1
|
Bresser PL, Sathekge MM, Vorster M. PET/CT features of a novel gallium-68 labelled hypoxia seeking agent in patients diagnosed with tuberculosis: a proof-of-concept study. Nucl Med Commun 2022; 43:787-793. [PMID: 35506285 DOI: 10.1097/mnm.0000000000001580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Positron emission tomography/computed tomography (PET/CT) in infection and inflammation has yielded promising results across a range of radiopharmaceuticals. In particular, PET/CT imaging of tuberculosis (TB) allows for a better understanding of this complex disease by providing insights into molecular processes within the TB microenvironment. TB lesions are hypoxic with research primarily focussed on cellular processes occurring under hypoxic stress. With the development of hypoxia seeking PET/CT radiopharmaceuticals, that can be labelled in-house using a germanium-68/gallium-68 (68Ge/68Ga) generator, a proof-of-concept for imaging hypoxia in TB is presented. METHODS Ten patients diagnosed with TB underwent whole-body PET/CT imaging, 60-90 min after intravenous administration of 74-185 MBq (2-5 mCi) 68Ga-nitroimidazole. No oral or intravenous contrast was administered. Images were visually and semiquantitatively assessed for abnormal 68Ga-uptake in the lungs. RESULTS A total of 28 lesions demonstrating hypoxic uptake were identified. Low- to moderate-uptake was seen in nodules, areas of consolidation and cavitation as well as effusions. The mean standard uptake value (SUVmean) of the lesions was 0.47 (IQR, 0.32-0.82) and SUVmax was 0.71 (IQR, 0.41-1.11). The lesion to muscle ratio (median, 1.70; IQR, 1.15-2.31) was higher than both the left ventricular and the aorta lesion to blood ratios. CONCLUSION Moving towards the development of unique host-directed therapies (HDT), modulation of oxygen levels may improve therapeutic outcome by reprogramming TB lesions to overcome hypoxia. This proof-of-concept study suggests that hypoxia in TB lesions can be imaged and quantified using 68Ga-nitroimidazole PET/CT. Subsequently, hypoxic load can be estimated to inform personalised treatment plans of patients diagnosed with TB.
Collapse
Affiliation(s)
- Philippa L Bresser
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Mike M Sathekge
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Mariza Vorster
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Nuclear Medicine, Inkosi Albert Luthuli Central Hospital, University of Kwazulu Natal, Durban, South Africa
| |
Collapse
|
2
|
Tsenova L, Singhal A. Effects of host-directed therapies on the pathology of tuberculosis. J Pathol 2020; 250:636-646. [PMID: 32108337 DOI: 10.1002/path.5407] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), has co-evolved with the human immune system and utilizes multiple strategies to persist within infected cells, to hijack several immune mechanisms, and to cause severe pathology and tissue damage in the host. This delays the efficacy of current antibiotic therapy and contributes to the evolution of multi-drug-resistant strains. These challenges led to the development of the novel approach in TB treatment that involves therapeutic targeting of host immune response to control disease pathogenesis and pathogen growth, namely, host-directed therapies (HDTs). Such HDT approaches can (1) enhance the effect of antibiotics, (2) shorten treatment duration for any clinical form of TB, (3) promote development of immunological memory that could protect against relapse, and (4) ameliorate the immunopathology including matrix destruction and fibrosis associated with TB. In this review we discuss TB-HDT candidates shown to be of clinical relevance that thus could be developed to reduce pathology, tissue damage, and subsequent impairment of pulmonary function. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Liana Tsenova
- Department of Biological Sciences, New York City College of Technology, Brooklyn, NY, USA
| | - Amit Singhal
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Vaccine and Infectious Disease Research Centre (VIDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, India
| |
Collapse
|
3
|
Parish T. In vitro drug discovery models for Mycobacterium tuberculosis relevant for host infection. Expert Opin Drug Discov 2020; 15:349-358. [PMID: 31899974 DOI: 10.1080/17460441.2020.1707801] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction: Tuberculosis is the leading cause of death from infectious disease. Current drug therapy requires a combination of antibiotics taken over >6 months. An urgent need for new agents that can shorten therapy is required. In order to develop new drugs, simple in vitro assays are required that can identify efficacious compounds rapidly and predict in vivo activity in the human.Areas covered: This review focusses on the most relevant in vitro assays that can be utilized in a drug discovery program and which mimic different aspects of infection or disease. The focus is largely on assays used to test >1000s of compounds reliably and robustly. However, some assays used for 10s to 100s of compounds are included where the utility outweighs the low capacity. Literature searches for high throughput screening, models and in vitro assays were undertaken.Expert opinion: Drug discovery and development in tuberculosis is extremely challenging due to the requirement for predicting drug efficacy in a disease with complex pathology in which bacteria exist in heterogeneous states in inaccesible locations. A combination of assays can be used to determine profiles against replicating, non-replicating, intracellular and tolerant bacteria.
Collapse
Affiliation(s)
- Tanya Parish
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, USA
| |
Collapse
|
4
|
Animal Models of Tuberculosis Vaccine Research: An Important Component in the Fight against Tuberculosis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4263079. [PMID: 32025519 PMCID: PMC6984742 DOI: 10.1155/2020/4263079] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/25/2019] [Accepted: 08/20/2019] [Indexed: 12/23/2022]
Abstract
Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis, is one of the top ten infectious diseases worldwide, and is the leading cause of morbidity from a single infectious agent. M. tuberculosis can cause infection in several species of animals in addition to humans as the natural hosts. Although animal models of TB disease cannot completely simulate the occurrence and development of human TB, they play an important role in studying the pathogenesis, immune responses, and pathological changes as well as for vaccine research. This review summarizes the commonly employed animal models, including mouse, guinea pig, rabbit, rat, goat, cattle, and nonhuman primates, and their characteristics as used in TB vaccine research, and provides a basis for selecting appropriate animal models according to specific research needs. Furthermore, some of the newest animal models used for TB vaccine research (such as humanized animal models, zebrafish, Drosophila, and amoeba) are introduced, and their characteristics and research progress are discussed.
Collapse
|
5
|
Hartman TE, Wang Z, Jansen RS, Gardete S, Rhee KY. Metabolic Perspectives on Persistence. Microbiol Spectr 2017; 5:10.1128/microbiolspec.TBTB2-0026-2016. [PMID: 28155811 PMCID: PMC5302851 DOI: 10.1128/microbiolspec.tbtb2-0026-2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence has left little doubt about the importance of persistence or metabolism in the biology and chemotherapy of tuberculosis. However, knowledge of the intersection between these two factors has only recently begun to emerge. Here, we provide a focused review of metabolic characteristics associated with Mycobacterium tuberculosis persistence. We focus on metabolism because it is the biochemical foundation of all physiologic processes and a distinguishing hallmark of M. tuberculosis physiology and pathogenicity. In addition, it serves as the chemical interface between host and pathogen. Existing knowledge, however, derives largely from physiologic contexts in which replication is the primary biochemical objective. The goal of this review is to reframe current knowledge of M. tuberculosis metabolism in the context of persistence, where quiescence is often a key distinguishing characteristic. Such a perspective may help ongoing efforts to develop more efficient cures and inform on novel strategies to break the cycle of transmission sustaining the pandemic.
Collapse
Affiliation(s)
- Travis E. Hartman
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| | - Zhe Wang
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| | - Robert S. Jansen
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| | - Susana Gardete
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| | - Kyu Y. Rhee
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
- Department of Microbiology & Immunology, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
6
|
Heterogeneity among Isolates Reveals that Fitness in Low Oxygen Correlates with Aspergillus fumigatus Virulence. mBio 2016; 7:mBio.01515-16. [PMID: 27651366 PMCID: PMC5040115 DOI: 10.1128/mbio.01515-16] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Previous work has shown that environmental and clinical isolates of Aspergillus fumigatus represent a diverse population that occupies a variety of niches, has extensive genetic diversity, and exhibits virulence heterogeneity in a number of animal models of invasive pulmonary aspergillosis (IPA). However, mechanisms explaining differences in virulence among A. fumigatus isolates remain enigmatic. Here, we report a significant difference in virulence of two common lab strains, CEA10 and AF293, in the murine triamcinolone immunosuppression model of IPA, in which we previously identified severe low oxygen microenvironments surrounding fungal lesions. Therefore, we hypothesize that the ability to thrive within these lesions of low oxygen promotes virulence of A. fumigatus in this model. To test this hypothesis, we performed in vitro fitness and in vivo virulence analyses in the triamcinolone murine model of IPA with 14 environmental and clinical isolates of A. fumigatus Among these isolates, we observed a strong correlation between fitness in low oxygen in vitro and virulence. In further support of our hypothesis, experimental evolution of AF293, a strain that exhibits reduced fitness in low oxygen and reduced virulence in the triamcinolone model of IPA, results in a strain (EVOL20) that has increased hypoxia fitness and a corresponding increase in virulence. Thus, the ability to thrive in low oxygen correlates with virulence of A. fumigatus isolates in the context of steroid-mediated murine immunosuppression. IMPORTANCE Aspergillus fumigatus occupies multiple environmental niches, likely contributing to the genotypic and phenotypic heterogeneity among isolates. Despite reports of virulence heterogeneity, pathogenesis studies often utilize a single strain for the identification and characterization of virulence and immunity factors. Here, we describe significant variation between A. fumigatus isolates in hypoxia fitness and virulence, highlighting the advantage of including multiple strains in future studies. We also illustrate that hypoxia fitness correlates strongly with increased virulence exclusively in the nonleukopenic murine triamcinolone immunosuppression model of IPA. Through an experimental evolution experiment, we observe that chronic hypoxia exposure results in increased virulence of A. fumigatus We describe here the first observation of a model-specific virulence phenotype correlative with in vitro fitness in hypoxia and pave the way for identification of hypoxia-mediated mechanisms of virulence in the fungal pathogen A. fumigatus.
Collapse
|
7
|
Gumbo T, Lenaerts AJ, Hanna D, Romero K, Nuermberger E. Nonclinical Models for Antituberculosis Drug Development: A Landscape Analysis. J Infect Dis 2015; 211 Suppl 3:S83-95. [DOI: 10.1093/infdis/jiv183] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
8
|
Jantsch J, Schödel J. Hypoxia and hypoxia-inducible factors in myeloid cell-driven host defense and tissue homeostasis. Immunobiology 2014; 220:305-14. [PMID: 25439732 DOI: 10.1016/j.imbio.2014.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/01/2014] [Accepted: 09/05/2014] [Indexed: 02/08/2023]
Abstract
The impact of tissue oxygenation and hypoxia on immune cells has been recognized as a major determinant of host defense and tissue homeostasis. In this review, we will summarize the available data on tissue oxygenation in inflamed and infected tissue and the effect of low tissue oxygenation on myeloid cell function. Furthermore, we will highlight effects of the master regulators of the cellular hypoxic response, hypoxia-inducible transcription factors (HIF), in myeloid cells in antimicrobial defense and tissue homeostasis.
Collapse
Affiliation(s)
- Jonathan Jantsch
- Institut für Klinische Mikrobiologie und Hygiene, Universitätsklinikum Regensburg, Germany; Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.
| | - Johannes Schödel
- Medizinische Klinik 4, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; Translational Research Center, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
9
|
Mahnke A, Meier RJ, Schatz V, Hofmann J, Castiglione K, Schleicher U, Wolfbeis OS, Bogdan C, Jantsch J. Hypoxia in Leishmania major Skin Lesions Impairs the NO-Dependent Leishmanicidal Activity of Macrophages. J Invest Dermatol 2014; 134:2339-2346. [DOI: 10.1038/jid.2014.121] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/03/2014] [Accepted: 02/15/2014] [Indexed: 12/22/2022]
|
10
|
Shi L, Ryan GJ, Bhamidi S, Troudt J, Amin A, Izzo A, Lenaerts AJ, McNeil MR, Belisle JT, Crick DC, Chatterjee D. Isolation and purification of Mycobacterium tuberculosis from H37Rv infected guinea pig lungs. Tuberculosis (Edinb) 2014; 94:525-30. [PMID: 25037320 DOI: 10.1016/j.tube.2014.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 05/23/2014] [Indexed: 11/17/2022]
Abstract
Evidence suggests that Mycobacterium tuberculosis grown in vivo may have a different phenotypic structure from its in vitro counterpart. In order to study the differences between in vivo and in vitro grown bacilli, it is important to establish a reliable method for isolating and purifying M. tuberculosis from infected tissue. In this study, we developed an optimal method to isolate bacilli from the lungs of infected guinea pigs, which was also shown to be applicable to the interferon-γ gene knockout mouse model. Briefly, 1) the infected lungs were thoroughly homogenized; 2) a four step enzymatic digestion was utilized to reduce the bulk of the host tissue using collagenase, DNase I and pronase E; 3) residual contamination by the host tissue debris was successfully reduced using percoll density gradient centrifugation. These steps resulted in a protocol such that relatively clean, viable bacilli can be isolated from the digested host tissue homogenate in about 50% yield. These bacilli can further be used for analytical studies of the more stable cellular components such as lipid, peptidoglycan and mycolic acid.
Collapse
Affiliation(s)
- Libin Shi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Gavin J Ryan
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Suresh Bhamidi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - JoLynn Troudt
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Anita Amin
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Angelo Izzo
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Anne J Lenaerts
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Michael R McNeil
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - John T Belisle
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Dean C Crick
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Delphi Chatterjee
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
11
|
Kumar N, Vishwas K, Kumar M, Reddy J, Parab M, Manikanth C, Pavithra B, Shandil R. Pharmacokinetics and dose response of anti-TB drugs in rat infection model of tuberculosis. Tuberculosis (Edinb) 2014; 94:282-6. [DOI: 10.1016/j.tube.2014.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/24/2013] [Accepted: 02/10/2014] [Indexed: 01/17/2023]
|
12
|
Ackart DF, Hascall-Dove L, Caceres SM, Kirk NM, Podell BK, Melander C, Orme IM, Leid JG, Nick JA, Basaraba RJ. Expression of antimicrobial drug tolerance by attached communities of Mycobacterium tuberculosis. Pathog Dis 2014; 70:359-69. [PMID: 24478060 PMCID: PMC4361083 DOI: 10.1111/2049-632x.12144] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/15/2014] [Accepted: 01/16/2014] [Indexed: 11/28/2022] Open
Abstract
There is an urgent need to improve methods used to screen antituberculosis drugs. An in vitro assay was developed to test drug treatment strategies that specifically target drug-tolerant Mycobacterium tuberculosis. The H37Rv strain of M. tuberculosis survived antimicrobial treatment as attached microbial communities when maintained in tissue culture media (RPMI-1640) with or without lysed human peripheral blood leukocytes. When cultured planktonically in the presence of Tween-80, bacilli failed to form microbial communities or reach logarithmic phase growth yet remained highly susceptible to antimicrobial drugs. In the absence of Tween, bacilli tolerated drug therapy by forming complex microbial communities attached to untreated well surfaces or to the extracellular matrix derived from lysed human leukocytes. Treatment of microbial communities with DNase I or Tween effectively dispersed bacilli and restored drug susceptibility. These data demonstrate that in vitro expression of drug tolerance by M. tuberculosis is linked to the establishment of attached microbial communities and that dispersion of bacilli targeting the extracellular matrix including DNA restores drug susceptibility. Modifications of this in vitro assay may prove beneficial in a high-throughput platform to screen new antituberculosis drugs especially those that target drug-tolerant bacilli.
Collapse
Affiliation(s)
- David F. Ackart
- Department of Microbiology, Immunology and Pathology, Mycobacterial Research Laboratories, Colorado State University, Fort Collins, CO, United States of America
| | - Laurel Hascall-Dove
- Department of Microbiology, Immunology and Pathology, Mycobacterial Research Laboratories, Colorado State University, Fort Collins, CO, United States of America
| | - Silvia M. Caceres
- Department of Medicine, National Jewish Health, Denver, CO, United States of America
| | - Natalie M. Kirk
- Department of Microbiology, Immunology and Pathology, Mycobacterial Research Laboratories, Colorado State University, Fort Collins, CO, United States of America
| | - Brendan K. Podell
- Department of Microbiology, Immunology and Pathology, Mycobacterial Research Laboratories, Colorado State University, Fort Collins, CO, United States of America
| | - Christian Melander
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States of America
| | - Ian M. Orme
- Department of Microbiology, Immunology and Pathology, Mycobacterial Research Laboratories, Colorado State University, Fort Collins, CO, United States of America
| | - Jeff G. Leid
- Medical Products Division, W.L. Gore and Associates, Flagstaff, AZ, United States of America
| | - Jerry A. Nick
- Department of Medicine, National Jewish Health, Denver, CO, United States of America
| | - Randall J. Basaraba
- Department of Microbiology, Immunology and Pathology, Mycobacterial Research Laboratories, Colorado State University, Fort Collins, CO, United States of America
| |
Collapse
|
13
|
Multifunctional essentiality of succinate metabolism in adaptation to hypoxia in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2013; 110:6554-9. [PMID: 23576728 DOI: 10.1073/pnas.1219375110] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mycobacterium tuberculosis is a chronic, facultative intracellular pathogen that spends the majority of its decades-long life cycle in a non- or slowly replicating state. However, the bacterium remains poised to resume replicating so that it can transmit itself to a new host. Knowledge of the metabolic adaptations used to facilitate entry into and exit from nonreplicative states remains incomplete. Here, we apply (13)C-based metabolomic profiling to characterize the activity of M. tuberculosis tricarboxylic acid cycle during adaptation to and recovery from hypoxia, a physiologically relevant condition associated with nonreplication. We show that, as M. tuberculosis adapts to hypoxia, it slows and remodels its tricarboxylic acid cycle to increase production of succinate, which is used to flexibly sustain membrane potential, ATP synthesis, and anaplerosis, in response to varying degrees of O2 limitation and the presence or absence of the alternate electron acceptor nitrate. This remodeling is mediated by the bifunctional enzyme isocitrate lyase acting in a noncanonical role distinct from fatty acid catabolism. Isocitrate lyase-dependent production of succinate affords M. tuberculosis with a unique and bioenergetically efficient metabolic means of entry into and exit from hypoxia-induced quiescence.
Collapse
|
14
|
Mak PA, Rao SPS, Ping Tan M, Lin X, Chyba J, Tay J, Ng SH, Tan BH, Cherian J, Duraiswamy J, Bifani P, Lim V, Lee BH, Ling Ma N, Beer D, Thayalan P, Kuhen K, Chatterjee A, Supek F, Glynne R, Zheng J, Boshoff HI, Barry CE, Dick T, Pethe K, Camacho LR. A high-throughput screen to identify inhibitors of ATP homeostasis in non-replicating Mycobacterium tuberculosis. ACS Chem Biol 2012; 7:1190-7. [PMID: 22500615 PMCID: PMC3401038 DOI: 10.1021/cb2004884] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Growing evidence suggests that the presence of a subpopulation
of hypoxic non-replicating, phenotypically drug-tolerant mycobacteria
is responsible for the prolonged duration of tuberculosis treatment.
The discovery of new antitubercular agents active against this subpopulation
may help in developing new strategies to shorten the time of tuberculosis
therapy. Recently, the maintenance of a low level of bacterial respiration
was shown to be a point of metabolic vulnerability in Mycobacterium
tuberculosis. Here, we describe the development of a hypoxic
model to identify compounds targeting mycobacterial respiratory functions
and ATP homeostasis in whole mycobacteria. The model was adapted to
1,536-well plate format and successfully used to screen over 600,000
compounds. Approximately 800 compounds were confirmed to reduce intracellular
ATP levels in a dose-dependent manner in Mycobacterium bovis BCG. One hundred and forty non-cytotoxic compounds with activity
against hypoxic non-replicating M. tuberculosis were
further validated. The resulting collection of compounds that disrupt
ATP homeostasis in M. tuberculosis represents a valuable
resource to decipher the biology of persistent mycobacteria.
Collapse
Affiliation(s)
- Puiying A. Mak
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, United States
| | | | - Mai Ping Tan
- Novartis Institute for Tropical Diseases, Singapore 138670
| | - Xiuhua Lin
- Novartis Institute for Tropical Diseases, Singapore 138670
| | - Jason Chyba
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, United States
| | - Joann Tay
- Novartis Institute for Tropical Diseases, Singapore 138670
| | - Seow Hwee Ng
- Novartis Institute for Tropical Diseases, Singapore 138670
| | - Bee Huat Tan
- Novartis Institute for Tropical Diseases, Singapore 138670
| | - Joseph Cherian
- Novartis Institute for Tropical Diseases, Singapore 138670
| | | | - Pablo Bifani
- Novartis Institute for Tropical Diseases, Singapore 138670
| | - Vivian Lim
- Novartis Institute for Tropical Diseases, Singapore 138670
| | - Boon Heng Lee
- Novartis Institute for Tropical Diseases, Singapore 138670
| | - Ngai Ling Ma
- Novartis Institute for Tropical Diseases, Singapore 138670
| | - David Beer
- Novartis Institute for Tropical Diseases, Singapore 138670
| | | | - Kelli Kuhen
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, United States
| | - Arnab Chatterjee
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, United States
| | - Frantisek Supek
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, United States
| | - Richard Glynne
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, United States
| | - Jun Zheng
- Novartis Institute for Tropical Diseases, Singapore 138670
| | - Helena I. Boshoff
- Tuberculosis Research Section, Laboratory of Clinical
Infectious Diseases, National Institute of Allergy and Infectious
Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Clifton E. Barry
- Tuberculosis Research Section, Laboratory of Clinical
Infectious Diseases, National Institute of Allergy and Infectious
Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Thomas Dick
- Novartis Institute for Tropical Diseases, Singapore 138670
| | - Kevin Pethe
- Novartis Institute for Tropical Diseases, Singapore 138670
| | | |
Collapse
|
15
|
T cell monitoring of chemotherapy in experimental rat tuberculosis. Antimicrob Agents Chemother 2011; 55:3677-83. [PMID: 21628535 DOI: 10.1128/aac.00136-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis is the causative agent of a pulmonary epidemic that is estimated to infect one-third of the world's population and that has an increased incidence of multidrug resistance. The evaluation of new chemical entities against M. tuberculosis is hampered by the lack of biological tools to help predict efficacy, from early drug development to clinical trials. As the rat is the animal species of choice in the pharmaceutical industry, we have developed a rat model of acute and chronic phases of M. tuberculosis infection for drug efficacy testing. In this model, we have evaluated the impact of tuberculosis drugs on T cell response using the enzyme-linked immunospot assay methodology. Infected rats treated with isoniazid (INH) or rifampin (RIF) responded to therapy, the potency of which was comparable to that seen in the mouse. Peripheral blood mononuclear cells from infected rats produced gamma interferon (IFN-γ) in response to RD-1 antigens, such as the 6-kDa early secretory antigen target (ESAT-6) and the 10-kDa culture filtrate protein (CFP-10). A decrease in IFN-γ spot-forming cells (SFCs) was consistently observed in response to drug treatment. In both the acute- and chronic-phase models, the T cell response was more sensitive to ESAT-6 than to CFP-10. The SFC count in response to ESAT-6 appears to be an indicator of bacterial killing in the rat. Collectively, our data suggest that the ESAT-6 response could be used as a potential surrogate of drug efficacy in the rat and that such a readout could help shorten drug testing during preclinical development.
Collapse
|