/05/2023] Open
Abstract
Nuclear factor of activated T-cells, cytoplasmic 4 (NFATc4), a transcription factor of NFAT family, which is activated by Ca2+/calcineurin signaling. Recently, it is reported that aberrantly activated NFATc4 participated and modulated in the initiation, proliferation, invasion, and metastasis of various cancers (including cancers of the lung, breast, ovary, cervix, skin, liver, pancreas, as well as glioma, primary myelofibrosis and acute myelocytic leukemia). In this review, we cover the latest knowledge on NFATc4 expression pattern, post-translational modification, epigenetic regulation, transcriptional activity regulation and its downstream targets. Furthermore, we perform database analysis to reveal the prognostic value of NFATc4 in various cancers and discuss the current unexplored areas of NFATc4 research. All in all, the result from these studies strongly suggest that NFATc4 has the potential as a molecular therapeutic target in multiple human cancer types.
Collapse
Affiliation(s)
- Qiu-Hua Zhong
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041 People’s Republic of China
| | - Si-Wei Zha
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041 People’s Republic of China
| | - Andy T. Y. Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041 People’s Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041 People’s Republic of China
| |
Collapse
|
6
|
Liu X, Gao S, Gao H, Jiang X, Wei Q. Mitochondrial Disruption Is Involved in the Effect of Nuclear Factor of Activated T cells, Cytoplasmic 4 on Aggravating Cardiomyocyte Hypertrophy. J Cardiovasc Pharmacol 2021; 77:557-569. [PMID: 33951694 DOI: 10.1097/fjc.0000000000000986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/14/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Nuclear factor of activated T cells, cytoplasmic 4 (NFATc4), a nuclear transcription factor, has been implicated in cardiac hypertrophy through the enhancement of hypertrophic gene expression. However, the role of NFATc4 in mitochondrial modulation is mostly unknown. The current study aimed to investigate the role of NFATc4 in regulating mitochondrial function during phenylephrine (PE)-induced cardiac hypertrophy. Our results showed that overexpression of NFATc4 aggravated the PE-induced decrease in mitochondrial genesis, membrane potential, and mitochondrial gene expression as well as impaired mitochondrial respiration. However, knockdown of NFATc4 relieved PE-induced perturbations in mitochondria and cardiomyocyte hypertrophy. Mechanistically, by activating phosphoinositide-dependent kinase 1 and promoting a combination of AKT and phosphoinositide-dependent kinase 1, phosphorylation and sequential acetylation of PGC-1α were aggravated by NFATc4 and suppressed the activity of PGC-1α. In conclusion, NFATc4-regulated factors were shown to be associated with mitochondrial function and exacerbated PE-induced mitochondrial dysfunction. These findings revealed new roles of NFATc4 in cardiac hypertrophy.
Collapse
Affiliation(s)
- Xueping Liu
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi, People's Republic of China ; and
| | - Si Gao
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi, People's Republic of China ; and
| | - Hui Gao
- Department of Pharmacology, School of Medicine, Shaoxing University, Shaoxing, People's Republic of China
| | - Xudong Jiang
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi, People's Republic of China ; and
| | - Qiqiu Wei
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi, People's Republic of China ; and
| |
Collapse
|
7
|
Shi X, Zhang Y, Gong Y, Chen M, Brand-Arzamendi K, Liu X, Wen XY. Zebrafish hhatla is involved in cardiac hypertrophy. J Cell Physiol 2021; 236:3700-3709. [PMID: 33052609 DOI: 10.1002/jcp.30106] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 01/26/2023]
Abstract
Cardiac hypertrophy is a compensatory response to pathological stimuli, ultimately progresses to cardiomyopathy, heart failure, or sudden death. Although many signaling pathways have been reported to be involved in the hypertrophic process, it is still not fully clear about the underlying molecular mechanisms for cardiac hypertrophy. Hedgehog acyltransferase-like (Hhatl), a sarcoplasmic reticulum-resident protein, exhibits high expression in the heart and muscle. However, the biological role of Hhatl in the heart remains unknown. In this study, we first found that the expression level of Hhatl is markedly decreased in cardiac hypertrophy. We further studied the role of hhatla, homolog of Hhatl with the zebrafish model. The depletion of hhatla in zebrafish leads to cardiac defects, as well as an enhanced level of hypertrophic markers. Besides, we found that calcineurin signaling participates in hhatla depletion-induced cardiac hypertrophy. Together, these results demonstrate a critical role for hhatla in cardiac hypertrophy.
Collapse
Affiliation(s)
- Xingjuan Shi
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Yu Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Yijie Gong
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Mengying Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Koroboshka Brand-Arzamendi
- Zebrafish Centre for Advanced Drug Discovery, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Li Ka Shing Knowledge Institute, Toronto, Ontario, Canada
- Department of Medicine, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Xiangdong Liu
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Xiao-Yan Wen
- Zebrafish Centre for Advanced Drug Discovery, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Li Ka Shing Knowledge Institute, Toronto, Ontario, Canada
- Department of Medicine, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Hou N, Huang Y, Cai SA, Yuan WC, Li LR, Liu XW, Zhao GJ, Qiu XX, Li AQ, Cheng CF, Liu SM, Chen XH, Cai DF, Xie JX, Chen MS, Luo CF. Puerarin ameliorated pressure overload-induced cardiac hypertrophy in ovariectomized rats through activation of the PPARα/PGC-1 pathway. Acta Pharmacol Sin 2021; 42:55-67. [PMID: 32504066 PMCID: PMC7921143 DOI: 10.1038/s41401-020-0401-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 03/16/2020] [Indexed: 12/13/2022]
Abstract
Estrogen deficiency induces cardiac dysfunction and increases the risk of cardiovascular disease in postmenopausal women and in those who underwent bilateral oophorectomy. Previous evidence suggests that puerarin, a phytoestrogen, exerts beneficial effects on cardiac function in patients with cardiac hypertrophy. In this study, we investigated whether puerarin could prevent cardiac hypertrophy and remodeling in ovariectomized, aortic-banded rats. Female SD rats subjected to bilateral ovariectomy (OVX) plus abdominal aortic constriction (AAC). The rats were treated with puerarin (50 mg·kg-1 ·d-1, ip) for 8 weeks. Then echocardiography was assessed, and the rats were sacrificed, their heart tissues were extracted and allocated for further experiments. We showed that puerarin administration significantly attenuated cardiac hypertrophy and remodeling in AAC-treated OVX rats, which could be attributed to activation of PPARα/PPARγ coactivator-1 (PGC-1) pathway. Puerarin administration significantly increased the expression of estrogen-related receptor α, nuclear respiratory factor 1, and mitochondrial transcription factor A in hearts. Moreover, puerarin administration regulated the expression of metabolic genes in AAC-treated OVX rats. Hypertrophic changes could be induced in neonatal rat cardiomyocytes (NRCM) in vitro by treatment with angiotensin II (Ang II, 1 μM), which was attenuated by co-treatemnt with puerarin (100 μM). We further showed that puerarin decreased Ang II-induced accumulation of non-esterified fatty acids (NEFAs) and deletion of ATP, attenuated the Ang II-induced dissipation of the mitochondrial membrane potential, and improved the mitochondrial dysfunction in NRCM. Furthermore, addition of PPARα antagonist GW6471 (10 μM) partially abolished the anti-hypertrophic effects and metabolic effects of puerarin in NRCM. In conclusion, puerarin prevents cardiac hypertrophy in AAC-treated OVX rats through activation of PPARα/PGC-1 pathway and regulation of energy metabolism remodeling. This may provide a new approach to prevent the development of heart failure in postmenopausal women.
Collapse
Affiliation(s)
- Ning Hou
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yin Huang
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
- Xiangtan Central Hospital, Xiangtan, 411100, China
| | - Shao-Ai Cai
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Wen-Chang Yuan
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Li-Rong Li
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xia-Wen Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Gan-Jian Zhao
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Xiao-Xia Qiu
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ai-Qun Li
- Nanfang College of SUN YAT-SEN University, Guangzhou, 510970, China
| | - Chuan-Fang Cheng
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Shi-Ming Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Xiao-Hui Chen
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Dao-Feng Cai
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | | | - Min-Sheng Chen
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Cheng-Feng Luo
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
9
|
Liu W, Wang G, Zhang C, Ding W, Cheng W, Luo Y, Wei C, Liu J. MG53, A Novel Regulator of KChIP2 and I to,f, Plays a Critical Role in Electrophysiological Remodeling in Cardiac Hypertrophy. Circulation 2020; 139:2142-2156. [PMID: 30760025 DOI: 10.1161/circulationaha.118.029413] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND KChIP2 (K+ channel interacting protein) is the auxiliary subunit of the fast transient outward K+ current ( Ito,f) in the heart, and insufficient KChIP2 expression induces Ito,f downregulation and arrhythmogenesis in cardiac hypertrophy. Studies have shown muscle-specific mitsugumin 53 (MG53) has promiscuity of function in the context of normal and diseased heart. This study investigates the possible roles of cardiac MG53 in regulation of KChIP2 expression and Ito,f, and the arrhythmogenic potential in hypertrophy. METHODS MG53 expression is manipulated by genetic ablation of MG53 in mice and adenoviral overexpression or knockdown of MG53 by RNA interference in cultured neonatal rat ventricular myocytes. Cardiomyocyte hypertrophy is produced by phenylephrine stimulation in neonatal rat ventricular myocytes, and pressure overload-induced mouse cardiac hypertrophy is produced by transverse aortic constriction. RESULTS KChIP2 expression and Ito,f density are downregulated in hearts from MG53-knockout mice and MG53-knockdown neonatal rat ventricular myocytes, but upregulated in MG53-overexpressing cells. In phenylephrine-induced cardiomyocyte hypertrophy, MG53 expression is reduced with concomitant downregulation of KChIP2 and Ito,f, which can be reversed by MG53 overexpression, but exaggerated by MG53 knockdown. MG53 knockout enhances Ito,f remodeling and action potential duration prolongation and increases susceptibility to ventricular arrhythmia in mouse cardiac hypertrophy. Mechanistically, MG53 regulates NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activity and subsequently controls KChIP2 transcription. Chromatin immunoprecipitation demonstrates NF-κB protein has interaction with KChIP2 gene. MG53 overexpression decreases, whereas MG53 knockdown increases NF-κB enrichment at the 5' regulatory region of KChIP2 gene. Normalizing NF-κB activity reverses the alterations in KChIP2 in MG53-overexpressing or knockdown cells. Coimmunoprecipitation and Western blotting assays demonstrate MG53 has physical interaction with TAK1 (transforming growth factor-b [TGFb]-activated kinase 1) and IκBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha), critical components of the NF-κB pathway. CONCLUSIONS These findings establish MG53 as a novel regulator of KChIP2 and Ito,f by modulating NF-κB activity and reveal its critical role in electrophysiological remodeling in cardiac hypertrophy.
Collapse
Affiliation(s)
- Wenjuan Liu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathophysiology (W.L., G.W., W.C., Y.L., J.L.), School of Medicine, Shenzhen University, China
| | - Gang Wang
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathophysiology (W.L., G.W., W.C., Y.L., J.L.), School of Medicine, Shenzhen University, China
| | - Cuicui Zhang
- Prenatal Diagnosis Center, The Women and Children Hospital of Guangdong Province, Guangzhou, China (C.Z.)
| | - Wenwen Ding
- Department of Basic Medicine, School of Medicine, Jingchu University of Technology, Jingmen, China (W.D.)
| | - Wanwen Cheng
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathophysiology (W.L., G.W., W.C., Y.L., J.L.), School of Medicine, Shenzhen University, China
| | - Yizhi Luo
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathophysiology (W.L., G.W., W.C., Y.L., J.L.), School of Medicine, Shenzhen University, China
| | - Chaoliang Wei
- Department of Cell Biology and Medical Genetics (C.W.), School of Medicine, Shenzhen University, China
| | - Jie Liu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathophysiology (W.L., G.W., W.C., Y.L., J.L.), School of Medicine, Shenzhen University, China
| |
Collapse
|
10
|
Li J, Huang J, Lu J, Guo Z, Li Z, Gao H, Wang P, Luo W, Cai S, Hu Y, Guo K, Wang L, Li Z, Wang M, Zhang X, Liu P. Sirtuin 1 represses PKC-ζ activity through regulating interplay of acetylation and phosphorylation in cardiac hypertrophy. Br J Pharmacol 2019; 176:416-435. [PMID: 30414383 PMCID: PMC6329629 DOI: 10.1111/bph.14538] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/20/2018] [Accepted: 10/17/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Activation of PKC-ζ is closely linked to the pathogenesis of cardiac hypertrophy. PKC-ζ can be activated by certain lipid metabolites such as phosphatidylinositol (3,4,5)-trisphosphate and ceramide. However, its endogenous negative regulators are not well defined. Here, the role of the sirtuin1-PKC-ζ signalling axis and the underlying molecular mechanisms were investigated in cardiac hypertrophy. EXPERIMENTAL APPROACH Cellular hypertrophy in cultures of cardiac myocytes, from neonatal Sprague-Dawley rats, was monitored by measuring cell surface area and the mRNA levels of hypertrophic biomarkers. Interaction between sirtuin1 and PKC-ζ was investigated by co-immunoprecipitation and confocal immunofluorescence microscopy. Sirtuin1 activation was enhanced by resveratrol treatment or Ad-sirtuin1 transfection. A model of cardiac hypertrophy in Sprague-Dawley rats was established by abdominal aortic constriction surgery or induced by isoprenaline in vivo. KEY RESULTS Overexpression of PKC-ζ led to cardiac hypertrophy and increased activity of NF-κB, ERK1/2 and ERK5, which was ameliorated by sirtuin1 overexpression. Enhancement of sirtuin1 activity suppressed acetylation of PKC-ζ, hindered its binding to phosphoinositide-dependent kinase 1 and inhibited PKC-ζ phosphorylation in cardiac hypertrophy. Consequently, the downstream pathways of PKC-ζ' were suppressed in cardiac hypertrophy. This regulation loop suggests a new role for sirtuin1 in mediation of cardiac hypertrophy. CONCLUSIONS AND IMPLICATIONS Sirtuin1 is an endogenous negative regulator for PKC-ζ and mediates its activity via regulating the acetylation and phosphorylation in the pathogenesis of cardiac hypertrophy. Targeting the sirtuin1-PKC-ζ signalling axis may suggest a novel therapeutic approach against cardiac hypertrophy.
Collapse
Affiliation(s)
- Jingyan Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs EvaluationSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Junying Huang
- College of Life SciencesGuangzhou UniversityGuangzhouGuangdongChina
| | - Jing Lu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs EvaluationSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Zhen Guo
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs EvaluationSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Zhuoming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs EvaluationSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Hui Gao
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs EvaluationSun Yat‐sen UniversityGuangzhouGuangdongChina
- Department of Pharmacology, School of MedicineJishou UniversityJishouChina
| | - Panxia Wang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs EvaluationSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Wenwei Luo
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs EvaluationSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Sidong Cai
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs EvaluationSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yuehuai Hu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs EvaluationSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Kaiteng Guo
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs EvaluationSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Luping Wang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs EvaluationSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Zhenzhen Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs EvaluationSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Minghui Wang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs EvaluationSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xiaolei Zhang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs EvaluationSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs EvaluationSun Yat‐sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
11
|
Sun S, Hu Y, Zheng Q, Guo Z, Sun D, Chen S, Zhang Y, Liu P, Lu J, Jiang J. Poly(ADP‐ribose) polymerase 1 induces cardiac fibrosis by mediating mammalian target of rapamycin activity. J Cell Biochem 2019; 120:4813-4826. [DOI: 10.1002/jcb.26649] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Shuya Sun
- School of Pharmaceutical Sciences, Sun Yat‐sen University Guangzhou China
| | - Yuehuai Hu
- School of Pharmaceutical Sciences, Sun Yat‐sen University Guangzhou China
| | - Qiyao Zheng
- School of Pharmaceutical Sciences, Sun Yat‐sen University Guangzhou China
| | - Zhen Guo
- School of Pharmaceutical Sciences, Sun Yat‐sen University Guangzhou China
| | - Duanping Sun
- School of Pharmaceutical Sciences, Sun Yat‐sen University Guangzhou China
| | - Shaorui Chen
- School of Pharmaceutical Sciences, Sun Yat‐sen University Guangzhou China
| | - Yiqiang Zhang
- Division of Cardiology, Department of Medicine Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington Seattle Washington
| | - Peiqing Liu
- School of Pharmaceutical Sciences, Sun Yat‐sen University Guangzhou China
| | - Jing Lu
- School of Pharmaceutical Sciences, Sun Yat‐sen University Guangzhou China
| | - Jianmin Jiang
- School of Pharmaceutical Sciences, Sun Yat‐sen University Guangzhou China
| |
Collapse
|
12
|
Li Z, Zhang X, Guo Z, Zhong Y, Wang P, Li J, Li Z, Liu P. SIRT6 Suppresses NFATc4 Expression and Activation in Cardiomyocyte Hypertrophy. Front Pharmacol 2019; 9:1519. [PMID: 30670969 PMCID: PMC6331469 DOI: 10.3389/fphar.2018.01519] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/11/2018] [Indexed: 12/15/2022] Open
Abstract
NFATc4, a member from the Nuclear Factor of Activated T cells (NFATs) transcription factor family, plays a pivotal role in the development of cardiac hypertrophy. NFATc4 is dephosphorylated by calcineurin and translocated from the cytoplasm to the nucleus to regulate the expression of hypertrophic genes, like brain natriuretic polypeptide (BNP). The present study identified SIRT6, an important subtype of NAD+ dependent class III histone deacetylase, to be a negative regulator of NFATc4 in cardiomyocyte hypertrophy. In phenylephrine (PE)-induced hypertrophic cardiomyocyte model, overexpression of SIRT6 by adenovirus infection or by plasmid transfection repressed the protein and mRNA expressions of NFATc4, elevated its phosphorylation level, prevented its nuclear accumulation, subsequently suppressed its transcriptional activity and downregulated its target gene BNP. By contrast, mutant of SIRT6 without deacetylase activity (H133Y) did not demonstrate these effects, suggesting that the inhibitory effect of SIRT6 on NFATc4 was dependent on its deacetylase activity. Moreover, the effect of SIRT6 overexpression on repressing BNP expression was reversed by NFATc4 replenishment, whereas the effect of SIRT6 deficiency on upregulating BNP was recovered by NFATc4 silencing. Mechanistically, interactions between SIRT6 and NFATc4 might possibly facilitate the deacetylation of NFATc4 by SIRT6, thereby preventing the activation of NFATc4. In conclusion, the present study reveals that SIRT6 suppresses the expression and activation of NFATc4. These findings provide more evidences of the anti-hypertrophic effect of SIRT6 and suggest SIRT6 as a potential therapeutic target for cardiac hypertrophy.
Collapse
Affiliation(s)
- Zhenzhen Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaoying Zhang
- Department of Pharmacology, School of Medicine, Xizang Minzu University, Shaanxi, China
| | - Zhen Guo
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yao Zhong
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Department of Cardiology, Third People's Hospital of Dongguan, Dongguan, China
| | - Panxia Wang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jingyan Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhuoming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Wang L, Li Z, Tan Y, Li Q, Yang H, Wang P, Lu J, Liu P. PARP1 interacts with STAT3 and retains active phosphorylated-STAT3 in nucleus during pathological myocardial hypertrophy. Mol Cell Endocrinol 2018; 474:137-150. [PMID: 29501586 DOI: 10.1016/j.mce.2018.02.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 11/22/2022]
Abstract
The activation of signal transducer and activator of transcription 3 (STAT3) positively regulates myocardial hypertrophy, and its transcriptional activity is finely conditioned by diverse extracellular growth factors and cytokines. Here, we introduce novel evidence that poly(ADP-ribose) polymerase 1 (PARP1) interacts with STAT3 and promotes its activation in cardiomyocytes and rat heart tissues. PARP1 activity and phosphorylated STAT3 were augmented by hypertrophic stimuli both in vitro and in vivo. Infection of PARP1 adenovirus induced cardiomyocyte hypertrophy, which could be prevented by STAT3 knockdown or inhibition. Additionally, PARP1 enhanced STAT3 phosphorylation level, nuclear accumulation and transcriptional activity. Mechanistically, PARP1 interacts with STAT3 and retains active phosphorylated-STAT3 in nucleus. In conclusion, our findings provide the first evidence that PARP1 exacerbates cardiac hypertrophy by stabilizing active phosphorylated-STAT3, which suggests that multi-target therapeutic strategies counteracting PARP1 activity and STAT3 activation would be potential for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Luping Wang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Zhuoming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Yinzi Tan
- Bank of China Ltd., Guangzhou 510610, PR China
| | - Qian Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Hanwei Yang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Panxia Wang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Jing Lu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China.
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China.
| |
Collapse
|
14
|
Gao H, Liu H, Tang T, Huang X, Wang D, Li Y, Huang P, Peng Y. Oleanonic acid ameliorates pressure overload-induced cardiac hypertrophy in rats: The role of PKCζ-NF-κB pathway. Mol Cell Endocrinol 2018; 470:259-268. [PMID: 29138023 DOI: 10.1016/j.mce.2017.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/15/2017] [Accepted: 11/09/2017] [Indexed: 10/18/2022]
Abstract
It has been reported that inflammation is closely related with cardiac hypertrophy. Some inflammatory cytokines such as tumor necrosis factor-α, interleukin-1β, and interleukin-6 directly induce cardiac hypertrophy, which is associated with the activation of nuclear factorkappa B (NF-κB). Thus, NF-κB is an attractive target for cardiac hypertrophy. In the present study, oleanonic acid inhibited the elevation of transcriptional activity of NF-κB and reduced the mRNA expressions of hypertrophic genes such as atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP) in a concentration-dependent manner in phenylephrine (PE)-treated cardiomyocytes. Furthermore, we found that oleanonic acid inhibited the phosphorylation of protein kinase C ζ (PKCζ) at Thr410 site and then reduced the activation of NF-κB using gain- and loss-of-function approaches in PE-treated cardiomyocytes. In vivo, similar results were observed in abdominal aortic constriction (AAC) rats that were intragastrically administered with oleanonic acid, and the pathological changes accompanying cardiac hypertrophy were relieved. In conclusion, oleanonic acid can effectively ameliorate cardiac hypertrophy by inhibiting PKCζ-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Hui Gao
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Jishou, PR China; Key Laboratory of Plant Resource Conservation and Utilization, Jishou University, Jishou, PR China; Department of Pharmacology, School of Medicine, Jishou University, Jishou, PR China.
| | - Hui Liu
- Department of Pharmacy, Zhaoqing Medical College, Zhaoqing, PR China
| | - Tiexin Tang
- Department of Pharmacy, Zhaoqing Medical College, Zhaoqing, PR China
| | - Xiaofei Huang
- Department of Pharmacology, School of Medicine, Jishou University, Jishou, PR China
| | - Dongxiu Wang
- Department of Pharmacology, School of Medicine, Jishou University, Jishou, PR China
| | - Yan Li
- Department of Pharmacology, School of Medicine, Jishou University, Jishou, PR China
| | - Pan Huang
- Department of Pharmacology, School of Medicine, Jishou University, Jishou, PR China
| | - Yingfu Peng
- Department of Pharmacology, School of Medicine, Jishou University, Jishou, PR China.
| |
Collapse
|
15
|
Kumar S, Wang G, Liu W, Ding W, Dong M, Zheng N, Ye H, Liu J. Hypoxia-Induced Mitogenic Factor Promotes Cardiac Hypertrophy via Calcium-Dependent and Hypoxia-Inducible Factor-1α Mechanisms. Hypertension 2018; 72:331-342. [PMID: 29891648 DOI: 10.1161/hypertensionaha.118.10845] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/24/2018] [Accepted: 05/08/2018] [Indexed: 12/26/2022]
Abstract
HIMF (hypoxia-induced mitogenic factor/found in inflammatory zone 1/resistin like α) is a secretory and cytokine-like protein and serves as a critical stimulator of hypoxia-induced pulmonary hypertension. With a role for HIMF in heart disease unknown, we explored the possible roles for HIMF in cardiac hypertrophy by overexpressing and knocking down HIMF in cardiomyocytes and characterizing HIMF gene (himf) knockout mice. We found that HIMF mRNA and protein levels were upregulated in phenylephrine-stimulated cardiomyocyte hypertrophy and our mouse model of transverse aortic constriction-induced cardiac hypertrophy, as well as in human hearts with dilated cardiomyopathy. Furthermore, HIMF overexpression could induce cardiomyocyte hypertrophy, as characterized by elevated protein expression of hypertrophic biomarkers (ANP [atrial natriuretic peptide] and β-MHC [myosin heavy chain-β]) and increased cell-surface area compared with controls. Conversely, HIMF knockdown prevented phenylephrine-induced cardiomyocyte hypertrophy and himf ablation in knockout mice significantly attenuated transverse aortic constriction-induced hypertrophic remodeling and cardiac dysfunction. HIMF overexpression increased the cytosolic Ca2+ concentration and activated the CaN-NFAT (calcineurin-nuclear factor of activated T cell) and MAPK (mitogen-activated protein kinase) pathways; this effect could be prevented by reducing cytosolic Ca2+ concentration with L-type Ca2+ channel blocker nifedipine or inhibiting the CaSR (Ca2+ sensing receptor) with Calhex 231. Furthermore, HIMF overexpression increased HIF-1α (hypoxia-inducible factor) expression in neonatal rat ventricular myocytes, and HIMF knockout inhibited HIF-1α upregulation in transverse aortic constriction mice. Knockdown of HIF-1α attenuated HIMF-induced cardiomyocyte hypertrophy. In conclusion, HIMF has a critical role in the development of cardiac hypertrophy, and targeting HIMF may represent a potential therapeutic strategy.
Collapse
Affiliation(s)
- Santosh Kumar
- From the Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, China (S.K., G.W., W.L., M.D., N.Z., J.L.)
| | - Gang Wang
- From the Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, China (S.K., G.W., W.L., M.D., N.Z., J.L.)
| | - Wenjuan Liu
- From the Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, China (S.K., G.W., W.L., M.D., N.Z., J.L.)
| | - Wenwen Ding
- Institute for Cancer Prevention and Treatment, School of Medicine, Jingchu University of Technology, Jingmen, China (W.D.)
| | - Ming Dong
- From the Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, China (S.K., G.W., W.L., M.D., N.Z., J.L.)
| | - Na Zheng
- From the Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, China (S.K., G.W., W.L., M.D., N.Z., J.L.)
| | - Hongyu Ye
- Department of Cardiothoracic Surgery, Zhongshan People's Hospital, China (H.Y.)
| | - Jie Liu
- From the Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, China (S.K., G.W., W.L., M.D., N.Z., J.L.)
| |
Collapse
|
16
|
Mechanisms contributing to cardiac remodelling. Clin Sci (Lond) 2017; 131:2319-2345. [PMID: 28842527 DOI: 10.1042/cs20171167] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022]
Abstract
Cardiac remodelling is classified as physiological (in response to growth, exercise and pregnancy) or pathological (in response to inflammation, ischaemia, ischaemia/reperfusion (I/R) injury, biomechanical stress, excess neurohormonal activation and excess afterload). Physiological remodelling of the heart is characterized by a fine-tuned and orchestrated process of beneficial adaptations. Pathological cardiac remodelling is the process of structural and functional changes in the left ventricle (LV) in response to internal or external cardiovascular damage or influence by pathogenic risk factors, and is a precursor of clinical heart failure (HF). Pathological remodelling is associated with fibrosis, inflammation and cellular dysfunction (e.g. abnormal cardiomyocyte/non-cardiomyocyte interactions, oxidative stress, endoplasmic reticulum (ER) stress, autophagy alterations, impairment of metabolism and signalling pathways), leading to HF. This review describes the key molecular and cellular responses involved in pathological cardiac remodelling.
Collapse
|
17
|
Mitochondria and Cardiac Hypertrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:203-226. [DOI: 10.1007/978-3-319-55330-6_11] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Li J, Gao H, Huang J, Wang P, Huang Y, Luo W, Zhang X, Shen P, You J, Cai S, Li Z, Liu P. PKCζ interacts with STAT3 and promotes its activation in cardiomyocyte hypertrophy. J Pharmacol Sci 2016; 132:15-23. [PMID: 27094369 DOI: 10.1016/j.jphs.2016.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 01/24/2023] Open
|
19
|
Li X, Liu Y, Ma H, Guan Y, Cao Y, Tian Y, Zhang Y. Enhancement of Glucose Metabolism via PGC-1α Participates in the Cardioprotection of Chronic Intermittent Hypobaric Hypoxia. Front Physiol 2016; 7:219. [PMID: 27375497 PMCID: PMC4896962 DOI: 10.3389/fphys.2016.00219] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/26/2016] [Indexed: 11/21/2022] Open
Abstract
Background and Aims: Previous studies demonstrated that energy metabolism disturbance impairs cardiac function and chronic intermittent hypobaric hypoxia (CIHH) protects heart against ischemia/reperfusion injury. The present study aimed to test the hypothesis that CIHH protects the heart against ischemia/reperfusion (I/R) injury via improvement of cardiac glucose metabolism. Methods: Male Sprague-Dawley rats received CIHH treatment simulating 5000-m altitude for 28 days, 6 h per day in a hypobaric chamber or no treatment (control). Body weight, fasting blood glucose, blood lipid and glucose tolerance were measured. The left ventricular function of isolated hearts was evaluated during 30 min of ischemia and 60 min of reperfusion using Langendorff method. The mRNA and protein expression involved in cardiac energy metabolism was determined using quantitative PCR and Western blot techniques. Results: 1. There was no difference of body weight, fast blood glucose, blood lipid and glucose tolerance between control and CIHH rats under baseline condition (p > 0.05). 2. The recovery of left ventricular function after I/R was improved significantly in CIHH rats compared to control rats (p < 0.05). 3. The expression of cardiac GLUT4 and PGC-1α was increased but PDK4 gene expression was decreased by CIHH treatment at both mRNA and protein level. Also p-AMPK/AMPK ratio was increased in CIHH rats (p < 0.05). Conclusion: CIHH ameliorates I/R injury through improving cardiac glucose metabolism via upregulation of GLUT4, p-AMPK, and PGC-1α expressions, but downregulation of cardiacPDK4 expression.
Collapse
Affiliation(s)
- Xuyi Li
- Department of Physiology, Hebei Medical UniversityShijiazhuang, China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular DiseaseShijiazhuang, China
| | - Yan Liu
- Department of Endocrinology, The Third Hospital of Hebei Medical University Shijiazhuang, China
| | - Huijie Ma
- Department of Physiology, Hebei Medical UniversityShijiazhuang, China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular DiseaseShijiazhuang, China
| | - Yue Guan
- Department of Physiology, Hebei Medical UniversityShijiazhuang, China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular DiseaseShijiazhuang, China
| | - Yue Cao
- Department of Endocrinology, The Third Hospital of Hebei Medical University Shijiazhuang, China
| | - Yanming Tian
- Department of Physiology, Hebei Medical UniversityShijiazhuang, China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular DiseaseShijiazhuang, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical UniversityShijiazhuang, China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular DiseaseShijiazhuang, China
| |
Collapse
|