1
|
Costa CM, Pedrosa SS, Kirkland JL, Reis F, Madureira AR. The senotherapeutic potential of phytochemicals for age-related intestinal disease. Ageing Res Rev 2025; 104:102619. [PMID: 39638096 DOI: 10.1016/j.arr.2024.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
During the last few decades, life expectancy has increased worldwide along with the prevalence of several age-related diseases. Among aging pathways, cellular senescence and chronic inflammation (or "inflammaging") appear to be connected to gut homeostasis and dysbiosis of the microbiome. Cellular senescence is a state of essentially irreversible cell cycle arrest that occurs in response to stress. Although senescent cells (SC) remain metabolically active, they do not proliferate and can secrete inflammatory and other factors comprising the senescence-associated secretory phenotype (SASP). Accumulation of SCs has been linked to onset of several age-related diseases, in the brain, bones, the gastrointestinal tract, and other organs and tissues. The gut microbiome undergoes substantial changes with aging and is tightly interconnected with either successful (healthy) aging or disease. Senotherapeutic drugs are compounds that can clear senescent cells or modulate the release of SASP factors and hence attenuate the impact of the senescence-associated pro-inflammatory state. Phytochemicals, phenolic compounds and terpenes, which have antioxidant and anti-inflammatory activities, could also be senotherapeutic given their ability to act upon senescence-linked cellular pathways. The aim of this review is to dissect links among the gut microbiome, cellular senescence, inflammaging, and disease, as well as to explore phytochemicals as potential senotherapeutics, focusing on their interactions with gut microbiota. Coordinated targeting of these inter-related processes might unveil new strategies for promoting healthy aging.
Collapse
Affiliation(s)
- Célia Maria Costa
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal.
| | - Sílvia Santos Pedrosa
- Biorbis, Unipessoal LDA, Edifício de Biotecnologia da Universidade Católica Portuguesa, Rua Diogo Botelho 1327, Porto 4169-005, Portugal.
| | - James L Kirkland
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA.
| | - Flávio Reis
- Institute of Pharmacology and Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra 3004-504, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra 3000-548, Portugal; Clinical Academic Center of Coimbra, Coimbra 3004-531, Portugal.
| | - Ana Raquel Madureira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal.
| |
Collapse
|
2
|
Bracken OV, De Maeyer RPH, Akbar AN. Enhancing immunity during ageing by targeting interactions within the tissue environment. Nat Rev Drug Discov 2025:10.1038/s41573-024-01126-9. [PMID: 39875569 DOI: 10.1038/s41573-024-01126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2024] [Indexed: 01/30/2025]
Abstract
Immunity declines with age. This results in a higher risk of age-related diseases, diminished ability to respond to new infections and reduced response to vaccines. The causes of this immune dysfunction are cellular senescence, which occurs in both lymphoid and non-lymphoid tissue, and chronic, low-grade inflammation known as 'inflammageing'. In this Review article, we highlight how the processes of inflammation and senescence drive each other, leading to loss of immune function. To break this cycle, therapies are needed that target the interactions between the altered tissue environment and the immune system instead of targeting each component alone. We discuss the relative merits and drawbacks of therapies that are directed at eliminating senescent cells (senolytics) and those that inhibit inflammation (senomorphics) in the context of tissue niches. Furthermore, we discuss therapeutic strategies designed to directly boost immune cell function and improve immune surveillance in tissues.
Collapse
Affiliation(s)
| | - Roel P H De Maeyer
- Division of Medicine, University College London, London, UK
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Arne N Akbar
- Division of Medicine, University College London, London, UK.
| |
Collapse
|
3
|
Frey Y, Haj M, Ziv Y, Elkon R, Shiloh Y. Broad repression of DNA repair genes in senescent cells identified by integration of transcriptomic data. Nucleic Acids Res 2025; 53:gkae1257. [PMID: 39739833 PMCID: PMC11724277 DOI: 10.1093/nar/gkae1257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 11/19/2024] [Accepted: 12/06/2024] [Indexed: 01/02/2025] Open
Abstract
Cellular senescence plays a significant role in tissue aging. Senescent cells, which resist apoptosis while remaining metabolically active, generate endogenous DNA-damaging agents, primarily reactive oxygen species. Efficient DNA repair is therefore crucial in these cells, especially when they undergo senescence escape, resuming DNA replication and cellular proliferation. To investigate whether senescent cell transcriptomes reflect adequate DNA repair capacity, we conducted a comprehensive meta-analysis of 60 transcriptomic datasets comparing senescent to proliferating cells. Our analysis revealed a striking downregulation of genes encoding essential components across DNA repair pathways in senescent cells. This includes pathways active in different cell cycle phases such as nucleotide excision repair, base excision repair, nonhomologous end joining and homologous recombination repair of double-strand breaks, mismatch repair and interstrand crosslink repair. The downregulation observed suggests a significant accumulation of DNA lesions. Experimental monitoring of DNA repair readouts in cells that underwent radiation-induced senescence supported this conclusion. This phenomenon was consistent across various senescence triggers and was also observed in primary cell lines from aging individuals. These findings highlight the potential of senescent cells as 'ticking bombs' in aging-related diseases and tumors recurring following therapy-induced senescence.
Collapse
Affiliation(s)
- Yann Frey
- The David and Inez Myers Laboratory for Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Human Molecular Genetics and Biochemistry, School of Medicine, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Majd Haj
- The David and Inez Myers Laboratory for Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Human Molecular Genetics and Biochemistry, School of Medicine, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yael Ziv
- The David and Inez Myers Laboratory for Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Human Molecular Genetics and Biochemistry, School of Medicine, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, School of Medicine, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yosef Shiloh
- The David and Inez Myers Laboratory for Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Human Molecular Genetics and Biochemistry, School of Medicine, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
4
|
Burdusel D, Doeppner TR, Surugiu R, Hermann DM, Olaru DG, Popa-Wagner A. The Intersection of Epigenetics and Senolytics in Mechanisms of Aging and Therapeutic Approaches. Biomolecules 2024; 15:18. [PMID: 39858413 PMCID: PMC11762397 DOI: 10.3390/biom15010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
The biological process of aging is influenced by a complex interplay of genetic, environmental, and epigenetic factors. Recent advancements in the fields of epigenetics and senolytics offer promising avenues for understanding and addressing age-related diseases. Epigenetics refers to heritable changes in gene expression without altering the DNA sequence, with mechanisms like DNA methylation, histone modification, and non-coding RNA regulation playing critical roles in aging. Senolytics, a class of drugs targeting and eliminating senescent cells, address the accumulation of dysfunctional cells that contribute to tissue degradation and chronic inflammation through the senescence-associated secretory phenotype. This scoping review examines the intersection of epigenetic mechanisms and senolytic therapies in aging, focusing on their combined potential for therapeutic interventions. Senescent cells display distinct epigenetic signatures, such as DNA hypermethylation and histone modifications, which can be targeted to enhance senolytic efficacy. Epigenetic reprogramming strategies, such as induced pluripotent stem cells, may further complement senolytics by rejuvenating aged cells. Integrating epigenetic modulation with senolytic therapy offers a dual approach to improving healthspan and mitigating age-related pathologies. This narrative review underscores the need for continued research into the molecular mechanisms underlying these interactions and suggests future directions for therapeutic development, including clinical trials, biomarker discovery, and combination therapies that synergistically target aging processes.
Collapse
Affiliation(s)
- Daiana Burdusel
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (D.B.); (R.S.); (D.M.H.)
| | - Thorsten R. Doeppner
- Department of Neurology, University of Giessen Medical School, 35392 Giessen, Germany;
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Roxana Surugiu
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (D.B.); (R.S.); (D.M.H.)
| | - Dirk M. Hermann
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (D.B.); (R.S.); (D.M.H.)
- Chair of Vascular Neurology and Dementia, Department of Neurology, University Hospital Essen, 45147 Essen, Germany
| | - Denissa Greta Olaru
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (D.B.); (R.S.); (D.M.H.)
| | - Aurel Popa-Wagner
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (D.B.); (R.S.); (D.M.H.)
- Chair of Vascular Neurology and Dementia, Department of Neurology, University Hospital Essen, 45147 Essen, Germany
| |
Collapse
|
5
|
Jochems F, Baltira C, MacDonald JA, Daniels V, Mathur A, de Gooijer MC, van Tellingen O, Letai A, Bernards R. Senolysis by ABT-263 is associated with inherent apoptotic dependence of cancer cells derived from the non-senescent state. Cell Death Differ 2024:10.1038/s41418-024-01439-7. [PMID: 39706991 DOI: 10.1038/s41418-024-01439-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024] Open
Abstract
Cellular senescence is a stress response that cells can employ to resist cell death. Senescent cells rely on anti-apoptotic signaling for their survival, which can be targeted by senolytic agents, like the BCL-XL, BCL-2, BCL-W inhibitor ABT-263. However, the response to ABT-263 of senescent cancer cells ranges from highly sensitive to refractory. Using BH3 profiling, we identify here apoptotic blocks in cancer cells that are resistant to this senolytic treatment and discover a correlation between mitochondrial apoptotic priming and cellular sensitivity to ABT-263 in senescence. Intriguingly, ABT-263 sensitivity correlates with overall mitochondrial apoptotic priming, not only in senescence but also in the parental state. Moreover, we confirm that ABT-263 exposure increases dependency on MCL-1, which is most enhanced in ABT-263 sensitive cells. ABT-263 resistant cells however upregulate MCL-1, while sensitive cells exhibit low levels of this anti-apoptotic protein. Overall, our data indicate that the response of senescent cells to ABT-263 is predetermined by the mitochondrial apoptotic priming state of the parental cells, which could serve as a predictive biomarker for response to senolytic therapy.
Collapse
Affiliation(s)
- Fleur Jochems
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
| | - Chrysiida Baltira
- Division of Pharmacology, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
| | - Julie A MacDonald
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Veerle Daniels
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Abhijeet Mathur
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
| | - Mark C de Gooijer
- Division of Pharmacology, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
- Faculty of Biology, Medicine and Health, University of Manchester; The Christie NHS Foundation Trust, Manchester, UK
| | - Olaf van Tellingen
- Division of Pharmacology, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
| | - Anthony Letai
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands.
| |
Collapse
|
6
|
Zhang G, Hu F, Huang T, Ma X, Cheng Y, Liu X, Jiang W, Dong B, Fu C. The recent development, application, and future prospects of muscle atrophy animal models. MEDCOMM – FUTURE MEDICINE 2024; 3. [DOI: 10.1002/mef2.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/01/2024] [Indexed: 01/06/2025]
Abstract
AbstractMuscle atrophy, characterized by the loss of muscle mass and function, is a hallmark of sarcopenia and cachexia, frequently associated with aging, malignant tumors, chronic heart failure, and malnutrition. Moreover, it poses significant challenges to human health, leading to increased frailty, reduced quality of life, and heightened mortality risks. Despite extensive research on sarcopenia and cachexia, consensus in their assessment remains elusive, with inconsistent conclusions regarding their molecular mechanisms. Muscle atrophy models are crucial tools for advancing research in this field. Currently, animal models of muscle atrophy used for clinical and basic scientific studies are induced through various methods, including aging, genetic editing, nutritional modification, exercise, chronic wasting diseases, and drug administration. Muscle atrophy models also include in vitro and small organism models. Despite their value, each of these models has certain limitations. This review focuses on the limitations and diverse applications of muscle atrophy models to understand sarcopenia and cachexia, and encourage their rational use in future research, therefore deepening the understanding of underlying pathophysiological mechanisms, and ultimately advancing the exploration of therapeutic strategies for sarcopenia and cachexia.
Collapse
Affiliation(s)
- Gongchang Zhang
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Fengjuan Hu
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Tingting Huang
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Xiaoqing Ma
- Longkou People Hospital Longkou Shandong Province China
| | - Ying Cheng
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Xiaolei Liu
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Wenzhou Jiang
- Longkou People Hospital Longkou Shandong Province China
| | - Birong Dong
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Chenying Fu
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
- Department of Laboratory of Aging and Geriatric Medicine National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University Chengdu Sichuan Province China
| |
Collapse
|
7
|
Hou J, Chen KX, He C, Li XX, Huang M, Jiang YZ, Jiao YR, Xiao QN, He WZ, Liu L, Zou NY, Huang M, Wei J, Xiao Y, Yang M, Luo XH, Zeng C, Lei GH, Li CJ. Aged bone marrow macrophages drive systemic aging and age-related dysfunction via extracellular vesicle-mediated induction of paracrine senescence. NATURE AGING 2024; 4:1562-1581. [PMID: 39266768 PMCID: PMC11564114 DOI: 10.1038/s43587-024-00694-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 07/25/2024] [Indexed: 09/14/2024]
Abstract
The accumulation and systemic propagation of senescent cells contributes to physiological aging and age-related pathology. However, which cell types are most susceptible to the aged milieu and could be responsible for the propagation of senescence has remained unclear. Here we found that physiologically aged bone marrow monocytes/macrophages (BMMs) propagate senescence to multiple tissues, through extracellular vesicles (EVs), and drive age-associated dysfunction in mice. We identified peroxisome proliferator-activated receptor α (PPARα) as a target of microRNAs within aged BMM-EVs that regulates downstream effects on senescence and age-related dysfunction. Demonstrating therapeutic potential, we report that treatment with the PPARα agonist fenofibrate effectively restores tissue homeostasis in aged mice. Suggesting conservation to humans, in a cohort study of 7,986 participants, we found that fenofibrate use is associated with a reduced risk of age-related chronic disease and higher life expectancy. Together, our findings establish that BMMs can propagate senescence to distant tissues and cause age-related dysfunction, and they provide supportive evidence for fenofibrate to extend healthy lifespan.
Collapse
Affiliation(s)
- Jing Hou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Kai-Xuan Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Chen He
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Xiao-Xiao Li
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
| | - Mei Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Yang-Zi Jiang
- School of Biomedical Sciences, Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Special Administrative Region of China, Hong Kong, China
| | - Yu-Rui Jiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Qiao-Ni Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Wen-Zhen He
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Ling Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Nan-Yu Zou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Min Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Jie Wei
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chao Zeng
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, China.
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China.
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Guang-Hua Lei
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, China.
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Chang-Jun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China.
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Laboratory Animal Center, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
8
|
Guzmán TJ, Klöpper N, Gurrola-Díaz CM, Düfer M. Inhibition of mTOR prevents glucotoxicity-mediated increase of SA-beta-gal, p16 INK4a, and insulin hypersecretion, without restoring electrical features of mouse pancreatic islets. Biogerontology 2024; 25:819-836. [PMID: 38748336 PMCID: PMC11374829 DOI: 10.1007/s10522-024-10107-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/16/2024] [Indexed: 09/05/2024]
Abstract
An over-activation of the mechanistic target of rapamycin (mTOR) pathway promotes senescence and age-related diseases like type 2 diabetes. Besides, the regenerative potential of pancreatic islets deteriorates with aging. Nevertheless, the role of mTOR on senescence promoted by metabolic stress in islet cells as well as its relevance for electrophysiological aspects is not yet known. Here, we investigated whether parameters suggested to be indicative for senescence are induced in vitro in mouse islet cells by glucotoxicity and if mTOR inhibition plays a protective role against this. Islet cells exhibit a significant increase (~ 76%) in senescence-associated beta-galactosidase (SA-beta-gal) activity after exposure to glucotoxicity for 72 h. Glucotoxicity does not markedly influence p16INK4a protein within 72 h, but p16INK4a levels increase significantly after a 7-days incubation period. mTOR inhibition with a low rapamycin concentration (1 nM) entirely prevents the glucotoxicity-mediated increase of SA-beta-gal and p16INK4a. At the functional level, reactive oxygen species, calcium homeostasis, and electrical activity are disturbed by glucotoxicity, and rapamycin fails to prevent this. In contrast, rapamycin significantly attenuates the insulin hypersecretion promoted by glucotoxicity by modifying the mRNA levels of Vamp2 and Snap25 genes, related to insulin exocytosis. Our data indicate an influence of glucotoxicity on pancreatic islet-cell senescence and a reduction of the senescence markers by mTOR inhibition, which is relevant to preserve the regenerative potential of the islets. Decreasing the influence of mTOR on islet cells exposed to glucotoxicity attenuates insulin hypersecretion, but is not sufficient to prevent electrophysiological disturbances, indicating the involvement of mTOR-independent mechanisms.
Collapse
Affiliation(s)
- Tereso J Guzmán
- Department of Pharmacology, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany.
- Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro Universitario de Ciencias de la Salud, 44340, Guadalajara, Jalisco, México.
| | - Nina Klöpper
- Department of Pharmacology, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Carmen M Gurrola-Díaz
- Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro Universitario de Ciencias de la Salud, 44340, Guadalajara, Jalisco, México
| | - Martina Düfer
- Department of Pharmacology, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany.
| |
Collapse
|
9
|
Williams ZJ, Chow L, Dow S, Pezzanite LM. The potential for senotherapy as a novel approach to extend life quality in veterinary medicine. Front Vet Sci 2024; 11:1369153. [PMID: 38812556 PMCID: PMC11133588 DOI: 10.3389/fvets.2024.1369153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Cellular senescence, a condition where cells undergo arrest and can assume an inflammatory phenotype, has been associated with initiation and perpetuation of inflammation driving multiple disease processes in rodent models and humans. Senescent cells secrete inflammatory cytokines, proteins, and matrix metalloproteinases, termed the senescence associated secretory phenotype (SASP), which accelerates the aging processes. In preclinical models, drug interventions termed "senotherapeutics" selectively clear senescent cells and represent a promising strategy to prevent or treat multiple age-related conditions in humans and veterinary species. In this review, we summarize the current available literature describing in vitro evidence for senotheraputic activity, preclinical models of disease, ongoing human clinical trials, and potential clinical applications in veterinary medicine. These promising data to date provide further justification for future studies identifying the most active senotherapeutic combinations, dosages, and routes of administration for use in veterinary medicine.
Collapse
Affiliation(s)
- Zoë J. Williams
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Lyndah Chow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Steven Dow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Lynn M. Pezzanite
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
10
|
Esterly AT, Zapata HJ. The quest to define senescence. Front Genet 2024; 15:1396535. [PMID: 38660674 PMCID: PMC11039885 DOI: 10.3389/fgene.2024.1396535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Affiliation(s)
| | - Heidi J. Zapata
- Department of Internal Medicine, Yale School of Medicine, Section of Infectious Diseases, New Haven, CT, United States
| |
Collapse
|
11
|
He Y, Zhang L, Chen X, Liu B, Shao X, Fang D, Lin J, Liu N, Lou Y, Qin J, Jiang Q, Guo B. Elimination of Senescent Osteocytes by Bone-Targeting Delivery of β-Galactose-Modified Maytansinoid Prevents Age-Related Bone Loss. Adv Healthc Mater 2024; 13:e2302972. [PMID: 38063283 DOI: 10.1002/adhm.202302972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/23/2023] [Indexed: 12/17/2023]
Abstract
The accumulation of senescent cells in bone during aging contributes to senile osteoporosis, and clearance of senescent cells by senolytics could effectively alleviate bone loss. However, the applications of senolytics are limited due to their potential toxicities. Herein, small extracellular vesicles (sEVs) have been modified by incorporating bone-targeting peptide, specifically (AspSerSer)6, to encapsulate galactose-modified Maytansinoids (DM1). These modified vesicles are referred to as (AspSerSer)6-sEVs/DM1-Gal, and they have been designed to specifically clear the senescent osteocytes in bone tissue. In addition, the elevated activity of lysosomal β-galactosidase in senescent osteocytes, but not normal cells in bone tissue, could break down DM1-Gal to release free DM1 for selective elimination of senescent osteocytes. Mechanically, DM1 could disrupt tubulin polymerization, subsequently inducing senescent osteocytes apoptosis. Further, administration of bone-targeting senolytics to aged mice could alleviate aged-related bone loss without non-obvious toxicity. Overall, this bone-targeting senolytics could act as a novel candidate for specific clearance of senescent osteocytes, ameliorating age-related bone loss, with a promising therapeutic potential for senile osteoporosis.
Collapse
Affiliation(s)
- Yi He
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Lei Zhang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Xiang Chen
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Bin Liu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Xiaoyan Shao
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Depeng Fang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Jiaquan Lin
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Na Liu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yabing Lou
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100069, P. R. China
| | - Jianghui Qin
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, Jiangsu, 210008, P. R. China
| | - Qing Jiang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, Jiangsu, 210008, P. R. China
| | - Baosheng Guo
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, Jiangsu, 210008, P. R. China
| |
Collapse
|
12
|
Yang T, Wan R, Tu W, Avvaru SN, Gao P. Aryl hydrocarbon receptor: Linking environment to aging process in elderly patients with asthma. Chin Med J (Engl) 2024; 137:382-393. [PMID: 38238253 PMCID: PMC10876263 DOI: 10.1097/cm9.0000000000002960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Indexed: 02/12/2024] Open
Abstract
ABSTRACT Aging is a significant risk factor for various diseases, including asthma, and it often leads to poorer clinical outcomes, particularly in elderly individuals. It is recognized that age-related diseases are due to a time-dependent accumulation of cellular damage, resulting in a progressive decline in cellular and physiological functions and an increased susceptibility to chronic diseases. The effects of aging affect not only the elderly but also those of younger ages, posing significant challenges to global healthcare. Thus, understanding the molecular mechanisms associated with aging in different diseases is essential. One intriguing factor is the aryl hydrocarbon receptor (AhR), which serves as a cytoplasmic receptor and ligand-activated transcription factor and has been linked to the aging process. Here, we review the literature on several major hallmarks of aging, including mitochondrial dysfunction, cellular senescence, autophagy, mitophagy, epigenetic alterations, and microbiome disturbances. Moreover, we provide an overview of the impact of AhR on these hallmarks by mediating responses to environmental exposures, particularly in relation to the immune system. Furthermore, we explore how aging hallmarks affect clinical characteristics, inflammatory features, exacerbations, and the treatment of asthma. It is suggested that AhR signaling may potentially play a role in regulating asthma phenotypes in elderly populations as part of the aging process.
Collapse
Affiliation(s)
- Tianrui Yang
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
- Department of Geriatric Medicine, The First People’s Hospital of Yunnan Province, Kunming, Yunnan 650032, China
| | - Rongjun Wan
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wei Tu
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518055, China
| | - Sai Nithin Avvaru
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Peisong Gao
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| |
Collapse
|
13
|
Lee DY, Arndt J, O’Connell JF, Egan JM, Kim Y. Red Ginseng Attenuates the Hepatic Cellular Senescence in Aged Mice. BIOLOGY 2024; 13:36. [PMID: 38248467 PMCID: PMC10813250 DOI: 10.3390/biology13010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/27/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024]
Abstract
Cellular senescence is defined as an irreversible cell cycle arrest accompanied by morphological and physiological alterations during aging. Red ginseng (RG), processed from fresh ginseng (Panax ginseng C.A. Meyer) with a one-time steaming and drying process, is a well-known beneficial herbal medicine showing antioxidant, anti-inflammatory, and anti-aging properties. The current study aimed to investigate the benefits of RG in alleviating hepatic cellular senescence and its adverse effects in 19-month-old aged mice. We applied two different intervention methods and durations to compare RG's effects in a time-dependent manner: (1) oral gavage injection for 4 weeks and (2) ad libitum intervention for 14 weeks. We observed that 4-week RG administration was exerted to maintain insulin homeostasis against developing age-associated insulin insensitivity and suppressed cellular senescence pathway in the liver and primary hepatocytes. Moreover, with remarkable improvement of insulin homeostasis, 14-week RG supplementation downregulated the activation of c-Jun N-terminal kinase (JNK) and its downstream transcriptional factor nuclear factor-κB (NF-κB) in aged mice. Lastly, RG treatment significantly reduced the senescence-associated β-galactosidase (SA-β-gal)-positive cells in primary hepatocytes and ionizing radiation (IR)-exposed mouse embryonic fibroblasts (MEFs). Taken together, we suggest that RG can be a promising candidate for a senolytic substance by preventing hepatic cellular senescence.
Collapse
Affiliation(s)
- Da-Yeon Lee
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (D.-Y.L.); (J.A.)
| | - Juliana Arndt
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (D.-Y.L.); (J.A.)
| | - Jennifer F. O’Connell
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA; (J.F.O.); (J.M.E.)
| | - Josephine M. Egan
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA; (J.F.O.); (J.M.E.)
| | - Yoo Kim
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (D.-Y.L.); (J.A.)
| |
Collapse
|
14
|
Tzou SJ, Peng CH, Huang LY, Chen FY, Kuo CH, Wu CZ, Chu TW. Comparison between linear regression and four different machine learning methods in selecting risk factors for osteoporosis in a Chinese female aged cohort. J Chin Med Assoc 2023; 86:1028-1036. [PMID: 37729604 DOI: 10.1097/jcma.0000000000000999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Population aging is emerging as an increasingly acute challenge for countries around the world. One particular manifestation of this phenomenon is the impact of osteoporosis on individuals and national health systems. Previous studies of risk factors for osteoporosis were conducted using traditional statistical methods, but more recent efforts have turned to machine learning approaches. Most such efforts, however, treat the target variable (bone mineral density [BMD] or fracture rate) as a categorical one, which provides no quantitative information. The present study uses five different machine learning methods to analyze the risk factors for T-score of BMD, seeking to (1) compare the prediction accuracy between different machine learning methods and traditional multiple linear regression (MLR) and (2) rank the importance of 25 different risk factors. METHODS The study sample includes 24 412 women older than 55 years with 25 related variables, applying traditional MLR and five different machine learning methods: classification and regression tree, Naïve Bayes, random forest, stochastic gradient boosting, and eXtreme gradient boosting. The metrics used for model performance comparisons are the symmetric mean absolute percentage error, relative absolute error, root relative squared error, and root mean squared error. RESULTS Machine learning approaches outperformed MLR for all four prediction errors. The average importance ranking of each factor generated by the machine learning methods indicates that age is the most important factor determining T-score, followed by estimated glomerular filtration rate (eGFR), body mass index (BMI), uric acid (UA), and education level. CONCLUSION In a group of women older than 55 years, we demonstrated that machine learning methods provide superior performance in estimating T-Score, with age being the most important impact factor, followed by eGFR, BMI, UA, and education level.
Collapse
Affiliation(s)
- Shiow-Jyu Tzou
- Teaching and Researching Center, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan, ROC
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan, ROC
| | - Chung-Hsin Peng
- Department of Urology, Cardinal Tien Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, ROC
| | - Li-Ying Huang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Fu Jen Catholic University Hospital, New Taipei, Taiwan
| | - Fang-Yu Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Fu Jen Catholic University Hospital, New Taipei, Taiwan
| | - Chun-Heng Kuo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Fu Jen Catholic University Hospital, New Taipei, Taiwan
| | - Chung-Ze Wu
- Department of Internal Medicine, Shuang Ho Hospital, New Taipei City, Division of Endocrinology and Metabolism, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Ta-Wei Chu
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
- MJ Health Research Foundation, Taipei, Taiwan, ROC
| |
Collapse
|
15
|
Zhou D, Jang JM, Yang G, Ha HC, Fu Z, Kim DK. A Novel Role of Hyaluronic Acid and Proteoglycan Link Protein 1 (HAPLN1) in Delaying Vascular Endothelial Cell Senescence. Biomol Ther (Seoul) 2023; 31:629-639. [PMID: 37551651 PMCID: PMC10616520 DOI: 10.4062/biomolther.2023.096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 08/09/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the most common cardiovascular system disorders. Cellular senescence is a key mechanism associated with dysfunction of aged vascular endothelium. Hyaluronic acid and proteoglycan link protein 1 (HAPLN1) has been known to non-covalently link hyaluronic acid (HA) and proteoglycans (PGs), and forms and stabilizes HAPLN1-containing aggregates as a major component of extracellular matrix. Our previous study showed that serum levels of HAPLN1 decrease with aging. Here, we found that the HAPLN1 gene expression was reduced in senescent human umbilical vein endothelial cells (HUVECs). Moreover, a recombinant human HAPLN1 (rhHAPLN1) decreased the activity of senescence-associated β-gal and inhibited the production of senescence-associated secretory phenotypes, including IL-1β, CCL2, and IL-6. rhHAPLN1 also down-regulated IL-17A levels, which is known to play a key role in vascular endothelial senescence. In addition, rhHAPLN1 protected senescent HUVECs from oxidative stress by reducing cellular reactive oxygen species levels, thus promoting the function and survival of HUVECs and leading to cellular proliferation, migration, and angiogenesis. We also found that rhHAPLN1 not only increases the sirtuin 1 (SIRT1) levels, but also reduces the cellular senescence markers levels, such as p53, p21, and p16. Taken together, our data indicate that rhHAPLN1 delays or inhibits the endothelial senescence induced by various aging factors, such as replicative, IL-17A, and oxidative stress-induced senescence, thus suggesting that rhHAPLN1 may be a promising therapeutic for CVD and atherosclerosis.
Collapse
Affiliation(s)
- Dan Zhou
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Republic of Korea
| | - Ji Min Jang
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Republic of Korea
| | - Goowon Yang
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Republic of Korea
| | - Hae Chan Ha
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Zhicheng Fu
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Republic of Korea
| | - Dae Kyong Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Republic of Korea
| |
Collapse
|
16
|
Dańczak‐Pazdrowska A, Gornowicz‐Porowska J, Polańska A, Krajka‐Kuźniak V, Stawny M, Gostyńska A, Rubiś B, Nourredine S, Ashiqueali S, Schneider A, Tchkonia T, Wyles SP, Kirkland JL, Masternak MM. Cellular senescence in skin-related research: Targeted signaling pathways and naturally occurring therapeutic agents. Aging Cell 2023; 22:e13845. [PMID: 37042069 PMCID: PMC10265178 DOI: 10.1111/acel.13845] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/13/2023] Open
Abstract
Despite the growing interest by researchers into cellular senescence, a hallmark of cellular aging, its role in human skin remains equivocal. The skin is the largest and most accessible human organ, reacting to the external and internal environment. Hence, it is an organ of choice to investigate cellular senescence and to target root-cause aging processes using senolytic and senomorphic agents, including naturally occurring plant-based derivatives. This review presents different aspects of skin cellular senescence, from physiology to pathology and signaling pathways. Cellular senescence can have both beneficial and detrimental effects on the skin, indicating that both prosenescent and antisenescent therapies may be desirable, based on the context. Knowledge of molecular mechanisms involved in skin cellular senescence may provide meaningful insights for developing effective therapeutics for senescence-related skin disorders, such as wound healing and cosmetic skin aging changes.
Collapse
Affiliation(s)
| | - Justyna Gornowicz‐Porowska
- Department and Division of Practical Cosmetology and Skin Diseases ProphylaxisPoznan University of Medical SciencesPoznanPoland
| | - Adriana Polańska
- Department of Dermatology and VenereologyPoznan University of Medical SciencesPoznanPoland
| | | | - Maciej Stawny
- Department of Pharmaceutical ChemistryPoznan University of Medical SciencesPoznanPoland
| | - Aleksandra Gostyńska
- Department of Pharmaceutical ChemistryPoznan University of Medical SciencesPoznanPoland
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular DiagnosticsPoznan University of Medical SciencesPoznanPoland
| | - Sarah Nourredine
- Burnett School of Biomedical SciencesCollege of Medicine, University of Central FloridaOrlandoFloridaUSA
| | - Sarah Ashiqueali
- Burnett School of Biomedical SciencesCollege of Medicine, University of Central FloridaOrlandoFloridaUSA
| | | | - Tamara Tchkonia
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | | | - James L. Kirkland
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Michal M. Masternak
- Burnett School of Biomedical SciencesCollege of Medicine, University of Central FloridaOrlandoFloridaUSA
- Department of Head and Neck SurgeryPoznan University of Medical SciencesPoznanPoland
| |
Collapse
|
17
|
Kaur J, Saul D, Doolittle ML, Farr JN, Khosla S, Monroe DG. MicroRNA- 19a- 3p Decreases with Age in Mice and Humans and Inhibits Osteoblast Senescence. JBMR Plus 2023; 7:e10745. [PMID: 37283656 PMCID: PMC10241091 DOI: 10.1002/jbm4.10745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 06/08/2023] Open
Abstract
Aging is a major risk factor for most chronic diseases, including osteoporosis, and is characterized by an accumulation of senescent cells in various tissues. MicroRNAs (miRNAs) are critical regulators of bone aging and cellular senescence. Here, we report that miR-19a-3p decreases with age in bone samples from mice as well as in posterior iliac crest bone biopsies of younger versus older healthy women. miR-19a-3p also decreased in mouse bone marrow stromal cells following induction of senescence using etoposide, H2O2, or serial passaging. To explore the transcriptomic effects of miR-19a-3p, we performed RNA sequencing of mouse calvarial osteoblasts transfected with control or miR-19a-3p mimics and found that miR-19a-3p overexpression significantly altered the expression of various senescence, senescence-associated secretory phenotype-related, and proliferation genes. Specifically, miR-19a-3p overexpression in nonsenescent osteoblasts significantly suppressed p16 Ink4a and p21 Cip1 gene expression and increased their proliferative capacity. Finally, we established a novel senotherapeutic role for this miRNA by treating miR-19a-3p expressing cells with H2O2 to induce senescence. Interestingly, these cells exhibited lower p16 Ink4a and p21 Cip1 expression, increased proliferation-related gene expression, and reduced SA-β-Gal+ cells. Our results thus establish that miR-19a-3p is a senescence-associated miRNA that decreases with age in mouse and human bones and is a potential senotherapeutic target for age-related bone loss. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Japneet Kaur
- Division of Endocrinology, Department of MedicineMayo Clinic College of MedicineRochesterMNUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
| | - Dominik Saul
- Division of Endocrinology, Department of MedicineMayo Clinic College of MedicineRochesterMNUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
| | - Madison L. Doolittle
- Division of Endocrinology, Department of MedicineMayo Clinic College of MedicineRochesterMNUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
| | - Joshua N. Farr
- Division of Endocrinology, Department of MedicineMayo Clinic College of MedicineRochesterMNUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
| | - Sundeep Khosla
- Division of Endocrinology, Department of MedicineMayo Clinic College of MedicineRochesterMNUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
| | - David G. Monroe
- Division of Endocrinology, Department of MedicineMayo Clinic College of MedicineRochesterMNUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
| |
Collapse
|
18
|
Díaz-González F, Parrón-Pajares M, Lucas-Castro E, Modamio-HØybjØr S, Sentchordi-Montané L, Seidel V, Prieto P, Tarraso-Urios G, Codina-Sola M, Cueto-González AM, Ballesta-Martínez MJ, Santos-Simarro F, Sousa SB, Heath KE. Evolution of clinical and radiological presentations of spondyloepimetaphyseal dysplasia, RPL13-related: Description of 11 further cases. Clin Genet 2023. [PMID: 37121912 DOI: 10.1111/cge.14351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
Spondyloepimetaphyseal dysplasia (SEMD), RPL13-related is caused by heterozygous variants in RPL13, which encodes the ribosomal protein eL13, a component of the 60S human ribosomal subunit. Here, we describe the clinical and radiological evolution of 11 individuals, 7 children and 4 adults, from 6 families. Some of the skeletal features improved during the course of this condition, whilst others worsened. We describe for the first time "corner fractures" as a feature of this dysplasia which as with other dysplasias disappear with age. In addition, we review the heights and skeletal anomalies of these reported here and previously in a total of 25 individuals from 15 families. In this study, six different RPL13 variants were identified, five of which were novel. All were located in the apparently hotspot region, located in intron 5 and exon 6. Splicing assays were performed for two of the three previously undescribed splicing variants. Until now, all splice variants have occurred in the intron 5 splice donor site, incorporating an additional 18 amino acids to the mutant protein. Here, we report the first variant in intron 5 splice acceptor site which generates two aberrant transcripts, deleting the first three and four amino acids encoded by exon 6. Thus, this study doubles the number of SEMD-RPL13-related cases and variants reported to date and describes unreported age-related clinical and radiological features.
Collapse
Affiliation(s)
- Francisca Díaz-González
- Institute of Medical & Molecular Genetics (INGEMM), IdiPAZ, Hospital Universitario la Paz, UMA, Madrid, Spain
- Skeletal dysplasia multidisciplinary Unit (UMDE), Hospital Universitario la Paz, Madrid, Spain
- European Research Network on Rare BONe Disorders (ERN-BOND)
| | - Manuel Parrón-Pajares
- Skeletal dysplasia multidisciplinary Unit (UMDE), Hospital Universitario la Paz, Madrid, Spain
- European Research Network on Rare BONe Disorders (ERN-BOND)
- Department of Radiology, Hospital Universitario La Paz, Madrid, Spain
| | - Elsa Lucas-Castro
- Institute of Medical & Molecular Genetics (INGEMM), IdiPAZ, Hospital Universitario la Paz, UMA, Madrid, Spain
- Skeletal dysplasia multidisciplinary Unit (UMDE), Hospital Universitario la Paz, Madrid, Spain
- European Research Network on Rare BONe Disorders (ERN-BOND)
| | - Silvia Modamio-HØybjØr
- Institute of Medical & Molecular Genetics (INGEMM), IdiPAZ, Hospital Universitario la Paz, UMA, Madrid, Spain
- Skeletal dysplasia multidisciplinary Unit (UMDE), Hospital Universitario la Paz, Madrid, Spain
- European Research Network on Rare BONe Disorders (ERN-BOND)
| | - Lucia Sentchordi-Montané
- Department of Pediatrics, Hospital Universitario Infanta Leonor, Madrid, Spain
- Department of Pediatrics, Universidad Complutense, Madrid, Spain
| | - Verónica Seidel
- Clinical Genetics Section, Department of Pediatrics, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Pablo Prieto
- Department of Pediatrics, Hospital Universitario Clínico Salamanca and Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - Guillermo Tarraso-Urios
- Department of Clinical and Molecular Genetics, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Medical Genetics Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Marta Codina-Sola
- Department of Clinical and Molecular Genetics, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Medical Genetics Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Anna M Cueto-González
- European Research Network on Rare BONe Disorders (ERN-BOND)
- Department of Clinical and Molecular Genetics, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Medical Genetics Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Mary J Ballesta-Martínez
- European Research Network on Rare BONe Disorders (ERN-BOND)
- Medical Genetics Section, Department of Pediatrics, Hospital Universitario Virgen de la Arrixaca, IMIB, Murcia, Spain
- CIBERER, ISCIII, Madrid, Spain
| | - Fernando Santos-Simarro
- Institute of Medical & Molecular Genetics (INGEMM), IdiPAZ, Hospital Universitario la Paz, UMA, Madrid, Spain
- Skeletal dysplasia multidisciplinary Unit (UMDE), Hospital Universitario la Paz, Madrid, Spain
- European Research Network on Rare BONe Disorders (ERN-BOND)
- CIBERER, ISCIII, Madrid, Spain
- Department of Molecular diagnostics & Clinical Genetics, Hospital Universitario Son Espases, Palma, Mallorca, Spain
| | - Sergio B Sousa
- European Research Network on Rare BONe Disorders (ERN-BOND)
- Medical Genetics Unit, Hospital Pediátrico, Centro Hospitalar & Universitário de Coimbra, Coimbra, Portugal
| | - Karen E Heath
- Institute of Medical & Molecular Genetics (INGEMM), IdiPAZ, Hospital Universitario la Paz, UMA, Madrid, Spain
- Skeletal dysplasia multidisciplinary Unit (UMDE), Hospital Universitario la Paz, Madrid, Spain
- European Research Network on Rare BONe Disorders (ERN-BOND)
- CIBERER, ISCIII, Madrid, Spain
| |
Collapse
|
19
|
Princilly J, Veerabhadrappa B, Rao NN, Dyavaiah M. Cellular senescence in aging: Molecular basis, implications and therapeutic interventions. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:1-33. [PMID: 37437975 DOI: 10.1016/bs.apcsb.2023.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Cellular senescence is an irreversible proliferation arrest in response to cellular damage and stress. Although cellular senescence is a highly stable cell cycle arrest, it can influence many physiological, pathological, and aging processes. Cellular senescence can be triggered by various intrinsic and extrinsic stimuli such as oxidative stress, mitochondrial dysfunction, genotoxic stress, oncogenic activation, irradiation and chemotherapeutic agents. Senescence is associated with several molecular and phenotypic alterations, such as senescence-associated secretory phenotype (SASP), cell cycle arrest, DNA damage response (DDR), senescence-associated β-galactosidase, morphogenesis, and chromatin remodeling. Cellular senescence is a regular physiological event involved in tissue homeostasis, embryonic development, tissue remodeling, wound healing, and inhibition of tumor progression. Mitochondria are one of the organelles that undergo significant morphological and metabolic changes associated with senescence. Recent evidence unraveled that inter-organelle communication regulates cellular senescence, where mitochondria form a highly complex and dynamic network throughout the cytoplasm with other organelles, like the endoplasmic reticulum. An imbalance in organelle interactions may result in faulty cellular homeostasis, which contributes to cellular senescence and is associated with organ aging. Since mitochondrial dysfunction is a common characteristic of cellular senescence and age-related diseases, mitochondria-targeted senolytic or redox modulator senomorphic strategies help solve the complex problems with the detrimental consequences of cellular senescence. Understanding the regulation of mitochondrial metabolism would provide knowledge on effective therapeutic interventions for aging and age-related pathologies. This chapter focuses on the biochemical and molecular mechanisms of senescence and targeting senescence as a potential strategy to alleviate age-related pathologies and support healthy aging.
Collapse
Affiliation(s)
- Jemima Princilly
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Bhavana Veerabhadrappa
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, India; Department of Biotechnology, R V College of Engineering (RVCE), Bangalore, Karnataka, India
| | - Nagashree N Rao
- Department of Biotechnology, R V College of Engineering (RVCE), Bangalore, Karnataka, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, India.
| |
Collapse
|
20
|
Dhakal B, Shiwakoti S, Park EY, Kang KW, Schini-Kerth VB, Park SH, Ji HY, Park JS, Ko JY, Oak MH. SGLT2 inhibition ameliorates nano plastics-induced premature endothelial senescence and dysfunction. Sci Rep 2023; 13:6256. [PMID: 37069192 PMCID: PMC10110533 DOI: 10.1038/s41598-023-33086-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023] Open
Abstract
Nano plastics (NPs) have been a significant threat to human health and are known to cause premature endothelial senescence. Endothelial senescence is considered one of the primary risk factors contributing to numerous cardiovascular disorders. Recent studies have suggested that inhibition of sodium glucose co-transporter (SGLT2) ameliorates endothelial senescence and dysfunction. Therefore, our study intends to explore the role of SGLT2 in NPs-induced endothelial senescence and dysfunction. Porcine coronary artery and its endothelial cells were treated with NPs in the presence or absence of Enavogliflozin (ENA), a SGLT2 inhibitor and then SGLTs expression, senescence markers and vascular function were evaluated. NPs significantly up-regulated SGLT2 and ENA significantly decreased NPs-induced senescence-associated-β-gal activity, cell-cycle arrest, and senescence markers p53 and p21 suggesting that inhibition of SGLT2 prevents NPs-induced endothelial senescence. In addition, ENA decreased the formation of reactive oxygen species with the downregulation of Nox2, and p22phox. Furthermore, SGLT2 inhibition also up regulated the endothelial nitric oxide synthase expression along with improving vascular function. In conclusion, premature endothelial senescence by NPs is, at least in part, associated with SGLT2 and it could be a potential therapeutic target for preventing and/or treating environmental pollutants-induced cardiovascular disorders mediated by endothelial senescence and dysfunction.
Collapse
Affiliation(s)
- Bikalpa Dhakal
- College of Pharmacy, Mokpo National University, 1666 Yeongsan-ro, Cheonggye-Myeonn, Muan-Gun, Jeonnam, 58554, Republic of Korea
| | - Saugat Shiwakoti
- College of Pharmacy, Mokpo National University, 1666 Yeongsan-ro, Cheonggye-Myeonn, Muan-Gun, Jeonnam, 58554, Republic of Korea
| | - Eun-Young Park
- College of Pharmacy, Mokpo National University, 1666 Yeongsan-ro, Cheonggye-Myeonn, Muan-Gun, Jeonnam, 58554, Republic of Korea
| | - Ki-Woon Kang
- Division of Cardiology, College of Medicine, Heart Reasearch Institute and Biomedical Research Institute, Chung-Ang University Hospital, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Valérie B Schini-Kerth
- Regenerative Nanomedicine, Faculty of Pharmacy, UMR 1260 INSERM (French National Institute of Health and Medical Research), University of Strasbourg, 67000, Strasbourg, France
| | - Sun-Hwa Park
- Life Science Institute, Daewoong Pharmaceutical, Yongin, Gyeonggido, 17028, Republic of Korea
| | - Hye-Young Ji
- Life Science Institute, Daewoong Pharmaceutical, Yongin, Gyeonggido, 17028, Republic of Korea
| | - Joon Seok Park
- Life Science Institute, Daewoong Pharmaceutical, Yongin, Gyeonggido, 17028, Republic of Korea
| | - Ju-Young Ko
- College of Pharmacy, Mokpo National University, 1666 Yeongsan-ro, Cheonggye-Myeonn, Muan-Gun, Jeonnam, 58554, Republic of Korea.
| | - Min-Ho Oak
- College of Pharmacy, Mokpo National University, 1666 Yeongsan-ro, Cheonggye-Myeonn, Muan-Gun, Jeonnam, 58554, Republic of Korea.
| |
Collapse
|
21
|
Monteiro AR, Barbosa DJ, Remião F, Silva R. Alzheimer’s disease: insights and new prospects in disease pathophysiology, biomarkers and disease-modifying drugs. Biochem Pharmacol 2023; 211:115522. [PMID: 36996971 DOI: 10.1016/j.bcp.2023.115522] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases that affect millions of people worldwide, with both prevalence and incidence increasing with age. It is characterized by cognitive decline associated, specifically, with degeneration of cholinergic neurons. The problem of this disease is even more fundamental as the available therapies remain fairly limited and mainly focused on symptoms' relief. Although the aetiology of the disease remains elusive, two main pathological hallmarks are described: i) presence of neurofibrillary tangles formed by unfolded protein aggregates (hyperphosphorylated Tau protein) and ii) presence of extracellular aggregates of amyloid-beta peptide. Given the complexity surrounding the pathogenesis of the disease, several potential targets have been highlighted and interrelated upon its progression, such as oxidative stress and the accumulation of metal ions. Thus, advances have been made on the development of innovative multitarget therapeutical compounds to delay the disease progression and restore cell function. This review focuses the ongoing research on new insights and emerging disease-modifying drugs for AD treatment. Furthermore, classical and novel potential biomarkers for early diagnosis of the disease, and their role in assisting on the improvement of targeted therapies will also be approached.
Collapse
Affiliation(s)
- Ana R Monteiro
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Daniel J Barbosa
- TOXRUN - Toxicology Research Unit, Department of Sciences, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Fernando Remião
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Renata Silva
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
22
|
Implication of Cellular Senescence in Osteoarthritis: A Study on Equine Synovial Fluid Mesenchymal Stromal Cells. Int J Mol Sci 2023; 24:ijms24043109. [PMID: 36834521 PMCID: PMC9967174 DOI: 10.3390/ijms24043109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Osteoarthritis (OA) is described as a chronic degenerative disease characterized by the loss of articular cartilage. Senescence is a natural cellular response to stressors. Beneficial in certain conditions, the accumulation of senescent cells has been implicated in the pathophysiology of many diseases associated with aging. Recently, it has been demonstrated that mesenchymal stem/stromal cells isolated from OA patients contain many senescent cells that inhibit cartilage regeneration. However, the link between cellular senescence in MSCs and OA progression is still debated. In this study, we aim to characterize and compare synovial fluid MSCs (sf-MSCs), isolated from OA joints, with healthy sf-MSCs, investigating the senescence hallmarks and how this state could affect cartilage repair. Sf-MSCs were isolated from tibiotarsal joints of healthy and diseased horses with an established diagnosis of OA with an age ranging from 8 to 14 years. Cells were cultured in vitro and characterized for cell proliferation assay, cell cycle analysis, ROS detection assay, ultrastructure analysis, and the expression of senescent markers. To evaluate the influence of senescence on chondrogenic differentiation, OA sf-MSCs were stimulated in vitro for up to 21 days with chondrogenic factors, and the expression of chondrogenic markers was compared with healthy sf-MSCs. Our findings demonstrated the presence of senescent sf-MSCs in OA joints with impaired chondrogenic differentiation abilities, which could have a potential influence on OA progression.
Collapse
|
23
|
Varghese LN, Schwenke DO, Katare R. Role of noncoding RNAs in cardiac ageing. Front Cardiovasc Med 2023; 10:1142575. [PMID: 37034355 PMCID: PMC10073704 DOI: 10.3389/fcvm.2023.1142575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
The global population is estimated to reach 9.8 billion by 2050, of which 2.1 billion will comprise individuals above 60 years of age. As the number of elderly is estimated to double from 2017, it is a victory of the modern healthcare system but also worrisome as ageing, and the onset of chronic disease are correlated. Among other chronic conditions, cardiovascular diseases (CVDs) are the leading cause of death in the aged population. While the underlying cause of the age-associated development of CVDs is not fully understood, studies indicate the role of non-coding RNAs such as microRNAs (miRNAs) and long noncoding RNAs (lnc-RNAs) in the development of age-associated CVDs. miRNAs and lnc-RNAs are non-coding RNAs which control gene expression at the post-transcriptional level. The expression of specific miRNAs and lnc-RNAs are reportedly dysregulated with age, leading to cardiovascular system changes and ultimately causing CVDs. Since miRNAs and lnc-RNAs play several vital roles in maintaining the normal functioning of the cardiovascular system, they are also being explored for their therapeutic potential as a treatment for CVDs. This review will first explore the pathophysiological changes associated with ageing. Next, we will review the known mechanisms underlying the development of CVD in ageing with a specific focus on miRNA and lnc-RNAs. Finally, we will discuss the therapeutic options and future challenges towards healthy cardiac ageing. With the global ageing population on the rise, this review will provide a fundamental understanding of some of the underlying molecular mechanisms of cardiac ageing.
Collapse
|
24
|
Pardella E, Pranzini E, Nesi I, Parri M, Spatafora P, Torre E, Muccilli A, Castiglione F, Fambrini M, Sorbi F, Cirri P, Caselli A, Puhr M, Klocker H, Serni S, Raugei G, Magherini F, Taddei ML. Therapy-Induced Stromal Senescence Promoting Aggressiveness of Prostate and Ovarian Cancer. Cells 2022; 11:cells11244026. [PMID: 36552790 PMCID: PMC9776582 DOI: 10.3390/cells11244026] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer progression is supported by the cross-talk between tumor cells and the surrounding stroma. In this context, senescent cells in the tumor microenvironment contribute to the development of a pro-inflammatory milieu and the acquisition of aggressive traits by cancer cells. Anticancer treatments induce cellular senescence (therapy-induced senescence, TIS) in both tumor and non-cancerous cells, contributing to many detrimental side effects of therapies. Thus, we focused on the effects of chemotherapy on the stromal compartment of prostate and ovarian cancer. We demonstrated that anticancer chemotherapeutics, regardless of their specific mechanism of action, promote a senescent phenotype in stromal fibroblasts, resulting in metabolic alterations and secretion of paracrine factors, sustaining the invasive and clonogenic potential of both prostate and ovarian cancer cells. The clearance of senescent stromal cells, through senolytic drug treatment, reverts the malignant phenotype of tumor cells. The clinical relevance of TIS was validated in ovarian and prostate cancer patients, highlighting increased accumulation of lipofuscin aggregates, a marker of the senescent phenotype, in the stromal compartment of tissues from chemotherapy-treated patients. These data provide new insights into the potential efficacy of combining traditional anticancer strategies with innovative senotherapy to potentiate anticancer treatments and overcome the adverse effects of chemotherapy.
Collapse
Affiliation(s)
- Elisa Pardella
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Viale Morgagni 50, 50134 Florence, Italy
| | - Erica Pranzini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Viale Morgagni 50, 50134 Florence, Italy
| | - Ilaria Nesi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Viale Morgagni 50, 50134 Florence, Italy
| | - Matteo Parri
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Viale Morgagni 50, 50134 Florence, Italy
| | - Pietro Spatafora
- Department of Minimally Invasive and Robotic Urologic Surgery and Kidney Transplantation, University of Florence, 50134 Florence, Italy
| | - Eugenio Torre
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Viale Morgagni 50, 50134 Florence, Italy
| | - Angela Muccilli
- Department of Health Sciences, Section of Pathology, University of Florence, 50134 Florence, Italy
| | - Francesca Castiglione
- Histopathology and Molecular Diagnostics, Careggi Teaching Hospital, 50134 Florence, Italy
| | - Massimiliano Fambrini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Viale Morgagni 50, 50134 Florence, Italy
| | - Flavia Sorbi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Viale Morgagni 50, 50134 Florence, Italy
| | - Paolo Cirri
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Viale Morgagni 50, 50134 Florence, Italy
| | - Anna Caselli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Viale Morgagni 50, 50134 Florence, Italy
| | - Martin Puhr
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Helmut Klocker
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Sergio Serni
- Department of Minimally Invasive and Robotic Urologic Surgery and Kidney Transplantation, University of Florence, 50134 Florence, Italy
| | - Giovanni Raugei
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Viale Morgagni 50, 50134 Florence, Italy
| | - Francesca Magherini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Viale Morgagni 50, 50134 Florence, Italy
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
- Correspondence:
| |
Collapse
|
25
|
Wu SJ, Tung YJ, Yen MH, Ng LT. Chemical composition and anti-aging effects of standardized herbal chicken essence on D-galactose- induced senescent mice. Front Nutr 2022; 9:989067. [PMID: 36176640 PMCID: PMC9513449 DOI: 10.3389/fnut.2022.989067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
Abstract
This study aimed to examine the chemical and anti-aging properties of chicken essence (CE) prepared with Sesamum indicum, Angelica acutiloba, and Zingiber officinale (HCE). HCE was analyzed for nutritional and phytochemical composition, and its anti-aging effects were investigated on the D-galactose (Gal)-induced aging mice. Results showed that HCE possessed significantly higher calories and contents of valine and total phenols than CE; it also contained significant amounts of ferulic acid, sesamin, and sesamolin. HCE significantly decreased MDA and NO levels in serum and liver and increased liver GSH levels in the D-Gal-induced mice. HCE greatly enhanced SOD and CAT activities in serum and liver, and liver GPx activity, as well as upregulating SIRT1 expression and downregulating TNF-α, IL-1β, IL-6, iNOS, Cox-2, and MCP-1 expression in liver tissues. This study demonstrates that HCE was effective in suppressing the aging process through enhancing antioxidant and anti-inflammatory activities and modulating the aging-related gene expression.
Collapse
Affiliation(s)
- Shu-Jing Wu
- Department of Nutritional Health, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Yi-Jou Tung
- Department of Nutritional Health, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Ming-Hong Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lean-Teik Ng
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
- *Correspondence: Lean-Teik Ng
| |
Collapse
|
26
|
Xu H, Yu M, Yu Y, Li Y, Yang F, Liu Y, Han L, Xu Z, Wang G. KLF4 prevented angiotensin II-induced smooth muscle cell senescence by enhancing autophagic activity. Eur J Clin Invest 2022; 52:e13804. [PMID: 35506324 DOI: 10.1111/eci.13804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Vascular aging is an important risk factor for various cardiovascular diseases. Transcription factor krüppel-like factor 4 (KLF4) could regulate the phenotypic transformation of the vascular smooth muscle cell (VSMC) in the pathogenesis of aortic diseases. The present study aimed to explore the role and mechanism of KLF4 in angiotensin II (Ang II)-induced VSMC senescence. METHODS The VSMC senescence mouse model was induced by sustained release of Ang II (1.0 μg/kg/min) for 4 weeks. The premature senescent VSMCs were induced by Ang II (0.1 μmol/L) for 72 h. Cellular senescence was measured by senescence-associated β-galactosidase (SA-β-gal) activity and p53/p16 expression. The autophagic activity was evaluated by autophagic flux and autophagic marker expression. RESULTS The expression of KLF4 was extremely increased in abdominal aorta tissues after 1-week Ang II stimulation (p < .01) but began to decrease in later periods. Decreased expression of KLF4 was also detected in premature senescent VSMCs. Overexpression of KLF4 could enhance the antisenescence ability of VSMCs. Significantly decreased amounts of SA-β-gal-positive cells and lower p53/p16 expression were detected in KLF4-overexpressing VSMCs (p < .01). Next, telomerase reverse transcriptase (TERT) was identified as a direct downstream target of KLF4 in VSMCs. Overexpression of KLF4 in VSMCs prevented the decreased expression of TERT under Ang II stimulation condition, which could in turn, contribute to the enhanced autophagic activity, and ultimately to the improved antisenescence ability of VSMCs. CONCLUSIONS Our results demonstrated that overexpression of KLF4 prevented Ang II-induced VSMC senescence by promoting TERT-mediated autophagy. These findings provided novel potential targets for the prevention and therapy of vascular aging.
Collapse
Affiliation(s)
- Hongjie Xu
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Manli Yu
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yongchao Yu
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yang Li
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Fan Yang
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yang Liu
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, Shanghai, China.,Department of Critical Care Medicine, Naval Medical Center of PLA, Shanghai, China
| | - Lin Han
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhiyun Xu
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guokun Wang
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
27
|
The Nrf2 antioxidant defense system in intervertebral disc degeneration: Molecular insights. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1067-1075. [PMID: 35978054 PMCID: PMC9440120 DOI: 10.1038/s12276-022-00829-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 02/07/2023]
Abstract
Intervertebral disc degeneration (IDD) is a common degenerative musculoskeletal disorder and is recognized as a major contributor to discogenic lower back pain. However, the molecular mechanisms underlying IDD remain unclear, and therapeutic strategies for IDD are currently limited. Oxidative stress plays pivotal roles in the pathogenesis and progression of many age-related diseases in humans, including IDD. Nuclear factor E2-related factor 2 (Nrf2) is a master antioxidant transcription factor that protects cells against oxidative stress damage. Nrf2 is negatively modulated by Kelch-like ECH-associated protein 1 (Keap1) and exerts important effects on IDD progression. Accumulating evidence has revealed that Nrf2 can facilitate the transcription of downstream antioxidant genes in disc cells by binding to antioxidant response elements (AREs) in promoter regions, including heme oxygenase-1 (HO-1), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and NADPH quinone dehydrogenase 1 (NQO1). The Nrf2 antioxidant defense system regulates cell apoptosis, senescence, extracellular matrix (ECM) metabolism, the inflammatory response of the nucleus pulposus (NP), and calcification of the cartilaginous endplates (EP) in IDD. In this review, we aim to discuss the current knowledge on the roles of Nrf2 in IDD systematically. Insights into the activity of a protein that regulates gene expression and protects cells against oxidative stress could yield novel treatments for lower back pain. Intervertebral disc degeneration (IDD) is a common cause of lower back pain, but the molecular mechanisms underlying IDD are unclear, meaning treatment options are limited. Oxidative stress is implicated in IDD, and scientists have begun exploring the role of nuclear factor E2-related factor 2 (Nrf2), a master regulator of the body’s antioxidant responses, in regulating IDD progression. In a review of recent research, Weishi Li at Peking University Third Hospital, Beijing, China, and co-workers point out that boosting the activity of Nrf2-related signaling pathways alleviates oxidative stress in intervertebral disc cells. The researchers suggest that therapies based on non-coding RNAs may prove valuable in activating Nrf2 in IDD patients.
Collapse
|
28
|
Diwan B, Sharma R. Nutritional components as mitigators of cellular senescence in organismal aging: a comprehensive review. Food Sci Biotechnol 2022; 31:1089-1109. [PMID: 35756719 PMCID: PMC9206104 DOI: 10.1007/s10068-022-01114-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/06/2022] Open
Abstract
The process of cellular senescence is rapidly emerging as a modulator of organismal aging and disease. Targeting the development and removal of senescent cells is considered a viable approach to achieving improved organismal healthspan and lifespan. Nutrition and health are intimately linked and an appropriate dietary regimen can greatly impact organismal response to stress and diseases including during aging. With a renewed focus on cellular senescence, emerging studies demonstrate that both primary and secondary nutritional elements such as carbohydrates, proteins, fatty acids, vitamins, minerals, polyphenols, and probiotics can influence multiple aspects of cellular senescence. The present review describes the recent molecular aspects of cellular senescence-mediated understanding of aging and then studies available evidence of the cellular senescence modulatory attributes of major and minor dietary elements. Underlying pathways and future research directions are deliberated to promote a nutrition-centric approach for targeting cellular senescence and thus improving human health and longevity.
Collapse
Affiliation(s)
- Bhawna Diwan
- Faculty of Applied Sciences & Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 India
| | - Rohit Sharma
- Faculty of Applied Sciences & Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 India
| |
Collapse
|
29
|
Kaur J, Saul D, Doolittle ML, Rowsey JL, Vos SJ, Farr JN, Khosla S, Monroe DG. Identification of a suitable endogenous control miRNA in bone aging and senescence. Gene X 2022; 835:146642. [PMID: 35700807 PMCID: PMC9533812 DOI: 10.1016/j.gene.2022.146642] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/15/2022] [Accepted: 06/02/2022] [Indexed: 11/04/2022] Open
Abstract
MicroRNAs (miRNAs) are promising tools as biomarkers and therapeutic agents in various chronic diseases such as osteoporosis, cancers, type I and II diabetes, and cardiovascular diseases. Considering the rising interest in the regulatory role of miRNAs in bone metabolism, aging, and cellular senescence, accurate normalization of qPCR-based miRNA expression data using an optimal endogenous control becomes crucial. We used a systematic approach to select candidate endogenous control miRNAs that exhibit high stability with aging from our miRNA sequence data and literature search. Validation of miRNA expression was performed using qPCR and their comprehensive stability was assessed using the RefFinder tool which is based on four statistical algorithms: GeNorm, NormFinder, BestKeeper, and comparative delta CT. The selected endogenous control was then validated for its stability in mice and human bone tissues, and in bone marrow stromal cells (BMSCs) following induction of senescence and senolytic treatment. Finally, the utility of selected endogenous control versus U6 was tested by using each as a normalizer to measure the expression of miR-34a, a miRNA known to increase with age and senescence. Our results show that Let-7f did not change across the groups with aging, senescence or senolytic treatment, and was the most stable miRNA, whereas U6 was the least stable. Moreover, using Let-7f as a normalizer resulted in significantly increased expression of miR-34a with aging and senescence and decreased expression following senolytic treatment. However, the expression pattern for miR-34a reversed for each of these conditions when U6 was used as a normalizer. We show that optimal endogenous control miRNAs, such as Let-7f, are essential for accurate normalization of miRNA expression data to increase the reliability of results and prevent misinterpretation. Moreover, we present a systematic strategy that is transferrable and can easily be used to identify endogenous control miRNAs in other biological systems and conditions.
Collapse
Affiliation(s)
- Japneet Kaur
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA
| | - Dominik Saul
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA
| | - Madison L Doolittle
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA
| | - Jennifer L Rowsey
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA
| | - Stephanie J Vos
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA
| | - Joshua N Farr
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA
| | - Sundeep Khosla
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA
| | - David G Monroe
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA.
| |
Collapse
|
30
|
Frailty in rodents: Models, underlying mechanisms, and management. Ageing Res Rev 2022; 79:101659. [PMID: 35660004 DOI: 10.1016/j.arr.2022.101659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/24/2022] [Accepted: 05/30/2022] [Indexed: 11/22/2022]
Abstract
Frailty is a clinical geriatric syndrome characterized by decreased multisystem function and increased vulnerability to adverse outcomes. Although numerous studies have been conducted on frailty, the underlying mechanisms and management strategies remain unclear. As rodents share homology with humans, they are used extensively as animal models to study human diseases. Rodent frailty models can be classified broadly into the genetic modification and non-genetic modification models, the latter of which include frailty assessment models (based on the Fried frailty phenotype and frailty index methods) and induced frailty models. Such models were developed for use in investigating frailty-related physiological changes at the gene, cellular, molecular, and system levels, including the organ system level. Furthermore, exercise, diet, and medication interventions, in addition to their combinations, could improve frailty status in rodents. Rodent frailty models provide novel and effective tools for frailty research. In the present paper, we review research progress in rodent frailty models, mechanisms, and management, which could facilitate and guide further clinical research on frailty in older adults.
Collapse
|
31
|
Sfeir JG, Drake MT, Khosla S, Farr JN. Skeletal Aging. Mayo Clin Proc 2022; 97:1194-1208. [PMID: 35662432 PMCID: PMC9179169 DOI: 10.1016/j.mayocp.2022.03.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/01/2022] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
Abstract
Aging represents the single greatest risk factor for chronic diseases, including osteoporosis, a skeletal fragility syndrome that increases fracture risk. Optimizing bone strength throughout life reduces fracture risk. Factors critical for bone strength include nutrition, physical activity, and vitamin D status, whereas unhealthy lifestyles, illnesses, and certain medications (eg, glucocorticoids) are detrimental. Hormonal status is another important determinant of skeletal health, with sex steroid concentrations, particularly estrogen, having major effects on bone remodeling. Aging exacerbates bone loss in both sexes and results in imbalanced bone resorption relative to formation; it is associated with increased marrow adiposity, osteoblast/osteocyte apoptosis, and accumulation of senescent cells. The mechanisms underlying skeletal aging are as diverse as the factors that determine the strength (and thus fragility) of bone. This review updates our current understanding of the epidemiology, pathophysiology, and treatment of osteoporosis and provides an overview of the underlying hallmark mechanisms that drive skeletal aging.
Collapse
Affiliation(s)
- Jad G Sfeir
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN
| | - Matthew T Drake
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN
| | - Sundeep Khosla
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN
| | - Joshua N Farr
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN.
| |
Collapse
|
32
|
Föger-Samwald U, Kerschan-Schindl K, Butylina M, Pietschmann P. Age Related Osteoporosis: Targeting Cellular Senescence. Int J Mol Sci 2022; 23:ijms23052701. [PMID: 35269841 PMCID: PMC8910503 DOI: 10.3390/ijms23052701] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
Age-related chronic diseases are an enormous burden to modern societies worldwide. Among these, osteoporosis, a condition that predisposes individuals to an increased risk of fractures, substantially contributes to increased mortality and health-care costs in elderly. It is now well accepted that advanced chronical age is one of the main risk factors for chronical diseases. Hence, targeting fundamental aging mechanisms such as senescence has become a promising option in the treatment of these diseases. Moreover, for osteoporosis, the main pathophysiological concepts arise from menopause causing estrogen deficiency, and from aging. Here, we focus on recent advances in the understanding of senescence-related mechanisms contributing to age-related bone loss. Furthermore, treatment options for senile osteoporosis targeting senescent cells are reviewed.
Collapse
Affiliation(s)
- Ursula Föger-Samwald
- Medical Science and Human Medicine Study Programme, Karl Landsteiner University of Health Sciences, 3500 Krems an der Donau, Austria
- Correspondence:
| | | | - Maria Butylina
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria; (M.B.); (P.P.)
| | - Peter Pietschmann
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria; (M.B.); (P.P.)
| |
Collapse
|
33
|
Ramírez R, Ceprian N, Figuer A, Valera G, Bodega G, Alique M, Carracedo J. Endothelial Senescence and the Chronic Vascular Diseases: Challenges and Therapeutic Opportunities in Atherosclerosis. J Pers Med 2022; 12:jpm12020215. [PMID: 35207703 PMCID: PMC8874678 DOI: 10.3390/jpm12020215] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis is probably one of the paradigms of disease linked to aging. Underlying the physiopathology of atherosclerosis are cellular senescence, oxidative stress, and inflammation. These factors are increased in the elderly and from chronic disease patients. Elevated levels of oxidative stress affect cellular function and metabolism, inducing senescence. This senescence modifies the cell phenotype into a senescent secretory phenotype. This phenotype activates immune cells, leading to chronic systemic inflammation. Moreover, due to their secretory phenotype, senescence cells present an increased release of highlighted extracellular vesicles that will change nearby/neighborhood cells and paracrine signaling. For this reason, searching for specific senescent cell biomarkers and therapies against the development/killing of senescent cells has become relevant. Recently, senomorphic and senolityc drugs have become relevant in slowing down or eliminating senescence cells. However, even though they have shown promising results in experimental studies, their clinical use is still yet to be determined.
Collapse
Affiliation(s)
- Rafael Ramírez
- Departamento de Biología de Sistemas, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain/Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (R.R.); (A.F.)
| | - Noemi Ceprian
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid/Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28040 Madrid, Spain; (N.C.); (G.V.)
| | - Andrea Figuer
- Departamento de Biología de Sistemas, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain/Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (R.R.); (A.F.)
| | - Gemma Valera
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid/Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28040 Madrid, Spain; (N.C.); (G.V.)
| | - Guillermo Bodega
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain;
| | - Matilde Alique
- Departamento de Biología de Sistemas, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain/Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (R.R.); (A.F.)
- Correspondence: (M.A.); (J.C.)
| | - Julia Carracedo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid/Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28040 Madrid, Spain; (N.C.); (G.V.)
- Correspondence: (M.A.); (J.C.)
| |
Collapse
|
34
|
Wu J, Liu Y, Song Y, Wang L, Ai J, Li K. Aging conundrum: A perspective for ovarian aging. Front Endocrinol (Lausanne) 2022; 13:952471. [PMID: 36060963 PMCID: PMC9437485 DOI: 10.3389/fendo.2022.952471] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Progressive loss of physiological integrity and accumulation of degenerative changes leading to functional impairment and increased susceptibility to diseases are the main features of aging. The ovary, the key organ that maintains female reproductive and endocrine function, enters aging earlier and faster than other organs and has attracted extensive attention from society. Ovarian aging is mainly characterized by the progressive decline in the number and quality of oocytes, the regulatory mechanisms of which have yet to be systematically elucidated. This review discusses the hallmarks of aging to further highlight the main characteristics of ovarian aging and attempt to explore its clinical symptoms and underlying mechanisms. Finally, the intervention strategies related to aging are elaborated, especially the potential role of stem cells and cryopreservation of embryos, oocytes, or ovarian tissue in the delay of ovarian aging.
Collapse
Affiliation(s)
| | | | | | - Lingjuan Wang
- *Correspondence: Kezhen Li, ; Jihui Ai, ; Lingjuan Wang,
| | - Jihui Ai
- *Correspondence: Kezhen Li, ; Jihui Ai, ; Lingjuan Wang,
| | - Kezhen Li
- *Correspondence: Kezhen Li, ; Jihui Ai, ; Lingjuan Wang,
| |
Collapse
|
35
|
Cellular Senescence in Adrenocortical Biology and Its Disorders. Cells 2021; 10:cells10123474. [PMID: 34943980 PMCID: PMC8699888 DOI: 10.3390/cells10123474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is considered a physiological process along with aging and has recently been reported to be involved in the pathogenesis of many age-related disorders. Cellular senescence was first found in human fibroblasts and gradually explored in many other organs, including endocrine organs. The adrenal cortex is essential for the maintenance of blood volume, carbohydrate metabolism, reaction to stress and the development of sexual characteristics. Recently, the adrenal cortex was reported to harbor some obvious age-dependent features. For instance, the circulating levels of aldosterone and adrenal androgen gradually descend, whereas those of cortisol increase with aging. The detailed mechanisms have remained unknown, but cellular senescence was considered to play an essential role in age-related changes of the adrenal cortex. Recent studies have demonstrated that the senescent phenotype of zona glomerulosa (ZG) acts in association with reduced aldosterone production in both physiological and pathological aldosterone-producing cells, whereas senescent cortical-producing cells seemed not to have a suppressed cortisol-producing ability. In addition, accumulated lipofuscin formation, telomere shortening and cellular atrophy in zona reticularis cells during aging may account for the age-dependent decline in adrenal androgen levels. In adrenocortical disorders, including both aldosterone-producing adenoma (APA) and cortisol-producing adenoma (CPA), different cellular subtypes of tumor cells presented divergent senescent phenotypes, whereby compact cells in both APA and CPA harbored more senescent phenotypes than clear cells. Autonomous cortisol production from CPA reinforced a local cellular senescence that was more severe than that in APA. Adrenocortical carcinoma (ACC) was also reported to harbor oncogene-induced senescence, which compensatorily follows carcinogenesis and tumor progress. Adrenocortical steroids can induce not only a local senescence but also a periphery senescence in many other tissues. Therefore, herein, we systemically review the recent advances related to cellular senescence in adrenocortical biology and its associated disorders.
Collapse
|
36
|
Liu Y, Cai G, Chen P, Jiang T, Xia Z. UBE2E3 regulates cellular senescence and osteogenic differentiation of BMSCs during aging. PeerJ 2021; 9:e12253. [PMID: 34820159 PMCID: PMC8606162 DOI: 10.7717/peerj.12253] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Background Osteoporosis has gradually become a public health problem in the world. However, the exact molecular mechanism of osteoporosis still remains unclear. Senescence and osteogenic differentiation inhibition of bone marrow mesenchymal stem cells (BMSCs ) are supposed to play an important part in osteoporosis. Methods We used two gene expression profiles (GSE35956 and GSE35958) associated with osteoporosis and selected the promising gene Ubiquitin-conjugating enzyme E2 E3 (UBE2E3). We then verified its function and mechanism by in vitro experiments. Results UBE2E3 was highly expressed in the bone marrow and positively associated with osteogenesis related genes. Besides, UBE2E3 expression reduced in old BMSCs compared with that in young BMSCs. In in vitro experiments, knockdown of UBE2E3 accelerated cellular senescence and inhibited osteogenic differentiation of young BMSCs. On the other hand, overexpression of UBE2E3 attenuated cellular senescence as well as enhanced osteogenic differentiation of old BMSCs. Mechanistically, UBE2E3 might regulate the nuclear factor erythroid 2-related factor (Nrf2) and control its function, thus affecting the senescence and osteogenic differentiation of BMSCs. Conclusion UBE2E3 may be potentially involved in the pathogenesis of osteoporosis by regulating cellular senescence and osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Yalin Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Guangping Cai
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Peng Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China.,Department of Orthopedic, Xiangya Hospital of Central South University, Changsha, China
| | - Tiejian Jiang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Zhuying Xia
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
37
|
Ahumada-Castro U, Puebla-Huerta A, Cuevas-Espinoza V, Lovy A, Cardenas JC. Keeping zombies alive: The ER-mitochondria Ca 2+ transfer in cellular senescence. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119099. [PMID: 34274397 DOI: 10.1016/j.bbamcr.2021.119099] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/14/2021] [Accepted: 06/18/2021] [Indexed: 01/10/2023]
Abstract
Cellular senescence generates a permanent cell cycle arrest, characterized by apoptosis resistance and a pro-inflammatory senescence-associated secretory phenotype (SASP). Physiologically, senescent cells promote tissue remodeling during development and after injury. However, when accumulated over a certain threshold as happens during aging or after cellular stress, senescent cells contribute to the functional decline of tissues, participating in the generation of several diseases. Cellular senescence is accompanied by increased mitochondrial metabolism. How mitochondrial function is regulated and what role it plays in senescent cell homeostasis is poorly understood. Mitochondria are functionally and physically coupled to the endoplasmic reticulum (ER), the major calcium (Ca2+) storage organelle in mammalian cells, through special domains known as mitochondria-ER contacts (MERCs). In this domain, the release of Ca2+ from the ER is mainly regulated by inositol 1,4,5-trisphosphate receptors (IP3Rs), a family of three Ca2+ release channels activated by a ligand (IP3). IP3R-mediated Ca2+ release is transferred to mitochondria through the mitochondrial Ca2+ uniporter (MCU), where it modulates the activity of several enzymes and transporters impacting its bioenergetic and biosynthetic function. Here, we review the possible connection between ER to mitochondria Ca2+ transfer and senescence. Understanding the pathways that contribute to senescence is essential to reveal new therapeutic targets that allow either delaying senescent cell accumulation or reduce senescent cell burden to alleviate multiple diseases.
Collapse
Affiliation(s)
- Ulises Ahumada-Castro
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; Geroscience Center for Brain Health and Metabolism, Santiago 8580745, Chile
| | - Andrea Puebla-Huerta
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; Geroscience Center for Brain Health and Metabolism, Santiago 8580745, Chile
| | - Victor Cuevas-Espinoza
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; Geroscience Center for Brain Health and Metabolism, Santiago 8580745, Chile
| | - Alenka Lovy
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; Department of Neuroscience, Center for Neuroscience Research, Tufts School of Medicine, Boston, MA, USA
| | - J Cesar Cardenas
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile; Geroscience Center for Brain Health and Metabolism, Santiago 8580745, Chile; Buck Institute for Research on Aging, Novato, CA 94945, USA; Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
38
|
Domaszewska-Szostek A, Puzianowska-Kuźnicka M, Kuryłowicz A. Flavonoids in Skin Senescence Prevention and Treatment. Int J Mol Sci 2021; 22:ijms22136814. [PMID: 34201952 PMCID: PMC8267725 DOI: 10.3390/ijms22136814] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Skin aging is associated with the accumulation of senescent cells and is related to many pathological changes, including decreased protection against pathogens, increased susceptibility to irritation, delayed wound healing, and increased cancer susceptibility. Senescent cells secrete a specific set of pro-inflammatory mediators, referred to as a senescence-associated secretory phenotype (SASP), which can cause profound changes in tissue structure and function. Thus, drugs that selectively eliminate senescent cells (senolytics) or neutralize SASP (senostatics) represent an attractive therapeutic strategy for age-associated skin deterioration. There is growing evidence that plant-derived compounds (flavonoids) can slow down or even prevent aging-associated deterioration of skin appearance and function by targeting cellular pathways crucial for regulating cellular senescence and SASP. This review summarizes the senostatic and senolytic potential of flavonoids in the context of preventing skin aging.
Collapse
Affiliation(s)
- Anna Domaszewska-Szostek
- Department of Human Epigenetics, Mossakowski Medical Research Centre PAS, 02-106 Warsaw, Poland;
- Correspondence: (A.D.-S.); (A.K.); Tel.: +48-2260-86401 (A.K.); Fax: +48-2260-86410 (A.K.)
| | - Monika Puzianowska-Kuźnicka
- Department of Human Epigenetics, Mossakowski Medical Research Centre PAS, 02-106 Warsaw, Poland;
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, 01-826 Warsaw, Poland
| | - Alina Kuryłowicz
- Department of Human Epigenetics, Mossakowski Medical Research Centre PAS, 02-106 Warsaw, Poland;
- Correspondence: (A.D.-S.); (A.K.); Tel.: +48-2260-86401 (A.K.); Fax: +48-2260-86410 (A.K.)
| |
Collapse
|
39
|
Chen Y, Wang S, Yang S, Li R, Yang Y, Chen Y, Zhang W. Inhibitory role of ginsenoside Rb2 in endothelial senescence and inflammation mediated by microRNA‑216a. Mol Med Rep 2021; 23:415. [PMID: 33786633 PMCID: PMC8025470 DOI: 10.3892/mmr.2021.12054] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/09/2021] [Indexed: 01/02/2023] Open
Abstract
Targeting microRNAs (miRs) using small chemical molecules has become a promising strategy for disease treatment. miR‑216a has been reported to be a potential therapeutic target in endothelial senescence and atherosclerosis via the Smad3/NF‑κB signaling pathway. Ginsenoside Rb2 (Rb2) is the main bioactive component extracted from the plant Panax ginseng, and is a widely used traditional Chinese medicine. In the present study, Rb2 was identified to have a high score for miR‑216a via bioinformatics analysis based on its sequence and structural features. The microscale thermophoresis experiment further demonstrated that Rb2 had a specific binding affinity for miR‑216a and the dissociation constant was 17.6 µM. In both young and senescent human umbilical vein endothelial cells (HUVECs), as well as human aortic endothelial cells, Rb2 decreased the expression of endogenous miR‑216a. Next, a replicative endothelial senescence model of HUVECs was established by infection with pre‑miR‑216a recombinant lentiviruses (Lv‑miR‑216a) and the number of population‑doubling level (PDL) was calculated. Stable overexpression of miR‑216a induced a premature senescent‑like phenotype, whereas the senescent features and increased activity of senescence‑associated β‑galactosidase (SA‑β‑gal) were reversed after Rb2 treatment. The percentage of SA‑β‑gal‑positive cells in senescent PDL25 cells transfected with Lv‑miR‑216a was decreased 76% by Rb2 treatment compared with the Lv‑miR‑216a group without Rb2 treatment (P=0.01). Mechanistically, miR‑216a inhibited Smad3 protein expression, promoted IκBα degradation and activated NF‑κB‑responsive genes, such as vascular cell adhesion molecule 1 (VCAM1), which promoted the adhesiveness of endothelial cells to monocytes. These pro‑inflammatory effects of miR‑216a were significantly suppressed by Rb2 treatment. When Smad3 was suppressed by small interfering RNA, the elevated expression levels of intercellular adhesion molecule 1 and VCAM1 induced by miR‑216a were significantly reversed. Collectively, to the best of our knowledge, the present study demonstrated for the first time that Rb2 exerted an anti‑inflammation effect on the process of endothelial cell senescence and could be a potential therapeutic drug by targeting miR‑216a.
Collapse
Affiliation(s)
- Yutong Chen
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, P.R. China
| | - Shuting Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100037, P.R. China
| | - Shujun Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100037, P.R. China
| | - Rongxia Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100037, P.R. China
| | - Yunyun Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100037, P.R. China
| | - Yu Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100037, P.R. China
| | - Weili Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100037, P.R. China
| |
Collapse
|