1
|
Golestaneh L, Basalely A, Linkermann A, El-Achkar TM, Kim RS, Neugarten J. Sex, Acute Kidney Injury, and Age: A Prospective Cohort Study. Am J Kidney Dis 2025; 85:329-338.e1. [PMID: 39447957 DOI: 10.1053/j.ajkd.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
RATIONALE & OBJECTIVE Animal models of kidney disease suggest a protective role for female sex hormones, but some authorities assert that female sex in humans is a risk factor for acute kidney injury (AKI). To better understand the risk of AKI, we studied the strength of association between sex and AKI incidence in hormonally distinct age groups across the life span. STUDY DESIGN Prospective cohort study. SETTING & PARTICIPANTS All patients hospitalized in the Montefiore Health System between October 15, 2015, and January 1, 2019, excluding those with kidney failure or obstetrics diagnoses. EXPOSURE Male versus female sex. OUTCOME AKI occurring during hospitalization based on KDIGO definitions. ANALYTICAL APPROACH Generalized estimating equation logistic regression adjusted for comorbidities, sociodemographic factors, and severity of illness. Analyses were stratified into 3 age categories: 6 months to≤16 years,>16 years to<55 years, and≥55 years. RESULTS A total of 132,667 individuals were hospitalized a total of 235,629 times. The mean age was 55.2±23.8 (SD) years. The count of hospitalizations for women was 129,912 (55%). Hospitalization count among Black and Hispanic patients was 71,834 (30.5%) and 24,199 (10.3%), respectively. AKI occurred in 53,926 (22.9%) hospitalizations. In adjusted models, there was a significant interaction between age and sex (P<0.001). Boys and men had a higher risk of AKI across all age groups, an association more pronounced in the age group>16 years to<55 years in which the odds ratio for men was 1.7 (95% CI, 1.6-1.8). This age-based pattern remained consistent across prespecified types of hospitalizations. In a sensitivity analysis, women older than 55 years who received prescriptions for estrogen had lower odds of AKI than those without prescriptions. LIMITATIONS Residual confounding. CONCLUSIONS The greatest relative risk of AKI for males occurred during ages>16 to<55 years. The lower risk among postmenopausal women receiving supplemental estrogen supports a protective role for female sex hormones. PLAIN-LANGUAGE SUMMARY Male sex is a risk factor for acute kidney injury (AKI) in animals, but in human studies this association is not as robust. We studied hospitalizations at a single center to examine the association of hospital-acquired AKI and sex. After controlling for various sources of potential bias and stratifying by age categories through the life course, we observed that men have a higher risk of AKI throughout life. This risk was especially high compared with women of fertile age and older women prescribed estrogen. This pattern was consistent in prespecified subgroups of hospitalizations. These results support a protective role for female sex hormones in the occurrence of hospitalized AKI.
Collapse
Affiliation(s)
- Ladan Golestaneh
- Section of Nephrology, Department of Medicine, School of Medicine, Yale University, New Haven, Connecticut; Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York.
| | - Abby Basalely
- Division of Pediatric Nephrology, Department of Pediatrics, Northwell Health, New Hyde Park, Albert Einstein College of Medicine, Bronx, New York
| | - Andreas Linkermann
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York; Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Tarek M El-Achkar
- Division of Nephrology, Department of Medicine, School of Medicine, Indiana University, and the Roudebush Indianapolis VA, Indianapolis, Indiana
| | - Ryung S Kim
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Joel Neugarten
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
2
|
Fan Z, Wei X, Zhu X, Du Y. Sirtuins in kidney homeostasis and disease: where are we now? Front Endocrinol (Lausanne) 2025; 15:1524674. [PMID: 39911234 PMCID: PMC11794115 DOI: 10.3389/fendo.2024.1524674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/31/2024] [Indexed: 02/07/2025] Open
Abstract
Sirtuins, identified as (NAD+)- dependent class III histone deacetylases, engage in a spectrum of biological functions, encompassing DNA damage repair, oxidative stress, immune modulation, mitochondrial homeostasis, apoptosis and autophagy. Sirtuins play an apoptosis role in regulating cellular operations and overall organism health. Mounting data indicate that dysregulated sirtuin expression is linked to the onset of renal diseases. Effective modulation of sirtuins expression and activity has been shown to improve renal function and attenuate the advancement of kidney diseases. In this review, we present a comprehensive overview of the biological impacts of sirtuins and their molecular targets in regulating renal diseases. Additionally, we detail advancements in elucidating sirtuin roles in the pathophysiology of both chronic and acute renal disorders. We review compounds that modulate sirtuin activity through activation or inhibition, potentially improving outcomes in renal disease. In summary, strategic manipulation of sirtuin activity represents a prospective therapeutic approach for renal diseases.
Collapse
Affiliation(s)
| | | | | | - Yujun Du
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Steiger S, Li L, Bruchfeld A, Stevens KI, Moran SM, Floege J, Caravaca-Fontán F, Mirioglu S, Teng OYK, Frangou E, Kronbichler A. Sex dimorphism in kidney health and disease: mechanistic insights and clinical implication. Kidney Int 2025; 107:51-67. [PMID: 39477067 DOI: 10.1016/j.kint.2024.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/16/2024] [Accepted: 08/09/2024] [Indexed: 11/18/2024]
Abstract
Sex is a key variable in the regulation of human physiology and pathology. Many diseases disproportionately affect one sex: autoimmune diseases, such as systemic lupus erythematosus, are more common in women but more severe in men, whereas the incidence of other disorders such as gouty arthritis and malignant cancers is higher in men. Besides the pathophysiology, sex may also influence the efficacy of therapeutics; participants in clinical trials are still predominately men, and the side effects of drugs are more common in women than in men. Sex dimorphism is a prominent feature of kidney physiology and function, and consequently affects the predisposition to many adult kidney diseases. These differences subsequently influence the response to immune stimuli, hormones, and therapies. It is highly likely that these responses differ between the sexes. Therefore, it becomes imperative to consider sex differences in translational science from basic science to preclinical research to clinical research and trials. Under-representation of one sex in preclinical animal studies or clinical trials remains an issue and key reported outcomes of such studies ought to be presented separately. Without this, it remains difficult to tailor the management of kidney disease appropriately and effectively. In this review, we provide mechanistic insights into sex differences in rodents and humans, both in kidney health and disease, highlight the importance of considering sex differences in the design of any preclinical animal or clinical study, and propose guidance on how to optimal design and conduct preclinical animal studies in future research.
Collapse
Affiliation(s)
- Stefanie Steiger
- Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital Munich, Munich, Germany.
| | - Li Li
- Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Annette Bruchfeld
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden; Department of Renal Medicine, Karolinska University Hospital and CLINTEC Karolinska Institutet, Stockholm, Sweden
| | - Kate I Stevens
- Glasgow Renal and Transplant Unit, Queen Elizabeth University Hospital, Glasgow, UK
| | - Sarah M Moran
- Cork University Hospital, University College Cork, Cork, Ireland
| | - Jürgen Floege
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Hospital, Aachen, Germany
| | - Fernando Caravaca-Fontán
- Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain; Department of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Safak Mirioglu
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Instanbul, Turkey
| | - Onno Y K Teng
- Center of Expertise for Lupus, Vasculitis and Complement-mediated Systemic disease (LuVaCs), Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - Eleni Frangou
- Department of Nephrology, Limassol General Hospital, Limassol, Cyprus; University of Nicosia Medical School, Nicosia, Cyprus; National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Andreas Kronbichler
- Department of Internal Medicine IV, Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
4
|
Chen C, Qiu B, Wang J, Yang L, Huang Y. Incidence and risk factors for acute kidney injury in children with nephrotic syndrome: a meta-analysis. Front Pediatr 2024; 12:1452568. [PMID: 39759881 PMCID: PMC11695129 DOI: 10.3389/fped.2024.1452568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/11/2024] [Indexed: 01/07/2025] Open
Abstract
Background Nephrotic syndrome (NS) is a prevalent kidney disease in children. Acute kidney injury (AKI) is a severe complication of NS and has the potential to be life-threatening. Objective The aim of this study was to analyze the prevalence and risk factors of AKI in children with NS, and to provide an evidence-based medical basis for the early identification of high-risk children in the clinic. Methods A comprehensive search was conducted in publicly available databases, namely PubMed, Embase, Web of Science, Scopus, and the Cochrane Library, covering the period from the inception of each database until May 2024. The analysis involved examining basic characteristics (age, sex), the concomitant diseases (hypertension, infections), NS disease characteristics (steroid susceptibility classification, pathologic classification), laboratory test (e.g., serum albumin), and the use of nephrotoxic drugs. Traditional and network meta-analyses were performed for analysis. Results A total of 11 studies were included in the analysis, revealing an incidence of AKI of 29% (95% CI: 23%-37%). The analysis of factors indicated that the age of NS onset [standardized mean difference (SMD): 0.31; 95% confidence interval (CI): 0.08, 0.54; p = 0.009], sex [odds ratio (OR): 1.49; 95% CI: 1.03, 2.16; p = 0.035], serum albumin level (SMD: -0.43; 95% CI: -0.85, -0.02; p = 0.041), response to steroid treatment (OR: 0.52; 95% CI: 0.33, 0.80; p = 0.003), infection (OR: 3.60; 95% CI: 1.91, 6.78; p < 0.001), hypertension (OR: 4.02; 95% CI: 2.94, 5.51; p < 0.001), and nephrotoxic drug application (OR: 4.43; 95% CI: 1.86, 10.53; p = 0.001), were all significantly associated with the incidence of AKI. Furthermore, the results of the network meta-analysis suggested that the pathologic type of minor glomerular abnormalities (MGA)/diffuse mesangial proliferation (DMP), the type of infrequent relapses (IFRNS)/steroid-sensitive NS (SSNS), and the use of diuretic medications were associated with a relatively low risk of AKI occurrence. Conclusion Factors upon admission of children with NS are associated with the onset of AKI. Emphasis should be placed on populations with a heightened risk of AKI in clinical practice. Further research is warranted to confirm the findings due to the limitations of this study. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42024571170, PROSPERO (CRD42024571170).
Collapse
Affiliation(s)
| | - Bingbing Qiu
- Department of Pediatrics, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | | | | | | |
Collapse
|
5
|
Shulha AS, Shyshenko V, Schibalski RS, Jones AC, Faulkner JL, Stadler K, Ilatovskaya DV. An update on the role of sex hormones in the function of the cardiorenal mitochondria. Biochem Soc Trans 2024; 52:2307-2319. [PMID: 39601292 DOI: 10.1042/bst20240046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/08/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
Multiple studies have highlighted the crucial role of mitochondrial bioenergetics in understanding the progression of cardiorenal diseases, revealing new potential treatment targets related to mitochondrial metabolism. There are well-established sexual dimorphisms in cardiac and renal physiology, with premenopausal females being generally protected from pathology compared with males. The mechanisms of this protection remain to be fully elucidated, however, they clearly depend, at least in part, on sex hormones. Sex hormones contribute to regulating mitochondrial function, and vice versa, highlighting the existence of a bidirectional relationship pivotal for cellular energy metabolism; however, there are still large gaps in knowledge when the sex differences in mitochondrial bioenergetics in health and disease are concerned. This manuscript provides an overview of the new evidence that has been accumulated regarding the role of sex hormones in renal and cardiac mitochondria-dependent cellular energetics, metabolism, and signaling, mainly focusing on the data obtained within the last 3-5 years. We briefly discuss mitochondrial function and different types of sex hormones for the reader and then focus on novel research underscoring the emerging mitochondrial pathways regulated by sex hormones, which might be of interest for the development of novel therapeutic strategies for cardiorenal conditions.
Collapse
Affiliation(s)
- Anastasia S Shulha
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, U.S.A
| | - Vita Shyshenko
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, U.S.A
| | - Ryan S Schibalski
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, U.S.A
| | - Adam C Jones
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, U.S.A
| | - Jessica L Faulkner
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, U.S.A
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA
| | | | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, U.S.A
| |
Collapse
|
6
|
Jankowski J, Lee HK, Liu C, Wilflingseder J, Hennighausen L. Sexually dimorphic renal expression of mouse Klotho is directed by a kidney-specific distal enhancer responsive to HNF1b. Commun Biol 2024; 7:1142. [PMID: 39277686 PMCID: PMC11401919 DOI: 10.1038/s42003-024-06855-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024] Open
Abstract
Transcription enhancers are genomic sequences regulating common and tissue-specific genes and their disruption can contribute to human disease development and progression. Klotho, a sexually dimorphic gene specifically expressed in kidney, is well-linked to kidney dysfunction and its deletion from the mouse genome leads to premature aging and death. However, the sexually dimorphic regulation of Klotho is not understood. Here, we characterize two candidate Klotho enhancers using H3K27ac epigenetic marks and transcription factor binding and investigate their functions, individually and combined, through CRISPR-Cas9 genome engineering. We discovered that only the distal (E1), but not the proximal (E2) candidate region constitutes a functional enhancer, with the double deletion not causing Klotho expression to further decrease. E1 activity is dependent on HNF1b transcription factor binding site within the enhancer. Further, E1 controls the sexual dimorphism of Klotho as evidenced by qPCR and RNA-seq. Despite the sharp reduction of Klotho mRNA, unlike germline Klotho knockouts, mutant mice present normal phenotype, including weight, lifespan, and serum biochemistry. Lastly, only males lacking E1 display more prominent acute, but not chronic kidney injury responses, indicating a remarkable range of potential adaptation to isolated Klotho loss, especially in female E1 knockouts, retaining renoprotection despite over 80% Klotho reduction.
Collapse
Affiliation(s)
- Jakub Jankowski
- Section of Genetics and Physiology, Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD, 20892, USA.
- , 8 Center Drive, Room 107, 20892, Bethesda, MD, USA.
| | - Hye Kyung Lee
- Section of Genetics and Physiology, Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, 20892, USA
| | - Julia Wilflingseder
- Department of Physiology and Pathophysiology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Lothar Hennighausen
- Section of Genetics and Physiology, Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
7
|
Yao H, Zhao H, Du Y, Zhang Y, Li Y, Zhu H. Sex-related differences in SIRT3-mediated mitochondrial dynamics in renal ischemia/reperfusion injury. Transl Res 2024; 270:1-12. [PMID: 38556109 DOI: 10.1016/j.trsl.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 04/02/2024]
Abstract
The prevalence of renal ischemia/reperfusion injury (IRI) in premenopausal women is considerably lower than that in age-matched men. This suggests that sex-related differences in mitochondrial function and homeostasis may contribute to sexual dimorphism in renal injury, though the mechanism remains unclear. Mouse model of unilateral left renal IRI with contralateral kidney enucleation, Ovariectomy in female mice, and a human embryonic kidney (HEK) cell model of hypoxia-reoxygenation were used to study how estrogen affects the sexual dimorphism of renal IRI through SIRT3 in vitro and in vivo, respectively. Here, we demonstrate differential expression of renal SIRT3 may induce sexual dimorphism in IRI using the renal IRI model. Higher SIRT3 level in female mice was associated with E2-induced protection of renal tubular epithelium, reduced mitochondrial reactive oxygen species (ROS), and IRI resistance. In hypoxia-reoxygenated HEK cells, SIRT3 knockdown increased oxidative stress, shifted the interconnected mitochondrial network toward fission, exacerbated hypoxia/reoxygenation-induced endoplasmic reticulum stress (ERS), and abolished the protective effects of E2 on IRI. Mechanistically, the SIRT3 level is E2-dependent and that E2 increases the SIRT3 protein level via estrogen receptor. SIRT3 targeted an i-AAA protease, yeast mitochondrial AAA metalloprotease (YME1L1), and hydrolyzed long optic atrophy 1 (L-OPA) to short-OPA1 (S-OPA1) by deacetylating YME1L1, regulating mitochondrial dynamics toward fusion to reduce oxidative stress and ERS. These findings explored the mechanism by how estrogen alleviates renal IRI and providing a basis for potential therapeutic interventions targeting SIRT3.
Collapse
Affiliation(s)
- Hanlin Yao
- Zhongnan Hospital, Wuhan University, Wuhan 430060, Hubei, China
| | - Hongchao Zhao
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei, China
| | - Yang Du
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei, China
| | - Ye Zhang
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei, China
| | - Yanze Li
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei, China
| | - Hengcheng Zhu
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei, China; Institute of Urologic Disease, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei, China.
| |
Collapse
|
8
|
Juszczak F, Arnould T, Declèves AE. The Role of Mitochondrial Sirtuins (SIRT3, SIRT4 and SIRT5) in Renal Cell Metabolism: Implication for Kidney Diseases. Int J Mol Sci 2024; 25:6936. [PMID: 39000044 PMCID: PMC11241570 DOI: 10.3390/ijms25136936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Kidney diseases, including chronic kidney disease (CKD), diabetic nephropathy, and acute kidney injury (AKI), represent a significant global health burden. The kidneys are metabolically very active organs demanding a large amount of ATP. They are composed of highly specialized cell types in the glomerulus and subsequent tubular compartments which fine-tune metabolism to meet their numerous and diverse functions. Defective renal cell metabolism, including altered fatty acid oxidation or glycolysis, has been linked to both AKI and CKD. Mitochondria play a vital role in renal metabolism, and emerging research has identified mitochondrial sirtuins (SIRT3, SIRT4 and SIRT5) as key regulators of renal cell metabolic adaptation, especially SIRT3. Sirtuins belong to an evolutionarily conserved family of mainly NAD+-dependent deacetylases, deacylases, and ADP-ribosyl transferases. Their dependence on NAD+, used as a co-substrate, directly links their enzymatic activity to the metabolic status of the cell. In the kidney, SIRT3 has been described to play crucial roles in the regulation of mitochondrial function, and the antioxidative and antifibrotic response. SIRT3 has been found to be constantly downregulated in renal diseases. Genetic or pharmacologic upregulation of SIRT3 has also been associated with beneficial renal outcomes. Importantly, experimental pieces of evidence suggest that SIRT3 may act as an important energy sensor in renal cells by regulating the activity of key enzymes involved in metabolic adaptation. Activation of SIRT3 may thus represent an interesting strategy to ameliorate renal cell energetics. In this review, we discuss the roles of SIRT3 in lipid and glucose metabolism and in mediating a metabolic switch in a physiological and pathological context. Moreover, we highlight the emerging significance of other mitochondrial sirtuins, SIRT4 and SIRT5, in renal metabolism. Understanding the role of mitochondrial sirtuins in kidney diseases may also open new avenues for innovative and efficient therapeutic interventions and ultimately improve the management of renal injuries.
Collapse
Affiliation(s)
- Florian Juszczak
- Laboratory of Molecular and Metabolic Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons (UMONS), 20, Place du Parc, 7000 Mons, Belgium;
| | - Thierry Arnould
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 61, Rue de Bruxelles, 5000 Namur, Belgium;
| | - Anne-Emilie Declèves
- Laboratory of Molecular and Metabolic Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons (UMONS), 20, Place du Parc, 7000 Mons, Belgium;
| |
Collapse
|
9
|
Faguer S, Piedrafita A, Sanz AB, Siwy J, Mina IK, Alves M, Bousquet P, Marcheix B, Casemayou A, Klein J, Minville V, Breuil B, Ortiz A, Schanstra JP. Performances of acute kidney injury biomarkers vary according to sex. Clin Kidney J 2024; 17:sfae091. [PMID: 38699482 PMCID: PMC11062024 DOI: 10.1093/ckj/sfae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Indexed: 05/05/2024] Open
Abstract
Background Before implementing individualized strategies to treat acute kidney injury (AKI), identifying clusters of patients with divergent pathophysiological mechanisms, diagnosis criteria or outcomes is of the utmost importance. Here we studied sex-related molecular mechanisms in cardiac bypass (CBP) surgery patients developing AKI. Methods We compared the characteristics of 1170 patients referred for CBP surgery using multivariate logistic regression and propensity score-based analysis. Performances of the candidate urinary biomarkers at <4 h post-surgery, urinary neutrophil gelatinase-associated lipocalin (uNGAL), [IGFBP7]·[TIMP-2] product (NephroCheck) and a recently developed AKI signature of 204 urinary peptides (AKI204) to predict AKI were compared in both sexes. Results Incidence (∼25%) and severity of AKI were similar in men and women, even after adjustment for the usual risk factors of AKI, including baseline estimated glomerular filtration rate, age, diabetes mellitus, length of CBP and red blood cell transfusion. However, at the molecular level, performances of uNGAL, NephroCheck and AKI204 to predict AKI strongly diverged between men and women. In the full cohort, as well as in subgroups of men and women, the multimarker AKI204 signature outperformed uNGAL and NephroCheck and predicted the development of AKI significantly better in women than in men. Analysis of AKI204 at the single-peptide level suggested divergences of AKI mechanisms between sexes due to increased kidney inflammation in women (increased abundance of urinary fragments of osteopontin and uromodulin). Conclusions In patients referred for CBP surgery, significant clinical and biological differences between men and women as well as sexual dimorphism of AKI biomarker performances were identified. The urinary peptide signature points to sex-related molecular mechanisms underlying AKI.
Collapse
Affiliation(s)
- Stanislas Faguer
- Department of Nephrology and Organ Transplantation, French Intensive Care Renal Network, University Hospital of Toulouse, Toulouse, France
- National Institute of Health and Medical Research, UMR 1297 (Institute of Metabolic and Cardiovascular Diseases), Toulouse, France
- Faculty of Health, University Paul Sabatier – Toulouse-III, Toulouse, France
| | - Alexis Piedrafita
- Department of Nephrology and Organ Transplantation, French Intensive Care Renal Network, University Hospital of Toulouse, Toulouse, France
- National Institute of Health and Medical Research, UMR 1297 (Institute of Metabolic and Cardiovascular Diseases), Toulouse, France
- Faculty of Health, University Paul Sabatier – Toulouse-III, Toulouse, France
| | - Ana Belen Sanz
- IIS-Fundación Jiménez Díaz, School of Medicine, Autonomous University of Madrid, FRIAT and RICORS2040, Madrid, Spain
| | | | - Ioanna K Mina
- Mosaiques Diagnostics GmbH, Hannover, Germany
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Melinda Alves
- National Institute of Health and Medical Research, UMR 1297 (Institute of Metabolic and Cardiovascular Diseases), Toulouse, France
- Faculty of Health, University Paul Sabatier – Toulouse-III, Toulouse, France
| | - Paul Bousquet
- Department of Anesthesiology and Critical Care, University Hospital of Toulouse, Toulouse, France
| | - Bertrand Marcheix
- Faculty of Health, University Paul Sabatier – Toulouse-III, Toulouse, France
- Department of Cardiac and Vascular Surgery, University Hospital of Toulouse, Toulouse, France
| | - Audrey Casemayou
- Department of Nephrology and Organ Transplantation, French Intensive Care Renal Network, University Hospital of Toulouse, Toulouse, France
- National Institute of Health and Medical Research, UMR 1297 (Institute of Metabolic and Cardiovascular Diseases), Toulouse, France
- Faculty of Health, University Paul Sabatier – Toulouse-III, Toulouse, France
| | - Julie Klein
- National Institute of Health and Medical Research, UMR 1297 (Institute of Metabolic and Cardiovascular Diseases), Toulouse, France
- Faculty of Health, University Paul Sabatier – Toulouse-III, Toulouse, France
| | - Vincent Minville
- Faculty of Health, University Paul Sabatier – Toulouse-III, Toulouse, France
- Department of Anesthesiology and Critical Care, University Hospital of Toulouse, Toulouse, France
| | - Benjamin Breuil
- National Institute of Health and Medical Research, UMR 1297 (Institute of Metabolic and Cardiovascular Diseases), Toulouse, France
- Faculty of Health, University Paul Sabatier – Toulouse-III, Toulouse, France
| | - Alberto Ortiz
- IIS-Fundación Jiménez Díaz, School of Medicine, Autonomous University of Madrid, FRIAT and RICORS2040, Madrid, Spain
| | - Joost P Schanstra
- National Institute of Health and Medical Research, UMR 1297 (Institute of Metabolic and Cardiovascular Diseases), Toulouse, France
- Faculty of Health, University Paul Sabatier – Toulouse-III, Toulouse, France
| |
Collapse
|
10
|
Holliday MW, Majeti RN, Sheikh-Hamad D. Chronic Interstitial Nephritis in Agricultural Communities: Observational and Mechanistic Evidence Supporting the Role of Nephrotoxic Agrochemicals. Clin J Am Soc Nephrol 2024; 19:538-545. [PMID: 37678249 PMCID: PMC11020436 DOI: 10.2215/cjn.0000000000000312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
Chronic interstitial nephritis in agricultural communities (CINAC) is an epidemic of kidney disease affecting specific tropical and subtropical regions worldwide and is characterized by progressive CKD in the absence of traditional risk factors, such as hypertension and diabetes. CINAC prevalence is higher among young, male agricultural workers, but it also affects women, children, and nonagricultural workers in affected areas. Biopsies from patients with CINAC across regions commonly demonstrate tubular injury with lysosomal aggregates, tubulointerstitial inflammation, and fibrosis and variable glomerular changes. Each endemic area holds environmental risk factors and patient/genetic milieus, resulting in uncertainty about the cause(s) of the disease. Currently, there is no specific treatment available for CINAC. We highlight survey findings of Houston-based migrant workers with CINAC and draw similarities between kidney injury phenotype of patients with CINAC and mice treated chronically with paraquat, an herbicide used worldwide. We propose potential pathways and mechanisms for kidney injury in patients with CINAC, which may offer clues for potential therapies.
Collapse
Affiliation(s)
- Michael W. Holliday
- Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, Texas
| | | | | |
Collapse
|
11
|
Wu H, Dixon EE, Xuanyuan Q, Guo J, Yoshimura Y, Debashish C, Niesnerova A, Xu H, Rouault M, Humphreys BD. High resolution spatial profiling of kidney injury and repair using RNA hybridization-based in situ sequencing. Nat Commun 2024; 15:1396. [PMID: 38360882 PMCID: PMC10869771 DOI: 10.1038/s41467-024-45752-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 02/02/2024] [Indexed: 02/17/2024] Open
Abstract
Emerging spatially resolved transcriptomics technologies allow for the measurement of gene expression in situ at cellular resolution. We apply direct RNA hybridization-based in situ sequencing (dRNA HybISS, Cartana part of 10xGenomics) to compare male and female healthy mouse kidneys and the male kidney injury and repair timecourse. A pre-selected panel of 200 genes is used to identify cell state dynamics patterns during injury and repair. We develop a new computational pipeline, CellScopes, for the rapid analysis, multi-omic integration and visualization of spatially resolved transcriptomic datasets. The resulting dataset allows us to resolve 13 kidney cell types within distinct kidney niches, dynamic alterations in cell state over the course of injury and repair and cell-cell interactions between leukocytes and kidney parenchyma. At late timepoints after injury, C3+ leukocytes are enriched near pro-inflammatory, failed-repair proximal tubule cells. Integration of snRNA-seq dataset from the same injury and repair samples also allows us to impute the spatial localization of genes not directly measured by dRNA HybISS.
Collapse
Affiliation(s)
- Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Eryn E Dixon
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Qiao Xuanyuan
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Juanru Guo
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Yasuhiro Yoshimura
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | | | | | - Hao Xu
- 10X Genomics, Pleasanton, CA, USA
- Aplex Bio AB, Solna, Sweden
| | | | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
12
|
Kong E, Zhang Y, Geng X, Zhao Y, Yue W, Feng X. Inhibition of Sirt3 activates the cGAS-STING pathway to aggravate hepatocyte damage in hepatic ischemia-reperfusion injury mice. Int Immunopharmacol 2024; 128:111474. [PMID: 38185036 DOI: 10.1016/j.intimp.2023.111474] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/29/2023] [Indexed: 01/09/2024]
Abstract
Hepatic ischemia-reperfusion injury (IRI) typically manifests during subtotal hepatectomy and inflicts substantial damage to liver function in the perioperative period. Although the central role of cGAS-STING-mediated immune inflammation in hepatocyte damage during hepatic IRI is acknowledged, the precise regulatory mechanisms remain elusive. The current study aims to elucidate how Sirt3 inhibition activates the cGAS-STING pathway and exacerbates hepatocyte damage in hepatic IRI. We established both in vivo and in vitro models by creating hepatic IRI mice model and subjecting AML-12 hepatocyte cell lines to oxygen-glucose deprivation/reperfusion (OGD/R). Hepatic IRI compromised liver and mitochondrial function while elevating cytosolic mitochondrial DNA (mtDNA) levels in hepatocytes. Additionally, both in vivo hepatic IRI and in vitro OGD/R induced increased phosphorylation and activation of cGAS, STING, and IRF3, accompanied by heightened levels of pro-inflammatory factors, including TNF-α, IL-1β, and type I interferon (IFN-β). Importantly, knockdown of cGAS or STING through siRNA effectively attenuated hepatic IRI-induced inflammation and ameliorated liver function in both experimental settings, underscoring the dynamic involvement of the cGAS-STING pathway in hepatic IRI-induced inflammation. Furthermore, we observed a significant reduction in Sirt3 expression following hepatic IRI, both in vivo and in vitro. Then we generated Sirt3-deficient mice and applied Sirt3 knockdown in AML-12 hepatocytes. Notably, Sirt3 deficiency led to increased phosphorylation and activation of cGAS, STING, and IRF3, coupled with elevated TNF-α, IL-1β, and IFN-β levels in both in vivo and in vitro conditions. Moreover, upon silencing various downstream targets of Sirt3, such as transcription factors Sp1, Pu1, and p65, we observed that specifically knocking down p65 in AML-12 hepatocytes reduced cGAS mRNA levels. Co-immunoprecipitation assays confirmed a direct interaction between Sirt3 and p65. The absence of Sirt3 significantly increased nuclear translocation of p65 in mice, whereas Sirt3 knockdown in AML-12 hepatocytes heightened nuclear translocation of p65. ChIP-PCR assays demonstrated that Sirt3 deficiency notably enhanced the binding of p65 to two cGAS promoters, ultimately promoting cGAS transcription. Collectively, our results underscored that inhibition of Sirt3 activates the cGAS-STING pathway to aggravate hepatocyte damage by increasing cytosolic mtDNA and promoting nuclear translocation of p65 to promote cGAS transcription in hepatic IRI. These findings hold promise for potential therapeutic interventions in hepatic IRI by targeting the Sirt3-cGAS-STING axis, offering new avenues for the development of clinical strategies to mitigate liver damage during the perioperative period.
Collapse
Affiliation(s)
- Erliang Kong
- Department of Anesthesiology, the 988th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Zhengzhou 450042, Henan, China
| | - Yang Zhang
- Department of Anesthesiology, the 988th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Zhengzhou 450042, Henan, China
| | - Xuqiang Geng
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Yuanyuan Zhao
- Department of Medical Service, the 988th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Zhengzhou 450042, Henan, China
| | - Wei Yue
- Department of Medical Service, the 988th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Zhengzhou 450042, Henan, China.
| | - Xudong Feng
- Department of Anesthesiology, the 988th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Zhengzhou 450042, Henan, China.
| |
Collapse
|
13
|
Martin F, Xiao Y, Welten V, Nakamori K, Gizlenci M, Zhou H, Tullius SG. The combinatorial effect of age and biological sex on alloimmunity and transplantation outcome. FRONTIERS IN TRANSPLANTATION 2024; 2:1325232. [PMID: 38993871 PMCID: PMC11235293 DOI: 10.3389/frtra.2023.1325232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/26/2023] [Indexed: 07/13/2024]
Abstract
Both age and biological sex affect transplantation outcomes. We have recently shown in a large volume clinical analysis utilizing the SRTR data that graft survival is inferior in young female kidney transplant recipients. In this multi-factorial analysis, older female recipients presented with a trend towards improved transplant outcomes compared to both young female recipients and male recipients of any age. Those data supported by reports of those of others suggest that sex and age impact alloimmune responses both, individually and synergistically. Biological sex and hormone levels change throughout a lifetime with recognized effects on longevity in addition to an impact on the development and course of several disease preconditions. Detailed mechanisms of those sex and age-specific aspects have thus far been studied outside of transplantation. Effects on alloimmunity are largely unknown. Moreover, the combinatorial impact that both, biological sex and age have on transplant outcomes is not understood. Here, we summarize available data that analyze how age in combination with biological sex may shape alloimmune responses and affect transplant outcomes.
Collapse
Affiliation(s)
- Friederike Martin
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Department of Surgery, Campus Charité Mitte|Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Yao Xiao
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Vanessa Welten
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Keita Nakamori
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Merih Gizlenci
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Hao Zhou
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Stefan G Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
14
|
Kranrod JW, Darwesh AM, Bassiouni W, Huang A, Fang L, Korodimas JV, Adebesin AM, Munnuri S, Falck JR, Seubert JM. Cardioprotective Action of a Novel Synthetic 19,20-EDP Analog Is Sirt Dependent. J Cardiovasc Pharmacol 2024; 83:105-115. [PMID: 38180457 PMCID: PMC10770468 DOI: 10.1097/fjc.0000000000001495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/30/2023] [Indexed: 01/06/2024]
Abstract
ABSTRACT Mounting evidence suggests that cytochrome P450 epoxygenase-derived metabolites of docosahexaenoic acid, called epoxydocosapentaenoic acids (EDPs), limit mitochondrial damage after cardiac injury. In particular, the 19,20-EDP regioisomer has demonstrated potent cardioprotective action. Thus, we investigated our novel synthetic 19,20-EDP analog SA-22 for protection against cardiac ischemia-reperfusion (IR) injury. Isolated C57BL/6J mouse hearts were perfused through Langendorff apparatus for 20 minutes to obtain baseline function, followed by 30 minutes of global ischemia. Hearts were then treated with vehicle, 19,20-EDP, SA-22, or SA-22 with the pan-sirtuin inhibitor nicotinamide or the SIRT3-selective inhibitor 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP) at the start of 40 minutes reperfusion (N = 5-8). We assessed IR injury-induced changes in recovery of myocardial function, using left ventricular developed pressure and systolic and diastolic pressure change. Tissues were assessed for electron transport chain function, SIRT1 and SIRT3, optic atrophy type 1, and caspase-1. We also used H9c2 cells in an in vitro model of hypoxia/reoxygenation injury (N = 3-6). Hearts perfused with SA-22 had significantly improved postischemic left ventricular developed pressure, systolic and diastolic recovery (64% of baseline), compared with vehicle control (15% of baseline). In addition, treatment with SA-22 led to better catalytic function observed in electron transport chain and SIRT enzymes. The protective action of SA-22 resulted in reduced activation of pyroptosis in both hearts and cells after injury. Interestingly, although nicotinamide cotreatment worsened functional outcomes, cell survival, and attenuated sirtuin activity, it failed to completely attenuate SA-22-induced protection against pyroptosis, possibly indicating EDPs exert cytoprotection through pleiotropic mechanisms. In short, these data demonstrate the potential of our novel synthetic 19,20-EDP analog, SA-22, against IR/hypoxia-reoxygenation injury and justify further development of therapeutic agents based on 19,20-EDP.
Collapse
Affiliation(s)
- Joshua W. Kranrod
- Faculty of Pharmacy and Pharmaceutical Sciences, 2026-M Katz Group Centre for Pharmacy and Health Research, University of Alberta, 11361-97 Ave, Edmonton, AB T6G 2E1, Canada
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB, T6G 1C9, Canada
| | - Ahmed M. Darwesh
- Faculty of Pharmacy and Pharmaceutical Sciences, 2026-M Katz Group Centre for Pharmacy and Health Research, University of Alberta, 11361-97 Ave, Edmonton, AB T6G 2E1, Canada
| | - Wesam Bassiouni
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Andy Huang
- Faculty of Pharmacy and Pharmaceutical Sciences, 2026-M Katz Group Centre for Pharmacy and Health Research, University of Alberta, 11361-97 Ave, Edmonton, AB T6G 2E1, Canada
| | - Liye Fang
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB, T6G 1C9, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Jacob V. Korodimas
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Adeniyi Michael Adebesin
- Division of Chemistry, Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sailu Munnuri
- Division of Chemistry, Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- TCG GreenChem, Inc. Process R&D Center at Princeton South, Ewing, NJ, USA 08628
| | - John R. Falck
- Division of Chemistry, Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - John M. Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, 2026-M Katz Group Centre for Pharmacy and Health Research, University of Alberta, 11361-97 Ave, Edmonton, AB T6G 2E1, Canada
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB, T6G 1C9, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
15
|
Curtis LM. Sex and Gender Differences in AKI. KIDNEY360 2024; 5:160-167. [PMID: 37990360 PMCID: PMC10833607 DOI: 10.34067/kid.0000000000000321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Sex differences in AKI continue to be identified. Generally, women are protected from AKI when compared to men. Much of the protection exhibited in women is diminished after menopause. These sex and age effects have also been noted in animal models of AKI. Gonadal hormones, as modifiers of incidence, severity, and progression of AKI, have been offered as likely contributors to this sex and age effect. In animal models of AKI, estrogen and testosterone seem to modulate susceptibility. Questions remain however regarding cellular and molecular changes that are initiated by modulation of these hormones because both estrogen and testosterone have effects across cell types that play a role in AKI. Although findings have largely been informed by studies in males, molecular pathways that are involved in the initiation and progression of AKI may be modulated by gonadal hormones. Compounding the hormone-receptor effects are developmental effects of sex chromosomal complement and epigenetic influences that may confer sex-based baseline differences in gene and protein expression, and gene dosage effects of X inactivation and escape on molecular pathways. Elucidation of sex-based protection may afford a more complete view of AKI and potential therapeutic interventions. Furthermore, the effect on susceptibility to AKI in transgender patients, who receive life-altering and essential gender-affirming hormone therapy, requires greater attention. In this review, several potential contributors to the sex differences observed in humans and animal models are discussed.
Collapse
Affiliation(s)
- Lisa M Curtis
- Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
16
|
Li XY, Yu JT, Dong YH, Shen XY, Hou R, Xie MM, Wei J, Hu XW, Dong ZH, Shan RR, Jin J, Shao W, Meng XM. Protein acetylation and related potential therapeutic strategies in kidney disease. Pharmacol Res 2023; 197:106950. [PMID: 37820854 DOI: 10.1016/j.phrs.2023.106950] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/16/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
Kidney disease can be caused by various internal and external factors that have led to a continual increase in global deaths. Current treatment methods can alleviate but do not markedly prevent disease development. Further research on kidney disease has revealed the crucial function of epigenetics, especially acetylation, in the pathology and physiology of the kidney. Histone acetyltransferases (HATs), histone deacetylases (HDACs), and acetyllysine readers jointly regulate acetylation, thus affecting kidney physiological homoeostasis. Recent studies have shown that acetylation improves mechanisms and pathways involved in various types of nephropathy. The discovery and application of novel inhibitors and activators have further confirmed the important role of acetylation. In this review, we provide insights into the physiological process of acetylation and summarise its specific mechanisms and potential therapeutic effects on renal pathology.
Collapse
Affiliation(s)
- Xiang-Yu Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ju-Tao Yu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yu-Hang Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiao-Yu Shen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Rui Hou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Man-Man Xie
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Jie Wei
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, Anhui, China
| | - Xiao-Wei Hu
- Department of Clinical Pharmacy, Anhui Provincial Children's Hospital, Hefei 230051, China
| | - Ze-Hui Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Run-Run Shan
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Juan Jin
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Wei Shao
- School of Basic Medicine, Anhui Medical University, Hefei 230032, China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
17
|
Jin Q, Liu T, Ma F, Yang L, Mao H, Wang Y, Li P, Peng L, Zhan Y. Therapeutic application of traditional Chinese medicine in kidney disease: Sirtuins as potential targets. Biomed Pharmacother 2023; 167:115499. [PMID: 37742600 DOI: 10.1016/j.biopha.2023.115499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023] Open
Abstract
Sirtuins are a family of NAD+ III-dependent histone deacetylases that consists of seven family members, Sirt1-Sirt7, which regulate various signalling pathways and are involved in many critical biological processes of kidney diseases. Traditional Chinese medicine (TCM), as an essential part of the global healthcare system, has multi-component and multi-pathway therapeutic characteristics and plays a role in preventing and controlling various diseases. Through ongoing collaboration with modern medicine, TCM has recently achieved many remarkable advancements in theoretical investigation, mechanistic research, and clinical applications related to kidney diseases. Therefore, a comprehensive and systematic summary of TCM that focuses on sirtuins as the intervention target for kidney diseases is necessary. This review introduces the relationship between abnormal sirtuins levels and common kidney diseases, such as diabetic kidney disease and acute kidney injury. Based on the standard biological processes, such as inflammation, oxidative stress, autophagy, mitochondrial homeostasis, and fibrosis, which are underlying kidney diseases, comprehensively describes the roles and regulatory effects of TCM targeting the sirtuins family in various kidney diseases.
Collapse
Affiliation(s)
- Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
18
|
Zhou L, Li H, Hu J, Meng J, Lv H, Yang F, Wang M, Liu R, Wu W, Hou D, Liu H. Plasma oxidative lipidomics reveals signatures for sepsis-associated acute kidney injury. Clin Chim Acta 2023; 551:117616. [PMID: 37884118 DOI: 10.1016/j.cca.2023.117616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/09/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Oxidized lipids are essential bioactive lipid mediators generated during infection that regulate oxidative stress and the inflammatory response, but their signatures in patients with sepsis-associated acute kidney injury (SA-AKI) are poorly understood. This study analyzed the oxidative lipidomics of plasma from patients with SA-AKI to reveal the underlying biomarkers and pathophysiological mechanisms involved in sepsis. MATERIALS A total of 67 patients with SA-AKI and 20 age- and sex-matched healthy controls (HCs) participated in this prospective cohort study. Among the patients with SA-AKI, 14 cases had stage I-II AKI and 53 cases had stage III AKI. Oxidative lipidomic analysis of plasma samples was conducted using ultra performance liquid chromatography coupled with tandem mass spectrometric (UPLC-MS /MS) detection. RESULTS Among 21 kinds of differentially oxidized lipids, 5(S),12(S)-DiHETE, 5-isoPGF2VI, 5,6-DiHETrE, 11,12-EET and 9,10-DiHOME showed the best performance. The prediction model incorporating them has shown highly sensitive and specific in distinguishing different stages of SA-AKI from HCs. The annotation of Kyoto Encyclopedia of Genes and Genomes illustrated that the overall downregulation of vascular smooth muscle contraction was closely related to the pathophysiological mechanism of SA-AKI. CONCLUSION This study revealed alterations in the characteristic oxidized lipids in the plasma of SA-AKI patients, and these lipids had high diagnostic efficiency and potential targeted intervention value for SA-AKI.
Collapse
Affiliation(s)
- Lu Zhou
- Department of Nephrology, Tangdu Hospital, the Fourth Military Medical University (Air Force Medical University), Xi'an, Shaanxi Province, China
| | - Huirong Li
- Department of Nephrology, Tangdu Hospital, the Fourth Military Medical University (Air Force Medical University), Xi'an, Shaanxi Province, China
| | - Jiangtao Hu
- Department of Nephrology, Tangdu Hospital, the Fourth Military Medical University (Air Force Medical University), Xi'an, Shaanxi Province, China
| | - Junping Meng
- Department of Nephrology, Tangdu Hospital, the Fourth Military Medical University (Air Force Medical University), Xi'an, Shaanxi Province, China
| | - Honghong Lv
- Department of Nephrology, Tangdu Hospital, the Fourth Military Medical University (Air Force Medical University), Xi'an, Shaanxi Province, China
| | - Feng Yang
- Department of Nephrology, Tangdu Hospital, the Fourth Military Medical University (Air Force Medical University), Xi'an, Shaanxi Province, China
| | - Mengqiu Wang
- Department of Nephrology, Tangdu Hospital, the Fourth Military Medical University (Air Force Medical University), Xi'an, Shaanxi Province, China
| | - Rui Liu
- Department of Critical Care Medicine, Tangdu Hospital, the Fourth Military Medical University (Air Force Medical University), Xi'an, Shaanxi Province, China
| | - Wei Wu
- Department of Critical Care Medicine, Tangdu Hospital, the Fourth Military Medical University (Air Force Medical University), Xi'an, Shaanxi Province, China
| | - DongHua Hou
- Department of Nephropathy and Hemodialysis, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongbao Liu
- Department of Nephrology, Tangdu Hospital, the Fourth Military Medical University (Air Force Medical University), Xi'an, Shaanxi Province, China.
| |
Collapse
|
19
|
Geng R, Fang J, Kang SG, Huang K, Tong T. Chronic exposure to UVB induces nephritis and gut microbiota dysbiosis in mice based on the integration of renal transcriptome profiles and 16S rRNA sequencing data. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122035. [PMID: 37343920 DOI: 10.1016/j.envpol.2023.122035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
Ultraviolet (UV) is a common and abundant environmental factor that affects daily life. Although the effects of UV radiation on the skin have been extensively reported, studies on the influence of UV radiation on internal organs are still limited. This study aimed to evaluate the influence of UVB exposure on the kidney of mice and to investigate the possible mechanism. In the present study, histopathology changes, oxidative stress, and inflammatory response were used to evaluate the kidney and colon injury induced by UVB exposure. The results showed that the 14-week chronic skin exposure to UVB triggers a kidney injury response characterized by macrophage infiltration, elevated oxidative stress as well as inflammatory and injury markers. The RNA sequencing demonstrated that chronic UVB exposure could alter the kidney transcriptomic profile distinguished by the regulation of genes involved in the Notch signaling pathway, JAK-STAT signaling pathway, and ECM-receptor interaction. Besides, chronic UVB exposure also resulted in gut dysbiosis, manifested as colon macrophage infiltration, stimulated inflammatory responses, impaired barrier integrity, and microbiota structural and functional disorders. The Spearman analysis results further revealed a strong correlation between gut microbiota and kidney injury. In conclusion, skin chronic exposure to UVB causes nephritis and gut microbiota dysbiosis in mice, and these findings provide new insight into the underlying risks of chronic UVB exposure to human wellness.
Collapse
Affiliation(s)
- Ruixuan Geng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| | - Jingjing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Seong-Gook Kang
- Department of Food Engineering, Mokpo National University, Muangun 58554, South Korea
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Safety Assessment of Agricultural Genetically Modified Organisms (Food), Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Safety Assessment of Agricultural Genetically Modified Organisms (Food), Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Laboratory for Food Quality and Safety, Beijing, China.
| |
Collapse
|
20
|
Miao J, Huang J, Liang Y, Zhang Y, Li J, Meng P, Shen W, Li X, Wu Q, Wang X, Niu H, Tang Y, Zhou S, Zhou L. Sirtuin 6 is a key contributor to gender differences in acute kidney injury. Cell Death Discov 2023; 9:134. [PMID: 37185276 PMCID: PMC10130034 DOI: 10.1038/s41420-023-01432-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Acute kidney injury (AKI) is rapidly increasing nowadays and at a high risk to progress into chronic kidney disease (CKD). Of note, men are more susceptive to AKI, suggesting gender differences in AKI patients. However, the underlying mechanisms remain largely unclear. To test it, we adopted two experimental models of AKI, including ischemia/reperfusion injury and rhabdomyolysis, which were constructed in age-matched male and female mice. We found severe damages of tubular apoptosis, mitochondrial dysfunction, and loss of renal function showing in male mice, while female mice only had very mild injury. We further tested the expression of Sirtuins, and found that female mice could preserve more Sirtuin members' expression in case of kidney damage. Among Sirtuin family, Sirtuin 6 was maximally preserved in injured kidney in female mice, suggesting its important role involved in the gender differences of AKI pathogenesis. We then found that knockdown of androgen receptor (AR) attenuated tubular damage, mitochondrial dysfunction and retarded the loss of renal function. Overexpression of Sirtuin 6 also showed similar results. Furthermore, in cultured tubular cells, dihydrotestosterone (DHT) decreased Sirtuin 6 expression and exacerbated cell apoptosis. Ectopic expression of Sirtuin 6 sufficiently inhibited DHT-induced cell apoptosis. Mechanically, we found AR inhibited Sirtuin 6, leading to the repression of binding of Sirtuin 6 with PGC-1α. This resulted in acetylation of PGC-1α and inhibition of its activity, further triggered the loss of mitochondrial homeostasis. Our results provided new insights to the underlying mechanisms of gender differences in AKI, suggesting Sirtuin 6 maybe a new therapeutic target for preventing AKI in male patients.
Collapse
Affiliation(s)
- Jinhua Miao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiewu Huang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Liang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yunfang Zhang
- Department of Nephrology, Huadu District People's Hospital, Southern Medical University, Guangzhou, China
| | - Jiemei Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ping Meng
- Department of Nephrology, Huadu District People's Hospital, Southern Medical University, Guangzhou, China
| | - Weiwei Shen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaolong Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qinyu Wu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxu Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongxin Niu
- Department of General Practice, Special Medical Service Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Ying Tang
- Department of Nephrology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
| | - Shan Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
21
|
Veloso Pereira BM, Charleaux de Ponte M, Malavolta Luz AP, Thieme K. DNA methylation enzymes in the kidneys of male and female BTBR ob/ob mice. Front Endocrinol (Lausanne) 2023; 14:1167546. [PMID: 37091852 PMCID: PMC10113614 DOI: 10.3389/fendo.2023.1167546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of the end-stage renal disease. Recent studies have shown that epigenetic modifications contribute to alterations in gene expression and the development of DKD. This study aimed to show an expression profile of key DNA (de)methylation enzymes (DNMT, TET proteins) and their differences between sexes under obesity and diabetic condition. Male and female black and tan brachyury (BTBR) ob/ob mice and their corresponding wild-type littermates (BTBR WT) were studied until 16 weeks of age. Metabolic parameters, kidney morphophysiology and the expression of fibrotic markers and epigenetic enzymes were studied in whole kidney tissue or specifically in the glomerulus. The results showed sexual dimorphism in the development of metabolic disease and in kidney morphophysiology. Female mice have a different profile of DNMTs expression in both WT and obese/diabetic condition. Furthermore, metabolic condition negatively modulated the glomerular expression of TET1 and TET3 only in females. To our knowledge, this is the first study that shows a kidney profile of the expression of key (de)methylation enzymes, DNMTs and TETs, in the BTBR ob/ob experimental model of DKD and its association with sex. The knowledge of this epigenetic profile may help future research to understand the pathophysiology of DKD in males and females.
Collapse
Affiliation(s)
- Beatriz Maria Veloso Pereira
- Laboratório de Bases Celulares e Moleculares da Fisiologia Renal, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Mariana Charleaux de Ponte
- Laboratório de Bases Celulares e Moleculares da Fisiologia Renal, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Ana Paula Malavolta Luz
- Laboratório de Bases Celulares e Moleculares da Fisiologia Renal, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Karina Thieme
- Laboratório de Bases Celulares e Moleculares da Fisiologia Renal, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
22
|
Helman TJ, Headrick JP, Stapelberg NJC, Braidy N. The sex-dependent response to psychosocial stress and ischaemic heart disease. Front Cardiovasc Med 2023; 10:1072042. [PMID: 37153459 PMCID: PMC10160413 DOI: 10.3389/fcvm.2023.1072042] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Stress is an important risk factor for modern chronic diseases, with distinct influences in males and females. The sex specificity of the mammalian stress response contributes to the sex-dependent development and impacts of coronary artery disease (CAD). Compared to men, women appear to have greater susceptibility to chronic forms of psychosocial stress, extending beyond an increased incidence of mood disorders to include a 2- to 4-fold higher risk of stress-dependent myocardial infarction in women, and up to 10-fold higher risk of Takotsubo syndrome-a stress-dependent coronary-myocardial disorder most prevalent in post-menopausal women. Sex differences arise at all levels of the stress response: from initial perception of stress to behavioural, cognitive, and affective responses and longer-term disease outcomes. These fundamental differences involve interactions between chromosomal and gonadal determinants, (mal)adaptive epigenetic modulation across the lifespan (particularly in early life), and the extrinsic influences of socio-cultural, economic, and environmental factors. Pre-clinical investigations of biological mechanisms support distinct early life programming and a heightened corticolimbic-noradrenaline-neuroinflammatory reactivity in females vs. males, among implicated determinants of the chronic stress response. Unravelling the intrinsic molecular, cellular and systems biological basis of these differences, and their interactions with external lifestyle/socio-cultural determinants, can guide preventative and therapeutic strategies to better target coronary heart disease in a tailored sex-specific manner.
Collapse
Affiliation(s)
- Tessa J. Helman
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, NSW, Sydney, Australia
- Correspondence: Tessa J. Helman
| | - John P. Headrick
- Schoolof Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
| | | | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, NSW, Sydney, Australia
| |
Collapse
|
23
|
Wu QJ, Zhang TN, Chen HH, Yu XF, Lv JL, Liu YY, Liu YS, Zheng G, Zhao JQ, Wei YF, Guo JY, Liu FH, Chang Q, Zhang YX, Liu CG, Zhao YH. The sirtuin family in health and disease. Signal Transduct Target Ther 2022; 7:402. [PMID: 36581622 PMCID: PMC9797940 DOI: 10.1038/s41392-022-01257-8] [Citation(s) in RCA: 286] [Impact Index Per Article: 95.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 12/30/2022] Open
Abstract
Sirtuins (SIRTs) are nicotine adenine dinucleotide(+)-dependent histone deacetylases regulating critical signaling pathways in prokaryotes and eukaryotes, and are involved in numerous biological processes. Currently, seven mammalian homologs of yeast Sir2 named SIRT1 to SIRT7 have been identified. Increasing evidence has suggested the vital roles of seven members of the SIRT family in health and disease conditions. Notably, this protein family plays a variety of important roles in cellular biology such as inflammation, metabolism, oxidative stress, and apoptosis, etc., thus, it is considered a potential therapeutic target for different kinds of pathologies including cancer, cardiovascular disease, respiratory disease, and other conditions. Moreover, identification of SIRT modulators and exploring the functions of these different modulators have prompted increased efforts to discover new small molecules, which can modify SIRT activity. Furthermore, several randomized controlled trials have indicated that different interventions might affect the expression of SIRT protein in human samples, and supplementation of SIRT modulators might have diverse impact on physiological function in different participants. In this review, we introduce the history and structure of the SIRT protein family, discuss the molecular mechanisms and biological functions of seven members of the SIRT protein family, elaborate on the regulatory roles of SIRTs in human disease, summarize SIRT inhibitors and activators, and review related clinical studies.
Collapse
Affiliation(s)
- Qi-Jun Wu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huan-Huan Chen
- grid.412467.20000 0004 1806 3501Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue-Fei Yu
- grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Le Lv
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Yang Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ya-Shu Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gang Zheng
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun-Qi Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Fan Wei
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing-Yi Guo
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Hua Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Chang
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Xiao Zhang
- grid.412467.20000 0004 1806 3501Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cai-Gang Liu
- grid.412467.20000 0004 1806 3501Department of Cancer, Breast Cancer Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hong Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
24
|
Morevati M, Fang EF, Mace ML, Kanbay M, Gravesen E, Nordholm A, Egstrand S, Hornum M. Roles of NAD + in Acute and Chronic Kidney Diseases. Int J Mol Sci 2022; 24:ijms24010137. [PMID: 36613582 PMCID: PMC9820289 DOI: 10.3390/ijms24010137] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Nicotinamide adenine dinucleotide (oxidized form, NAD+) is a critical coenzyme, with functions ranging from redox reactions and energy metabolism in mitochondrial respiration and oxidative phosphorylation to being a central player in multiple cellular signaling pathways, organ resilience, health, and longevity. Many of its cellular functions are executed via serving as a co-substrate for sirtuins (SIRTs), poly (ADP-ribose) polymerases (PARPs), and CD38. Kidney damage and diseases are common in the general population, especially in elderly persons and diabetic patients. While NAD+ is reduced in acute kidney injury (AKI) and chronic kidney disease (CKD), mounting evidence indicates that NAD+ augmentation is beneficial to AKI, although conflicting results exist for cases of CKD. Here, we review recent progress in the field of NAD+, mainly focusing on compromised NAD+ levels in AKI and its effect on essential cellular pathways, such as mitochondrial dysfunction, compromised autophagy, and low expression of the aging biomarker αKlotho (Klotho) in the kidney. We also review the compromised NAD+ levels in renal fibrosis and senescence cells in the case of CKD. As there is an urgent need for more effective treatments for patients with injured kidneys, further studies on NAD+ in relation to AKI/CKD may shed light on novel therapeutics.
Collapse
Affiliation(s)
- Marya Morevati
- Department of Nephrology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
- Correspondence:
| | - Evandro Fei Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Maria L. Mace
- Department of Nephrology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koç University School of Medicine, Istanbul 34010, Turkey
| | - Eva Gravesen
- Department of Pathology, Herlev Hospital, University of Copenhagen, 2730 Copenhagen, Denmark
| | - Anders Nordholm
- Department of Nephrology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Søren Egstrand
- Department of Nephrology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mads Hornum
- Department of Nephrology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
25
|
Wu J, Shen J, Wang W, Jiang N, Jin H, Che X, Ni Z, Fang Y, Mou S. A novel contrast-induced acute kidney injury mouse model based on low-osmolar contrast medium. Ren Fail 2022; 44:1345-1355. [PMID: 35938700 PMCID: PMC9367657 DOI: 10.1080/0886022x.2022.2108449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The contrast-induced acute kidney injury (CI-AKI) has been becoming the third common cause of hospital-acquired acute kidney injury. An ideal animal model is essential for understanding the pathophysiology of CI-AKI. Previous CI-AKI studies were mostly performed on rats with high-osmolar contrast medium (HOCM), which is unsuitable for transgenic researches. This study provides a novel, efficient and reproducible CI-AKI model which was developed in mouse by administrating a low-osmolar contrast medium (LOCM). First of all, we applied the frequently used pretreatments (uninephrectomy and water deprivation), which combined with HOCM on rats could induce CI-AKI, on mice with LOCM. Secondly, we attempted to find a novel pretreatment suitable for mouse and LOCM by combining two classic pretreatments(uninephrectomy, water deprivation and furosemide administration). Finally, we evaluate the kidney damage of the novel model. We found that this mouse model possessed a significant reduction in renal function, severe renal tissue damage, and increased renal tubular cells apoptosis, indicating that LOCM is a feasible inducer for CI-AKI mice model. Taken together, we found that uninephrectomy (UPHT) combined with 24 h water deprivation and furosemide administration 20 min before LOCM (iohexol, 10 ml/kg) application is a feasible pretreatment to establish a novel CI-AKI mouse model.
Collapse
Affiliation(s)
- Jiajia Wu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianxiao Shen
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wanpeng Wang
- Department of Nephrology, Lianshui People's Hospital, Lianshui, China
| | - Na Jiang
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haijiao Jin
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiajing Che
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaohui Ni
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Fang
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shan Mou
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
26
|
Liu T, Yang L, Mao H, Ma F, Wang Y, Li S, Li P, Zhan Y. Sirtuins as novel pharmacological targets in podocyte injury and related glomerular diseases. Biomed Pharmacother 2022; 155:113620. [PMID: 36122519 DOI: 10.1016/j.biopha.2022.113620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/10/2022] [Accepted: 08/27/2022] [Indexed: 11/29/2022] Open
Abstract
Podocyte injury is a major cause of proteinuria in kidney diseases, and persistent loss of podocytes leads to rapid irreversible progression of kidney disease. Sirtuins, a class of nicotinamide adenine dinucleotide-dependent deacetylases, can promote DNA repair, modify transcription factors, and regulate the cell cycle. Additionally, sirtuins play a critical role in renoprotection, particularly against podocyte injury. They also have pleiotropic protective effects on podocyte injury-related glomerular diseases, such as improving the immune inflammatory status and oxidative stress levels, maintaining mitochondrial homeostasis, enhancing autophagy, and regulating lipid metabolism. Sirtuins deficiency causes podocyte injury in different glomerular diseases. Studies using podocyte sirtuin-specific knockout and transgenic models corroborate this conclusion. Of note, sirtuin activators have protective effects in different podocyte injury-related glomerular diseases, including diabetic kidney disease, focal segmental glomerulosclerosis, membranous nephropathy, IgA nephropathy, and lupus nephritis. These findings suggest that sirtuins are promising therapeutic targets for preventing podocyte injury. This review provides an overview of recent advances in the role of sirtuins in kidney diseases, especially their role in podocyte injury, and summarizes the possible rationale for sirtuins as targets for pharmacological intervention in podocyte injury-related glomerular diseases.
Collapse
Affiliation(s)
- Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shen Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
27
|
Shrunken Pore Syndrome Is Associated with Renal Function Decline in Female Patients with Kidney Diseases. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2177991. [PMID: 35845935 PMCID: PMC9283046 DOI: 10.1155/2022/2177991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022]
Abstract
Background Shrunken pore syndrome (SPS) represents selective impairment of kidney filtration of low-molecular-weight molecules between 1 and 30 kDa and has been related to outcomes including morbidity, mortality, and cardiovascular events. However, the prevalence and kidney outcomes of SPS have not been investigated in patients with IgA nephropathy (IgAN) and membranous nephropathy (MN). Methods We retrospectively collected information of 536 patients including 414 with IgAN and 122 with MN. SPS was mainly defined by cystatin C-based eGFR < 70% of creatinine-based eGFR using the CAPA-LM equation pairs, while CKD-EPI equations were also employed in sensitivity analyses. Prevalence rate of SPS and its association with end-stage renal disease (ESRD) or severe eGFR decline (≥50% eGFR reduction or doubling of baseline creatinine) were investigated. Results 44% (8%) patients were identified as possessing SPS using the CAPA-LM definition. ESRD happened in 24 patients during the average follow-up period of 27.7 months. Despite dramatic increase of incidence rate of ESRD for SPS, significant hazard ratio (HR) only existed in IgAN patients after multivariable adjustment (HR: 8.35, 95% CI: 2.10~33.26), but lost significance in sensitivity analyses. 36 patients were determined as having experienced severe eGFR decline after excluding transient creatinine fluctuation. SPS was associated with severe eGFR decline by Kaplan-Meier survival analyses in the overall population as well as the IgAN, MN, male, and female subpopulations, which remained significant in multivariable adjustments in all groups except IgAN. However, only in female patients the association between SPS and eGFR decline remained significant in all the sensitivity analyses. Conclusions SPS was independently associated with eGFR decline in female patients with IgAN and MN.
Collapse
|
28
|
Ren L, Li F, Di Z, Xiong Y, Zhang S, Ma Q, Bian X, Lang Z, Ye Q, Wang Y. Estradiol Ameliorates Acute Kidney Ischemia-Reperfusion Injury by Inhibiting the TGF-βRI-SMAD Pathway. Front Immunol 2022; 13:822604. [PMID: 35281024 PMCID: PMC8907449 DOI: 10.3389/fimmu.2022.822604] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/17/2022] [Indexed: 12/16/2022] Open
Abstract
Renal ischemia–reperfusion injury (IRI) is less extensive in females than males in both animals and humans; however, this protection diminishes after menopause, suggesting that estrogen plays a pivotal role in IRI, but the underlying mechanism remains largely unknown. Our study found that 45 min of warm ischemia was sufficient to induce significant pathological changes without causing death in model animals. Compared with male rats, female rats exhibited less extensive apoptosis, kidney injury, and fibrosis; these effects were worsened in ovariectomized (OVX) rats and ameliorated upon estradiol (E2) supplementation. Furthermore, the levels of TGF-βRI, but not TGF-βRII or TGF-β1, were significantly increased in OVX rats, accompanied by phosphorylated SMAD2/3 activation. Interestingly, the alteration trend of the nuclear ERα level was opposite that of TGF-βRI. Furthermore, dual luciferase reporter and chromatin immunoprecipitation assays showed that ERα could bind to the promoter region of TGF-βRI and negatively regulate its mRNA expression. Moreover, an in vitro study using NRK-52E cells showed that ERα knockdown blocked E2-mediated protection, while TGF-βRI knockdown protected cells against hypoxic insult. The findings of this study suggest that renal IRI is closely related to the TGF-βRI-SMAD pathway in females and that E2 exert its protective effect via the ERα-mediated transcriptional inhibition of TGF-βRI expression.
Collapse
Affiliation(s)
- Lian Ren
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, China.,Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Fang Li
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ziyang Di
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Xiong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, China
| | - Shichen Zhang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, China
| | - Qing Ma
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, China
| | - Xiaoen Bian
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, China
| | - Zhiquan Lang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, China
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, China
| |
Collapse
|
29
|
Hassan E, Allam S, Mansour AM, Shaheen A, Salama SA. The potential protective effects of estradiol and 2-methoxyestradiol in ischemia reperfusion-induced kidney injury in ovariectomized female rats. Life Sci 2022; 296:120441. [PMID: 35240160 DOI: 10.1016/j.lfs.2022.120441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 01/26/2023]
Abstract
AIMS Investigating the impact of 17β estradiol (E2) and its endogenous non-hormonal metabolite 2-methoxyestradiol (2ME) on renal ischemia-reperfusion (RIR) induced kidney injury in ovariectomized (OVX) rats and the role of catechol-O-methyltransferase (COMT) in their effects. MAIN METHODS Eighty female rats were allocated into eight groups. Control group, Sham group, OVX group, OVX and RIR group, OVX + RIR + E2 group, OVX + RIR + 2ME group, OVX + RIR + E2 + Entacapone group and OVX + RIR + 2ME + Entacapone group, respectively. Twenty-four hours post RIR, creatinine (Cr) and blood urea nitrogen (BUN) were determined in serum, while malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), Glutathione (GSH), myeloperoxidase (MPO), as well as the expressions of COMT, hypoxia inducible factor-1α (HIF-1α) and tyrosine hydroxylase (TH) were assessed in the kidney tissues. KEY FINDINGS Serum Cr, BUN, MPO, as well as HIF-1α and TH expressions were significantly higher with concomitant decrease in COMT expression, SOD and CAT activities and GSH content observed in OVX and RIR group compared to sham group. E2 and 2ME treatment significantly ameliorated all parameters measured in OVX and RIR rats. On the other hand, Entacapone significantly decreased the effect of E2, with no effect on 2ME treatment. SIGNIFICANCE E2 ameliorates RIR-induced kidney injury and this effect is mediated, at least in part, via its COMT-mediated conversion to 2ME. Thus, 2ME by the virtue of its pleiotropic pharmacological effects can be used as a safe and effective treatment of RIR injury.
Collapse
Affiliation(s)
- Eslam Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Shady Allam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Ahmed M Mansour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Aya Shaheen
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Salama A Salama
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
30
|
Sánchez-Navarro A, Martínez-Rojas MÁ, Albarrán-Godinez A, Pérez-Villalva R, Auwerx J, de la Cruz A, Noriega LG, Rosetti F, Bobadilla NA. Sirtuin 7 Deficiency Reduces Inflammation and Tubular Damage Induced by an Episode of Acute Kidney Injury. Int J Mol Sci 2022; 23:ijms23052573. [PMID: 35269715 PMCID: PMC8910458 DOI: 10.3390/ijms23052573] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023] Open
Abstract
Acute kidney injury (AKI) is a public health problem worldwide. Sirtuins are a family of seven NAD+-dependent deacylases, Overexpression of Sirtuin 1, 3, and 5 protect against AKI. However, the role of Sirtuin 7 (Sirt7) in AKI is not known. Here, we analyzed how Sirt7 deficient mice (KO-Sirt7) were affected by AKI. As expected, wild-type and Sirt7 heterozygotes mice that underwent renal ischemia/reperfusion (IR) exhibited the characteristic hallmarks of AKI: renal dysfunction, tubular damage, albuminuria, increased oxidative stress, and renal inflammation. In contrast, the KO-Sirt7+IR mice were protected from AKI, exhibiting lesser albuminuria and reduction in urinary biomarkers of tubular damage, despite similar renal dysfunction. The renoprotection in the Sirt7-KO+IR group was associated with reduced kidney weight, minor expression of inflammatory cytokines and less renal infiltration of inflammatory cells. This anti-inflammatory effect was related to diminished p65 expression and in its active phosphorylation, as well as by a reduction in p65 nuclear translocation. Sirt7 deficient mice are protected from AKI, suggesting that this histone deacetylase promotes tubular damage and renal inflammation. Therefore, our findings indicate that Sirt7 inhibitors may be an attractive therapeutic target to reduce NFκB signaling.
Collapse
Affiliation(s)
- Andrea Sánchez-Navarro
- Molecular Physiology Unit, Instituto de Investigaciones Biomedicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; (A.S.-N.); (M.Á.M.-R.); (A.A.-G.); (R.P.-V.)
- Departments of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City 14080, Mexico
| | - Miguel Ángel Martínez-Rojas
- Molecular Physiology Unit, Instituto de Investigaciones Biomedicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; (A.S.-N.); (M.Á.M.-R.); (A.A.-G.); (R.P.-V.)
- Departments of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City 14080, Mexico
| | - Adrián Albarrán-Godinez
- Molecular Physiology Unit, Instituto de Investigaciones Biomedicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; (A.S.-N.); (M.Á.M.-R.); (A.A.-G.); (R.P.-V.)
- Departments of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City 14080, Mexico
| | - Rosalba Pérez-Villalva
- Molecular Physiology Unit, Instituto de Investigaciones Biomedicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; (A.S.-N.); (M.Á.M.-R.); (A.A.-G.); (R.P.-V.)
- Departments of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City 14080, Mexico
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology (LISP), Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland;
| | - Abigail de la Cruz
- Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City 14080, Mexico; (A.d.l.C.); (F.R.)
| | - Lilia G. Noriega
- Nutrition Physiology, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City 14080, Mexico;
| | - Florencia Rosetti
- Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City 14080, Mexico; (A.d.l.C.); (F.R.)
| | - Norma A. Bobadilla
- Molecular Physiology Unit, Instituto de Investigaciones Biomedicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; (A.S.-N.); (M.Á.M.-R.); (A.A.-G.); (R.P.-V.)
- Departments of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City 14080, Mexico
- Correspondence: ; Tel.: +52-55-5485-2676
| |
Collapse
|