1
|
Chen F, Xue Y, Zhang W, Zhou H, Zhou Z, Chen T, YinWang E, Li H, Ye Z, Gao J, Wang S. The role of mitochondria in tumor metastasis and advances in mitochondria-targeted cancer therapy. Cancer Metastasis Rev 2024; 43:1419-1443. [PMID: 39307891 PMCID: PMC11554835 DOI: 10.1007/s10555-024-10211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/08/2024] [Indexed: 11/05/2024]
Abstract
Mitochondria are central actors in diverse physiological phenomena ranging from energy metabolism to stress signaling and immune modulation. Accumulating scientific evidence points to the critical involvement of specific mitochondrial-associated events, including mitochondrial quality control, intercellular mitochondrial transfer, and mitochondrial genetics, in potentiating the metastatic cascade of neoplastic cells. Furthermore, numerous recent studies have consistently emphasized the highly significant role mitochondria play in coordinating the regulation of tumor-infiltrating immune cells and immunotherapeutic interventions. This review provides a comprehensive and rigorous scholarly investigation of this subject matter, exploring the intricate mechanisms by which mitochondria contribute to tumor metastasis and examining the progress of mitochondria-targeted cancer therapies.
Collapse
Affiliation(s)
- Fanglu Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yucheng Xue
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenkan Zhang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hao Zhou
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhiyi Zhou
- The First People's Hospital of Yuhang District, Hangzhou, Zhejiang, China
| | - Tao Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Eloy YinWang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hengyuan Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Shengdong Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Jin M, Shi L, Wang L, Zhang D, Li Y. Dihydroartemisinin enhances the anti-tumour effect of photodynamic therapy by targeting PKM2-mediated glycolysis in oesophageal cancer cell. J Enzyme Inhib Med Chem 2024; 39:2296695. [PMID: 38111311 DOI: 10.1080/14756366.2023.2296695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/17/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023] Open
Abstract
Photodynamic therapy (PDT) has been demonstrated to provide immediate relief of oesophageal cancer patients' re-obstruction and extend their lifespan. However, tumour regrowth may occur after PDT due to enhanced aerobic glycolysis. Previous research has confirmed the inhibitory effect of Dihydroartemisinin (DHA) on aerobic glycolysis. Therefore, the current study intends to investigate the function and molecular mechanism of DHA targeting tumour cell aerobic glycolysis in synergia PDT. The combined treatment significantly suppressed glycolysis in vitro and in vivo compared to either monotherapy. Exploration of the mechanism through corresponding experiments revealed that pyruvate kinase M2 (PKM2) was downregulated in treated cells, whereas overexpression of PKM2 nullified the inhibitory effects of DHA and PDT. This study proposes a novel therapeutic strategy for oesophageal cancer through DHA-synergized PDT treatment, targeting inhibit PKM2 to reduce tumour cell proliferation and metastasis.
Collapse
Affiliation(s)
- Mengru Jin
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P. R. China
| | - Luyao Shi
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P. R. China
| | - Li Wang
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P. R. China
| | - Dingyuan Zhang
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P. R. China
| | - Yanjing Li
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P. R. China
| |
Collapse
|
3
|
Li X, Wang H, Li Z, Liu S, Chen Y, Ruan Z, Yao Z, Wei G, Cao C, Zheng W, Guan W. Full-active pharmaceutical ingredient nanosensitizer for augmented photoimmunotherapy by synergistic mitochondria targeting and immunogenic death inducing. MedComm (Beijing) 2024; 5:e756. [PMID: 39525955 PMCID: PMC11550090 DOI: 10.1002/mco2.756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 11/16/2024] Open
Abstract
The precise and effective activation of the immune response is crucial in promising therapy curing cancer. Photoimmunotherapy (PIT) is an emerging strategy for precise regulation and highly spatiotemporal selectivity. However, this approach faces a significant challenge due to the off-target effect and the immunosuppressive microenvironment. To address this challenge, a nanoscale full-active pharmaceutical ingredient (API) photo-immune stimulator was developed. This formulation overcomes the limitations of PIT by strengthening the ability to penetrate tumors deeply and inducing precise and potent mitochondria-targeted dual-mode photodynamic therapy and photothermal therapy. Along with inhibiting overexpressed Hsp90, this nanosensitizer in turn improves the immunosuppressive microenvironment. Ultimately, this mitochondria-targeted PIT demonstrated potent antitumor efficacy, achieving a remarkable inhibition rate of ≥95% for both established primary tumors and distant abscopal tumors. In conclusion, this novel self-delivery full-API nanosystem enhances the efficacy of phototherapy and reprograms the immunosuppressive microenvironment, thereby holding great promise in the development of precise and effective immunotherapy.
Collapse
Affiliation(s)
- Xianghui Li
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
- Department of Gastrointestinal SurgeryAffiliated Nanjing Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| | - Haoran Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing University of Chinese MedicineNanjingChina
| | - Zhiyan Li
- Department of Gastrointestinal SurgeryAffiliated Nanjing Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| | - Song Liu
- Department of Gastrointestinal SurgeryAffiliated Nanjing Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| | - Yuanyuan Chen
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Zhuren Ruan
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Zhijian Yao
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Gao Wei
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Cunwei Cao
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Wenjun Zheng
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Wenxian Guan
- Department of Gastrointestinal SurgeryAffiliated Nanjing Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| |
Collapse
|
4
|
Singh T, Sharma K, Jena L, Kaur P, Singh S, Munshi A. Mitochondrial bioenergetics of breast cancer. Mitochondrion 2024; 79:101951. [PMID: 39218051 DOI: 10.1016/j.mito.2024.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Breast cancer cells exhibit metabolic heterogeneity based on tumour aggressiveness. Glycolysis and mitochondrial respiration are two major metabolic pathways for ATP production. The oxygen flux, oxygen tension, proton leakage, protonmotive force, inner mitochondrial membrane potential, ECAR and electrochemical proton gradient maintain metabolic homeostasis, ATP production, ROS generation, heat dissipation, and carbon flow and are referred to as "sub-domains" of mitochondrial bioenergetics. Tumour aggressiveness is influenced by these mechanisms, especially when breast cancer cells undergo metastasis. These physiological parameters for healthy mitochondria are as crucial as energy demands for tumour growth and metastasis. The instant energy demands are already elucidated under Warburg effects, while these parameters may have dual functionality to maintain cellular bioenergetics and cellular health. The tumour cell might maintain these mitochondrial parameters for mitochondrial health or avoid apoptosis, while energy production could be a second priority. This review focuses explicitly on the crosstalk between metabolic domains and the utilisation of these parameters by breast cancer cells for their progression. Some major interventions are discussed based on mitochondrial bioenergetics that need further investigation. This review highlights the pathophysiological significance of mitochondrial bioenergetics and the regulation of its sub-domains by breast tumour cells for uncontrolled proliferation.
Collapse
Affiliation(s)
- Tashvinder Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Kangan Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Laxmipriya Jena
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Prabhsimran Kaur
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India.
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India.
| |
Collapse
|
5
|
Jiang Y, Immadi MS, Wang D, Zeng S, On Chan Y, Zhou J, Xu D, Joshi T. IRnet: Immunotherapy response prediction using pathway knowledge-informed graph neural network. J Adv Res 2024:S2090-1232(24)00320-5. [PMID: 39097091 DOI: 10.1016/j.jare.2024.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/10/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024] Open
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) are potent and precise therapies for various cancer types, significantly improving survival rates in patients who respond positively to them. However, only a minority of patients benefit from ICI treatments. OBJECTIVES Identifying ICI responders before treatment could greatly conserve medical resources, minimize potential drug side effects, and expedite the search for alternative therapies. Our goal is to introduce a novel deep-learning method to predict ICI treatment responses in cancer patients. METHODS The proposed deep-learning framework leverages graph neural network and biological pathway knowledge. We trained and tested our method using ICI-treated patients' data from several clinical trials covering melanoma, gastric cancer, and bladder cancer. RESULTS Our results demonstrate that this predictive model outperforms current state-of-the-art methods and tumor microenvironment-based predictors. Additionally, the model quantifies the importance of pathways, pathway interactions, and genes in its predictions. A web server for IRnet has been developed and deployed, providing broad accessibility to users at https://irnet.missouri.edu. CONCLUSION IRnet is a competitive tool for predicting patient responses to immunotherapy, specifically ICIs. Its interpretability also offers valuable insights into the mechanisms underlying ICI treatments.
Collapse
Affiliation(s)
- Yuexu Jiang
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, USA
| | - Manish Sridhar Immadi
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO, USA
| | - Duolin Wang
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, USA
| | - Shuai Zeng
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, USA
| | - Yen On Chan
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO, USA; MU Institute for Data Science and Informatics, University of Missouri-Columbia, Columbia, MO, USA
| | - Jing Zhou
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, USA
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, USA; MU Institute for Data Science and Informatics, University of Missouri-Columbia, Columbia, MO, USA
| | - Trupti Joshi
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, USA; MU Institute for Data Science and Informatics, University of Missouri-Columbia, Columbia, MO, USA; Department of Biomedical Informatics, Biostatistics and Medical Epidemiology, University of Missouri-Columbia, Columbia, MO, USA.
| |
Collapse
|
6
|
Jung YL, Yang YJ, Shil A, Sarkar S, Ahn KH. Anticancer Prodrug Capable of Mitochondria-Targeting, Light-Triggered Release, and Fluorescence Monitoring. ACS APPLIED BIO MATERIALS 2024; 7:3991-3996. [PMID: 38835291 DOI: 10.1021/acsabm.4c00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Mitigating the adverse effects of anticancer agents requires innovative prodrug engineering. In this study, we showcase the potential of our o-quinone methide-based trigger-release-conjugation platform as a versatile tool for constructing advanced prodrug systems. Using this platform, we achieved the light-triggered release of an anticancer drug mechlorethamine, targeting mitochondrial DNA. The entire process was adeptly tracked through the emission of fluorescence signals, revealing notable effects across various cancer cell lines compared to a normal cell line. Exploring alternative cancer-associated triggers, including enzymes, and incorporating cancer/tumor-specific targeting elements could lead to effective prodrugs with reduced cytotoxicity.
Collapse
Affiliation(s)
- Yun Lim Jung
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Yun Jae Yang
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Anushree Shil
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Sourav Sarkar
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Kyo Han Ahn
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, South Korea
| |
Collapse
|
7
|
Wang B, Chen W, Huang Q, Chen Y, Wang Y. Targeting Cancer Mitochondria by Inducing an Abnormal Mitochondrial Unfolded Protein Response Leads to Tumor Suppression. Int J Med Sci 2024; 21:1204-1212. [PMID: 38818479 PMCID: PMC11134587 DOI: 10.7150/ijms.95624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/05/2024] [Indexed: 06/01/2024] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is a pivotal cellular mechanism that ensures mitochondrial homeostasis and cellular survival under stress conditions. This study investigates the role of UPRmt in modulating the response of nasopharyngeal carcinoma cells to cisplatin-induced stress. We report that the inhibition of UPRmt via AEB5F exacerbates cisplatin cytotoxicity, as evidenced by increased lactate dehydrogenase (LDH) release and apoptosis, characterized by a surge in TUNEL-positive cells. Conversely, the activation of UPRmt with oligomycin attenuates these effects, preserving cell viability and reducing apoptotic markers. Immunofluorescence assays reveal that UPRmt activation maintains mitochondrial membrane potential and ATP production in the presence of cisplatin, countering the rise in reactive oxygen species (ROS) and inhibiting caspase-9 activation. These findings suggest that UPRmt serves as a cytoprotective mechanism in cancer cells, mitigating cisplatin-induced mitochondrial dysfunction and apoptosis. The data underscore the therapeutic potential of modulating UPRmt to improve the efficacy and reduce the side effects of cisplatin chemotherapy. This study provides a foundation for future research on the exploitation of UPRmt in cancer treatment, with the aim of enhancing patient outcomes by leveraging the cellular stress response pathways.
Collapse
Affiliation(s)
- Baoxiao Wang
- Department of Otolaryngology, Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenjun Chen
- Department of Otolaryngology, Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiqi Huang
- Department of Otolaryngology, Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ye Chen
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yajing Wang
- Department of Otolaryngology, Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Yuan X, Ouedraogo SY, Trawally M, Tan Y, Bajinka O. Cancer energy reprogramming and the immune responses. Cytokine 2024; 177:156561. [PMID: 38430694 DOI: 10.1016/j.cyto.2024.156561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Cancer as an uncontrolled growth of cells due to existing mutation in host cells that may proliferate, induce angiogenesis and sometimes metastasize due to the favorable tumor microenvironment (TME). Since it kills more than any disease, biomedical science does not relent in studying the exact pathogenesis. It was believed to be a problem that lies in the nucleus of the host cells; however, recent oncology findings are shifting attention to the mitochondria as an adjuvant to cancer pathogenesis. The changes in the gene are strongly related to cellular metabolism and metabolic reprogramming. It is now understood that reprogramming the TME will have a direct effect on the immune cells' metabolism. Although there are a number of studies on immune cells' response towards tumor energy reprogramming and cancer progression, there is still no existence with the updated collation of these immune cells' response to distinct energy reprogramming in cancer studies. To this end, this mini review shed some light on cancer energy reprogramming mechanisms and enzyme degradation pathways, the cancer pathogenicity activity series involved with reduced lactate production, the specific immune cell responses due to the energy reprogramming. This study highlighted some prospects and future experiments in harnessing the host immune response towards the altered energy metabolism due to cancer.
Collapse
Affiliation(s)
- Xingxing Yuan
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin 150006, China; First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Serge Yannick Ouedraogo
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117, China
| | - Muhammed Trawally
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, Beyazıt, Istanbul, Türkiye
| | - Yurong Tan
- Department of Medical Microbiology, Central South University, Changsha, Hunan Provinces, China.
| | - Ousman Bajinka
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117, China; Department of Medical Microbiology, Central South University, Changsha, Hunan Provinces, China; School of Medicine and Allied Health Sciences, University of The Gambia, The Gambia.
| |
Collapse
|
9
|
Ma J, Yao Z, Ma L, Zhu Q, Zhang J, Li L, Liu C. Glucose metabolism reprogramming in gynecologic malignant tumors. J Cancer 2024; 15:2627-2645. [PMID: 38577616 PMCID: PMC10988310 DOI: 10.7150/jca.91131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/15/2024] [Indexed: 04/06/2024] Open
Abstract
The incidence and mortality of gynecological tumors are progressively increasing due to factors such as obesity, viral infection, unhealthy habits, as well as social and economic pressures. Consequently, it has emerged as a significant threat to women's health. Numerous studies have revealed the remarkable metabolic activity of tumor cells in glycolysis and its ability to influence malignant biological behavior through specific mechanisms. Therefore, it is crucial for patients and gynecologists to comprehend the role of glycolytic proteins, regulatory molecules, and signaling pathways in tumorigenesis, progression, and treatment. This article aims to review the correlation between abnormal glucose metabolism and gynecologic tumors including cervical cancer (CC), endometrial carcinoma (EC), and ovarian cancer (OC). The findings from this research will provide valuable scientific insights for early screening, timely diagnosis and treatment interventions while also aiding in the prevention of recurrence among individuals with gynecological tumors.
Collapse
Affiliation(s)
- Jianhong Ma
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Zhiqiang Yao
- Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Liangjian Ma
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Qinyin Zhu
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Jiajia Zhang
- Department of Child Health, the First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Ling Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Chang Liu
- Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Gynecological Oncology of Gansu Province, Lanzhou, 730000, China
| |
Collapse
|
10
|
Deng H, Qian X, Zhang Y, Yu W, Yang P. Metformin Increases the Response of Cholangiocarcinoma Cells to Gemcitabine by Suppressing Pyruvate Kinase M2 to Activate Mitochondrial Apoptosis. Dig Dis Sci 2024; 69:476-490. [PMID: 38170336 DOI: 10.1007/s10620-023-08210-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a malignant tumor with a high mortality rate. Resistance to chemotherapy remains a major challenge related to cancer treatment, and increasing the sensitivity of cancer cells to therapeutic drugs is a major focus of cancer treatment. AIMS We purposed to explore the role of Metformin in CCA involved in chemotherapeutic sensitivity and Pyruvate kinase M2 (PKM2) through regulating mitochondrial apoptosis in the present study. METHODS CCA cell lines of HCC9810 and RBE were treated with Metformin companied with antagonists or agonists of PKM2, cells sensitivity to Gemcitabine, cell migration and invasion along with apoptosis, which is mediated by JC-1 and LDH were assayed. RESULTS Our results indicated that Metformin and Gemcitabine exhibit synergistic effect on inhibition of cholangiocarcinoma cell viability, cell migration and invasion as well as promotion apoptosis of cholangiocarcinoma cells. In vivo, Metformin combined with Gemcitabine has cooperation in inhibiting the growth of cholangiocarcinoma cell-derived tumors. Moreover, Metformin and Gemcitabine inhibited expression of PKM2 and PDHB in HCC9810 and RBE. CONCLUSION Our study suggested that Metformin may increase the response of cholangiocarcinoma cells to Gemcitabine by suppressing PKM2 to activate mitochondrial apoptosis.
Collapse
Affiliation(s)
- Haishan Deng
- Department of General Surgery, Armed Police Coast Guard Corps Hospital, Jiaxing, Zhejiang, China
| | - Xiaomei Qian
- Jiaxing Shuguang Cosmetology Hospital, Jiaxing, Zhejiang, China
| | - Yongtao Zhang
- Department of General Surgery, Armed Police Coast Guard Corps Hospital, Jiaxing, Zhejiang, China
| | - Wenlong Yu
- The Second Department of Biliary Duct, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Ping Yang
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, No. 31 Longhua Road, Haikou, 570102, Hainan, China.
| |
Collapse
|
11
|
Fedeles BI, Bhardwaj R, Ishikawa Y, Khumsubdee S, Krappitz M, Gubina N, Volpe I, Andrade DC, Westergerling P, Staudner T, Campolo J, Liu SS, Dong K, Cai Y, Rehman M, Gallagher AR, Ruchirawat S, Croy RG, Essigmann JM, Fedeles SV, Somlo S. A synthetic agent ameliorates polycystic kidney disease by promoting apoptosis of cystic cells through increased oxidative stress. Proc Natl Acad Sci U S A 2024; 121:e2317344121. [PMID: 38241440 PMCID: PMC10823221 DOI: 10.1073/pnas.2317344121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/15/2023] [Indexed: 01/21/2024] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic cause of chronic kidney disease and the fourth leading cause of end-stage kidney disease, accounting for over 50% of prevalent cases requiring renal replacement therapy. There is a pressing need for improved therapy for ADPKD. Recent insights into the pathophysiology of ADPKD revealed that cyst cells undergo metabolic changes that up-regulate aerobic glycolysis in lieu of mitochondrial respiration for energy production, a process that ostensibly fuels their increased proliferation. The present work leverages this metabolic disruption as a way to selectively target cyst cells for apoptosis. This small-molecule therapeutic strategy utilizes 11beta-dichloro, a repurposed DNA-damaging anti-tumor agent that induces apoptosis by exacerbating mitochondrial oxidative stress. Here, we demonstrate that 11beta-dichloro is effective in delaying cyst growth and its associated inflammatory and fibrotic events, thus preserving kidney function in perinatal and adult mouse models of ADPKD. In both models, the cyst cells with homozygous inactivation of Pkd1 show enhanced oxidative stress following treatment with 11beta-dichloro and undergo apoptosis. Co-administration of the antioxidant vitamin E negated the therapeutic benefit of 11beta-dichloro in vivo, supporting the conclusion that oxidative stress is a key component of the mechanism of action. As a preclinical development primer, we also synthesized and tested an 11beta-dichloro derivative that cannot directly alkylate DNA, while retaining pro-oxidant features. This derivative nonetheless maintains excellent anti-cystic properties in vivo and emerges as the lead candidate for development.
Collapse
Affiliation(s)
- Bogdan I. Fedeles
- Departments of Biological Engineering, Chemistry and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Rishi Bhardwaj
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, CT06510
| | - Yasunobu Ishikawa
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, CT06510
| | - Sakunchai Khumsubdee
- Departments of Biological Engineering, Chemistry and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok10210, Thailand
| | - Matteus Krappitz
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, CT06510
| | - Nina Gubina
- Departments of Biological Engineering, Chemistry and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino142290, Russia
| | - Isabel Volpe
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, CT06510
| | - Denise C. Andrade
- Departments of Biological Engineering, Chemistry and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Parisa Westergerling
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, CT06510
| | - Tobias Staudner
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, CT06510
| | - Jake Campolo
- Departments of Biological Engineering, Chemistry and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Sally S. Liu
- Departments of Biological Engineering, Chemistry and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Ke Dong
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, CT06510
| | - Yiqiang Cai
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, CT06510
| | - Michael Rehman
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, CT06510
| | - Anna-Rachel Gallagher
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, CT06510
| | - Somsak Ruchirawat
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok10210, Thailand
| | - Robert G. Croy
- Departments of Biological Engineering, Chemistry and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - John M. Essigmann
- Departments of Biological Engineering, Chemistry and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Sorin V. Fedeles
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, CT06510
| | - Stefan Somlo
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, CT06510
| |
Collapse
|
12
|
Lv L, Huang Y, Li Q, Wu Y, Zheng L. A Comprehensive Prognostic Model for Colon Adenocarcinoma Depending on Nuclear-Mitochondrial-Related Genes. Technol Cancer Res Treat 2024; 23:15330338241258570. [PMID: 38832431 PMCID: PMC11149454 DOI: 10.1177/15330338241258570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Background: Colon adenocarcinoma (COAD) has increasing incidence and is one of the most common malignant tumors. The mitochondria involved in cell energy metabolism, oxygen free radical generation, and cell apoptosis play important roles in tumorigenesis and progression. The relationship between mitochondrial genes and COAD remains largely unknown. Methods: COAD data including 512 samples were set out from the UCSC Xena database. The nuclear mitochondrial-related genes (NMRGs)-related risk prognostic model and prognostic nomogram were constructed, and NMRGs-related gene mutation and the immune environment were analyzed using bioinformatics methods. Then, a liver metastasis model of colorectal cancer was constructed and protein expression was detected using Western blot assay. Results: A prognostic model for COAD was constructed. Comparing the prognostic model dataset and the validation dataset showed considerable correlation in both risk grouping and prognosis. Based on the risk score (RS) model, the samples of the prognostic dataset were divided into high risk group and low risk group. Moreover, pathologic N and T stage and tumor recurrence in the two risk groups were significantly different. The four prognostic factors, including age and pathologic T stage in the nomogram survival model also showed excellent predictive performance. An optimal combination of nine differentially expressed NMRGs was finally obtained, including LARS2, PARS2, ETHE1, LRPPRC, TMEM70, AARS2, ACAD9, VARS2, and ATP8A2. The high-RS group had more inflamed immune features, including T and CD4+ memory cell activation. Besides, mitochondria-associated LRPPRC and LARS2 expression levels were increased in vivo xenograft construction and liver metastases assays. Conclusion: This study established a comprehensive prognostic model for COAD, incorporating nine genes associated with nuclear-mitochondrial functions. This model demonstrates superior predictive performance across four prognostic factors: age, pathological T stage, tumor recurrence, and overall prognosis. It is anticipated to be an effective model for enhancing the prognosis and treatment of COAD.
Collapse
Affiliation(s)
- Lingling Lv
- Department of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuqing Huang
- Department of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiong Li
- Department of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuan Wu
- Department of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lan Zheng
- Department of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Lv Y, Chen X, Shen Y. Folate-modified carboxymethyl chitosan-based drug delivery system for breast cancer specific combination therapy via regulating mitochondrial calcium concentration. Carbohydr Polym 2024; 323:121434. [PMID: 37940300 DOI: 10.1016/j.carbpol.2023.121434] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 11/10/2023]
Abstract
Although various drug delivery systems that regulated Ca2+ concentration has been developed for tumor therapy, their application still presented significant challenges due to the complex preparation and introduction of a large number of inorganic molecules that might cause serious toxic effects. To solve these problems, a folate-functionalized carboxymethyl chitosan (CMCS)/calcium phosphate hybrid nanoparticle (CF/CaP) with Ca2+ production was designed to treat breast cancer combined with the Ca2+ inhibitory effect of encapsulated curcumin (Cur). It was demonstrated that the optimal CF/CaP nanoparticles loaded with Cur (C@CF/CaP) were spherical nanoparticles, which exhibited a smaller size at about 179 nm than non-targeted nanoparticles with size at about 234 nm. C@CF/CaP had good biocompatibility, high stability and acid responsive drug release. Compared with the neutral environment, the cumulative release of Cur was >70 % after culture for 36 h at pH 5.0. Compared with non-targeted nanoparticles, C@CF/CaP could specifically target tumor tissues and then enter tumor cells through folate receptor-mediated endocytosis. C@CF/CaP could cause mitochondrial Ca2+ overload, trigger the mitochondrial apoptotic pathway, destroy the mitochondrial structure and finally have good anti-tumor efficiency. The results proved that Ca2+ nanomodulators based on CMCS might provide a potential organelle targeting strategy for cancer therapy.
Collapse
Affiliation(s)
- Yonggang Lv
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, PR China.
| | - Xi Chen
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Yaping Shen
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
14
|
Zhang X, Cai X, Yan C. Opportunities and challenges in combining immunotherapy and radiotherapy in esophageal cancer. J Cancer Res Clin Oncol 2023; 149:18253-18270. [PMID: 37985502 PMCID: PMC10725359 DOI: 10.1007/s00432-023-05499-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Immunotherapy has shown promise in the treatment of esophageal cancer, but using it alone only benefits a small number of patients. Most patients either do not have a significant response or develop secondary drug resistance. The combination of radiotherapy and immunotherapy appears to be a promising approach to treating esophageal cancer. PURPOSE We reviewed milestone clinical trials of radiotherapy combined with immunotherapy for esophageal cancer. We then discussed potential biomarkers for radiotherapy combined with immunotherapy, including programmed cell death-ligand 1 (PD-L1) status, tumor mutation burden (TMB), tumor-infiltrating lymphocytes, ct-DNA, imaging biomarkers, and clinical factors. Furthermore, we emphasize the key mechanisms of radiation therapy-induced immune stimulation and immune suppression in order to propose strategies for overcoming immune resistance in radiation therapy (RT). Lastly, we discussed the emerging role of low-dose radiotherapy (LDRT) , which has become a promising approach to overcome the limitations of high-dose radiotherapy. CONCLUSION Radiotherapy can be considered a triggering factor for systemic anti-tumor immune response and, with the assistance of immunotherapy, can serve as a systemic treatment option and potentially become the standard treatment for cancer patients.
Collapse
Affiliation(s)
- Xinyu Zhang
- Weifang Hospital of Traditional Chinese Medicine, 666 Weizhou Road, Weifang, 261000, Shandong, China
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Xinsheng Cai
- Weifang Hospital of Traditional Chinese Medicine, 666 Weizhou Road, Weifang, 261000, Shandong, China
| | - Chaoguang Yan
- Weifang Hospital of Traditional Chinese Medicine, 666 Weizhou Road, Weifang, 261000, Shandong, China.
| |
Collapse
|
15
|
Tarin M, Babaie M, Eshghi H, Matin MM, Saljooghi AS. Elesclomol, a copper-transporting therapeutic agent targeting mitochondria: from discovery to its novel applications. J Transl Med 2023; 21:745. [PMID: 37864163 PMCID: PMC10589935 DOI: 10.1186/s12967-023-04533-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/16/2023] [Indexed: 10/22/2023] Open
Abstract
Copper (Cu) is an essential element that is involved in a variety of biochemical processes. Both deficiency and accumulation of Cu are associated with various diseases; and a high amount of accumulated Cu in cells can be fatal. The production of reactive oxygen species (ROS), oxidative stress, and cuproptosis are among the proposed mechanisms of copper toxicity at high concentrations. Elesclomol (ELC) is a mitochondrion-targeting agent discovered for the treatment of solid tumors. In this review, we summarize the synthesis of this drug, its mechanisms of action, and the current status of its applications in the treatment of various diseases such as cancer, tuberculosis, SARS-CoV-2 infection, and other copper-associated disorders. We also provide some detailed information about future directions to improve its clinical performance.
Collapse
Affiliation(s)
- Mojtaba Tarin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam Babaie
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Eshghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M. Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Sh. Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
16
|
Lin Y, Yang B, Huang Y, Zhang Y, Jiang Y, Ma L, Shen YQ. Mitochondrial DNA-targeted therapy: A novel approach to combat cancer. CELL INSIGHT 2023; 2:100113. [PMID: 37554301 PMCID: PMC10404627 DOI: 10.1016/j.cellin.2023.100113] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 08/10/2023]
Abstract
Mitochondrial DNA (mtDNA) encodes proteins and RNAs that are essential for mitochondrial function and cellular homeostasis, and participates in important processes of cellular bioenergetics and metabolism. Alterations in mtDNA are associated with various diseases, especially cancers, and are considered as biomarkers for some types of tumors. Moreover, mtDNA alterations have been found to affect the proliferation, progression and metastasis of cancer cells, as well as their interactions with the immune system and the tumor microenvironment (TME). The important role of mtDNA in cancer development makes it a significant target for cancer treatment. In recent years, many novel therapeutic methods targeting mtDNA have emerged. In this study, we first discussed how cancerogenesis is triggered by mtDNA mutations, including alterations in gene copy number, aberrant gene expression and epigenetic modifications. Then, we described in detail the mechanisms underlying the interactions between mtDNA and the extramitochondrial environment, which are crucial for understanding the efficacy and safety of mtDNA-targeted therapy. Next, we provided a comprehensive overview of the recent progress in cancer therapy strategies that target mtDNA. We classified them into two categories based on their mechanisms of action: indirect and direct targeting strategies. Indirect targeting strategies aimed to induce mtDNA damage and dysfunction by modulating pathways that are involved in mtDNA stability and integrity, while direct targeting strategies utilized molecules that can selectively bind to or cleave mtDNA to achieve the therapeutic efficacy. This study highlights the importance of mtDNA-targeted therapy in cancer treatment, and will provide insights for future research and development of targeted drugs and therapeutic strategies.
Collapse
Affiliation(s)
- Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yibo Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - You Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yu Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Longyun Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
17
|
Tan WL, Subha ST, Mohtarrudin N, Cheah YK. An insight into the associations between microRNA expression and mitochondrial functions in cancer cell and cancer stem cell. Mol Biol Rep 2023; 50:5395-5405. [PMID: 37074612 DOI: 10.1007/s11033-023-08421-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/31/2023] [Indexed: 04/20/2023]
Abstract
The self-renew ability of cancer stem cells (CSCs) continues to challenge our determination for accomplishing cancer therapy breakthrough. Ineffectiveness of current cancer therapies to eradicate CSCs has contributed to chemoresistance and tumor recurrence. Yet, the discoveries of highly effective therapies have not been thoroughly developed. Further insights into cancer metabolomics and gene-regulated mechanisms of mitochondria in CSCs can expedite the development of novel anticancer drugs. In cancer cells, the metabolism is reprogrammed from oxidative phosphorylation (OXPHOS) to glycolysis. This alteration allows the cancer cell to receive continuous energy supplies and avoid apoptosis. The pyruvate obtained from glycolysis produces acetyl-coenzyme A (Acetyl-CoA) via oxidative decarboxylation and enters the tricarboxylic acid cycle for adenosine triphosphate generation. Mitochondrial calcium ion (Ca2+) uptake is responsible for mitochondrial physiology regulation, and reduced uptake of Ca2+ inhibits apoptosis and enhances cell survival in cancer. There have been many discoveries of mitochondria-associated microRNAs (miRNAs) stimulating the metabolic alterations in mitochondria via gene regulation which promote cancer cell survival. These miRNAs are also found in CSCs where they regulate genes and activate different mechanisms to destroy the mitochondria and enhance CSCs survival. By targeting the miRNAs that induced mitochondrial destruction, the mitochondrial functions can be restored; thus, it triggers CSCs apoptosis and completely eliminates the CSCs. In general, this review article aims to address the associations between miRNAs with mitochondrial activities in cancer cells and cancer stem cells that support cancer cell survival and self-renewal.
Collapse
Affiliation(s)
- Wee Lin Tan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Sethu Thakachy Subha
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Norhafizah Mohtarrudin
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Yoke Kqueen Cheah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Institute of Bioscience UPM-MAKNA Cancer Research Laboratory (CANRES), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
18
|
Chouhan S, Sawant M, Weimholt C, Luo J, Sprung RW, Terrado M, Mueller DM, Earp HS, Mahajan NP. TNK2/ACK1-mediated phosphorylation of ATP5F1A (ATP synthase F1 subunit alpha) selectively augments survival of prostate cancer while engendering mitochondrial vulnerability. Autophagy 2023; 19:1000-1025. [PMID: 35895804 PMCID: PMC9980697 DOI: 10.1080/15548627.2022.2103961] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/02/2022] Open
Abstract
The challenge of rapid macromolecular synthesis enforces the energy-hungry cancer cell mitochondria to switch their metabolic phenotypes, accomplished by activation of oncogenic tyrosine kinases. Precisely how kinase activity is directly exploited by cancer cell mitochondria to meet high-energy demand, remains to be deciphered. Here we show that a non-receptor tyrosine kinase, TNK2/ACK1 (tyrosine kinase non receptor 2), phosphorylated ATP5F1A (ATP synthase F1 subunit alpha) at Tyr243 and Tyr246 (Tyr200 and 203 in the mature protein, respectively) that not only increased the stability of complex V, but also increased mitochondrial energy output in cancer cells. Further, phospho-ATP5F1A (p-Y-ATP5F1A) prevented its binding to its physiological inhibitor, ATP5IF1 (ATP synthase inhibitory factor subunit 1), causing sustained mitochondrial activity to promote cancer cell growth. TNK2 inhibitor, (R)-9b reversed this process and induced mitophagy-based autophagy to mitigate prostate tumor growth while sparing normal prostate cells. Further, depletion of p-Y-ATP5F1A was needed for (R)-9b-mediated mitophagic response and tumor growth. Moreover, Tnk2 transgenic mice displayed increased p-Y-ATP5F1A and loss of mitophagy and exhibited formation of prostatic intraepithelial neoplasia (PINs). Consistent with these data, a marked increase in p-Y-ATP5F1A was seen as prostate cancer progressed to the malignant stage. Overall, this study uncovered the molecular intricacy of tyrosine kinase-mediated mitochondrial energy regulation as a distinct cancer cell mitochondrial vulnerability and provided evidence that TNK2 inhibitors can act as "mitocans" to induce cancer-specific mitophagy.Abbreviations: ATP5F1A: ATP synthase F1 subunit alpha; ATP5IF1: ATP synthase inhibitory factor subunit 1; CRPC: castration-resistant prostate cancer; DNM1L: dynamin 1 like; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; Mdivi-1: mitochondrial division inhibitor 1; Mut-ATP5F1A: Y243,246A mutant of ATP5F1A; OXPHOS: oxidative phosphorylation; PC: prostate cancer; PINK1: PTEN induced kinase 1; p-Y-ATP5F1A: phosphorylated tyrosine 243 and 246 on ATP5F1A; TNK2/ACK1: tyrosine kinase non receptor 2; Ub: ubiquitin; WT: wild type.
Collapse
Affiliation(s)
- Surbhi Chouhan
- Department of Surgery, Cancer Research Building, St. Louis, MO, USA
- Division of Urologic Surgery Washington University, St. Louis, MO, USA
| | - Mithila Sawant
- Department of Surgery, Cancer Research Building, St. Louis, MO, USA
- Division of Urologic Surgery Washington University, St. Louis, MO, USA
| | - Cody Weimholt
- Department of Pathology & Immunology Washington University, St. Louis, MO, USA
| | - Jingqin Luo
- Division of Public Health Sciences, Washington University, St. Louis, MO, USA
| | - Robert W. Sprung
- Department of Surgery, Cancer Research Building, St. Louis, MO, USA
| | - Mailyn Terrado
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University, North Chicago, IL, USA
| | - David M. Mueller
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University, North Chicago, IL, USA
| | - H. Shelton Earp
- Lineberger Comprehensive Cancer Center, Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Nupam P. Mahajan
- Department of Surgery, Cancer Research Building, St. Louis, MO, USA
- Division of Urologic Surgery Washington University, St. Louis, MO, USA
- Siteman Cancer Center Washington University, St. Louis, MO, USA
| |
Collapse
|
19
|
Thioalbamide inhibits F oF 1-ATPase in breast cancer cells and reduces tumor proliferation and invasiveness in breast cancer in vivo models. Mol Metab 2023; 68:101674. [PMID: 36657563 PMCID: PMC9883262 DOI: 10.1016/j.molmet.2023.101674] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/07/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE Thioalbamide is a ribosomally synthesized and post-translationally modified peptide (RiPP) belonging to the family of thioamitides, a rare class of microbial specialized metabolites with unusual post-translational modifications and promising biological activities. Recent studies have demonstrated the ability of thioalbamide to exert highly selective cytotoxic effects on tumor cells by affecting their energy metabolism, thus causing abnormal ROS production and triggering apoptosis. This study is aimed to investigate the molecular mechanisms underlying the antitumor activity of thioalbamide in order to identify its exact molecular target. METHODS Wild type MCF-7 and MDA-MB-231 breast cancer cell lines as well as cancer cells deprived of mitochondrial DNA (ρ0 cells) were employed in order to assess thioalbamide effects on tumor bioenergetics. In this regard, metabolic profile was evaluated by a Seahorse XFe96 analyzer, and the activity of the enzyme complexes involved in oxidative phosphorylation was quantified by spectrophotometric assays. Thioalbamide effects on tumor invasiveness were assessed by gelatin zymography experiments and invasion assays. In vivo experiments were carried out on breast cancer xenograft and "experimental metastasis" mouse models. RESULTS Experiments carried out on ρ0 breast cancer cells, together with Seahorse analysis and the application of spectrophotometric enzymatic assays, highlighted the ability of thioalbamide to affect the mitochondrial respiration process, and allowed to propose the FoF1-ATPase complex as its main molecular target in breast cancer cells. Additionally, thioalbamide-mediated OXPHOS inhibition was shown, for the first time, to reduce tumor invasiveness by inhibiting metalloproteinase-9 secretion. Furthermore, this study has confirmed the antitumor potential of thioalbamide in two different in vivo models. In particular, experiments on MCF-7 and MDA-MB-231 xenograft mouse models have confirmed in vivo its high anti-proliferative and pro-apoptotic activity, while experiments on MDA-MB-231 ″experimental metastasis" mouse models have highlighted its ability to inhibit breast cancer cell invasiveness. CONCLUSIONS Overall, our results shed more light on the molecular mechanisms underlying the pharmacological potential of thioamidated peptides, thus reducing the gap that separates this rare class of microbial metabolites from clinical studies, which could validate them as effective tools for cancer treatment.
Collapse
|
20
|
Chen X, Zhong W, Chang Y, Song T, Liu B, Kong X, Kong Q. Comparative proteomic analysis of the mitochondria of menstrual stem cells and ovarian cancer cells. Exp Ther Med 2023; 25:99. [PMID: 36761005 PMCID: PMC9893228 DOI: 10.3892/etm.2023.11798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 11/10/2022] [Indexed: 01/18/2023] Open
Abstract
Mitochondrial transplantation is a popular field of research in cell-free therapy. Menstrual stem cells (MenSCs) are potential donor cells for provision of foreign mitochondria. The present study aimed to investigate the potential effects of MenSC-derived mitochondria on ovarian cancer from the perspective of protein expression profiling. MenSCs were harvested from menstrual blood. The mitochondria were isolated from MenSCs and ovarian cancer cell line SKOV3. A label-free mitochondria proteomics and analysis were performed by comparing the protein expression in mitochondria of MenSCs and SKOV3 cells. The differentially expressed proteins with fold-change >2 were analyzed by Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway and protein domain enrichment, protein interaction networks and parallel reaction monitoring (PRM) analysis. In total, 592 proteins that were found to have increased expression in the mitochondria of MenSCs were analyzed. Functional enrichment analysis revealed these proteins were enriched in metabolism-associated pathway entries including 'oxidative phosphorylation' (OXPHOS) pathway. PRM analysis confirmed that four of 6 candidate proteins in the OXPHOS pathway showed similar increasing trends. The protein domain enrichment analysis showed that domains such as 'thioredoxin domain' were significantly enriched. Based on these findings, it was hypothesized that mitochondria from MenSCs have the potential to enhance progression of ovarian cancer likely mediated by the enrichment of OXPHOS-associated metabolic pathways.
Collapse
Affiliation(s)
- Xiuhui Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Wen Zhong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yue Chang
- Department of Obstetrics and Gynecology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Tiefang Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Botong Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xianchao Kong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China,Correspondence to: Dr Xianchao Kong, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, Heilongjiang 150086, P.R. China
| | - Qingfei Kong
- Department of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China,Correspondence to: Dr Xianchao Kong, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
21
|
Fast Track Diagnostic Tools for Clinical Management of Sepsis: Paradigm Shift from Conventional to Advanced Methods. Diagnostics (Basel) 2023; 13:diagnostics13020277. [PMID: 36673087 PMCID: PMC9857847 DOI: 10.3390/diagnostics13020277] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/24/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Sepsis is one of the deadliest disorders in the new century due to specific limitations in early and differential diagnosis. Moreover, antimicrobial resistance (AMR) is becoming the dominant threat to human health globally. The only way to encounter the spread and emergence of AMR is through the active detection and identification of the pathogen along with the quantification of resistance. For better management of such disease, there is an essential requirement to approach many suitable diagnostic techniques for the proper administration of antibiotics and elimination of these infectious diseases. The current method employed for the diagnosis of sepsis relies on the conventional culture of blood suspected infection. However, this method is more time consuming and generates results that are false negative in the case of antibiotic pretreated samples as well as slow-growing microbes. In comparison to the conventional method, modern methods are capable of analyzing blood samples, obtaining accurate results from the suspicious patient of sepsis, and giving all the necessary information to identify the pathogens as well as AMR in a short period. The present review is intended to highlight the culture shift from conventional to modern and advanced technologies including their limitations for the proper and prompt diagnosing of bloodstream infections and AMR detection.
Collapse
|
22
|
Akter Z, Salamat N, Ali MY, Zhang L. The promise of targeting heme and mitochondrial respiration in normalizing tumor microenvironment and potentiating immunotherapy. Front Oncol 2023; 12:1072739. [PMID: 36686754 PMCID: PMC9851275 DOI: 10.3389/fonc.2022.1072739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
Cancer immunotherapy shows durable treatment responses and therapeutic benefits compared to other cancer treatment modalities, but many cancer patients display primary and acquired resistance to immunotherapeutics. Immunosuppressive tumor microenvironment (TME) is a major barrier to cancer immunotherapy. Notably, cancer cells depend on high mitochondrial bioenergetics accompanied with the supply of heme for their growth, proliferation, progression, and metastasis. This excessive mitochondrial respiration increases tumor cells oxygen consumption, which triggers hypoxia and irregular blood vessels formation in various regions of TME, resulting in an immunosuppressive TME, evasion of anti-tumor immunity, and resistance to immunotherapeutic agents. In this review, we discuss the role of heme, heme catabolism, and mitochondrial respiration on mediating immunosuppressive TME by promoting hypoxia, angiogenesis, and leaky tumor vasculature. Moreover, we discuss the therapeutic prospects of targeting heme and mitochondrial respiration in alleviating tumor hypoxia, normalizing tumor vasculature, and TME to restore anti-tumor immunity and resensitize cancer cells to immunotherapy.
Collapse
|
23
|
AbuEid M, Keyes RF, McAllister D, Peterson F, Kadamberi IP, Sprague DJ, Chaluvally-Raghavan P, Smith BC, Dwinell MB. Fluorinated triphenylphosphonium analogs improve cell selectivity and in vivo detection of mito-metformin. iScience 2022; 25:105670. [PMID: 36567718 PMCID: PMC9768319 DOI: 10.1016/j.isci.2022.105670] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/09/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Triphenylphosphonium (TPP+) conjugated compounds selectively target cancer cells by exploiting their hyperpolarized mitochondrial membrane potential. To date, studies have focused on modifying either the linker or the cargo of TPP+-conjugated compounds. Here, we investigated the biological effects of direct modification to TPP+ to improve the efficacy and detection of mito-metformin (MMe), a TPP+-conjugated probe we have shown to have promising preclinical efficacy against solid cancer cells. We designed, synthesized, and tested trifluoromethyl and methoxy MMe analogs (pCF3-MMe, mCF3-MMe, and pMeO-MMe) against multiple distinct human cancer cells. pCF3-MMe showed enhanced selectivity toward cancer cells compared to MMe, while retaining the same signaling mechanism. Importantly, pCF3-MMe allowed quantitative monitoring of cellular accumulation via 19F-NMR in vitro and in vivo. Furthermore, adding trifluoromethyl groups to TPP+ reduced toxicity in vivo while retaining anti-tumor efficacy, opening an avenue to de-risk these next-generation TPP+-conjugated compounds.
Collapse
Affiliation(s)
- Mahmoud AbuEid
- Department of Microbiology & Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53122, USA,Center for Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53122, USA
| | - Robert F. Keyes
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53122, USA,Program in Chemical Biology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53122, USA
| | - Donna McAllister
- Department of Microbiology & Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53122, USA
| | - Francis Peterson
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53122, USA,Program in Chemical Biology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53122, USA
| | | | - Daniel J. Sprague
- Program in Chemical Biology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53122, USA,Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53122, USA
| | | | - Brian C. Smith
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53122, USA,Program in Chemical Biology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53122, USA,Corresponding author
| | - Michael B. Dwinell
- Department of Microbiology & Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53122, USA,Center for Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53122, USA,Corresponding author
| |
Collapse
|
24
|
Kobayashi H. Recent advances in understanding the metabolic plasticity of ovarian cancer: A systematic review. Heliyon 2022; 8:e11487. [PMID: 36406733 PMCID: PMC9668530 DOI: 10.1016/j.heliyon.2022.e11487] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/03/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is a gynecologic malignancy with a poor prognosis due to resistance to first-line chemotherapeutic agents. Some cancer cells are primarily dependent on glycolysis, but others favor mitochondrial oxidative phosphorylation (OXPHOS) over glycolysis. Changes in metabolic reprogramming have been reported to be involved in cancer cell survival. In this review, we summarize the metabolic profiles (e.g., metabolic heterogeneity, plasticity, and reprogramming) and adaptation to the dynamic tumor microenvironment and discuss potential novel therapeutic strategies. A literature search was performed between January 2000 and March 2022 in the PubMed and Google Scholar databases using a combination of specific terms. Ovarian cancer cells, including cancer stem cells, depend on glycolysis, OXPHOS, or both for survival. Several environmental stresses, such as nutrient starvation or glucose deprivation, hypoxic stress, acidification, and excessive reactive oxygen species (ROS) generation, reprogram the metabolic pathways to adapt. The interaction between tumors and adjacent stromal cells allows cancer cells to enhance mitochondrial energy metabolism. The metabolic reprogramming varies depending on genomic and epigenetic alterations of metabolism-related genes and the metabolic environment. Developing accurate and non-invasive methods for early identification of metabolic alterations could facilitate optimal cancer diagnosis and treatment. Cancer metabolism research has entered an exciting era where novel strategies targeting metabolic profiling will become more innovative.
Collapse
|
25
|
Gao H, Xing F. A novel signature model based on mitochondrial-related genes for predicting survival of colon adenocarcinoma. BMC Med Inform Decis Mak 2022; 22:277. [PMID: 36273131 PMCID: PMC9587559 DOI: 10.1186/s12911-022-02020-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/12/2022] [Indexed: 11/21/2022] Open
Abstract
Background Colon cancer is the foremost reason of cancer-related mortality worldwide. Colon adenocarcinoma constitutes 90% of colon cancer, and most patients with colon adenocarcinoma (COAD) are identified until advanced stage. With the emergence of an increasing number of novel pathogenic mechanisms and treatments, the role of mitochondria in the development of cancer, has been studied and reported with increasing frequency. Methods We systematically analyzed the effect of mitochondria-related genes in COAD utilizing RNA sequencing dataset from The Cancer Genome Atlas database and 1613 mitochondrial function-related genes from MitoMiner database. Our approach consisted of differentially expressed gene, gene set enrichment analysis, gene ontology terminology, Kyoto Encyclopedia of Genes and Genomes, independent prognostic analysis, univariate and multivariate analysis, Kaplan–Meier survival analysis, immune microenvironment correlation analysis, and Cox regression analysis. Results Consequently, 8 genes were identified to construct 8 mitochondrial-related gene model by applying Cox regression analysis, CDC25C, KCNJ11, NOL3, P4HA1, QSOX2, Trap1, DNAJC28, and ATCAY. Meanwhile, we assessed the connection between this model and clinical parameters or immune microenvironment. Risk score was an independent predictor for COAD patients’ survival with an AUC of 0.687, 0.752 and 0.762 at 1-, 3- and 5-year in nomogram, respectively. The group with the highest risk score had the lowest survival rate and the worst clinical stages. Additionally, its predictive capacity was validated in GSE39582 cohort. Conclusion In summary, we established a prognostic pattern of mitochondrial-related genes, which can predict overall survival in COAD, which may enable a more optimized approach for the clinical treatment and scientific study of COAD. This gene signature model has the potential to improve prognosis and treatment for COAD patients in the future, and to be widely implemented in clinical settings. The utilization of this mitochondrial-related gene signature model may be benefit in the treatments and medical decision-making of COAD. Supplementary Information The online version contains supplementary material available at 10.1186/s12911-022-02020-3.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China.,Tumor Stem Cell and Transforming Medicine Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China. .,Tumor Stem Cell and Transforming Medicine Laboratory, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
26
|
Nene LC, Magadla A, Nyokong T. Enhanced mitochondria destruction on MCF-7 and HeLa cell lines in vitro using triphenyl-phosphonium-labelled phthalocyanines in ultrasound-assisted photodynamic therapy activity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 235:112553. [PMID: 36084362 DOI: 10.1016/j.jphotobiol.2022.112553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022]
Abstract
This work reports on the reactive oxygen species (ROS) generation and the therapeutic activities of new triphenyl-phosphonium-labelled phthalocyanines (Pcs), the 2,9,16,23-tetrakis(N-(N-butyl-4-triphenyl-phosphonium)- pyridine-4-yloxy) Zn(II) Pc (3) and 2,9,16,23-tetrakis-(N-(N-butyl-4-triphenyl-phosphonium)-morpholino) Zn(II) Pc (4) upon exposure to light, ultrasound and the combination of light and ultrasound. Two types of ROS were detected: the singlet oxygen (1O2) and hydroxyl radicals. For light irradiations, only the 1O2 was detected. An increase in the ROS generation was observed for samples treated with the combination of light and ultrasound compared to the light and ultrasound mono-treatments. The in vitro anticancer activity through photodynamic (PDT) and sonodynamic (SDT) therapy for the Pcs were also determined and compared to the photo-sonodynamic combination therapy (PSDT). The two cancer cell lines used for the in vitro studies included the Michigan Cancer Foundation-7 (MCF-7) breast cancer and Henrietta Lacks (HeLa) cervical cancer cell lines. The SDT treatments showed improved therapeutic efficacy on the cancer cells for both the Pcs compared to PDT. PSDT showed better therapeutic efficacy compared to both the PDT and SDT mono-treatments.
Collapse
Affiliation(s)
- Lindokuhle Cindy Nene
- Institute of Nanotechnology Innovation, P.O. 94, Rhodes University, Makhanda, South Africa
| | - Aviwe Magadla
- Institute of Nanotechnology Innovation, P.O. 94, Rhodes University, Makhanda, South Africa
| | - Tebello Nyokong
- Institute of Nanotechnology Innovation, P.O. 94, Rhodes University, Makhanda, South Africa.
| |
Collapse
|
27
|
Xia Y, Gao B, Zhang X. Targeting mitochondrial quality control of T cells: Regulating the immune response in HCC. Front Oncol 2022; 12:993437. [PMID: 36212470 PMCID: PMC9539266 DOI: 10.3389/fonc.2022.993437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Most of the primary hepatocellular carcinoma (HCC) develops from Viral Hepatitis including Hepatitis B virus, Hepatitis C Virus, and Nonalcoholic Steatohepatitis. Herein, T cells play crucial roles combined with chronic inflammation and chronic viral infection. However, T cells are gradually exhausted under chronic antigenic stimulation, which leads to T cell exhaustion in the tumor microenvironment, and the exhaustion is associated with mitochondrial dysfunction in T cells. Meanwhile, mitochondria play a crucial role in altering T cells’ metabolism modes to achieve desirable immunological responses, wherein mitochondria maintain quality control (MQC) and promote metabolism regulation in the microenvironment. Although immune checkpoint inhibitors have been widely used in clinical practice, there are some limitations in the therapeutic effect, thus combining immune checkpoint inhibitors with targeting mitochondrial biogenesis may enhance cellular metabolic adaptation and reverse the exhausted state. At present, several studies on mitochondrial quality control in HCC have been reported, however, there are gaps in the regulation of immune cell function by mitochondrial metabolism, particularly the modulating of T cell immune function. Hence, this review summarizes and discusses existing studies on the effects of MQC on T cell populations in liver diseases induced by HCC, it would be clued by mitochondrial quality control events.
Collapse
Affiliation(s)
- Yixue Xia
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, China
| | - Binghong Gao
- School of Elite Sport, Shanghai University of Sport, Shanghai, China
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, China
- *Correspondence: Binghong Gao, ; Xue Zhang,
| | - Xue Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- School of Elite Sport, Shanghai University of Sport, Shanghai, China
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, China
- *Correspondence: Binghong Gao, ; Xue Zhang,
| |
Collapse
|
28
|
Oxygen tank for synergistic hypoxia relief to enhance mitochondria-targeted photodynamic therapy. Biomater Res 2022; 26:47. [PMID: 36138489 PMCID: PMC9502906 DOI: 10.1186/s40824-022-00296-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
Background Mitochondria play an essential role in cellular redox homeostasis maintenance and meanwhile serve as an important target for organelle targeted therapy. Photodynamic therapy (PDT) is a promising strategy for organelle targeted therapy with noninvasive nature and highly spatiotemporal selectivity. However, the efficacy of PDT is not fully achieved due to tumor hypoxia. Moreover, aerobic respiration constantly consumes oxygen and leads to a lower oxygen concentration in mitochondria, which continuously limited the therapeutic effects of PDT. The lack of organelle specific oxygen delivery method remains a main challenge. Methods Herein, an Oxygen Tank is developed to achieve the organelle targeted synergistic hypoxia reversal strategy, which not only act as an oxygen storage tank to open sources and reduce expenditure, but also coated with red blood cell membrane like the tank with stealth coating. Within the oxygen tank, a mitochondrion targeted photosensitizer (IR780) and a mitochondria respiration inhibitor (atovaquone, ATO) are co-loaded in the RBC membrane (RBCm) coated perfluorocarbon (PFC) liposome core. Results Inside these bio-mimic nanoparticles, ATO effectively inhibits mitochondrial respiration and economized endogenous oxygen consumption, while PFC supplied high-capacity exogenous oxygen. These Oxygen modulators reverse the hypoxia status in vitro and in vivo, and exhibited a superior anti-tumor activity by mitochondria targeted PDT via IR780. Ultimately, the anti-tumor effects towards gastric cancer and colon cancer are elicited in vivo. Conclusions This oxygen tank both increases exogeneous oxygen supply and decreases endogenous oxygen consumption, may offer a novel solution for organelle targeted therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s40824-022-00296-0.
Collapse
|
29
|
Shi Y, Luo Z, You J. Subcellular delivery of lipid nanoparticles to endoplasmic reticulum and mitochondria. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1803. [PMID: 35441489 DOI: 10.1002/wnan.1803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/23/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Primarily responsible for the biogenesis and metabolism of biomolecules, endoplasmic reticulum (ER) and mitochondria are gradually becoming the targets of therapeutic modulation, whose physiological activities and pathological manifestations determine the functional capacity and even the survival of cells. Drug delivery systems with specific physicochemical properties (passive targeting), or modified by small molecular compounds, polypeptides, and biomembranes demonstrating tropism for ER and mitochondria (active targeting) are able to reduce the nonselective accumulation of drugs, enhancing efficacy while reducing side effects. Lipid nanoparticles feature high biocompatibility, diverse cargo loading, and flexible structure modification, which are frequently used for subcellular organelle-targeted delivery of therapeutics. However, there is still a lack of systematic understanding of lipid nanoparticle-based ER and mitochondria targeting. Herein, we review the pathological significance of drug selectively delivered to the ER and mitochondria. We also summarize the molecular basis and application prospects of lipid nanoparticle-based ER and mitochondria targeting strategies, which may provide guidance for the prevention and treatment of associated diseases and disorders. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Biology-Inspired Nanomaterials > Lipid-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhenyu Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
30
|
Cong VT, Houng JL, Kavallaris M, Chen X, Tilley RD, Gooding JJ. How can we use the endocytosis pathways to design nanoparticle drug-delivery vehicles to target cancer cells over healthy cells? Chem Soc Rev 2022; 51:7531-7559. [PMID: 35938511 DOI: 10.1039/d1cs00707f] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Targeted drug delivery in cancer typically focuses on maximising the endocytosis of drugs into the diseased cells. However, there has been less focus on exploiting the differences in the endocytosis pathways of cancer cells versus non-cancer cells. An understanding of the endocytosis pathways in both cancer and non-cancer cells allows for the design of nanoparticles to deliver drugs to cancer cells whilst restricting healthy cells from taking up anticancer drugs, thus efficiently killing the cancer cells. Herein we compare the differences in the endocytosis pathways of cancer and healthy cells. Second, we highlight the importance of the physicochemical properties of nanoparticles (size, shape, stiffness, and surface chemistry) on cellular uptake and how they can be adjusted to selectively target the dominated endocytosis pathway of cancer cells over healthy cells and to deliver anticancer drug to the target cells. The review generates new thought in the design of cancer-selective nanoparticles based on the endocytosis pathways.
Collapse
Affiliation(s)
- Vu Thanh Cong
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia. .,Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jacinta L Houng
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia. .,Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Maria Kavallaris
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia.,Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia.,School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Xin Chen
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiao Tong University, Xi'an, China
| | - Richard D Tilley
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| | - J Justin Gooding
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia. .,Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
31
|
Innate Immunity in Calcinosis Cutis. IMMUNO 2022. [DOI: 10.3390/immuno2030027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Calcinosis cutis is the deposition of calcium salts in the skin and subcutaneous tissue, manifesting as variably shaped papules, nodules, and plaques that can substantially impair quality of life. The pathophysiology of calcinosis cutis involves dysregulation of proinflammatory cytokines, leukocytes, and other components of the innate immune system. In some conditions associated with calcinosis cutis, elevated serum calcium, phosphate, and vitamin D may also perturb innate immunity. The mechanisms by which these lead to cutaneous and subcutaneous calcification likely parallel those seen in vascular calcification. The role of aberrant innate immunity is further supported by the association between various autoantibodies with calcinosis cutis, such as anti-MDA5, anti-NXP2, anti-centromere, and anti-topoisomerase I. Treatments for calcinosis cutis remain limited and largely experimental, although mechanistically many therapies appear to focus on dampening innate immune responses. Further research is needed to better understand the innate immune pathophysiology and establish treatment options based on randomized-controlled trials.
Collapse
|
32
|
Dadhich R, Kapoor S. Lipidomic and Membrane Mechanical Signatures in Triple-Negative Breast Cancer: Scope for Membrane-Based Theranostics. Mol Cell Biochem 2022; 477:2507-2528. [PMID: 35595957 DOI: 10.1007/s11010-022-04459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer associated with poor prognosis, higher grade, and a high rate of metastatic occurrence. Limited therapeutic interventions and the compounding issue of drug resistance in triple-negative breast cancer warrants the discovery of novel therapeutic targets and diagnostic modules. To this view, in addition to proteins, lipids also regulate cellular functions via the formation of membranes that modulate membrane protein function, diffusion, and their localization; thus, orchestrating signaling hot spots enriched in specific lipids/proteins on cell membranes. Lipid deregulation in cancer leads to reprogramming of the membrane dynamics and functions impacting cell proliferation, metabolism, and metastasis, providing exciting starting points for developing lipid-based approaches for treating TNBC. In this review, we provide a detailed account of specific lipidic changes in breast cancer, link the altered lipidome with membrane structure and mechanical properties, and describe how these are linked to subsequent downstream functions implicit in cancer progression, metastasis, and chemoresistance. At the fundamental level, we discuss how the lipid-centric findings in TNBC are providing cues for developing lipid-inspired theranostic strategies while bridging existing gaps in our understanding of the functional involvement of lipid membranes in cancer.
Collapse
Affiliation(s)
- Ruchika Dadhich
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India. .,Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8528, Japan.
| |
Collapse
|
33
|
In Vitro and In Vivo Evaluation of a Cyclic LyP-1-Modified Nanosystem for Targeted Endostatin Delivery in a KYSE-30 Cell Xenograft Athymic Nude Mice Model. Pharmaceuticals (Basel) 2022; 15:ph15030353. [PMID: 35337150 PMCID: PMC8955112 DOI: 10.3390/ph15030353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/01/2023] Open
Abstract
This work investigated the use of LyP-1 as a homing peptide for p32 receptor targeting on the surface of an endostatin (ENT)-loaded chitosan-grafted nanosystem intended for intracellular delivery of ENT and mitochondrial targeting in a squamous cell carcinoma (SCC) cell line (KYSE-30) model. The angiogenic factors for VEGF-C and MMP2 were assessed with in vivo evaluation of the nanosystem upon ENT release and tumor necrosis in nude mice with a KYSE-30 cell xenograft. The LyP-1-modified nanosystem revealed a three-fold decrease in proliferation at 1000 µg/mL compared with the control and facilitated receptor-mediated cellular uptake and internalization. In addition, targeting of the Lyp-1-functionalized nanosystem to mitochondrial and nuclear proteins in vitro and in vivo was achieved. Up to 60% inhibition of KYSE-30 cell migration was observed and the expressions of VEGF-C and MMP-2 as angiogenic markers were reduced 3- and 2-fold, respectively. A marked reduction in tumor mass was recorded (43.25%) with the control, a 41.36% decrease with the nanoparticles and a 61.01% reduction with the LyP-1-modified nanosystem following treatment in mice. The LyP-1-functionalized nanosystem targeted tumor lymphatics, instigated nuclear rupture and mitochondrial distortion, and decreased cell proliferation and migration with inhibition of VEGF-C and MMP2 expression.
Collapse
|
34
|
Zhou Y, Wang Q, Deng H, Xu B, Zhou Y, Liu J, Liu Y, Shi Y, Zheng X, Jiang J. N6-methyladenosine demethylase FTO promotes growth and metastasis of gastric cancer via m 6A modification of caveolin-1 and metabolic regulation of mitochondrial dynamics. Cell Death Dis 2022; 13:72. [PMID: 35064107 PMCID: PMC8782929 DOI: 10.1038/s41419-022-04503-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/05/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022]
Abstract
Gastric cancer (GC) is the fifth most common tumor and the third most deadly cancer worldwide. N6-methyladenosine (m6A) modification has been reported to play a regulatory role in human cancers. However, the exact role of m6A in GC remains largely unknown, and the dysregulation of m6A on mitochondrial metabolism has never been studied. In the present study, we demonstrated that FTO, a key demethylase for RNA m6A modification, was up-regulated in GC tissues, especially in tissues with liver metastasis. Functionally, FTO acted as a promoter for the proliferation and metastasis in GC. Moreover, FTO enhanced the degradation of caveolin-1 mRNA via its demethylation, which regulated the mitochondrial fission/fusion and metabolism. Collectively, our current findings provided some valuable insights into FTO-mediated m6A demethylation modification and could be used as a new strategy for more careful surveillance and aggressive therapeutic intervention.
Collapse
Affiliation(s)
- You Zhou
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou, 213003, China
| | - Qi Wang
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou, 213003, China
| | - Haifeng Deng
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou, 213003, China
| | - Bin Xu
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou, 213003, China
| | - Yi Zhou
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou, 213003, China
| | - Jian Liu
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou, 213003, China
| | - Yingting Liu
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou, 213003, China
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, 215123, China
| | - Xiao Zheng
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, 213003, China.
- Institute of Cell Therapy, Soochow University, Changzhou, 213003, China.
| | - Jingting Jiang
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, 213003, China.
- Institute of Cell Therapy, Soochow University, Changzhou, 213003, China.
| |
Collapse
|
35
|
Metal Complexes or Chelators with ROS Regulation Capacity: Promising Candidates for Cancer Treatment. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010148. [PMID: 35011380 PMCID: PMC8746559 DOI: 10.3390/molecules27010148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/25/2021] [Accepted: 12/26/2021] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species (ROS) are rapidly eliminated and reproduced in organisms, and they always play important roles in various biological functions and abnormal pathological processes. Evaluated ROS have frequently been observed in various cancers to activate multiple pro-tumorigenic signaling pathways and induce the survival and proliferation of cancer cells. Hydrogen peroxide (H2O2) and superoxide anion (O2•-) are the most important redox signaling agents in cancer cells, the homeostasis of which is maintained by dozens of growth factors, cytokines, and antioxidant enzymes. Therefore, antioxidant enzymes tend to have higher activity levels to maintain the homeostasis of ROS in cancer cells. Effective intervention in the ROS homeostasis of cancer cells by chelating agents or metal complexes has already developed into an important anti-cancer strategy. We can inhibit the activity of antioxidant enzymes using chelators or metal complexes; on the other hand, we can also use metal complexes to directly regulate the level of ROS in cancer cells via mitochondria. In this review, metal complexes or chelators with ROS regulation capacity and with anti-cancer applications are collectively and comprehensively analyzed, which is beneficial for the development of the next generation of inorganic anti-cancer drugs based on ROS regulation. We expect that this review will provide a new perspective to develop novel inorganic reagents for killing cancer cells and, further, as candidates or clinical drugs.
Collapse
|
36
|
Xu G, Xu X, Liu J, Jia Q, Ke C, Zhang H, Xu C, Ou E, Tan W, Zhao Y. Mitochondria-Targeted Triphenylphosphonium Conjugated C-3 Modified Betulin: Synthesis, Antitumor Properties and Mechanism of Action. ChemMedChem 2021; 17:e202100659. [PMID: 34881517 DOI: 10.1002/cmdc.202100659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/08/2021] [Indexed: 11/05/2022]
Abstract
A series of mitochondria-targeted triphenylphosphonium conjugated C-3 modified betulin were synthesized and evaluated against tumor cells. As a result, a new derivative 13 i, the conjugate of 3-O-(3'-acetylphenylacetate)-betulin with triphenylphosphonium, was identified as the one with the best anti-tumor effect. Conjugate 13 i significantly inhibited HCT116 cells with IC50 at 0.66 μM. While betulin, C-3 modified betulin, and the triphenylphosphonium moiety showed no inhibition of HCT116 cell proliferation at 20 μM. More importantly, 13 i exhibited a more cytotoxic effect against the tumor cell HCT116 than normal cell NCM460. Mode of action studies demonstrated that 13 i induced the G2/M phase cell cycle arrest and apoptosis in HCT116 cells through the mitochondrial pathway. Structure-activity relationship analysis revealed that integration of triphenylphosphonium moiety into the C-28 of betulin can greatly improve cytotoxicity. Appropriate modification on C-3 of the conjugate would improve the selectivity.
Collapse
Affiliation(s)
- Geng Xu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaojia Xu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiansong Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qi Jia
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Changhong Ke
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hanyuan Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chao Xu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - E Ou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wen Tan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yu Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
37
|
Zeng Z, Fang C, Zhang Y, Chen CX, Zhang YF, Zhang K. Mitochondria-Targeted Nanocarriers Promote Highly Efficient Cancer Therapy: A Review. Front Bioeng Biotechnol 2021; 9:784602. [PMID: 34869294 PMCID: PMC8633539 DOI: 10.3389/fbioe.2021.784602] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022] Open
Abstract
Mitochondria are the primary organelles which can produce adenosine triphosphate (ATP). They play vital roles in maintaining normal functions. They also regulated apoptotic pathways of cancer cells. Given that, designing therapeutic agents that precisely target mitochondria is of great importance for cancer treatment. Nanocarriers can combine the mitochondria with other therapeutic modalities in cancer treatment, thus showing great potential to cancer therapy in the past few years. Herein, we summarized lipophilic cation- and peptide-based nanosystems for mitochondria targeting. This review described how mitochondria-targeted nanocarriers promoted highly efficient cancer treatment in photodynamic therapy (PDT), chemotherapy, combined immunotherapy, and sonodynamic therapy (SDT). We further discussed mitochondria-targeted nanocarriers’ major challenges and future prospects in clinical cancer treatment.
Collapse
Affiliation(s)
- Zeng Zeng
- Department of Medical Ultrasound, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Chao Fang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cong-Xian Chen
- Department of Medical Ultrasound, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Yi-Feng Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kun Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
38
|
Shang S, Liu J, Verma V, Wu M, Welsh J, Yu J, Chen D. Combined treatment of non-small cell lung cancer using radiotherapy and immunotherapy: challenges and updates. Cancer Commun (Lond) 2021; 41:1086-1099. [PMID: 34658186 PMCID: PMC8626591 DOI: 10.1002/cac2.12226] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/10/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
The efficacy of immunotherapy for advanced non‐small cell lung cancer (NSCLC) remains unsatisfactory, as the majority of patients either do not experience an objective response or acquire secondary resistance. As a result, several methods to enhance the systemic efficacy of immunotherapy have been investigated, including a large area of active research by combining immunotherapy with radiation therapy (RT). Given the rapidly burgeoning concept of combining immunotherapy and RT for increasing therapeutic benefit, we review the progress in this field thus far and explore further avenues for enhancing this combination. This review commences with a discussion of the only two existing randomized trials (and a pooled analysis) showing that the addition of RT to immunotherapy improves the abscopal response rate, progression‐free survival, and overall survival in metastatic NSCLC patients. We then discussed factors and biomarkers that may be associated with a proportionally greater benefit to additional RT, such as low programmed cell death protein ligand 1 (PD‐L1) status, tumor mutational burden (TMB), and patient's immune function. Next, the implementation of RT to overcome immunotherapy resistance is discussed, including a mechanistic discussion and methods with which these mechanisms could be exploited. Lastly, the emerging role of low‐dose RT is discussed, which may help to overcome inhibitory signals in the tumor stroma that limit T‐cell infiltration. Taken together, given the current state of this rapidly expanding realm, these futuristic strategies may be reflected upon to further enhance the efficacy of immunotherapy for a wider group of patients.
Collapse
Affiliation(s)
- Shijie Shang
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, 250117, P. R. China
| | - Jie Liu
- Department of Radiation Oncology, Laboratory of Radio-Immunology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
| | - Vivek Verma
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas, 77030, the United States of America
| | - Meng Wu
- Department of Radiation Oncology, Laboratory of Radio-Immunology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
| | - James Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas, 77030, the United States of America
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, 250117, P. R. China.,Department of Radiation Oncology, Laboratory of Radio-Immunology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
| | - Dawei Chen
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, 250117, P. R. China.,Department of Radiation Oncology, Laboratory of Radio-Immunology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
| |
Collapse
|
39
|
Zhang BB, Liu JG, Bai XY, Huang YJ, Xu N, Ren T. A Novel Fluorescent Dye Invades Mitochondria to Selectively Kill Cancer Stem Cells via Increased ROS Production. Bioinorg Chem Appl 2021; 2021:4763944. [PMID: 34691164 PMCID: PMC8528615 DOI: 10.1155/2021/4763944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/16/2022] Open
Abstract
Development of multiple agents has a significant impact on the cancer diagnosis and therapy. Several fluorescent dyes including near-infrared (NIR) fluorescent agents have been already well studied in the field of photodynamic therapy (PDT). In the present study, we reported a novel fluorescent dye could obviously inhibit cancer cell proliferation with slight toxic effects on the biological organism. Furthermore, it displayed selective staining on cancer cells, particularly on cancer stem cells (CSCs), rather than normal cells. Mechanically, this dye preferred to invading mitochondria of cancer cells and inducing overwhelming reactive oxygen species (ROS) production. The in vivo experiments further demonstrated that this dye could image cancer cells and even CSCs in a short-time intratumor injection manner using a zebrafish model and subsequently inhibit cancer cell proliferation after a relatively long-time drug exposure. Taken together, the future development of this agent will promise to make an essential contribution to the cancer diagnosis and therapeutics.
Collapse
Affiliation(s)
- Bei-Bei Zhang
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Jun-gang Liu
- Guangxi Medical University Affiliated Cancer Hospital, Nanning, China
| | - Xian-Yu Bai
- Graduate School, Guangxi Medical University, Nanning, China
| | - Yuan-Jiao Huang
- Life Science Institute, Guangxi Medical University, Nanning, China
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Ning Xu
- The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tao Ren
- The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
40
|
Yang C, Li Y, Hu W, Wang X, Hu J, Yuan C, Zhou C, Wang H, Du J, Wang Y, Tong X. TEOA Promotes Autophagic Cell Death via ROS-Mediated Inhibition of mTOR/p70S6k Signaling Pathway in Pancreatic Cancer Cells. Front Cell Dev Biol 2021; 9:734818. [PMID: 34692691 PMCID: PMC8526869 DOI: 10.3389/fcell.2021.734818] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/06/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic cancer is a common malignant tumor with high mortality, and novel therapeutic options have focused on ameliorating its poor prognosis. TEOA, a traditional Chinese herbal medicine, exhibits anti-inflammatory and anti-cancer activities. Our recent study has shown that TEOA inhibits proliferation and induces DNA damage in diffuse large B-cell lymphoma cells by activating the ROS-mediated p38 MAPK pathway. However, its effects on pancreatic cancer cells remain unknown. In the present study, we evaluated the effects of TEOA on the proliferation, migration of pancreatic cancer cells and explored the possible underlying mechanism of action. We found that TEOA significantly inhibited the proliferation and migration of pancreatic cancer cells in a time- and dose-dependent manner. Mechanistically, TEOA significantly induced mitochondrial dysfunction in PANC1 and SW1990 cells, as evidenced by the collapse of the mitochondrial membrane potential, exhausted ATP level, and excessive accumulation of intracellular ROS. Notably, our further experiments showed that TEOA induced autophagic cell death in pancreatic ductal adenocarcinoma cells by inactivating the ROS-dependent mTOR/p70S6k signaling pathway. More importantly, both pharmacological or genetic blocking of the autophagic flux signal could partly restore the cytotoxicity of TEOA, whereas activation of autophagy by rapamycin or EBSS induced starvation facilitated the cytotoxicity of TEOA. Concomitantly, N-acetylcysteine, a ROS scavenger, abolished the inhibition of the mTOR signaling pathway, thus preventing autophagy and restoring cell viability. Taken together, our results reveal that TEOA can lead to ROS-dependent autophagic cell death of pancreatic cancer cells by inducing mitochondrial dysfunction, which might be a promising therapeutic agent for pancreatic cancer.
Collapse
Affiliation(s)
- Chen Yang
- Department of Ultrasound, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wanye Hu
- Graduate School, Bengbu Medical College, Bengbu, China
| | - Xu Wang
- Laboratory Medicine Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Jiayu Hu
- Graduate School, Bengbu Medical College, Bengbu, China
| | - Chen Yuan
- Graduate School, Bengbu Medical College, Bengbu, China
| | - Chaoting Zhou
- Department of Ultrasound, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Hairui Wang
- Laboratory Medicine Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Jing Du
- Laboratory Medicine Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Ying Wang
- Graduate School, Bengbu Medical College, Bengbu, China
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
- Clinical Pharmacy Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiangmin Tong
- Department of Ultrasound, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Graduate School, Bengbu Medical College, Bengbu, China
- Laboratory Medicine Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
- Clinical Pharmacy Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
41
|
Ahn SY, Song J, Kim YC, Kim MH, Hyun YM. Mitofusin-2 Promotes the Epithelial-Mesenchymal Transition-Induced Cervical Cancer Progression. Immune Netw 2021; 21:e30. [PMID: 34522443 PMCID: PMC8410987 DOI: 10.4110/in.2021.21.e30] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 12/18/2022] Open
Abstract
High expression of mitofusin-2 (MFN2), a mitochondrial fusion protein, has been frequently associated with poor prognosis of patients with cervical cancer. Here, we aimed to identify the function of MFN2 in cervical cancer to understand its influence on disease prognosis. To this end, from cervical adenocarcinoma, we performed an MTT assay and quantitative RT-PCR (qRT-PCR) analysis to assess the effects of MFN2 on the proliferation and of HeLa cells. Then, colony-formation ability and tumorigenesis were evaluated using a tumor xenograft mouse model. The migration ability related to MFN2 was also measured using a wound healing assay. Consequently, epithelial-mesenchymal transition (EMT) of MFN2-knockdowned HeLa cells originating from adenocarcinoma. markers related to MFN2 were assessed by qRT-PCR. Clinical data were analyzed using cBioPortal and The Cancer Genome Atlas. We found that MFN2 knockdown reduced the proliferation, colony formation ability, migration, and in vivo tumorigenesis of HeLa cells. Primarily, migration of MFN2-knockdowned HeLa cells decreased through the suppression of EMT. Thus, we concluded that MFN2 facilitates cancer progression and in vivo tumorigenesis in HeLa cells. These findings suggest that MFN2 could be a novel target to regulate the EMT program and tumorigenic potential in HeLa cells and might serve as a therapeutic target for cervical cancer. Taken together, this study is expected to contribute to the treatment of patients with cervical cancer.
Collapse
Affiliation(s)
- Sung Yong Ahn
- Department of Anatomy, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Jiwon Song
- Department of Anatomy, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea.,Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Yu Cheon Kim
- Department of Anatomy, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea.,Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Myoung Hee Kim
- Department of Anatomy, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea.,Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Young-Min Hyun
- Department of Anatomy, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea.,Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
42
|
Gao Y, Tong H, Li J, Li J, Huang D, Shi J, Xia B. Mitochondria-Targeted Nanomedicine for Enhanced Efficacy of Cancer Therapy. Front Bioeng Biotechnol 2021; 9:720508. [PMID: 34490227 PMCID: PMC8418302 DOI: 10.3389/fbioe.2021.720508] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/14/2021] [Indexed: 12/27/2022] Open
Abstract
Nanomedicines have been designed and developed to deliver anticancer drugs or exert anticancer therapy more selectively to tumor sites. Recent investigations have gone beyond delivering drugs to tumor tissues or cells, but to intracellular compartments for amplifying therapy efficacy. Mitochondria are attractive targets for cancer treatment due to their important functions for cells and close relationships to tumor occurrence and metastasis. Accordingly, multifunctional nanoplatforms have been constructed for cancer therapy with the modification of a variety of mitochondriotropic ligands, to trigger the mitochondria-mediated apoptosis of tumor cells. On this basis, various cancer therapeutic modalities based on mitochondria-targeted nanomedicines are developed by strategies of damaging mitochondria DNA (mtDNA), increasing reactive oxygen species (ROS), disturbing respiratory chain and redox balance. Herein, in this review, we highlight mitochondria-targeted cancer therapies enabled by nanoplatforms including chemotherapy, photothermal therapy (PTT), photodynamic therapy (PDT), chemodynamic therapy (CDT), sonodynamic therapy (SDT), radiodynamic therapy (RDT) and combined immunotherapy, and discussed the ongoing challenges.
Collapse
Affiliation(s)
- Yan Gao
- College of Science, Key Laboratory of Forest Genetics and Biotechnology (Ministry of Education of China), Nanjing Forestry University, Nanjing, China
| | - Haibei Tong
- College of Science, Key Laboratory of Forest Genetics and Biotechnology (Ministry of Education of China), Nanjing Forestry University, Nanjing, China
| | - Jialiang Li
- College of Science, Key Laboratory of Forest Genetics and Biotechnology (Ministry of Education of China), Nanjing Forestry University, Nanjing, China
| | - Jiachen Li
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki, Finland
| | - Di Huang
- College of Science, Key Laboratory of Forest Genetics and Biotechnology (Ministry of Education of China), Nanjing Forestry University, Nanjing, China
| | - Jisen Shi
- College of Science, Key Laboratory of Forest Genetics and Biotechnology (Ministry of Education of China), Nanjing Forestry University, Nanjing, China
| | - Bing Xia
- College of Science, Key Laboratory of Forest Genetics and Biotechnology (Ministry of Education of China), Nanjing Forestry University, Nanjing, China
| |
Collapse
|
43
|
Koklesova L, Liskova A, Samec M, Zhai K, AL-Ishaq RK, Bugos O, Šudomová M, Biringer K, Pec M, Adamkov M, Hassan STS, Saso L, Giordano FA, Büsselberg D, Kubatka P, Golubnitschaja O. Protective Effects of Flavonoids Against Mitochondriopathies and Associated Pathologies: Focus on the Predictive Approach and Personalized Prevention. Int J Mol Sci 2021; 22:ijms22168649. [PMID: 34445360 PMCID: PMC8395457 DOI: 10.3390/ijms22168649] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 01/10/2023] Open
Abstract
Multi-factorial mitochondrial damage exhibits a “vicious circle” that leads to a progression of mitochondrial dysfunction and multi-organ adverse effects. Mitochondrial impairments (mitochondriopathies) are associated with severe pathologies including but not restricted to cancers, cardiovascular diseases, and neurodegeneration. However, the type and level of cascading pathologies are highly individual. Consequently, patient stratification, risk assessment, and mitigating measures are instrumental for cost-effective individualized protection. Therefore, the paradigm shift from reactive to predictive, preventive, and personalized medicine (3PM) is unavoidable in advanced healthcare. Flavonoids demonstrate evident antioxidant and scavenging activity are of great therapeutic utility against mitochondrial damage and cascading pathologies. In the context of 3PM, this review focuses on preclinical and clinical research data evaluating the efficacy of flavonoids as a potent protector against mitochondriopathies and associated pathologies.
Collapse
Affiliation(s)
- Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.); (K.B.)
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.); (K.B.)
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.); (K.B.)
| | - Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (R.K.A.-I.)
| | - Raghad Khalid AL-Ishaq
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (R.K.A.-I.)
| | | | - Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 664 61 Rajhrad, Czech Republic;
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.); (K.B.)
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Marian Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, 00185 Rome, Italy;
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (R.K.A.-I.)
- Correspondence: (D.B.); (P.K.); (O.G.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
- European Association for Predictive, Preventive and Personalised Medicine, EPMA, 1150 Brussels, Belgium
- Correspondence: (D.B.); (P.K.); (O.G.)
| | - Olga Golubnitschaja
- European Association for Predictive, Preventive and Personalised Medicine, EPMA, 1150 Brussels, Belgium
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
- Correspondence: (D.B.); (P.K.); (O.G.)
| |
Collapse
|
44
|
Zlotnik O, Goshen-Lago T, Haddad R, Brenner B, Kundel Y, Ben-Aharon I, Kashtan H. Proteomic analysis to identify markers for response to neoadjuvant treatment in esophageal and gastroesophageal cancer. Cancer Rep (Hoboken) 2021; 5:e1489. [PMID: 34350714 PMCID: PMC8955071 DOI: 10.1002/cnr2.1489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Esophageal cancer represents a global challenge. Despite significant evolution of treatment protocols in the past decade, recurrence rates are still high and survival rates are poor. Current treatment paradigm for localized gastroesophageal junction (GEJ) carcinoma remains to be further elucidated as for the role of neoadjuvant chemoradiation versus perioperative chemotherapy. AIM To identify biomarkers for response to chemoradiation in esophageal and gastroesophageal cancer, we performed an in-depth proteomic analysis of esophageal and gastroesophageal tumors, to describe differences in pathway activation between patients with favorable and poor prognosis following neoadjuvant chemoradiation. METHODS Patients with locally advanced esophageal and gastroesophageal cancer following neoadjuvant chemoradiation were included in the cohort. The study cohort was dichotomized into two groups of patients, named "favorable prognosis" and "poor prognosis" according to the postoperative disease-free interval. We performed a mass spectrometry analysis of proteins extracted from the malignant regions of surgical specimens and analyzed data from electronic medical records. Clinical data was correlated with differences in protein expression between patient with a favorable and poor prognosis using validated gene expression pathways. RESULTS The study included 35 patients with adenocarcinoma. All patients in this cohort had esophageal adenocarcinoma. Patients median age was 62 years. Twenty-five (71.3%) patients underwent neoadjuvant chemoradiation, and 28.7% underwent neoadjuvant chemotherapy only. A proteomic analysis of our cohort identified 2885 proteins. Enrichment levels of 98 of these proteins differed significantly between favorable and poor prognosis cohorts in patients who underwent neoadjuvant chemoradiation (p < .05) but not in patients who underwent neoadjuvant chemotherapy. The favorable prognosis patients group analysis exhibited differential enrichment of 87 proteins related to cellular respiration and oxidative phosphorylation pathways as well as proteins of the RAS oncogene family. CONCLUSION In this study we identified differential enrichment of pathways related to oxidative phosphorylation and RAS oncogene pathway in esophageal cancer patients with a favorable response to chemoradiation. Following further validation, our findings may portray potential surrogate signature of biomarkers based upon these pathways.
Collapse
Affiliation(s)
- Oran Zlotnik
- Department of Surgery, Rabin Medical Center, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Tal Goshen-Lago
- Oncology Division, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Riad Haddad
- Rappaport Faculty of Medicine, Technion, Haifa, Israel.,Department of Surgery, Carmel Medical Center, Haifa, Israel
| | - Baruch Brenner
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Institute of Oncology, Davidoff Center, Rabin Medical Center, Petach Tikva, Israel
| | - Yulia Kundel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Institute of Oncology, Davidoff Center, Rabin Medical Center, Petach Tikva, Israel
| | - Irit Ben-Aharon
- Oncology Division, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Hanoch Kashtan
- Department of Surgery, Rabin Medical Center, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
45
|
Hu M, Varier KM, Li Z, Qin X, Rao Q, Song J, Hu A, Hang Y, Yuan C, Gajendran B, Shu L, Wen M, Li Y, Liu H. A natural acylphloroglucinol triggered antiproliferative possessions in HEL cells by impeding STAT3 signaling and attenuating angiogenesis in transgenic zebrafish model. Biomed Pharmacother 2021; 141:111877. [PMID: 34323693 DOI: 10.1016/j.biopha.2021.111877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/07/2021] [Accepted: 06/28/2021] [Indexed: 01/20/2023] Open
Abstract
Leukemia is responsible for a reason of death, globally. Even though there are several treatment regimens available in the clinics against this disease, a perfect chemotherapeutic agent for the same is still under investigation. Natural plant-derived secondary metabolites are used in clinics to treat leukemia for better benefits with reduced side-effects. Likely, several bioactive compounds from Callistemon sp. were reported for their bioactive benefits. Furthermore, acylphloroglucinol derivatives from Callistemon salignus, showed both antimicrobial and cytotoxic activities in various adherent human cancer cell lines. Thus, in the present study, a natural acylphloroglucinol (2,6-dihydroxy-4-methoxyisobutyrophenone, L72) was tested for its antiproliferative efficacy in HEL cells. The MTT and the cell cycle analysis study revealed that L72 treatment can offer antiproliferative effects, both time and dose-dependent manner, causing G2/M cell cycle arrest. The western blot analysis revealed that L72 treatment triggered intrinsic apoptotic machinery and activated p21. Likewise, L72 could downregulate the gene expressions of XIAP, FLT3, IDH2, and SOD2, which was demonstrated by qPCR analysis, thus promoting its antiproliferative action. The L72 could impede STAT3 expression, which was evidenced by insilico autodock analysis and western blot analysis using STAT3 inhibitor, Pimozide. The treatment of transgenic (Flk-1+/egfr+) zebrafish embryos resulted in the STAT3 gene inhibition, proving its anti-angiogenic effect, as well. Thus, the study revealed that L72 could act as an antiproliferative agent, by triggering caspase-dependent intrinsic apoptosis, reducing cell proliferation by attenuating STAT3, and activating an anti-angiogenic pathway via Flk-1inhibition.
Collapse
Affiliation(s)
- Mi Hu
- State Key Laboratory for Functions and Applications of Medicinal Plants/Department of Immunology, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, PR China; Key Laboratory of Regenerative Medicine of Guizhou Province, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Krishnapriya M Varier
- State Key Laboratory for Functions and Applications of Medicinal Plants/Department of Immunology, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, PR China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Zhicao Li
- Key Laboratory of Regenerative Medicine of Guizhou Province, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Xujie Qin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, PR China
| | - Qing Rao
- State Key Laboratory for Functions and Applications of Medicinal Plants/Department of Immunology, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, PR China
| | - Jingrui Song
- State Key Laboratory for Functions and Applications of Medicinal Plants/Department of Immunology, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, PR China
| | - Anling Hu
- State Key Laboratory for Functions and Applications of Medicinal Plants/Department of Immunology, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, PR China
| | - Yubing Hang
- State Key Laboratory for Functions and Applications of Medicinal Plants/Department of Immunology, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, PR China
| | - Chunmao Yuan
- State Key Laboratory for Functions and Applications of Medicinal Plants/Department of Immunology, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, PR China
| | - Babu Gajendran
- State Key Laboratory for Functions and Applications of Medicinal Plants/Department of Immunology, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, PR China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou, PR China.
| | - Liping Shu
- Key Laboratory of Regenerative Medicine of Guizhou Province, Guizhou Medical University, Guiyang 550004, Guizhou, PR China.
| | - Min Wen
- Key Laboratory of Regenerative Medicine of Guizhou Province, Guizhou Medical University, Guiyang 550004, Guizhou, PR China.
| | - Yanmei Li
- State Key Laboratory for Functions and Applications of Medicinal Plants/Department of Immunology, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, PR China.
| | - Haiyang Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, PR China.
| |
Collapse
|
46
|
Xi L, Wang J, Wang Y, Ge Z. Dual-Targeting Polymeric Nanocarriers to Deliver ROS-Responsive Prodrugs and Combat Multidrug Resistance of Cancer Cells. Macromol Biosci 2021; 21:e2100091. [PMID: 34145971 DOI: 10.1002/mabi.202100091] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/04/2021] [Indexed: 01/04/2023]
Abstract
Targeting delivery of anticancer drugs that can interact with DNA into mitochondria of cancer cells has been demonstrated to be an effective method to combat drug resistance. In this report, a cancer cell and mitochondria dual-targeting drug delivery system (DT-NP) is presented based on nanoparticles self-assembled from amphiphilic block copolymers with pH-responsive release of cinnamaldehyde (CA), which is used to encapsulate reactive oxygen species (ROS)-activable prodrug, phenylboronic pinacol ester-caged doxorubicin (BDOX). The surfaces of nanoparticles are conjugated by cancer cell-targeting folic acid (FA) and mitochondria-targeting triphenyl phosphonium (TPP) for dual targeting delivery. After incubation of DT-NP with multidrug-resistant breast cancer cells MCF-7/ADR, CA release under acidic conditions in endosomes from DT-NP can effectively induce intracellular oxidative stress improvement, especially in mitochondria. After targeting drug delivery into mitochondria, high level of ROS in mitochondria can in situ activate BDOX to interact with mitochondrial DNA and induce cell apoptosis. DT-NP displays a remarkably higher cancer cell killing effect on MCF-7/ADR as compared with DOX. Accordingly, DT-NP shows great potentials toward multidrug-resistant cancers as dual-targeting drug delivery systems with intracellular oxidative stress improvement and ROS-responsive prodrug activation in mitochondria.
Collapse
Affiliation(s)
- Longchang Xi
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jingbo Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yuheng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
47
|
Perrone MG, Ruggiero A, Centonze A, Carrieri A, Ferorelli S, Scilimati A. Diffuse Intrinsic Pontine Glioma (DIPG): Breakthrough and Clinical Perspective. Curr Med Chem 2021; 28:3287-3317. [PMID: 32767913 DOI: 10.2174/0929867327666200806110206] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 11/22/2022]
Abstract
Diffuse intrinsic pontine glioma (DIPG) mainly affects children with a median age of 6-7 years old. It accounts for 10% of all pediatric tumors. Unfortunately, DIPG has a poor prognosis, and the median survival is generally less than 16-24 months independently from the treatment received. Up to now, children with DIPG are treated with focal radiotherapy alone or in combination with antitumor agents. In the last decade, ONC201 known as dopamine receptor antagonist was uncovered, by a high throughput screening of public libraries of compounds, to be endowed with cytotoxic activity against several cancer cell lines. Efforts were made to identify the real ONC201 target, responsible for its antiproliferative effect. The hypothesized targets were the Tumor necrosis factor-Related Apoptosis-Inducing Ligand stimulation (TRAIL), two oncogenic kinases (ERK/AKT system) that target the same tumor-suppressor gene (FOXO3a), dopamine receptors (DRD2 and DRD3 subtypes) and finally the mitochondrial Caseynolitic Protease P (ClpP). ONC201 structure-activity relationship is extensively discussed in this review, together with other two classes of compounds, namely ADEPs and D9, already known for their antibiotic activity but noteworthy to be discussed and studied as potential "leads" for the development of new drugs to be used in the treatment of DIPG. In this review, a detailed and critical description of ONC201, ADEPs, and D9 pro-apoptotic activity is made, with particular attention to the specific interactions established with its targets that also are intimately described. Pubmed published patents and clinical trial reports of the last ten years were used as the bibliographic source.
Collapse
Affiliation(s)
- Maria Grazia Perrone
- Department of Pharmacy and Pharmaceutical Sciences, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Antonella Centonze
- Department of Pharmacy and Pharmaceutical Sciences, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Antonio Carrieri
- Department of Pharmacy and Pharmaceutical Sciences, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Savina Ferorelli
- Department of Pharmacy and Pharmaceutical Sciences, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Antonio Scilimati
- Department of Pharmacy and Pharmaceutical Sciences, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
48
|
Shi L, Gao LL, Cai SZ, Xiong QW, Ma ZR. A novel selective mitochondrial-targeted curcumin analog with remarkable cytotoxicity in glioma cells. Eur J Med Chem 2021; 221:113528. [PMID: 34020339 DOI: 10.1016/j.ejmech.2021.113528] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022]
Abstract
Naturally occurring polyphenol curcumin (4) or demethoxycurcumin (5) and their synthetic derivatives display promising anticancer activities. However, their further development is limited by low bioavailability and poor selectivity. Thus, a mitochondria-targeted compound 14 (DMC-TPP) was prepared in the present study by conjugating a triphenylphosphine moiety to the phenolic hydroxyl group of demethoxycurcumin to enhance its bioavailability and treatment efficacy. The in vitro biological experiments of DMC-TPP showed that it not only displayed higher cytotoxicity as compared with its parent compound 5, but also exhibited superior mitochondria accumulation ability. Glioma cells were more sensitive to DMC-TPP, which inhibited the proliferation of U251 cells with an IC50 of 0.42 μM. The mechanism studies showed that DMC-TPP triggers mitochondria-dependent apoptosis, caused by caspase activation, production of reactive oxygen species (ROS) and decrease of mitochondrial membrane potential (MMP). In addition, DMC-TPP efficiently inhibited cellular thioredoxin reductase, which contributed to its cytotoxicity. Significantly, DMC-TPP delayed tumor progression in a mouse xenograft model of human glioma cancer. Taken together, the potent in vitro and in vivo antitumor activity of DMC-TPP warrant further comprehensive evaluation as a novel anti-glioma agent.
Collapse
Affiliation(s)
- Lei Shi
- Department of Neurosurgery, Affiliated Kunshan Hospital of Jiangsu University, First People's Hospital of Kunshan, Suzhou, 215300, PR China
| | - Li-Li Gao
- Department of Oncology, The People's Hospital of Funing County in Yancheng City, Yancheng, 224400, Jiang Su, PR China
| | - Shi-Zhong Cai
- Department of Child and Adolescent Healthcare, Children's Hospital of Soochow University, Suzhou, Suzhou, 215021, PR China.
| | - Qian-Wei Xiong
- Department of Surgery, Children's Hospital of Soochow University, Suzhou, 215021, PR China
| | - Zhou-Rui Ma
- Department of Surgery, Children's Hospital of Soochow University, Suzhou, 215021, PR China.
| |
Collapse
|
49
|
Guo L. Mitochondria and the permeability transition pore in cancer metabolic reprogramming. Biochem Pharmacol 2021; 188:114537. [PMID: 33811907 DOI: 10.1016/j.bcp.2021.114537] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
Mitochondria are a major source of ATP provision as well as cellular suicidal weapon store. Accumulating evidences demonstrate that mitochondrial bioenergetics, biosynthesis and signaling are important mediators of tumorigenesis. Metabolic plasticity enables cancer cell reprogramming to cope with cellular and environmental alterations, a process requires mitochondria biology. Mitochondrial metabolism emerges to be a promising arena for cancer therapeutic targets. The permeability transition pore (PTP) participates in physiological Ca2+ and ROS homeostasis as well as cell death depending on the open state. The hypothesis that PTP forms from F-ATP synthase provides clues to the potential collaborative role of mitochondrial respiration and PTP in regulating cancer cell fate and metabolic reprogramming.
Collapse
Affiliation(s)
- Lishu Guo
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.
| |
Collapse
|
50
|
Peng YB, Tao C, Tan CP, Zhao P. Mitochondrial targeted rhodium(III) complexes: Synthesis, characterized and antitumor mechanism investigation. J Inorg Biochem 2021; 218:111400. [PMID: 33684684 DOI: 10.1016/j.jinorgbio.2021.111400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 12/23/2022]
Abstract
Recently, rhodium complexes have received intensive attentions due to their tunable chemical and biological properties as well as attractive antitumor activity. In this work, two imidazole triphenylamino rhodium complexes [Rh(ppy)2L1]PF6 (Rh1) and [Rh(ppy)2L2]PF6 (Rh2) (ppy = 2-phenylpyridine, L1 = 4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)-N,N-diphenylaniline, L2 = N-(4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)phenyl)-4-methyl-N-(p-tolyl)aniline) have been synthesized and characterized. Both complexes display stronger anticancer activity against a various of cancer cells than cisplatin and they can effectively localize to mitochondria. Further mechanism studies show that Rh1 induce caspase-dependent apoptosis through mitochondrial damage, down-regulate the expression of B-cell lymphoma-2 (Bcl-2)/Bcl2-associated x (Bax) and reactive oxygen species (ROS) elevation. Our work provides a strategy for the construction of highly effective anticancer agents targeting mitochondrial metabolism through rational modification of rhodium complexes.
Collapse
Affiliation(s)
- Yan-Bo Peng
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Education Mega Centre, No. 280, Waihuandong Road, Guangzhou 510006, PR China
| | - Can Tao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Education Mega Centre, No. 280, Waihuandong Road, Guangzhou 510006, PR China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China.
| | - Ping Zhao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Education Mega Centre, No. 280, Waihuandong Road, Guangzhou 510006, PR China.
| |
Collapse
|