1
|
Sansilapin C, Tangwangvivat R, Hoffmann CS, Chailek C, Lekcharoen P, Thippamom N, Petcharat S, Taweethavonsawat P, Wacharapluesadee S, Buathong R, Kurosu T, Yoshikawa T, Shimojima M, Iamsirithaworn S, Putcharoen O. Severe fever with thrombocytopenia syndrome (SFTS) in Thailand: using a one health approach to respond to novel zoonosis and its implications in clinical practice. ONE HEALTH OUTLOOK 2024; 6:18. [PMID: 39350294 PMCID: PMC11443680 DOI: 10.1186/s42522-024-00112-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/13/2024] [Indexed: 10/04/2024]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS), a tick-borne disease caused by Dabie bandavirus (SFTSV) is an emerging infectious disease of substantial concern in East Asia. In 2019, Ongkittikul S et al. reported the first case of SFTS in Thailand. Our report describes a One Health investigation of SFTS zoonosis examining the index case and suspected animal reservoirs using real-time RT-PCR and immunoassays. We add to the report on the first confirmed case of SFTSV infection in a human in Thailand by conducting a limited but informative One Health surveillance study. Dogs and cats tested positive for SFTSV antibody using IgG ELISA. We conclude that domestic dogs and cats might serve as potential reservoirs for SFTSV spread due to their closer proximity to the index case than other non-domestic animals. Notably, we did not detect SFTSV in synanthropic cats or dogs-nor did we detect SFTSV in Rhipicephalus sanguineus ticks-using RT-PCR. We propose that One Health investigations coupling genomic and serologic assays in response to new SFTS cases could play a pivotal role in preventing and managing SFTS among humans and animals in East Asia. As such, we are establishing a collaborative response to SFTS in Thailand through human outbreak investigations that align with principles of One Health, through environmental surveys and animal RT-PCR and immunoassays. Our investigation highlights the importance of coupling RT-PCR with seroprevalence assays as principal elements of One Health surveillance for SFTS in order to shed light on potential animal reservoirs and track emerging zoonosis.
Collapse
Affiliation(s)
- Chalo Sansilapin
- Department of Disease Control, Ministry of Public Health, Mueang, Nonthaburi, Thailand
| | | | - Curtis S Hoffmann
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Rama IV Road, Bangkok, 10330, Thailand
| | - Chanatip Chailek
- Department of Disease Control, Ministry of Public Health, Mueang, Nonthaburi, Thailand
| | - Paisin Lekcharoen
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Nattakarn Thippamom
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Rama IV Road, Bangkok, 10330, Thailand
| | - Sininat Petcharat
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Rama IV Road, Bangkok, 10330, Thailand
| | - Piyanan Taweethavonsawat
- Parasitology Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Supaporn Wacharapluesadee
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Rama IV Road, Bangkok, 10330, Thailand.
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Rome Buathong
- Department of Disease Control, Ministry of Public Health, Mueang, Nonthaburi, Thailand
| | - Takeshi Kurosu
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoki Yoshikawa
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Shimojima
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sopon Iamsirithaworn
- Department of Disease Control, Ministry of Public Health, Mueang, Nonthaburi, Thailand
| | - Opass Putcharoen
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Rama IV Road, Bangkok, 10330, Thailand
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Hidaka K, Mitoma S, Norimine J, Shimojima M, Kuroda Y, Hinoura T. Seroprevalence for severe fever with thrombocytopenia syndrome virus among the residents of Miyazaki, Japan: An epidemiological study. J Infect Chemother 2024; 30:481-487. [PMID: 38042299 DOI: 10.1016/j.jiac.2023.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/14/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
INTRODUCTION Severe fever with thrombocytopenia syndrome (SFTS) is a tick-borne infectious disease caused by the SFTS virus (SFTSV). The Miyazaki Prefecture has the highest number of SFTS cases in Japan and requires countermeasures for prevention. In this study, we aimed to conduct an epidemiological survey in Miyazaki Prefecture to determine the exposure conditions of SFTSV by measuring the seroprevalence among residents of Miyazaki and to evaluate the factors that influence the endemicity of SFTS. METHODS The survey was conducted between June 2014 and April 2019 in all 26 municipalities in Miyazaki Prefecture. SFTSV antibodies were detected using an enzyme-linked immunosorbent assay in the blood samples of 6013 residents (3184 men and 2829 women). A questionnaire-based survey of the living environment was also conducted. RESULTS Multiple logistic regression analysis revealed that age and occupation were significant factors related to the proportion of participants with an optical density (OD) value > 0.2 and a seroprevalence of 0.9 % (54/6013). Seven seropositive individuals (0.1 %) with an OD value of >0.4 were identified (three men and four women, aged 54-69 years), and all were asymptomatic. One participant had a higher OD than the positive control. CONCLUSION Although SFTS is endemic in Miyazaki Prefecture, Japan, its seroprevalence is relatively low. Since some risk areas in Miyazaki prefecture have been identified, it is important to enhance awareness of SFTS in residences and reduce contact with ticks, especially in high-risk areas.
Collapse
Affiliation(s)
- Kazuhiro Hidaka
- Department of Public Health, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Shuya Mitoma
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Junzo Norimine
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Masayuki Shimojima
- Special Pathogens Laboratory, Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshiki Kuroda
- Department of Public Health, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Takuji Hinoura
- Department of Public Health, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
3
|
Mekata H, Yamada K, Umeki K, Yamamoto M, Ochi A, Umekita K, Kobayashi I, Hirai T, Okabayashi T. Nine-year seroepidemiological study of severe fever with thrombocytopenia syndrome virus infection in feral horses in Cape Toi, Japan. BMC Vet Res 2024; 20:190. [PMID: 38734647 PMCID: PMC11088034 DOI: 10.1186/s12917-024-04042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a fatal zoonosis caused by ticks in East Asia. As SFTS virus (SFTSV) is maintained between wildlife and ticks, seroepidemiological studies in wildlife are important to understand the behavior of SFTSV in the environment. Miyazaki Prefecture, Japan, is an SFTS-endemic area, and approximately 100 feral horses, called Misaki horses (Equus caballus), inhabit Cape Toi in Miyazaki Prefecture. While these animals are managed in a wild-like manner, their ages are ascertainable due to individual identification. In the present study, we conducted a seroepidemiological survey of SFTSV in Misaki horses between 2015 and 2023. This study aimed to understand SFTSV infection in horses and its transmission to wildlife. A total of 707 samples from 180 feral horses were used to determine the seroprevalence of SFTSV using enzyme-linked immunosorbent assay (ELISA). Neutralization testing was performed on 118 samples. In addition, SFTS viral RNA was detected in ticks from Cape Toi and feral horses. The overall seroprevalence between 2015 and 2023 was 78.5% (555/707). The lowest seroprevalence was 55% (44/80) in 2016 and the highest was 92% (76/83) in 2018. Seroprevalence was significantly affected by age, with 11% (8/71) in those less than one year of age and 96.7% (435/450) in those four years of age and older (p < 0.0001). The concordance between ELISA and neutralization test results was 88.9% (105/118). SFTS viral RNA was not detected in ticks (n = 516) or feral horses. This study demonstrated that horses can be infected with SFTSV and that age is a significant factor in seroprevalence in wildlife. This study provides insights into SFTSV infection not only in horses but also in wildlife in SFTS-endemic areas.
Collapse
Affiliation(s)
- Hirohisa Mekata
- Division of Research & Inspection for Infectious Diseases, Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen-kibanadai Nishi, Miyazaki, 889-2192, Japan.
| | - Kentaro Yamada
- Division of Research & Inspection for Infectious Diseases, Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen-kibanadai Nishi, Miyazaki, 889-2192, Japan
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai Nishi, Miyazaki, 889-2192, Japan
- Department of Microbiology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu City, Oita, 879-5593, Japan
| | - Kazumi Umeki
- Division of Respirology Rheumatology, Infectious Diseases and Neurology, Internal Medicine, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200-Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Mari Yamamoto
- Division of Research & Inspection for Infectious Diseases, Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen-kibanadai Nishi, Miyazaki, 889-2192, Japan
| | - Akihiro Ochi
- Equine Research Institute, Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, 329-0412, Japan
| | - Kunihiko Umekita
- Division of Research & Inspection for Infectious Diseases, Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen-kibanadai Nishi, Miyazaki, 889-2192, Japan
- Division of Respirology Rheumatology, Infectious Diseases and Neurology, Internal Medicine, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200-Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Ikuo Kobayashi
- Division of Research & Inspection for Infectious Diseases, Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen-kibanadai Nishi, Miyazaki, 889-2192, Japan
- Field Science Center, Faculty of Agriculture, University of Miyazaki, 10100-1 Shimanouchi, Miyazaki, 880-0121, Japan
| | - Takuya Hirai
- Division of Research & Inspection for Infectious Diseases, Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen-kibanadai Nishi, Miyazaki, 889-2192, Japan
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai Nishi, Miyazaki, 889-2192, Japan
| | - Tamaki Okabayashi
- Division of Research & Inspection for Infectious Diseases, Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen-kibanadai Nishi, Miyazaki, 889-2192, Japan
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai Nishi, Miyazaki, 889-2192, Japan
| |
Collapse
|
4
|
Ishijima K, Phichitraslip T, Naimon N, Ploypichai P, Kriebkajon B, Chinarak T, Sridaphan J, Kritiyakan A, Prasertsincharoen N, Jittapalapong S, Tangcham K, Rerkamnuaychoke W, Kuroda Y, Taira M, Tatemoto K, Park E, Virhuez-Mendoza M, Inoue Y, Harada M, Yamamoto T, Nishino A, Matsuu A, Maeda K. High Seroprevalence of Severe Fever with Thrombocytopenia Syndrome Virus Infection among the Dog Population in Thailand. Viruses 2023; 15:2403. [PMID: 38140644 PMCID: PMC10747823 DOI: 10.3390/v15122403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne zoonotic disease caused by the SFTS virus (SFTSV). In Thailand, three human cases of SFTS were reported in 2019 and 2020, but there was no report of SFTSV infection in animals. Our study revealed that at least 16.6% of dogs in Thailand were seropositive for SFTSV infection, and the SFTSV-positive dogs were found in several districts in Thailand. Additionally, more than 70% of the serum samples collected at one shelter possessed virus-neutralization antibodies against SFTSV and the near-complete genome sequences of the SFTSV were determined from one dog in the shelter. The dog SFTSV was genetically close to those from Thailand and Chinese patients and belonged to genotype J3. These results indicated that SFTSV has already spread among animals in Thailand.
Collapse
Affiliation(s)
- Keita Ishijima
- Department of Veterinary Science, National Institute of Infectious Diseases (NIID), Tokyo 162-8640, Japan; (K.I.); (Y.K.); (M.T.); (K.T.); (E.P.); (M.V.-M.); (Y.I.); (M.H.); (T.Y.); (A.N.); (A.M.)
| | - Thanmaporn Phichitraslip
- Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (N.N.); (P.P.); (B.K.); (T.C.); (J.S.); (A.K.); (N.P.); (S.J.)
| | - Nattakarn Naimon
- Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (N.N.); (P.P.); (B.K.); (T.C.); (J.S.); (A.K.); (N.P.); (S.J.)
| | - Preeyaporn Ploypichai
- Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (N.N.); (P.P.); (B.K.); (T.C.); (J.S.); (A.K.); (N.P.); (S.J.)
| | - Benyapa Kriebkajon
- Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (N.N.); (P.P.); (B.K.); (T.C.); (J.S.); (A.K.); (N.P.); (S.J.)
| | - Torntun Chinarak
- Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (N.N.); (P.P.); (B.K.); (T.C.); (J.S.); (A.K.); (N.P.); (S.J.)
| | - Jirasin Sridaphan
- Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (N.N.); (P.P.); (B.K.); (T.C.); (J.S.); (A.K.); (N.P.); (S.J.)
| | - Anamika Kritiyakan
- Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (N.N.); (P.P.); (B.K.); (T.C.); (J.S.); (A.K.); (N.P.); (S.J.)
| | - Noppadol Prasertsincharoen
- Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (N.N.); (P.P.); (B.K.); (T.C.); (J.S.); (A.K.); (N.P.); (S.J.)
| | - Sathaporn Jittapalapong
- Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (N.N.); (P.P.); (B.K.); (T.C.); (J.S.); (A.K.); (N.P.); (S.J.)
| | - Kanate Tangcham
- Office of Veterinary Public Health, Department of Health, Bangkok 10400, Thailand;
| | - Worawut Rerkamnuaychoke
- Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-ok, Chonburi 20110, Thailand;
| | - Yudai Kuroda
- Department of Veterinary Science, National Institute of Infectious Diseases (NIID), Tokyo 162-8640, Japan; (K.I.); (Y.K.); (M.T.); (K.T.); (E.P.); (M.V.-M.); (Y.I.); (M.H.); (T.Y.); (A.N.); (A.M.)
| | - Masakatsu Taira
- Department of Veterinary Science, National Institute of Infectious Diseases (NIID), Tokyo 162-8640, Japan; (K.I.); (Y.K.); (M.T.); (K.T.); (E.P.); (M.V.-M.); (Y.I.); (M.H.); (T.Y.); (A.N.); (A.M.)
| | - Kango Tatemoto
- Department of Veterinary Science, National Institute of Infectious Diseases (NIID), Tokyo 162-8640, Japan; (K.I.); (Y.K.); (M.T.); (K.T.); (E.P.); (M.V.-M.); (Y.I.); (M.H.); (T.Y.); (A.N.); (A.M.)
| | - Eunsil Park
- Department of Veterinary Science, National Institute of Infectious Diseases (NIID), Tokyo 162-8640, Japan; (K.I.); (Y.K.); (M.T.); (K.T.); (E.P.); (M.V.-M.); (Y.I.); (M.H.); (T.Y.); (A.N.); (A.M.)
| | - Milagros Virhuez-Mendoza
- Department of Veterinary Science, National Institute of Infectious Diseases (NIID), Tokyo 162-8640, Japan; (K.I.); (Y.K.); (M.T.); (K.T.); (E.P.); (M.V.-M.); (Y.I.); (M.H.); (T.Y.); (A.N.); (A.M.)
| | - Yusuke Inoue
- Department of Veterinary Science, National Institute of Infectious Diseases (NIID), Tokyo 162-8640, Japan; (K.I.); (Y.K.); (M.T.); (K.T.); (E.P.); (M.V.-M.); (Y.I.); (M.H.); (T.Y.); (A.N.); (A.M.)
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Michiko Harada
- Department of Veterinary Science, National Institute of Infectious Diseases (NIID), Tokyo 162-8640, Japan; (K.I.); (Y.K.); (M.T.); (K.T.); (E.P.); (M.V.-M.); (Y.I.); (M.H.); (T.Y.); (A.N.); (A.M.)
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Tsukasa Yamamoto
- Department of Veterinary Science, National Institute of Infectious Diseases (NIID), Tokyo 162-8640, Japan; (K.I.); (Y.K.); (M.T.); (K.T.); (E.P.); (M.V.-M.); (Y.I.); (M.H.); (T.Y.); (A.N.); (A.M.)
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Ayano Nishino
- Department of Veterinary Science, National Institute of Infectious Diseases (NIID), Tokyo 162-8640, Japan; (K.I.); (Y.K.); (M.T.); (K.T.); (E.P.); (M.V.-M.); (Y.I.); (M.H.); (T.Y.); (A.N.); (A.M.)
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Aya Matsuu
- Department of Veterinary Science, National Institute of Infectious Diseases (NIID), Tokyo 162-8640, Japan; (K.I.); (Y.K.); (M.T.); (K.T.); (E.P.); (M.V.-M.); (Y.I.); (M.H.); (T.Y.); (A.N.); (A.M.)
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases (NIID), Tokyo 162-8640, Japan; (K.I.); (Y.K.); (M.T.); (K.T.); (E.P.); (M.V.-M.); (Y.I.); (M.H.); (T.Y.); (A.N.); (A.M.)
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
5
|
Rim JM, Han SW, Cho YK, Kang JG, Choi KS, Chae JS. Serologic and Molecular Prevalence of Severe Fever with Thrombocytopenia Syndrome Virus Among Poultry in the Republic of Korea. Vector Borne Zoonotic Dis 2023; 23:662-669. [PMID: 37788402 DOI: 10.1089/vbz.2023.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Background: Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by Dabie bandavirus, which belongs to the genus Bandavirus, family Phenuiviridae, and order Bunyavirales. It has been found in tick species, various animals, and humans. The aim of this study was to detect RNA of antigens and antibodies against SFTS virus (SFTSV) among poultry such as chickens, ducks, and wild geese from five provinces in the Republic of Korea (ROK). Materials and Methods: A one-step reverse transcriptase (RT)-PCR and nested PCR were performed after viral RNA extraction. The phylogenetic tree was constructed after sequencing data were analyzed and aligned. An indirect enzyme-linked immunosorbent assay (ELISA) and a neutralization test (NT) were performed to test for IgG antibodies of SFTSV. Results: Of a total of 606 poultry serum samples collected, 568 and 539 serum samples were used to perform ELISA and NT, respectively. Of a total of 606 serum samples tested by RT-PCR targeting the S segment, 15 (2.5%) were positive for SFTSV. From the 15 positive serum samples for the SFTSV antigen, three from chickens, three from ducks, and one from wild geese were classified as genotype B-2; one from chickens was classified as genotype B-3; and three from chickens and four from wild geese were classified as genotype D. Of the 568 serum samples tested by ELISA, 83 (28.0%) from chickens, 81 (32.9%) from ducks, and 8 (30.8%) from wild geese were seropositive. Of the 539 serum samples for which an NT was performed, 113 (38.6%) from chickens and 75 (30.5%) from ducks were positive for SFTSV antibodies. Conclusions: The results of this study provide useful information regarding detection of SFTSV RNA and antibodies among poultry and the possibility of SFTSV transmission in various types of poultry, including chickens, ducks, and wild geese, in the ROK.
Collapse
Affiliation(s)
- Ji-Min Rim
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sun-Woo Han
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yoon-Kyoung Cho
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jun-Gu Kang
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Kyoung-Seong Choi
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju, Republic of Korea
| | - Joon-Seok Chae
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Kaneko C, Mekata H, Umeki K, Sudaryatma PE, Irie T, Yamada K, Misawa N, Umekita K, Okabayashi T. Seroprevalence of severe fever with thrombocytopenia syndrome virus in medium-sized wild mammals in Miyazaki, Japan. Ticks Tick Borne Dis 2023; 14:102115. [PMID: 36577308 DOI: 10.1016/j.ttbdis.2022.102115] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a fatal emerging tick-borne zoonotic disease caused by the SFTS virus (SFTSV). SFTSV infection in humans and companion animals is a matter of concern in endemic areas. Various wild animals are involved in the transmission cycle of SFTSV with vector ticks. Because the home range of medium-sized wild mammals commonly overlaps with humans' living spheres, this study aimed to reveal the endemicity of SFTSV in such mammals. This study investigated the prevalence of antibodies against SFTSV and viral RNA in medium-sized wild mammals in Miyazaki Prefecture, Japan where human cases have been most frequently reported in Japan and performed a phylogenetic analysis to compare the detected SFTSV with those previously reported. Forty-three of 63 (68%) Japanese badgers (Meles anakuma) and 12 of 53 (23%) Japanese raccoon dogs (Nyctereutes procyonoides viverrinus) had antibodies against SFTSV. Japanese marten (n = 1), weasels (n = 4), and Japanese red fox (n = 1) were negative. Two of 63 (3%) badgers tested positive for SFTSV RNA, whereas the other species were negative. Phylogenetic analysis of the partial nucleotide sequence of SFTSV revealed that viral RNA detected from badgers exhibited 99.8% to 100% similarity to SFTSV, as previously reported in humans, cat, and ticks in the study area. This study demonstrated high seropositivity of antibodies in medium-sized wild mammals and suggested that SFTSV could be shared among these mammals, humans, and companion animals in endemic areas.
Collapse
Affiliation(s)
- Chiho Kaneko
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen-kibanadai Nishi, Miyazaki 889-2192, Japan.
| | - Hirohisa Mekata
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen-kibanadai Nishi, Miyazaki 889-2192, Japan
| | - Kazumi Umeki
- Division of Respirology, Rheumatology, Infectious Diseases and Neurology, Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kiyotakecho Kihara, Miyazaki 889-1692, Japan; Department of Medical Life Science, Faculty of Medical Bioscience, Kyushu University of Health and Welfare, Yoshino-cho 1714-1, Nobeoka, Miyazaki 882-8508, Japan
| | - Putu Eka Sudaryatma
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 5200 Kiyotakecho Kihara, Miyazaki 889-1692, Japan
| | - Takao Irie
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 5200 Kiyotakecho Kihara, Miyazaki 889-1692, Japan; Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai Nishi, Miyazaki 889-2192, Japan
| | - Kentaro Yamada
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 5200 Kiyotakecho Kihara, Miyazaki 889-1692, Japan; Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai Nishi, Miyazaki 889-2192, Japan
| | - Naoaki Misawa
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen-kibanadai Nishi, Miyazaki 889-2192, Japan; Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 5200 Kiyotakecho Kihara, Miyazaki 889-1692, Japan; Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai Nishi, Miyazaki 889-2192, Japan
| | - Kunihiko Umekita
- Division of Respirology, Rheumatology, Infectious Diseases and Neurology, Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kiyotakecho Kihara, Miyazaki 889-1692, Japan
| | - Tamaki Okabayashi
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen-kibanadai Nishi, Miyazaki 889-2192, Japan; Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 5200 Kiyotakecho Kihara, Miyazaki 889-1692, Japan; Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai Nishi, Miyazaki 889-2192, Japan
| |
Collapse
|
7
|
Burbelo PD, Ji Y, Iadarola MJ. Advancing Luciferase-Based Antibody Immunoassays to Next-Generation Mix and Read Testing. BIOSENSORS 2023; 13:303. [PMID: 36979515 PMCID: PMC10046223 DOI: 10.3390/bios13030303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Antibody measurements play a central role in the diagnosis of many autoimmune and infectious diseases. One antibody detection technology, Luciferase Immunoprecipitation Systems (LIPS), utilizes genetically encoded recombinant luciferase antigen fusion proteins in an immunoglobulin capture format to generate robust antibody measurement with high diagnostic sensitivity and specificity. The LIPS technology has been highly useful in detecting antibodies for research diagnostics and the discovery of new autoantigens. The methodology of the assay requires immunoglobulin binding reagents such as protein A/G beads and washing steps to process the immune complex before antibody levels are measured by light production with a luminometer. Recently, simplified mix and read immunoassays based on split components of the nanoluciferase enzyme in a complementation format have been developed for antibody measurements without requiring immunoglobulin-capturing beads or washing steps. The mix and read immunoassays utilize two or three nanoluciferase fragments which when reconstituted via antigen-specific antibody binding generate a functional enzyme. At present, these split luciferase tests have been developed mainly for detecting SARS-CoV-2 antibodies. Here, we describe the traditional LIPS technology and compare it to the new split luciferase methodologies focusing on their technical features, strengths, limitations, and future opportunities for diagnostic research, and clinical applications.
Collapse
Affiliation(s)
- Peter D. Burbelo
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 202892, USA
| | - Youngmi Ji
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 202892, USA
| | - Michael J. Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 202892, USA
| |
Collapse
|
8
|
Han SW, Oh YI, Rim JM, Cho YK, Kim DH, Kang JG, Choi KS, Chae JS. Clinical features and epidemiology of severe fever with thrombocytopenia syndrome in dogs in the Republic of Korea: an observational study (2019-2020). Vet Res Commun 2022; 46:1195-1207. [PMID: 35932407 PMCID: PMC9362334 DOI: 10.1007/s11259-022-09979-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a zoonotic disease with a high mortality rate for humans and cats. The clinical course and prognosis of SFTS in dogs remains unclear. In the present study, we investigated the clinical and epidemiological characteristics of SFTS virus (SFTSV) infection in dogs. All evaluated dogs exhibited an acute course and symptoms including fever (57.1%), anorexia (57.1%), depression (42.9%), and vomiting (35.7%). Thrombocytopenia was present in 45.5% of dogs, while jaundice was not observed. C-reactive protein, alanine transaminase, and alkaline phosphatase were elevated in some cases. Viral clearance occurred within 6 to 26 days. Phylogenetic analysis revealed that the SFTSV sequences were consistent with viruses circulating in the Republic of Korea. As dogs often live in close contact with humans, awareness of the clinical and epidemiological features of SFTS in dogs is crucial. Further large-scale studies are necessary to investigate SFTSV infection in dogs.
Collapse
Affiliation(s)
- Sun-Woo Han
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ye-In Oh
- Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ji-Min Rim
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yoon-Kyoung Cho
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong-Hoo Kim
- Gogang Animal Hospital, 473 Yeokgok-ro, Bucheon-si, Gyeonggi-do, 14416, Republic of Korea
| | - Jun-Gu Kang
- Korea Zoonosis Research Institute, Jeonbuk National University, 54531, Iksan, Republic of Korea
| | - Kyoung-Seong Choi
- College of Ecology and Environmental Science, Kyungpook National University, Sangju, 37224, Republic of Korea
| | - Joon-Seok Chae
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
9
|
Matsuu A, Doi K, Ishijima K, Tatemoto K, Koshida Y, Yoshida A, Kiname K, Iwashita A, Hayama SI, Maeda K. Increased Risk of Infection with Severe Fever with Thrombocytopenia Virus among Animal Populations on Tsushima Island, Japan, Including an Endangered Species, Tsushima Leopard Cats. Viruses 2022; 14:v14122631. [PMID: 36560635 PMCID: PMC9781851 DOI: 10.3390/v14122631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
To investigate the seroprevalence of severe fever with thrombocytopenia syndrome (SFTS) among wild and companion animals on Tsushima Island, Japan, SFTS virus (SFTSV)-specific ELISA and virus-neutralizing tests were conducted on 50 wild boars, 71 Sika deer, 84 dogs, 323 domestic cats, and 6 Tsushima leopard cats. In total, 1 wild boar (1.8%), 2 dogs (2.4%), 7 domestic cats (2.2%), and 1 Tsushima leopard cat (16.7%) were positive for anti-SFTSV antibodies. Among the 11 positive animals, 10 were collected after 2019, and all were found on the southern part of the island. SFTSV, thus far, seems to be circulating within a limited area of Tsushima Island. To protect humans and animals, including endangered Tsushima leopard cats, from SFTSV infection, countermeasures are needed to prevent the spread of SFTSV on Tsushima Island.
Collapse
Affiliation(s)
- Aya Matsuu
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Kandai Doi
- Laboratory of Wildlife Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino, Tokyo 180-8602, Japan
- Department of Wildlife Biology, Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba 305-8687, Japan
| | - Keita Ishijima
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kango Tatemoto
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yushi Koshida
- Conservation and Animal Welfare Trust, Tsushima, 642-2 Kamiagata, Tsushima, Nagasaki 817-1602, Japan
| | - Ayako Yoshida
- Center for Animal Disease Control, Kibana Campus, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, Miyazaki 889-2192, Japan
| | - Kohei Kiname
- Tsushima Rangers Office, Ministry of Environment, 1249 Izuhara, Tsushima, Nagasaki 817-0154, Japan
| | - Akio Iwashita
- Tsushima Rangers Office, Ministry of Environment, 1249 Izuhara, Tsushima, Nagasaki 817-0154, Japan
| | - Shin-ichi Hayama
- Laboratory of Wildlife Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino, Tokyo 180-8602, Japan
- Correspondence: (S.-i.H.); (K.M.)
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Correspondence: (S.-i.H.); (K.M.)
| |
Collapse
|
10
|
Tatemoto K, Mendoza MV, Ishijima K, Kuroda Y, Inoue Y, Taira M, Kuwata R, Takano A, Morikawa S, Shimoda H. Risk assessment of infection with severe fever with thrombocytopenia syndrome virus based on a 10-year serosurveillance in Yamaguchi Prefecture. J Vet Med Sci 2022; 84:1142-1145. [PMID: 35793949 PMCID: PMC9412060 DOI: 10.1292/jvms.22-0255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In Japan, the first patient with severe fever with thrombocytopenia syndrome was reported
in Yamaguchi in 2012. To understand the severe fever with thrombocytopenia syndrome virus
(SFTSV) infection in this region, a retrospective surveillance in sika deer and wild boars
in Yamaguchi was conducted using a virus-neutralizing (VN) test. The result revealed that
510 of the 789 sika deer and 199 of the 517 wild boars were positive for anti-SFTSV
antibodies. Interestingly, seroprevalence in sika deer increased significantly from
2010–2013 to 2015–2020. The SFTSV gene was detected in one of the 229 serum samples
collected from sika deer, but not from wild boars. In conclusion, SFTSV had spread among
wild animals before 2012 and expanded gradually around 2013–2015 in Yamaguchi.
Collapse
Affiliation(s)
- Kango Tatemoto
- Joint Graduate School of Veterinary Medicine, Yamaguchi University.,Department of Veterinary Science, National Institute of Infectious Diseases
| | - Milagros Virhuez Mendoza
- Joint Graduate School of Veterinary Medicine, Yamaguchi University.,Department of Veterinary Science, National Institute of Infectious Diseases
| | - Keita Ishijima
- Department of Veterinary Science, National Institute of Infectious Diseases
| | - Yudai Kuroda
- Department of Veterinary Science, National Institute of Infectious Diseases
| | - Yusuke Inoue
- Joint Graduate School of Veterinary Medicine, Yamaguchi University.,Department of Veterinary Science, National Institute of Infectious Diseases
| | - Masakatsu Taira
- Department of Veterinary Science, National Institute of Infectious Diseases
| | - Ryusei Kuwata
- Faculty of Veterinary Medicine, Okayama University of Science
| | - Ai Takano
- Joint Graduate School of Veterinary Medicine, Yamaguchi University
| | | | - Hiroshi Shimoda
- Joint Graduate School of Veterinary Medicine, Yamaguchi University
| |
Collapse
|
11
|
Zhang M, Du Y, Yang L, Zhan L, Yang B, Huang X, Xu B, Morita K, Yu F. Development of monoclonal antibody based IgG and IgM ELISA for diagnosis of severe fever with thrombocytopenia syndrome virus infection. Braz J Infect Dis 2022; 26:102386. [PMID: 35835158 PMCID: PMC9459026 DOI: 10.1016/j.bjid.2022.102386] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/28/2022] [Accepted: 06/22/2022] [Indexed: 01/10/2023] Open
Abstract
Introduction Methods Results Conclusions
Collapse
|
12
|
Yokomizo K, Tomozane M, Sano C, Ohta R. Clinical Presentation and Mortality of Severe Fever with Thrombocytopenia Syndrome in Japan: A Systematic Review of Case Reports. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042271. [PMID: 35206459 PMCID: PMC8871924 DOI: 10.3390/ijerph19042271] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 12/14/2022]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an infection mediated by ticks and has been reported to have a high mortality rate in Japan. At our hospital, we reported three cases of SFTS with relatively positive outcomes. We reviewed reports of SFTS cases in Japan to clarify the current state of the disease in Japan, the treatment provided, and its outcome. The Ichushi Web was searched for literature using the following terms as keywords: “SFTS” or “severe fever with thrombocytopenia syndrome”. Overall, 174 cases were collected and reviewed. The mean age of patients was 70.69 years old, and the mortality rate was 35%. The dead group was significantly older (p < 0.001) than the alive group, had a significantly shorter period from symptom onset to hospital admission, and experienced significantly more hemorrhage-related and neurological symptoms. Further, the most frequently provided treatment methods were adrenocorticosteroids, antibiotics, and conservative treatment. The low recognition rate of SFTS in Japan might lead to a misdiagnosis or delay in diagnosis and treatment, especially in mild to moderate cases. Medical professionals and citizens who live in areas inhabited by ticks need to be informed about SFTS to appropriately diagnose and manage SFTS cases in Japan in the future.
Collapse
Affiliation(s)
- Kanako Yokomizo
- Faculty of Medicine, Shimane University, Izumo 693-8501, Japan; (K.Y.); (C.S.)
| | - Momoko Tomozane
- Department of Postgraduate Medical Education, Japanese Red Cross Society Himeji Hospital, Himeji 670-8540, Japan;
| | - Chiaki Sano
- Faculty of Medicine, Shimane University, Izumo 693-8501, Japan; (K.Y.); (C.S.)
| | - Ryuichi Ohta
- Community Care, Unnan City Hospital, Unnan 699-1221, Japan
- Correspondence: ; Tel.: +81-90-5060-5330
| |
Collapse
|
13
|
Chen S, Xu M, Wu X, Bai Y, Shi J, Zhou M, Wu Q, Tang S, Deng F, Qin B, Shen S. A new luciferase immunoprecipitation system assay provided serological evidence for missed diagnosis of severe fever with thrombocytopenia syndrome. Virol Sin 2022; 37:107-114. [PMID: 35234635 PMCID: PMC8922417 DOI: 10.1016/j.virs.2022.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/12/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Shengyao Chen
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minjun Xu
- Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, China
| | - Xiaoli Wu
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yuan Bai
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Junming Shi
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Min Zhou
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Qiaoli Wu
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Shuang Tang
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fei Deng
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Bo Qin
- Shaoxing Women and Children's Hospital, No. 305 East Street Road, Shaoxing, 312000, China; Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, China.
| | - Shu Shen
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
14
|
Vectors, Hosts, and the Possible Risk Factors Associated with Severe Fever with Thrombocytopenia Syndrome. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2021; 2021:8518189. [PMID: 34777671 PMCID: PMC8580678 DOI: 10.1155/2021/8518189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/26/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a disease caused by infection with the SFTS virus (SFTSV). SFTS has become a crucial public health concern because of the heavy burden, lack of vaccines, effective therapies, and high-fatality rate. Evidence suggests that SFTSV circulates between ticks and animals in nature and is transmitted to humans by tick bites. In particular, ticks have been implicated as vectors of SFTSV, where domestic or wild animals may play as the amplifying hosts. Many studies have identified antigens and antibodies against SFTSV in various animals such as sheep, goats, cattle, and rodents. Besides, person-to-person transmission through contact with blood or mucous of an infected person has also been reported. In this study, we reviewed the literature and summarized the vectors and hosts associated with SFTS and the possible risk factors.
Collapse
|