1
|
Nargan K, Glasgow JN, Nadeem S, Naidoo T, Wells G, Hunter RL, Hutton A, Lumamba K, Msimang M, Benson PV, Steyn AJC. Spatial distribution of Mycobacterium tuberculosis mRNA and secreted antigens in acid-fast negative human antemortem and resected tissue. EBioMedicine 2024; 105:105196. [PMID: 38880068 PMCID: PMC11233921 DOI: 10.1016/j.ebiom.2024.105196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND The ability to detect evidence of Mycobacterium tuberculosis (Mtb) infection within human tissues is critical to the study of Mtb physiology, tropism, and spatial distribution within TB lesions. The capacity of the widely-used Ziehl-Neelsen (ZN) staining method for identifying Mtb acid-fast bacilli (AFB) in tissue is highly variable, which can limit detection of Mtb bacilli for research and diagnostic purposes. Here, we sought to circumvent these limitations via detection of Mtb mRNA and secreted antigens in human tuberculous tissue. METHODS We adapted RNAscope, an RNA in situ hybridisation (RISH) technique, to detect Mtb mRNA in ante- and postmortem human TB tissues and developed a dual ZN/immunohistochemistry staining approach to identify AFB and bacilli producing antigen 85B (Ag85B). FINDINGS We identified Mtb mRNA within intact and disintegrating bacilli as well as extrabacillary mRNA. Mtb mRNA was distributed zonally within necrotic and non-necrotic granulomas. We also found Mtb mRNA within, and adjacent to, necrotic granulomas in ZN-negative lung tissue and in Ag85B-positive bronchiolar epithelium. Intriguingly, we observed accumulation of Mtb mRNA and Ag85B in the cytoplasm of host cells. Notably, many AFB were negative for Ag85B staining. Mtb mRNA was observed in ZN-negative antemortem lymph node biopsies. INTERPRETATION RNAscope and dual ZN/immunohistochemistry staining are well-suited for identifying subsets of intact Mtb and/or bacillary remnants in human tissue. RNAscope can identify Mtb mRNA in ZN-negative tissues from patients with TB and may have diagnostic potential in complex TB cases. FUNDING Wellcome Leap Delta Tissue Program, Wellcome Strategic Core Award, the National Institutes of Health (NIH, USA), the Mary Heersink Institute for Global Health at UAB, the UAB Heersink School of Medicine.
Collapse
Affiliation(s)
- Kievershen Nargan
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Joel N Glasgow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sajid Nadeem
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Threnesan Naidoo
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa; Department of Forensic and Legal Medicine, Walter Sisulu University, Mthatha, South Africa
| | - Gordon Wells
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Robert L Hunter
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Anneka Hutton
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kapongo Lumamba
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Mpumelelo Msimang
- Department of Anatomical Pathology, National Health Laboratory Service, IALCH, Durban, South Africa
| | - Paul V Benson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adrie J C Steyn
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa; Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA; Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
2
|
Liu Y, Wu YH, Zhang SC, Liu L, Wu M, Cheng MM. Revisiting Computer-Aided Tuberculosis Diagnosis. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2024; 46:2316-2332. [PMID: 37934644 DOI: 10.1109/tpami.2023.3330825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Tuberculosis (TB) is a major global health threat, causing millions of deaths annually. Although early diagnosis and treatment can greatly improve the chances of survival, it remains a major challenge, especially in developing countries. Recently, computer-aided tuberculosis diagnosis (CTD) using deep learning has shown promise, but progress is hindered by limited training data. To address this, we establish a large-scale dataset, namely the Tuberculosis X-ray (TBX11 K) dataset, which contains 11 200 chest X-ray (CXR) images with corresponding bounding box annotations for TB areas. This dataset enables the training of sophisticated detectors for high-quality CTD. Furthermore, we propose a strong baseline, SymFormer, for simultaneous CXR image classification and TB infection area detection. SymFormer incorporates Symmetric Search Attention (SymAttention) to tackle the bilateral symmetry property of CXR images for learning discriminative features. Since CXR images may not strictly adhere to the bilateral symmetry property, we also propose Symmetric Positional Encoding (SPE) to facilitate SymAttention through feature recalibration. To promote future research on CTD, we build a benchmark by introducing evaluation metrics, evaluating baseline models reformed from existing detectors, and running an online challenge. Experiments show that SymFormer achieves state-of-the-art performance on the TBX11 K dataset.
Collapse
|
3
|
Wang X, Wei X, van der Zalm MM, Zhang Z, Subramanian N, Demers AM, Walters EG, Hesseling A, Liu C. Quantitation of Circulating Mycobacterium tuberculosis Antigens by Nanopore Biosensing in Children Evaluated for Pulmonary Tuberculosis in South Africa. ACS NANO 2023; 17:21093-21104. [PMID: 37643288 PMCID: PMC10668583 DOI: 10.1021/acsnano.3c04420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Nanopore sensing of proteomic biomarkers lacks accuracy due to the ultralow abundance of targets, a wide variety of interferents in clinical samples, and the mismatch between pore and analyte sizes. By converting antigens to DNA probes via click chemistry and quantifying their characteristic signals, we show a nanopore assay with several amplification mechanisms to achieve an attomolar level limit of detection that enables quantitation of the circulating Mycobacterium tuberculosis (Mtb) antigen ESAT-6/CFP-10 complex in human serum. The assay's nonsputum-based feature and low-volume sample requirements make it particularly well-suited for detecting pediatric tuberculosis (TB) disease, where establishing an accurate diagnosis is greatly complicated by the paucibacillary nature of respiratory secretions, nonspecific symptoms, and challenges with sample collection. In the clinical assessment, the assay was applied to analyze ESAT-6/CFP-10 levels in serum samples collected during baseline investigation for TB in 75 children, aged 0-12 years, enrolled in a diagnostic study conducted in Cape Town, South Africa. This nanopore assay showed superior sensitivity in children with confirmed TB (94.4%) compared to clinical "gold standard" diagnostic technologies (Xpert MTB/RIF 44.4% and Mtb culture 72.2%) and filled the diagnostic gap for children with unconfirmed TB, where these traditional technologies fell short. We envision that, in combination with automated sample processing and portable nanopore devices, this methodology will offer a powerful tool to support the diagnosis of pulmonary TB in children.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Xiaojun Wei
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina, 29208, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Marieke M. van der Zalm
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 8000, South Africa
| | - Zehui Zhang
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Nandhini Subramanian
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Anne-Marie Demers
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 8000, South Africa
- Division of Microbiology, Department of Laboratory Medicine, CHU Sainte-Justine, and Department of Microbiology, Immunology and Infectious Diseases, Faculty of Medicine, University of Montreal, Montreal, Quebec, H3T 1C5, Canada
| | - Elisabetta Ghimenton Walters
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 8000, South Africa
- Newcastle upon Tyne NHS Hospitals Foundation Trust, Newcastle upon Tyne, NE1 4LP, United Kingdom
| | - Anneke Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 8000, South Africa
| | - Chang Liu
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina, 29208, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina, 29208, USA
| |
Collapse
|
4
|
Performance of T-Track ® TB, a Novel Dual Marker RT-qPCR-Based Whole-Blood Test for Improved Detection of Active Tuberculosis. Diagnostics (Basel) 2023; 13:diagnostics13040758. [PMID: 36832246 PMCID: PMC9955725 DOI: 10.3390/diagnostics13040758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Tuberculosis (TB) is one of the leading causes of death by an infectious disease. It remains a major health burden worldwide, in part due to misdiagnosis. Therefore, improved diagnostic tests allowing the faster and more reliable diagnosis of patients with active TB are urgently needed. This prospective study examined the performance of the new molecular whole-blood test T-Track® TB, which relies on the combined evaluation of IFNG and CXCL10 mRNA levels, and compared it to that of the QuantiFERON®-TB Gold Plus (QFT-Plus) enzyme-linked immunosorbent assay (ELISA). Diagnostic accuracy and agreement analyses were conducted on the whole blood of 181 active TB patients and 163 non-TB controls. T-Track® TB presented sensitivity of 94.9% and specificity of 93.8% for the detection of active TB vs. non-TB controls. In comparison, the QFT-Plus ELISA showed sensitivity of 84.3%. The sensitivity of T-Track® TB was significantly higher (p < 0.001) than that of QFT-Plus. The overall agreement of T-Track® TB with QFT-Plus to diagnose active TB was 87.9%. Out of 21 samples with discordant results, 19 were correctly classified by T-Track® TB while misclassified by QFT-Plus (T-Track® TB-positive/QFT-Plus-negative), and two samples were misclassified by T-Track® TB while correctly classified by QFT-Plus (T-Track® TB-negative/QFT-Plus-positive). Our results demonstrate the excellent performance of the T-Track® TB molecular assay and its suitability to accurately detect TB infection and discriminate active TB patients from non-infected controls.
Collapse
|
5
|
Chen H, Li S, Zhao W, Deng J, Yan Z, Zhang T, Wen SA, Guo H, Li L, Yuan J, Zhang H, Ma L, Zheng J, Gao M, Pang Y. A Peptidomic Approach to Identify Novel Antigen Biomarkers for the Diagnosis of Tuberculosis. Infect Drug Resist 2022; 15:4617-4626. [PMID: 36003990 PMCID: PMC9394730 DOI: 10.2147/idr.s373652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Background Here, we conducted a peptidomic study in murine model to identify novel antigen biomarkers for the diagnosis of tuberculosis (TB) with improved performance. Methods Four recombinant proteins, including Mycobacterium tuberculosis protein 32 (MPT32), Mycobacterium tuberculosis protein 64 (MPT64), culture filtrate protein 10 (CFP10), and phosphate ABC transporter substrate-binding lipoprotein (PstS1) were expressed and intravenously injected into BALB/c mice. The serum were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The concentrations of candidate peptides in serum of suspected TB patients were determined using competitive enzyme-linked immunosorbent assay. Results A total of 65 peptides from 4 MTB precursor recombinant proteins were identified in mouse serum by LC-MS/MS, of which 5 peptides were selected as candidates for serological analysis. The concentrations of peptides MPT64-2, CFP10-2 and PstS1-2 in TB patients were significantly higher than those in non-TB patients. MPT64-2 exhibited the most promising sensitivity (81.4%), followed by PstS1-2 and CFP10-2. In addition, PstS1-2 had the highest specificity (93.3%), followed by CFP10-2 and MPT64-2. According to the area under the curve (AUC), MPT64-2 (AUC = 0.863), PstS1-2 (AUC = 0.812) and CFP10-2 (AUC = 0.809) exhibited better diagnostic validity. Conclusion We develop an effective approach to identify new antigen biomarkers via LC-MS/MS-based peptidomics. Multiple peptides exhibit promising efficacy in diagnosis of active TB patients.
Collapse
Affiliation(s)
- Hongmei Chen
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Shanshan Li
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Weijie Zhao
- Clinical Trial Agency Office, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Jiaheng Deng
- Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhuohong Yan
- Department of Central Laboratory, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Tingting Zhang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Shu' An Wen
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Haiping Guo
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Lei Li
- Electral Safety Research & Development Center, Beijing Normal University, Zhuhai, People's Republic of China
| | - Jianfeng Yuan
- Electral Safety Research & Development Center, Beijing Normal University, Zhuhai, People's Republic of China
| | - Hongtao Zhang
- Department of Central Laboratory, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Liping Ma
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Jianhua Zheng
- Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Mengqiu Gao
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People's Republic of China
| |
Collapse
|
6
|
Biadglegne F, König B, Rodloff AC, Dorhoi A, Sack U. Composition and Clinical Significance of Exosomes in Tuberculosis: A Systematic Literature Review. J Clin Med 2021; 10:E145. [PMID: 33406750 PMCID: PMC7795701 DOI: 10.3390/jcm10010145] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/21/2022] Open
Abstract
Tuberculosis (TB) remains a major health issue worldwide. In order to contain TB infections, improved vaccines as well as accurate and reliable diagnostic tools are desirable. Exosomes are employed for the diagnosis of various diseases. At present, research on exosomes in TB is still at the preliminary stage. Recent studies have described isolation and characterization of Mycobacterium tuberculosis (Mtb) derived exosomes in vivo and in vitro. Mtb-derived exosomes (Mtbexo) may be critical for TB pathogenesis by delivering mycobacterial-derived components to the recipient cells. Proteomic and transcriptomic analysis of Mtbexo have revealed a variety of proteins and miRNA, which are utilized by the TB bacteria for pathogenesis. Exosomes has been isolated in body fluids, are amenable for fast detection, and could contribute as diagnostic or prognostic biomarker to disease control. Extraction of exosomes from biological fluids is essential for the exosome research and requires careful standardization for TB. In this review, we summarized the different studies on Mtbexo molecules, including protein and miRNA and the method used to detect exosomes in biological fluids and cell culture supernatants. Thus, the detection of Mtbexo molecules in biological fluids may have a potential to expedite the diagnosis of TB infection. Moreover, the analysis of Mtbexo may generate new aspects in vaccine development.
Collapse
Affiliation(s)
- Fantahun Biadglegne
- College of Medicine and Health Sciences, Bahir Dar University, 79 Bahir Dar, Ethiopia
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (B.K.); (A.C.R.)
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany;
| | - Brigitte König
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (B.K.); (A.C.R.)
| | - Arne C. Rodloff
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (B.K.); (A.C.R.)
| | - Anca Dorhoi
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany;
| | - Ulrich Sack
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany;
| |
Collapse
|
7
|
Ejeh FE, Undiandeye A, Okon K, Kazeem HM, Kudi AC. Isolation and Immunological Detection of Mycobacterium Tuberculosis from HIV and Non-HIV Patients in Benue State, Nigeria. Ethiop J Health Sci 2020; 30:55-64. [PMID: 32116433 PMCID: PMC7036454 DOI: 10.4314/ejhs.v30i1.8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/02/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Immunological techniques are important tools for tuberculosis epidemiology; although its use is underutilized in Nigeria. In this study, we report the epidemiological outlook of Mycobacterium tuberculosis among HIV patients in Benue State, Nigeria. METHODS Sputum samples were collected from 425 suspected TB patients from July 2016 to February 2018 and subjected to acid-fast microscopy, GeneXpert MTB/RIF, processed using NALC-NaOH and cultured on Lowenstein-Jensen media. The isolates obtained were identified by SD-Bioline® assay. RESULTS The prevalence of TB by acid-fast microscopy was 35(15.9%). The prevalence of TB by acid-fast bacilli was significantly (χ2 = 8.458; P = 0.003) highest among the 15-34 years age group (22.0%) compared with other age groups. TB prevalence was significantly (χ2 = 4.751; P = 0.029) higher among patients from rural areas than those from urban center (23.8% vs 14.1%). GeneXpert assay detected 64(15.1%) TB cases of which patients from rural areas had significantly (χ2 = 8.104; P = 0.017) higher prevalence of TB than patients from urban areas (23.8% vs 12.9%). The overall rifampicin resistance TB was 3.1%. Also, patients from rural areas had significantly (χ2 = 10.625; P = 0.005) higher rifampicin resistance compared with patient from urban areas (8.3% vs 1.3%). Of the 126(29.7%) mycobacterial isolates, 42(33.33%) were identified as MTBC and 84 (66.67%) as NTM by SD-Bioline® assay. CONCLUSIONS The study revealed that Mycobacterium tuberculosis infection is still a major public health problem, with relatively high prevalence rate of rifampicin resistance among HIV positive patients. Further studies are needed for early detection and treatment intervention necessary for infection control.
Collapse
Affiliation(s)
- Francis Enenche Ejeh
- Department of Veterinary Microbiology, University of Maiduguri, Borno, Nigeria
- Department of Veterinary Microbiology, ABU, Zaria
| | | | - Kenneth Okon
- Department of Medical Microbiology, Federal Medical Center, Makurdi, Benue State, Nigeria
| | | | | |
Collapse
|
8
|
DNA markers and nano-biosensing approaches for tuberculosis diagnosis. NANOTECHNOLOGY BASED APPROACHES FOR TUBERCULOSIS TREATMENT 2020. [PMCID: PMC7303904 DOI: 10.1016/b978-0-12-819811-7.00013-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
According to WHO 2018 report, 10 million people developed tuberculosis and 1.3 million died from it making it 1 of 10 deadliest diseases worldwide. Tuberculosis is caused by infection with the bacillus Mycobacterium tuberculosis (Mtb). WHO recommends using a specific diagnostic kit Xpert MTB/RIF developed by Cepheid (California, United States). An alarming number of new cases (ca. 558,000) of rifampicin-resistant tuberculosis was diagnosticated in 2017. In recent years, new diagnosis tools targeting the Mtb DNA biomarkers have emerged using a plethora of nanomaterials capable of delivering new technological approaches for the rapid diagnostics of TB and rifampicin-resistant TB (RR-TB). In this chapter, we summarized the state-of-the-art of the current available DNA biomarkers and the potential applications for the development of new diagnosis nanotechnology-based devices. The latter use carbonaceous nanomaterials (graphene and carbon nanotubes), noble metals (silver and gold), semi-conducting (metal oxides, magnetic beads, and quantum dots) in order to reveal and/or to amplify the signal after the recognition of target DNA biomarker. The readout techniques such as colorimetry, fluorescence, surface plasmon resonance, and electrochemical methods were also reviewed. Future is bright for point-of-care diagnostics with a sample-in answer-out approach that hampers user-error through miniaturization of biochip technology to the nanoscale range, which will enable their use by nonspecialized personnel.
Collapse
|
9
|
An aptasensor for the detection of Mycobacterium tuberculosis secreted immunogenic protein MPT64 in clinical samples towards tuberculosis detection. Sci Rep 2019; 9:16273. [PMID: 31700125 PMCID: PMC6838340 DOI: 10.1038/s41598-019-52685-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/18/2019] [Indexed: 12/21/2022] Open
Abstract
This work presents experimental results on detection of Mycobacterium tuberculosis secreted protein MPT64 using an interdigitated electrode (IDE) which acts as a platform for capturing an immunogenic protein and an electrochemical impedance spectroscopy (EIS) as a detection technique. The assay involves a special receptor, single stranded DNA (ssDNA) aptamer, which specifically recognizes MPT64 protein. The ssDNA immobilization on IDE was based on a co-adsorbent immobilization at an optimized ratio of a 1/100 HS-(CH6)6-OP(O)2O-(CH2CH2O)6-5′-TTTTT-aptamer-3′/6-mercaptohexanol. The optimal sample incubation time required for a signal generation on an aptamer modified IDE was found to be at a range of 15–20 min. Atomic Force Microscopy (AFM) results confirmed a possible formation of an aptamer - MPT64 complex with a 20 nm roughness on the IDE surface vs. 4.5 nm roughness for the IDE modified with the aptamer only. A limit of detection for the EIS aptasensor based on an IDE for the detection of MPT64 in measurement buffer was 4.1 fM. The developed EIS aptasensor was evaluated on both serum and sputum clinical samples from the same TB (−) and TB (+) patients having a specificity and sensitivity for the sputum sample analysis 100% and 76.47%, respectively, and for the serum sample analysis 100% and 88.24%, respectively. The developed aptasensor presents a sensitive method for the TB diagnosis with the fast detection time.
Collapse
|
10
|
Chuensirikulchai K, Laopajon W, Phunpae P, Apiratmateekul N, Surinkaew S, Tayapiwatana C, Pata S, Kasinrerk W. Sandwich antibody-based biosensor system for identification of Mycobacterium tuberculosis complex and nontuberculous mycobacteria. J Immunoassay Immunochem 2019; 40:590-604. [PMID: 31462139 DOI: 10.1080/15321819.2019.1659814] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mycobacterial infection, leading to pulmonary disease, remains a world health problem. Clinical symptoms of pulmonary disease caused by Mycobacterium tuberculosis complex (MTBC) and nontuberculous mycobacteria (NTM) are very similar. A rapid method for the differentiation of MTBC and NTM infection is essential for appropriate therapy. In this study, we aim to establish an antibody-based biosensor system for the identification of MTBC and NTM infection. Monoclonal antibodies (mAbs) specific for Ag85B proteins of mycobacteria were generated and characterized. The generated anti-Ag85B mAb clones AM85B-5 and AM85B-8 reacted to Ag85B of Mycobacterium spp.; in contrast, clone AM85B-9 specifically reacted to Ag85B of MTBC. By employing the produced mAbs, single and sandwich antibody-based biosensors using bio-layer interferometry were established for determination of Ag85B proteins. The sandwich antibody-based biosensor system was demonstrated to be suitable for detection of Ag85B protein and identification of MTBC and NTM. Using anti-Ag85B mAbs AM85B-8 and AM85B-9 as immobilized antibodies on sensor chips and using mAb AM85B-5 as secondary antibody, the established sandwich antibody-based biosensor could discriminate MTBC and NTM. The developed biosensor system can be used for culture confirmation of mycobacteria and speciation to MTBC and NTM.
Collapse
Affiliation(s)
- Kantinan Chuensirikulchai
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Witida Laopajon
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Ponrut Phunpae
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Napaporn Apiratmateekul
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Pitsanulok, Thailand
| | - Sirirat Surinkaew
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Chatchai Tayapiwatana
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Supansa Pata
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Watchara Kasinrerk
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
11
|
Pope V, Sacksteder KA, Hererra JC, Gilman RH, Vargas-Prada S, Lopez Romero S, Yafac J, Sanchez Rios E, Moore DAJ. MPT64 patch test for the diagnosis of active pulmonary tuberculosis: a randomised controlled trial in Peru. Int J Tuberc Lung Dis 2019; 22:622-627. [PMID: 29862945 PMCID: PMC5947422 DOI: 10.5588/ijtld.17.0716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
SETTING There remains a lack of effective and inexpensive diagnostic tools for active tuberculosis (TB) disease. Testing immune responses to proteins secreted by Mycobacterium tuberculosis, such as MPT64, may be a diagnostic option. OBJECTIVE To evaluate the sensitivity and specificity of a patch test using MPT64 for the diagnosis of active TB disease. DESIGN This randomised, double-blind, placebo-controlled, prospective study in Lima, Peru, involved 55 healthy controls and 457 symptomatic individuals referred for routine TB testing by the National TB Control Programme. All subjects underwent a comprehensive diagnostic workup, and received an active patch on one arm and a placebo patch on the opposite arm, which were read after 4 days. RESULTS Eighty-one (18%) of the symptomatic participants were classified as having definite TB, while an additional 98 (21%) had probable TB. The patch tests performed the same in both groups, with a sensitivity of 27% and specificity of 74%. The area under the receiver operating characteristic curve was 0.495 (95%CI 0.425-0.565). CONCLUSIONS Contrary to existing literature, the MPT64 patch was not sensitive and specific to detect active TB. Given the potential of the test, understanding possible differences in the protein source or underlying genetic factors should be explored further.
Collapse
Affiliation(s)
- V Pope
- TB Centre, London School of Hygiene & Tropical Medicine, London, UK
| | | | | | - R H Gilman
- Universidad Peruana Cayetano Heredia, Lima, Peru, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - S Vargas-Prada
- Centre for Research in Occupational Health, Universitat Pompeu Fabra, Barcelona, Unidad Central de Contingencias Comunes (U3C), Mutua Asepeyo, Barcelona, Spain
| | | | - J Yafac
- Hospital Huaycan, Lima Este, Peru
| | | | - D A J Moore
- TB Centre, London School of Hygiene & Tropical Medicine, London, UK, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
12
|
Wang W, Liu HM, Zhou J, Wang YG, Feng X, Tang H, Yan Q, Zhu RS, Wu YW, Wang XG, He D, Chen F. Skin test of tuberculin purified protein derivatives with a dissolving microneedle-array patch. Drug Deliv Transl Res 2019; 9:795-801. [DOI: 10.1007/s13346-019-00629-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Immunoscreening of the M. tuberculosis F15/LAM4/KZN secretome library against TB patients' sera identifies unique active- and latent-TB specific biomarkers. Tuberculosis (Edinb) 2019; 115:161-170. [PMID: 30948172 DOI: 10.1016/j.tube.2019.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/01/2019] [Accepted: 03/12/2019] [Indexed: 02/03/2023]
Abstract
Tuberculosis (TB) protein biomarkers are urgently needed for the development of point-of-care diagnostics, new drugs and vaccines. Mycobacterium tuberculosis extracellular and secreted proteins play an important role in host-pathogen interactions. Antibodies produced against M. tuberculosis proteins before the onset of clinical symptoms can be used in proteomic studies to identify their target proteins. In this study, M. tuberculosis F15/LAM4/KZN strain phage secretome library was screened against immobilized polyclonal sera from active TB patients (n = 20), TST positive individuals (n = 15) and M. tuberculosis uninfected individuals (n = 20) to select and identify proteins recognized by patients' antibodies. DNA sequence analysis from randomly selected latent TB and active TB specific phage clones revealed 118 and 96 ORFs, respectively. Proteins essential for growth, virulence and metabolic pathways were identified using different TB databases. The identified active TB specific biomarkers included five proteins, namely, TrpG, Alr, TreY, BfrA and EspR, with no human homologs, whilst latent TB specific biomarkers included NarG, PonA1, PonA2 and HspR. Future studies will assess potential applications of identified protein biomarkers as TB drug or vaccine candidates/targets and diagnostic markers with the ability to discriminate LTBI from active TB.
Collapse
|
14
|
Sharma S, Sheoran A, Gupta KB, Yadav A, Varma-Basil M, Sreenivas V, Chaudhary D, Mehta PK. Quantitative detection of a cocktail of mycobacterial MPT64 and PstS1 in tuberculosis patients by real-time immuno-PCR. Future Microbiol 2019; 14:223-233. [PMID: 30663893 DOI: 10.2217/fmb-2018-0284] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
AIM There is an urgent need to design a reliable diagnostic test for tuberculosis (TB). METHODS Real-time immuno-PCR (RT-I-PCR) assay was devised for the quantitative detection of a cocktail of mycobacterial MPT64 (Rv1980c) and PstS1 (Rv0934) in TB patients. RESULTS A broad dynamic range of 0.95 pg/ml-95 ng/ml of MPT64+PstS1 was detected in TB patients. In smear-positive (n = 59) and smear-negative (n = 42) pulmonary TB cases, sensitivities of 93.2 and 83.3% were observed, respectively with 92.8% specificity, whereas a sensitivity of 77.9% and a specificity of 91.3% were observed in extrapulmonary TB cases (n = 86). Furthermore, significantly reduced MPT64+PstS1 concentrations (p < 0.001) were noticed in patients on therapy by RT-I-PCR as compared with untreated patients. CONCLUSION Our RT-I-PCR assay revealed high sensitivity especially for the rapid diagnosis of smear-negative pulmonary TB and paucibacillary extrapulmonary TB samples, which could also monitor the dynamics of disease in patients on therapy.
Collapse
Affiliation(s)
- Suman Sharma
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak-124001, India
| | - Abhishek Sheoran
- Department of Statistics, Ramanujan College, University of Delhi, New Delhi-110019, India
| | - Krishna B Gupta
- Department of TB & Respiratory Medicine, University of Health Sciences, Rohtak-124001, India
| | - Aparna Yadav
- Department of Microbiology, University of Health Sciences, Rohtak-124001, India
| | - Mandira Varma-Basil
- Microbiology Department, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi-110007, India
| | - Vishnubhatla Sreenivas
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Dhruva Chaudhary
- Department of Pulmonary & Critical Care Medicine, University of Health Sciences, Rohtak-124001, India
| | - Promod K Mehta
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak-124001, India
| |
Collapse
|
15
|
Bando-Campos G, Juárez-López D, Román-González SA, Castillo-Rodal AI, Olvera C, López-Vidal Y, Arreguín-Espinosa R, Espitia C, Trujillo-Roldán MA, Valdez-Cruz NA. Recombinant O-mannosylated protein production (PstS-1) from Mycobacterium tuberculosis in Pichia pastoris (Komagataella phaffii) as a tool to study tuberculosis infection. Microb Cell Fact 2019; 18:11. [PMID: 30660186 PMCID: PMC6339365 DOI: 10.1186/s12934-019-1059-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
Background Pichia pastoris (syn. Komagataella phaffii) is one of the most highly utilized eukaryotic expression systems for the production of heterologous glycoproteins, being able to perform both N- and O-mannosylation. In this study, we present the expression in P. pastoris of an O-mannosylated recombinant version of the 38 kDa glycolipoprotein PstS-1 from Mycobacterium tuberculosis (Mtb), that is similar in primary structure to the native secreted protein. Results The recombinant PstS-1 (rPstS-1) was produced without the native lipidation signal. Glycoprotein expression was under the control of the methanol-inducible promoter pAOX1, with secretion being directed by the α-mating factor secretion signal. Production of rPstS-1 was carried out in baffled shake flasks (BSFs) and controlled bioreactors. A production up to ~ 46 mg/L of the recombinant protein was achieved in both the BSFs and the bioreactors. The recombinant protein was recovered from the supernatant and purified in three steps, achieving a preparation with 98% electrophoretic purity. The primary and secondary structures of the recombinant protein were characterized, as well as its O-mannosylation pattern. Furthermore, a cross-reactivity analysis using serum antibodies from patients with active tuberculosis demonstrated recognition of the recombinant glycoprotein, indirectly indicating the similarity between the recombinant PstS-1 and the native protein from Mtb. Conclusions rPstS-1 (98.9% sequence identity, O-mannosylated, and without tags) was produced and secreted by P. pastoris, demonstrating that this yeast is a useful cell factory that could also be used to produce other glycosylated Mtb antigens. The rPstS-1 could be used as a tool for studying the role of this molecule during Mtb infection, and to develop and improve vaccines or kits based on the recombinant protein for serodiagnosis. Electronic supplementary material The online version of this article (10.1186/s12934-019-1059-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giroshi Bando-Campos
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP. 04510, Ciudad de México, Mexico
| | - Daniel Juárez-López
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP. 04510, Ciudad de México, Mexico
| | - Sergio A Román-González
- Unidad de Proteómica, Instituto Nacional de Medicina Genómica (INMEGEN), Periférico Sur 4809, Col. Arenal Tepepan, Tlalpan, C.P. 14610, Ciudad de México, Mexico
| | - Antonia I Castillo-Rodal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, Mexico
| | - Clarita Olvera
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología UNAM, Av. Universidad 2001 Chamilpa, Cuernavaca, Morelos, Mexico
| | - Yolanda López-Vidal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, Mexico
| | - Roberto Arreguín-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Apdo, Postal 70250, C.P. 04510, México City, Mexico
| | - Clara Espitia
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Mauricio A Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP. 04510, Ciudad de México, Mexico
| | - Norma A Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP. 04510, Ciudad de México, Mexico.
| |
Collapse
|
16
|
Sypabekova M, Jolly P, Estrela P, Kanayeva D. Electrochemical aptasensor using optimized surface chemistry for the detection of Mycobacterium tuberculosis secreted protein MPT64 in human serum. Biosens Bioelectron 2019; 123:141-151. [DOI: 10.1016/j.bios.2018.07.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/19/2018] [Accepted: 07/25/2018] [Indexed: 12/11/2022]
|
17
|
Mubin N, Pahari S, Owais M, Zubair S. Mycobacterium tuberculosis host cell interaction: Role of latency associated protein Acr-1 in differential modulation of macrophages. PLoS One 2018; 13:e0206459. [PMID: 30395609 PMCID: PMC6218195 DOI: 10.1371/journal.pone.0206459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/13/2018] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium tuberculosis (M.tb) contrives intracellular abode as a strategy to combat antibody onslaught. Additionally, to thrive against hostile ambiance inside host macrophages, the pathogen inhibits phago-lysosomal fusion. Finally, to further defy host cell offensives, M.tb opts for dormant phase, where it turns off or slows down most of its metabolic process as an added stratagem. While M.tb restrains most of its metabolic activities during dormancy, surprisingly latency-associated alpha-crystallin protein (Acr-1) is expressed most prominently during this phase. Interestingly, several previous studies described the potential of Acr-1 to induce the robust immuno-prophylactic response in the immunized host. It is intriguing to comprehend the apparent discrepancy that the microbe M.tb overexpresses a protein that has the potential to prime host immune system against the pathogen itself. Keeping this apparent ambiguity into consideration, it is imperative to unravel intricacies involved in the exploitation of Acr-1 by M.tb during its interaction with host immune cells. The present study suggests that Acr-1 exhibits diverse role in the maturation of macrophages (MΦs) and related immunological responses. The early encounter of bone marrow derived immune cells (pre-exposure during differentiation to MΦs) with Acr-1 (AcrMΦpre), results in hampering of their function. The pre-exposure of naïve MΦs with Acr-1 induces the expression of TIM-3 and IL-10. In contrast, exposure of fully differentiated MΦs to Acr-1 results in their down-modulation and induces the phosphorylation of STAT-1 and STAT-4 in host MΦs. Furthermore, Acr-1 mediated activation of MΦs results in the induction of Th1 and Th17 phenotype by activated T lymphocyte.
Collapse
Affiliation(s)
- Nida Mubin
- Molecular Immunology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Susanta Pahari
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Mohammad Owais
- Molecular Immunology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
- * E-mail: (SZ); (MO)
| | - Swaleha Zubair
- Department of Computer Science, Aligarh Muslim University, Aligarh, India
- * E-mail: (SZ); (MO)
| |
Collapse
|
18
|
Ramirez-Priego P, Martens D, Elamin AA, Soetaert P, Van Roy W, Vos R, Anton B, Bockstaele R, Becker H, Singh M, Bienstman P, Lechuga LM. Label-Free and Real-Time Detection of Tuberculosis in Human Urine Samples Using a Nanophotonic Point-of-Care Platform. ACS Sens 2018; 3:2079-2086. [PMID: 30269480 DOI: 10.1021/acssensors.8b00393] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tuberculosis (TB) is the leading global cause of death from a single infectious agent. Registered incidence rates are low, especially in low-resource countries with weak health systems, due to the disadvantages of current diagnostic techniques. A major effort is directed to develop a point-of-care (POC) platform to reduce TB deaths with a prompt and reliable low-cost technique. In the frame of the European POCKET Project, a novel POC platform for the direct and noninvasive detection of TB in human urine was developed. The photonic sensor chip is integrated in a disposable cartridge and is based on a highly sensitive Mach-Zehnder Interferometer (MZI) transducer combined with an on-chip spectral filter. The required elements for the readout are integrated in an instrument prototype, which allows real-time monitoring and data processing. In this work, the novel POC platform has been employed for the direct detection of lipoarabinomannan (LAM), a lipopolysaccharide found in the mycobacterium cell wall. After the optimization of several parameters, a limit of detection of 475 pg/mL (27.14 pM) was achieved using a direct immunoassay in undiluted human urine in less than 15 min. A final validation of the technique was performed using 20 clinical samples from TB patients and healthy donors, allowing the detection of TB in people regardless of HIV coinfection. The results show excellent correlation to those obtained with standard techniques. These promising results demonstrate the high sensitivity, specificity and applicability of our novel POC platform, which could be used during routine check-ups in developing countries.
Collapse
Affiliation(s)
- Patricia Ramirez-Priego
- Nanobiosensors
and Bioanalytical Applications Group, Catalan Institute of Nanoscience
and Nanotechnology (ICN2), CSIC, BIST and CIBER-BBN, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Daan Martens
- Photonics Research Group, Ghent University/imec, Technologiepark-Zwijnaarde 15, 9052 Ghent, Belgium
- Center for Nano- and Biophotonics, Ghent University, Technologiepark-Zwijnaarde 15, 9052 Ghent, Belgium
| | - Ayssar A. Elamin
- LIONEX Diagnostics and Therapeutics GmbH, Salzdahlumer Str. 196, Building 1A, 38126 Braunschweig, Germany
| | | | | | - Rita Vos
- imec, Kapeldreef 75, 3001 Leuven, Belgium
| | - Birgit Anton
- microfluidic ChipShop GmbH, Stockholmer Str. 20, 07747 Jena, Germany
| | | | - Holger Becker
- microfluidic ChipShop GmbH, Stockholmer Str. 20, 07747 Jena, Germany
| | - Mahavir Singh
- LIONEX Diagnostics and Therapeutics GmbH, Salzdahlumer Str. 196, Building 1A, 38126 Braunschweig, Germany
| | - Peter Bienstman
- Photonics Research Group, Ghent University/imec, Technologiepark-Zwijnaarde 15, 9052 Ghent, Belgium
- Center for Nano- and Biophotonics, Ghent University, Technologiepark-Zwijnaarde 15, 9052 Ghent, Belgium
| | - Laura M. Lechuga
- Nanobiosensors
and Bioanalytical Applications Group, Catalan Institute of Nanoscience
and Nanotechnology (ICN2), CSIC, BIST and CIBER-BBN, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
19
|
Budiarti A, Nugraha J, Wahyu W AD. The Examination of ESAT-6, CFP-10, MPT-64 Antigens of Mycobacterium tuberculosis in Urine of Pediatric Tuberculosis Patient with Immunochromatography to Support the Diagnosis. FOLIA MEDICA INDONESIANA 2018. [DOI: 10.20473/fmi.v54i3.10014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tuberculosis in children is often a systemic complication because of their imperfect cellular immune system. ESAT-6, CFP-10, and MPT-64 are small molecular dominant antigens secreted by Mtb into the blood and filtered by the kidneys into urine. The high proportion of children with TB cases according to the Ministry of Health of the Republic of Indonesia in 2013 was 7.9%-12%. Diagnis is difficult to establish with sputum and blood samples. Therefore, it is necessary to support the diagnosis using urine samples with ICT rapid test. The purpose of this study was to determine the examination of Mtb ESAT-6, CFP-10, and MPT-64 antigens in the urine of pediatric TB patients with ICT to support the diagnosis. The method used was analytic observation with case control design. The results of the study showed that 32 of the urine of children with TB who were examined with ICT, 22 showed ESAT-6, CFP-10, and MPT-64 positive and 10 negative. Whereas, from 32 urine of healthy children, 25 were negative and 7 were positive. Analysis results showed 95% confidence (CI), p = 0.0002 (p <0.05), 78% specificity and 68.8% sensitivity compared to TB diagnosis from pediatricians. As a conclusion, Mtb ESAT-6, CFP-10, and MPT-64 antigens can be examined in the urine of pediatric TB patients with ICT to support the diagnosis.
Collapse
|
20
|
Phan LMT, Rafique R, Baek SH, Nguyen TP, Park KY, Kim EB, Kim JG, Park JP, Kailasa SK, Kim HJ, Chung C, Shim TS, Park TJ. Gold-copper nanoshell dot-blot immunoassay for naked-eye sensitive detection of tuberculosis specific CFP-10 antigen. Biosens Bioelectron 2018; 121:111-117. [PMID: 30205244 DOI: 10.1016/j.bios.2018.08.068] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/04/2018] [Accepted: 08/27/2018] [Indexed: 11/25/2022]
Abstract
Herein, a straightforward and highly specific dot-blot immunoassay was successfully developed for the detection of Mycobacterium tuberculosis antigen (10 kDa culture filtrate protein, CFP-10) via the formation of copper nanoshell on the gold nanoparticles (AuNPs) surface. The principle of dot-blot immunoassay was based on the reduction of Cu2+ ion on the GBP-CFP10G2-AuNPs conjugates, which has gold binding and antigen binding affinities, simultaneously, favouring to appear red dot that can be observed with naked-eye. The dot intensity is proportional to the concentration of tuberculosis antigen CFP-10, which offers a detection limit of 7.6 pg/mL. The analytical performance of GBP-CFP10G2-AuNPs-copper nanoshell dot-blot was superior than that of conventional silver nanoshell. This method was successfully applied to identify the CFP-10 antigen in the clinical urine sample with high sensitivity, specificity, and minimized sample preparation steps. This method exhibits great application potential in the field of nanomedical science for highly reliable point-of-care detection of CFP-10 antigen in real samples to early diagnosis of tuberculosis.
Collapse
Affiliation(s)
- Le Minh Tu Phan
- Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Halal Industrialization Technology, Chung-Ang University, 84 Heukseok-ro, Donjak-gu, Seoul 06974, Republic of Korea
| | - Rafia Rafique
- Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Halal Industrialization Technology, Chung-Ang University, 84 Heukseok-ro, Donjak-gu, Seoul 06974, Republic of Korea
| | - Seung Hoon Baek
- Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Halal Industrialization Technology, Chung-Ang University, 84 Heukseok-ro, Donjak-gu, Seoul 06974, Republic of Korea
| | - Thang Phan Nguyen
- Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Halal Industrialization Technology, Chung-Ang University, 84 Heukseok-ro, Donjak-gu, Seoul 06974, Republic of Korea
| | - Kyoung Yeol Park
- Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Halal Industrialization Technology, Chung-Ang University, 84 Heukseok-ro, Donjak-gu, Seoul 06974, Republic of Korea
| | - Eun Bee Kim
- Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Halal Industrialization Technology, Chung-Ang University, 84 Heukseok-ro, Donjak-gu, Seoul 06974, Republic of Korea
| | - Jong Gil Kim
- Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Halal Industrialization Technology, Chung-Ang University, 84 Heukseok-ro, Donjak-gu, Seoul 06974, Republic of Korea
| | - Jong Pil Park
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Suresh Kumar Kailasa
- Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Halal Industrialization Technology, Chung-Ang University, 84 Heukseok-ro, Donjak-gu, Seoul 06974, Republic of Korea; Department of Applied Chemistry, S. V. National Institute of Technology, Surat 395007, Gujarat, India
| | - Hwa-Jung Kim
- Department of Microbiology and Research Institute for Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.
| | - Chaeuk Chung
- Department of Pulmonary and Critical Care Medicine, Chungnam National University Hospital, 282 Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
| | - Tae Sun Shim
- Department of Pulmonary and Critical Care Medicine, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Tae Jung Park
- Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Halal Industrialization Technology, Chung-Ang University, 84 Heukseok-ro, Donjak-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
21
|
Ansari N, Ghazvini K, Ramezani M, Shahdordizadeh M, Yazdian-Robati R, Abnous K, Taghdisi SM. Selection of DNA aptamers against Mycobacterium tuberculosis Ag85A, and its application in a graphene oxide-based fluorometric assay. Mikrochim Acta 2017; 185:21. [PMID: 29594592 DOI: 10.1007/s00604-017-2550-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/09/2017] [Indexed: 01/08/2023]
Abstract
The Mycobacterium Ag85 complex is the major secretory protein of M. tuberculosis. It is a potential marker for early diagnosis of tuberculosis (TB). The authors have identified specific aptamers for Ag85A (FbpA) via protein SELEX using magnetic beads. After twelve rounds of selection, two aptamers (Apt8 and Apt22) were chosen from different groups, and their binding constants were determined by flow cytometry. Apt22 (labeled with Atto 647N) binds to FbpA with high affinity (Kd = 63 nM) and specificity. A rapid, sensitive, and low-cost fluorescent assay was designed based on the use of Apt22 and graphene oxide, with a limit of detection of 1.5 nM and an analytical range from 5 to 200 nM of FbpA. Graphical abstract Schematic illustration of graphene oxide-based aptasensor for fluorometric determination of FbpA.
Collapse
Affiliation(s)
- Najmeh Ansari
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 91778-99191, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Buali Research Institute, Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 91778-99191, Iran
| | - Mohammad Ramezani
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, 91778-99191, Iran
| | - Mahin Shahdordizadeh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, 91778-99191, Iran
| | - Rezvan Yazdian-Robati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, 91778-99191, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, 91778-99191, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, 91778-99191, Iran.
| |
Collapse
|
22
|
Comparison of the Performance of Urinary Mycobacterium tuberculosis Antigens Cocktail (ESAT6, CFP10, and MPT64) with Culture and Microscopy in Pulmonary Tuberculosis Patients. Int J Microbiol 2017; 2017:3259329. [PMID: 29181028 PMCID: PMC5664358 DOI: 10.1155/2017/3259329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/25/2017] [Indexed: 12/22/2022] Open
Abstract
Pulmonary tuberculosis (TB) is a major global health problem and is one of the top 10 causes of death worldwide. Our study aimed to evaluate the performance of urinary Mycobacterium tuberculosis (Mtb) antigens cocktail (ESAT6, CFP10, and MPT64) compared with culture and microscopy. This descriptive cross-sectional study was conducted in Dr. Hasan Sadikin General Hospital, Bandung, from January 2014 to October 2016. A total of 141 pulmonary tuberculosis patients were included. Sputum samples were examined for acid-fast bacilli (ZN stain) and mycobacterial culture (LJ); the Mtb antigens cocktail was examined in the urine sample. The positivity rate of TB detection from the three methods was as follows: AFB 52/141 (36.9%), culture 50/141 (35.5%), and urinary Mtb antigens cocktail 95/141 (67.4%). Sensitivity, specificity, PPV, and NPV of urinary Mtb antigens cocktail were 68.2%, 33%, 31.6%, and 69.6%, respectively. Validity of combination of both methods with culture as a gold standard yielded sensitivity, specificity, PPV, and NPV of 90%, 28.6%, 40.9%, and 83.8%, respectively. Combination of urinary Mtb antigens cocktail with AFB as a screening test gives a good sensitivity, although the specificity is reduced. Urinary Mtb antigens cocktail can be used as screening test for pulmonary tuberculosis.
Collapse
|
23
|
Islamov M, Sypabekova M, Kanayeva D, Rojas-Solórzano L. CFD Modeling of Chamber Filling in a Micro-Biosensor for Protein Detection. BIOSENSORS-BASEL 2017; 7:bios7040045. [PMID: 28972568 PMCID: PMC5746768 DOI: 10.3390/bios7040045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/06/2017] [Accepted: 09/12/2017] [Indexed: 11/29/2022]
Abstract
Tuberculosis (TB) remains one of the main causes of human death around the globe. The mortality rate for patients infected with active TB goes beyond 50% when not diagnosed. Rapid and accurate diagnostics coupled with further prompt treatment of the disease is the cornerstone for controlling TB outbreaks. To reduce this burden, the existing gap between detection and treatment must be addressed, and dedicated diagnostic tools such as biosensors should be developed. A biosensor is a sensing micro-device that consists of a biological sensing element and a transducer part to produce signals in proportion to quantitative information about the binding event. The micro-biosensor cell considered in this investigation is designed to operate based on aptamers as recognition elements against Mycobacterium tuberculosis secreted protein MPT64, combined in a microfluidic-chamber with inlet and outlet connections. The microfluidic cell is a miniaturized platform with valuable advantages such as low cost of analysis with low reagent consumption, reduced sample volume, and shortened processing time with enhanced analytical capability. The main purpose of this study is to assess the flooding characteristics of the encapsulated microfluidic cell of an existing micro-biosensor using Computational Fluid Dynamics (CFD) techniques. The main challenge in the design of the microfluidic cell lies in the extraction of entrained air bubbles, which may remain after the filling process is completed, dramatically affecting the performance of the sensing element. In this work, a CFD model was developed on the platform ANSYS-CFX using the finite volume method to discretize the domain and solving the Navier–Stokes equations for both air and water in a Eulerian framework. Second-order space discretization scheme and second-order Euler Backward time discretization were used in the numerical treatment of the equations. For a given inlet–outlet diameter and dimensions of an in-house built cell chamber, different inlet liquid flow rates were explored to determine an appropriate flow condition to guarantee an effective venting of the air while filling the chamber. The numerical model depicted free surface waves as promoters of air entrainment that ultimately may explain the significant amount of air content in the chamber observed in preliminary tests after the filling process is completed. Results demonstrated that for the present design, against the intuition, the chamber must be filled with liquid at a modest flow rate to minimize free surface waviness during the flooding stage of the chamber.
Collapse
Affiliation(s)
- Meiirbek Islamov
- Department of Chemical Engineering, Nazarbayev University, Astana 010000, Kazakhstan.
| | - Marzhan Sypabekova
- Graduate Program in Science, Engineering, and Technology & National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan.
| | - Damira Kanayeva
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana 010000, Kazakhstan.
| | - Luis Rojas-Solórzano
- Department of Mechanical Engineering, Nazarbayev University, Astana 010000, Kazakhstan.
| |
Collapse
|
24
|
Zeitoun H, Bahey-El-Din M, Kassem MA, Aboushleib HM. Mycothiol acetyltransferase (Rv0819) of Mycobacterium tuberculosis is a potential biomarker for direct diagnosis of tuberculosis using patient serum specimens. Lett Appl Microbiol 2017; 65:504-511. [PMID: 28905401 DOI: 10.1111/lam.12801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 01/09/2023]
Abstract
Mycobacterium tuberculosis infection constitutes a global threat that results in significant morbidity and mortality worldwide. Efficient and early diagnosis of tuberculosis (TB) is of paramount importance for successful treatment. The aim of the current study is to investigate the mycobacterial mycothiol acetyltransferase Rv0819 as a potential novel biomarker for the diagnosis of active TB infection. The gene encoding Rv0819 was cloned and successfully expressed in Escherichia coli. The recombinant Rv0819 was purified using metal affinity chromatography and was used to raise murine polyclonal antibodies against Rv0819. The raised antibodies were employed for direct detection of Rv0819 in patient serum samples using dot blot assay and competitive enzyme-linked immunosorbent assay (ELISA). Serum samples were obtained from 68 confirmed new TB patients and 35 healthy volunteers as negative controls. The dot blot assay showed sensitivity of 64·7% and specificity of 100%, whereas the competitive ELISA assay showed lower sensitivity (54·4%) and specificity (88·57%). The overall sensitivity of the combined results of the two tests was found to be 89·7%. Overall, the mycobacterial Rv0819 is a potential TB serum biomarker that can be exploited, in combination with other TB biomarkers, for efficient and reliable diagnosis of active TB infection. SIGNIFICANCE AND IMPACT OF THE STUDY The early and accurate diagnosis of tuberculosis infection is of paramount importance for initiating treatment and avoiding clinical complications. Most current diagnostic tests have poor sensitivity and/or specificity and in many cases they are too expensive for routine diagnostic testing in resource-limited settings. In the current study, we examined a novel mycobacterial serum biomarker, namely mycothiol acetyltransferase Rv0819. The antigen was detectable in serum specimens of a significant number of tuberculosis patients. This article proves the importance of Rv0819 and paves the way towards its future use as a useful diagnostic marker for tuberculosis infection.
Collapse
Affiliation(s)
- H Zeitoun
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - M Bahey-El-Din
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - M A Kassem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - H M Aboushleib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
25
|
Yang X, Wu JB, Liu Y, Xiong Y, Ji P, Wang SJ, Chen Y, Zhao GP, Lu SH, Wang Y. Identification of mycobacterial bacterioferritin B for immune screening of tuberculosis and latent tuberculosis infection. Tuberculosis (Edinb) 2017; 107:119-125. [PMID: 29050758 DOI: 10.1016/j.tube.2017.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 08/14/2017] [Accepted: 08/20/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVES It remains necessary and urgent to search for novel mycobacterial antigens to increase the sensitivity and specificity for tuberculosis (TB) diagnosis and latent TB infection (LTBI) screening. Antigens capable of inducing strong immune responses during Mycobacterium tuberculosis (M.tb) infection would be good candidates. METHODS Cellular responses specific to M.tb derived bacterioferritin B (BfrB) were assessed by IFN-γ ELISPOT in three human cohorts, including healthy controls (HCs), LTBI population and pulmonary TB (PTB) patients. Its significance in TB diagnosis and LTBI identification was further analyzed. RESULTS BfrB-specific IFN-γ responses in PTB and LTBI groups were significantly higher than that in HCs. However, BfrB-specific IFN-γ release was not as strong as that to ESAT-6 or CFP-10 in PTB patients whereas comparable in LTBI cohort with possible complementary properties to ESAT-6 or CFP-10. More interestingly, there were a considerable number of HCs with high BfrB-specific cellular responses. When HCs with high BfrB-specific cellular responses were subgrouped into ESAT-6/CFP-10hi (SFUs = 3, 4, 5) and ESAT-6/CFP-10lo (SFUs < 3) groups, those who belonged to ESAT-6/CFP-10hi group exhibited higher PPD responsiveness than ESAT-6/CFP-10lo group. CONCLUSIONS PTB and LTBI groups exhibit higher BfrB-specific IFN-γ responses than HCs. Although BfrB is not as immunodominant as ESAT-6/CFP-10 during acute M.tb infection, comparable BfrB-specific cellular immune responses are observed in LTBI population with the potential to increase the sensitivity for LTBI screening. Moreover, strong BfrB-specific IFN-γ release in the healthy cohort is probably cautionary in identifying leaky LTBI from HCs. BfrB might thus be considered as an additional biomarker antigen for LTBI identification.
Collapse
Affiliation(s)
- Xinyu Yang
- Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, 200025, China
| | - Jia-Bao Wu
- Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, 200025, China; Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ying Liu
- Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, 200025, China
| | - Yanqing Xiong
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, 2901 Caolang Rd., Shanghai, 201508, China
| | - Ping Ji
- Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, 200025, China
| | - Shu-Jun Wang
- Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, 200025, China
| | - Yingying Chen
- Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, 200025, China
| | - Guo-Ping Zhao
- Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, China; Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201200, China
| | - Shui-Hua Lu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, 2901 Caolang Rd., Shanghai, 201508, China.
| | - Ying Wang
- Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, 200025, China; Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201200, China.
| |
Collapse
|
26
|
Potential of High-Affinity, Slow Off-Rate Modified Aptamer Reagents for Mycobacterium tuberculosis Proteins as Tools for Infection Models and Diagnostic Applications. J Clin Microbiol 2017; 55:3072-3088. [PMID: 28794178 PMCID: PMC5625393 DOI: 10.1128/jcm.00469-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/11/2017] [Indexed: 01/12/2023] Open
Abstract
Direct pathogen detection in blood to diagnose active tuberculosis (TB) has been difficult due to low levels of circulating antigens or due to the lack of specific, high-affinity binding reagents and reliable assays with adequate sensitivity. We sought to determine whether slow off-rate modified aptamer (SOMAmer) reagents with subnanomolar affinity for Mycobacterium tuberculosis proteins (antigens 85A, 85B, 85C, GroES, GroEL2, DnaK, CFP10, KAD, CFP2, RplL, and Tpx) could be useful to diagnose tuberculosis. When incorporated into the multiplexed, array-based proteomic SOMAscan assay, limits of detection reached the subpicomolar range in 40% serum. Binding to native M. tuberculosis proteins was confirmed by using M. tuberculosis culture filtrate proteins and fractions from infected macrophages and via affinity capture assays and subsequent mass spectrometry. Comparison of serum from culture-positive pulmonary TB patients and TB suspects systematically ruled out for TB revealed small but statistically significant (P < 0.0001) differences in the median M. tuberculosis signals and in specific pathogen markers, such as antigen 85B. Samples where many M. tuberculosis aptamers produced high signals were rare exceptions. In concentrated, protein-normalized urine from TB patients and non-TB controls, the CFP10 (EsxB) SOMAmer yielded the most significant differential signals (P < 0.0276), particularly in TB patients with HIV coinfection. In conclusion, direct M. tuberculosis antigen detection proved difficult even with a sensitive method such as SOMAscan, likely due to their very low, subpicomolar abundance. The observed differences between cases and controls had limited diagnostic utility in serum and urine, but further evaluation of M. tuberculosis SOMAmers using other platforms and sample types is warranted.
Collapse
|
27
|
Khurshid S, Afzal M, Khalid R, Akhtar MW, Qazi MH. Potential of multi-component antigens for tuberculosis diagnosis. Biologicals 2017; 48:109-113. [DOI: 10.1016/j.biologicals.2017.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/17/2017] [Accepted: 04/25/2017] [Indexed: 12/24/2022] Open
|
28
|
Xu Z, Hu T, Xia A, Li X, Liu Z, Min J, He J, Meng C, Yin Y, Chen X, Jiao X. Generation of Monoclonal Antibodies against Ag85A Antigen of Mycobacterium tuberculosis and Application in a Competitive ELISA for Serodiagnosis of Bovine Tuberculosis. Front Vet Sci 2017; 4:107. [PMID: 28713817 PMCID: PMC5492497 DOI: 10.3389/fvets.2017.00107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/20/2017] [Indexed: 01/29/2023] Open
Abstract
The Ag85 complex functions as the main secretory protein of Mycobacterium tuberculosis (M. tuberculosis) and BCG. This complex is composed of the proteins, Ag85A, Ag85B, and Ag85C, with Ag85A thought to play the largest role within the complex. However, the lack of commercially available monoclonal antibodies (mAbs) against Ag85A still hinders the biological and applicative research on this protein. In this study, we developed and identified anti-Ag85A mAbs, and five hybridoma cells were established. Using the indirect immunofluorescence test, we found that two anti-Ag85A mAbs did not cross-react with Ag85B and/or Ag85C. In addition, we showed that all of the mAbs tested in this study are able to react with endogenous Ag85A protein in BCG and rBCG:Ag85A using indirect ELISA and Western blot analyses. A competitive ELISA (cELISA) based on mAb 3B8 was developed, the analyses of clinic serum samples from cattle with bovine tuberculosis (TB) and healthy cattle demonstrated that the sensitivity of the cELISA was 54.2% (26/48) and the specificity was 83.5% (167/200). This study demonstrated that the mAbs against Ag85A will provide useful reagents for further investigation into the function of the Ag85 complex and can be used for serodiagnosis of bovine TB.
Collapse
Affiliation(s)
- Zhengzhong Xu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Ting Hu
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA, Yangzhou University, Yangzhou, China
| | - Aihong Xia
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xin Li
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA, Yangzhou University, Yangzhou, China
| | - Ze Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jingjing Min
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jingjing He
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Chuang Meng
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA, Yangzhou University, Yangzhou, China
| | - Yuelan Yin
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
29
|
Immuno-PCR, a new technique for the serodiagnosis of tuberculosis. J Microbiol Methods 2017; 139:218-229. [PMID: 28527886 DOI: 10.1016/j.mimet.2017.05.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 12/18/2022]
Abstract
Rapid and accurate diagnosis of tuberculosis (TB) is essential to control the disease. The conventional microbiological tests have limitations and there is an urgent need to devise a simple, rapid and reliable point-of-care (POC) test. The failure of TB diagnostic tests based on antibody detection due to inconsistent and imprecise results has stimulated renewed interest in the development of rapid antigen detection methods. However, the World Health Organization (WHO) has emphasized to continue research for designing new antibody-based detection tests with improved accuracy. Immuno-polymerase chain reaction (I-PCR) combines the simplicity and versatility of enzyme-linked immunosorbent assay (ELISA) with the exponential amplification capacity and sensitivity of PCR thus leading to several-fold increase in sensitivity in comparison to analogous ELISA. In this review, we have described the serodiagnostic potential of I-PCR assays for an early diagnosis of TB based on the detection of potential mycobacterial antigens and circulating antibodies in body fluids of TB patients.
Collapse
|
30
|
Bai L, Chen Y, Bai Y, Chen Y, Zhou J, Huang A. Fullerene-doped polyaniline as new redox nanoprobe and catalyst in electrochemical aptasensor for ultrasensitive detection of Mycobacterium tuberculosis MPT64 antigen in human serum. Biomaterials 2017; 133:11-19. [PMID: 28414975 DOI: 10.1016/j.biomaterials.2017.04.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/08/2017] [Accepted: 04/09/2017] [Indexed: 10/19/2022]
Abstract
Tuberculosis caused by Mycobacterium tuberculosis (MTB) is still a major threat to global public health. However, the existing methods for MTB detection are usually complicated and time consuming with unsatisfactory sensitivity and specificity. In this work, a relatively simple and ultrasensitive electrochemical aptasensor based on novel signal generation and amplification was constructed for the determination of MTB antigen MPT64. The coil-like fullerene (C60)-doped polyaniline (C60-PAn) nanohybrids with large surface area, abundant active groups and excellent electric performance were synthesized and used both as new redox nanoprobe and catalyst for the generation and amplification of electrochemical signal for the first time. Then gold nanoparticles decorated C60-PAn nanocomposites (GNPs-C60-PAn) were labeled with signal aptamer to form the tracer label. After the sandwich reaction of target MPT64 antigen between capture aptamer and the tracer label, a distinguishing detection signal of C60-PAn would be observed. Moreover, the detection signal could be enormously enhanced towards the efficient electrocatalytic oxidation of ascorbic acid based on C60-PAn, resulting in further improvement of the sensitivity. With the excellent redox and electrocatalytic activity of C60-PAn, a wide detection linear range from 0.02 to 1000 pg/mL was obtained with a detection limit of 20 fg/mL for MPT64. The proposed aptasensor showed high selectivity to target antigen compared with possible interfering substances. More importantly, it also exhibited excellent specificity and sensitivity for MPT64 detection in serum samples of tuberculosis patients, which provided a rapid and efficient detection method for MTB infection.
Collapse
Affiliation(s)
- Lijuan Bai
- Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing, China; Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yuhan Chen
- Department of Respiratory Disease, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Bai
- Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yongjie Chen
- Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jing Zhou
- Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Zhejiang, China.
| |
Collapse
|
31
|
López-Hernández Y, Patiño-Rodríguez O, García-Orta ST, Pinos-Rodríguez JM. Mass spectrometry applied to the identification of Mycobacterium tuberculosis and biomarker discovery. J Appl Microbiol 2017; 121:1485-1497. [PMID: 27718305 DOI: 10.1111/jam.13323] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/28/2016] [Accepted: 08/08/2016] [Indexed: 12/31/2022]
Abstract
An adequate and effective tuberculosis (TB) diagnosis system has been identified by the World Health Organization as a priority in the fight against this disease. Over the years, several methods have been developed to identify the bacillus, but bacterial culture remains one of the most affordable methods for most countries. For rapid and accurate identification, however, it is more feasible to implement molecular techniques, taking advantage of the availability of public databases containing protein sequences. Mass spectrometry (MS) has become an interesting technique for the identification of TB. Here, we review some of the most widely employed methods for identifying Mycobacterium tuberculosis and present an update on MS applied for the identification of mycobacterial species.
Collapse
Affiliation(s)
| | - O Patiño-Rodríguez
- CONACyT, Centro de Desarrollo de Productos Bióticos del Instituto Politécnico Nacional, Morelos, México
| | - S T García-Orta
- Centro de Biociencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - J M Pinos-Rodríguez
- Centro de Biociencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| |
Collapse
|
32
|
Sypabekova M, Bekmurzayeva A, Wang R, Li Y, Nogues C, Kanayeva D. Selection, characterization, and application of DNA aptamers for detection of Mycobacterium tuberculosis secreted protein MPT64. Tuberculosis (Edinb) 2017; 104:70-78. [PMID: 28454652 DOI: 10.1016/j.tube.2017.03.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/05/2017] [Accepted: 03/14/2017] [Indexed: 12/30/2022]
Abstract
Rapid detection of Mycobacterium tuberculosis (Mtb), an etiological agent of tuberculosis (TB), is important for global control of this disease. Aptamers have emerged as a potential rival for antibodies in therapeutics, diagnostics and biosensing due to their inherent characteristics. The aim of the current study was to select and characterize single-stranded DNA aptamers against MPT64 protein, one of the predominant secreted proteins of Mtb pathogen. Aptamers specific to MPT64 protein were selected in vitro using systematic evolution of ligands through exponential enrichment (SELEX) method. The selection was started with a pool of ssDNA library with randomized 40-nucleotide region. A total of 10 cycles were performed and seventeen aptamers with unique sequences were identified by sequencing. Dot Blot analysis was performed to monitor the SELEX process and to conduct the preliminary tests on the affinity and specificity of aptamers. Enzyme linked oligonucleotide assay (ELONA) showed that most of the aptamers were specific to the MPT64 protein with a linear correlation of R2 = 0.94 for the most selective. Using Surface Plasmon Resonance (SPR), dissociation equilibrium constant KD of 8.92 nM was obtained. Bioinformatics analysis of the most specific aptamers revealed the existence of a conserved as well as distinct sequences and possible binding site on MPT64. The specificity was determined by testing non-target ESAT-6 and CFP-10. Negligible cross-reactivity confirmed the high specificity of the selected aptamer. The selected aptamer was further tested on clinical sputum samples using ELONA and had sensitivity and specificity of 91.3% and 90%, respectively. Microscopy, culture positivity and nucleotide amplification methods were used as reference standards. The aptamers studied could be further used for the development of medical diagnostic tools and detection assays for Mtb.
Collapse
Affiliation(s)
- Marzhan Sypabekova
- Laboratory of Biosensors and Bioinstruments, National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Avenue, Astana, 010000, Kazakhstan; School of Engineering, Nazarbayev University, 53 Kabanbay batyr Avenue, Astana, 010000, Kazakhstan
| | - Aliya Bekmurzayeva
- Laboratory of Biosensors and Bioinstruments, National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Avenue, Astana, 010000, Kazakhstan; School of Engineering, Nazarbayev University, 53 Kabanbay batyr Avenue, Astana, 010000, Kazakhstan
| | - Ronghui Wang
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Claude Nogues
- LBPA, IDA, ENS Cachan, CNRS, Université Paris-Saclay, F-94235, Cachan, France
| | - Damira Kanayeva
- Department of Biology, School of Science and Technology, Nazarbayev University, 53 Kabanbay batyr Avenue, Astana, 010000, Kazakhstan.
| |
Collapse
|
33
|
Campuzano S, Yáñez-Sedeño P, Pingarrón JM. Electrochemical Biosensing for the Diagnosis of Viral Infections and Tropical Diseases. ChemElectroChem 2017. [DOI: 10.1002/celc.201600805] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Susana Campuzano
- Department Analytical Chemistry; Complutense University of Madrid; Av. Complutense s/n 28040- Madrid Spain
| | - Paloma Yáñez-Sedeño
- Department Analytical Chemistry; Complutense University of Madrid; Av. Complutense s/n 28040- Madrid Spain
| | - José Manuel Pingarrón
- Department Analytical Chemistry; Complutense University of Madrid; Av. Complutense s/n 28040- Madrid Spain
| |
Collapse
|
34
|
Yeboah-Manu D, de Jong BC, Gehre F. The Biology and Epidemiology of Mycobacterium africanum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:117-133. [PMID: 29116632 DOI: 10.1007/978-3-319-64371-7_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
West Africa is the only region in the world where six out of seven mycobacterial lineages of human importance are endemic. In particular, two evolutionary ancient lineages, Mycobacterium africanum West Africa 1 (MTBC Lineage 5) and M. africanum West Africa 2 (MTBC Lineage 6) are of interest as they cause up to 40% of all pulmonary TB cases in some West African countries. Although these M. africanum lineages are closely related to M. tuberculosis sensu stricto lineages, they differ significantly in respect to biology, epidemiology and in their potential to cause disease in humans. Most importantly the M. africanum lineages are exclusive to West Africa. Although the exact mechanisms underlying this geographical restriction are still not understood, it is increasingly suspected that this is due to an adaptation of the bacteria to West African host populations. In this chapter, we summarize the geographical distribution of the M. africanum lineages within the region, describe biological and clinical differences and the consequent implications for TB control in West Africa. We also try to shed light on the geographical restriction, based on recently published analyses on whole genomes of M. africanum isolates.
Collapse
Affiliation(s)
- Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| | | | - Florian Gehre
- Institute for Tropical Medicine, Antwerp, Belgium
- Medical Research Council (MRC) Unit, The Gambia Serrekunda, Gambia
| |
Collapse
|
35
|
Diouani MF, Ouerghi O, Refai A, Belgacem K, Tlili C, Laouini D, Essafi M. Detection of ESAT-6 by a label free miniature immuno-electrochemical biosensor as a diagnostic tool for tuberculosis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 74:465-470. [PMID: 28254318 DOI: 10.1016/j.msec.2016.12.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 11/15/2016] [Accepted: 12/11/2016] [Indexed: 12/15/2022]
Abstract
Tuberculosis is a worldwide disease considered as a major health problem with high morbidity and mortality rates. Poor detection of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis remains a major obstacle to the global control of this disease. Here we report the development of a new test based on the detection of the major virulent factor of Mtb, namely the early secreted antigenic target 6-kDa protein or ESAT-6. A label free electrochemical immunosensor using an anti-ESAT-6 monoclonal antibody as a bio-receptor is described herein. Anti-ESAT-6 antibodies were first covalently immobilized on the surface of a gold screen-printed electrode functionalized via a self-assembled thiol monolayer. Interaction between the bio-receptor and ESAT-6 antigen was evaluated by square wave voltammetry method using [Fe(CN)6]3-/4- as redox probe. The detection limit of ESAT-6 antigen was 7ng/ml. The immunosensor has also been able to detect native ESAT-6 antigen secreted in cell culture filtrates of three pathogenic strains of Mtb (CDC1551, H37RV and H8N8). Overall, this work describes an immune-electrochemical biosensor, based on ESAT-6 antigen detection, as a useful diagnostic tool for tuberculosis.
Collapse
Affiliation(s)
- Mohamed Fethi Diouani
- Institut Pasteur de Tunis, LR11IPT03, Laboratory of Epidemiology and Veterinary Microbiology (LEMV), Tunis-Belvédère 1002, Tunisia; Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère 1002, Tunisia; Faculty of Sciences of Bizerte, University of Carthage, Bizerte 7021, Tunisia.
| | - Oussama Ouerghi
- Prince Sattam Bin Abdulaziz University, Saudi Arabia; Université Tunis El Manar, Tunis 1068, Tunisia
| | - Amira Refai
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère 1002, Tunisia; Université Tunis El Manar, Tunis 1068, Tunisia
| | - Kamel Belgacem
- Institut Pasteur de Tunis, LR11IPT03, Laboratory of Epidemiology and Veterinary Microbiology (LEMV), Tunis-Belvédère 1002, Tunisia; Université Tunis El Manar, Tunis 1068, Tunisia
| | - Chaker Tlili
- Institut Pasteur de Tunis, LR11IPT03, Laboratory of Epidemiology and Veterinary Microbiology (LEMV), Tunis-Belvédère 1002, Tunisia; Research Center for Precision Medicine and Single Molecule Diagnostics, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Dhafer Laouini
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère 1002, Tunisia; Université Tunis El Manar, Tunis 1068, Tunisia
| | - Makram Essafi
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère 1002, Tunisia; Université Tunis El Manar, Tunis 1068, Tunisia
| |
Collapse
|
36
|
Stucki D, Brites D, Jeljeli L, Coscolla M, Liu Q, Trauner A, Fenner L, Rutaihwa L, Borrell S, Luo T, Gao Q, Kato-Maeda M, Ballif M, Egger M, Macedo R, Mardassi H, Moreno M, Tudo Vilanova G, Fyfe J, Globan M, Thomas J, Jamieson F, Guthrie JL, Asante-Poku A, Yeboah-Manu D, Wampande E, Ssengooba W, Joloba M, Henry Boom W, Basu I, Bower J, Saraiva M, Vaconcellos SEG, Suffys P, Koch A, Wilkinson R, Gail-Bekker L, Malla B, Ley SD, Beck HP, de Jong BC, Toit K, Sanchez-Padilla E, Bonnet M, Gil-Brusola A, Frank M, Penlap Beng VN, Eisenach K, Alani I, Wangui Ndung'u P, Revathi G, Gehre F, Akter S, Ntoumi F, Stewart-Isherwood L, Ntinginya NE, Rachow A, Hoelscher M, Cirillo DM, Skenders G, Hoffner S, Bakonyte D, Stakenas P, Diel R, Crudu V, Moldovan O, Al-Hajoj S, Otero L, Barletta F, Jane Carter E, Diero L, Supply P, Comas I, Niemann S, Gagneux S. Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages. Nat Genet 2016; 48:1535-1543. [PMID: 27798628 PMCID: PMC5238942 DOI: 10.1038/ng.3704] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/27/2016] [Indexed: 12/30/2022]
Abstract
Generalist and specialist species differ in the breadth of their ecological niches. Little is known about the niche width of obligate human pathogens. Here we analyzed a global collection of Mycobacterium tuberculosis lineage 4 clinical isolates, the most geographically widespread cause of human tuberculosis. We show that lineage 4 comprises globally distributed and geographically restricted sublineages, suggesting a distinction between generalists and specialists. Population genomic analyses showed that, whereas the majority of human T cell epitopes were conserved in all sublineages, the proportion of variable epitopes was higher in generalists. Our data further support a European origin for the most common generalist sublineage. Hence, the global success of lineage 4 reflects distinct strategies adopted by different sublineages and the influence of human migration.
Collapse
Affiliation(s)
- David Stucki
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Daniela Brites
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Leïla Jeljeli
- Forschungszentrum Borstel, Germany.,Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Mireia Coscolla
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Qingyun Liu
- The Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institutes of Biomedical Sciences and Institute of Medical Microbiology, School of Basic Medical Science of Fudan University, Shanghai, China
| | - Andrej Trauner
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Lukas Fenner
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland.,Institute for Social and Preventive Medicine, University of Bern, Switzerland
| | - Liliana Rutaihwa
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Tao Luo
- Laboratory of Infection and Immunity, School of Basic Medical Science, West China Center of Medical Sciences, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qian Gao
- The Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institutes of Biomedical Sciences and Institute of Medical Microbiology, School of Basic Medical Science of Fudan University, Shanghai, China
| | | | - Marie Ballif
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland.,Institute for Social and Preventive Medicine, University of Bern, Switzerland
| | - Matthias Egger
- Institute for Social and Preventive Medicine, University of Bern, Switzerland
| | - Rita Macedo
- Laboratòrio de Saùde Publica, Lisbon, Portugal
| | - Helmi Mardassi
- Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | | | | | - Janet Fyfe
- Victorian Infectious Diseases Reference Laboratory, Victoria, Australia
| | - Maria Globan
- Victorian Infectious Diseases Reference Laboratory, Victoria, Australia
| | | | | | | | - Adwoa Asante-Poku
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Eddie Wampande
- Department of Medical Microbiology, Makerere University, Kampala, Uganda
| | - Willy Ssengooba
- Department of Medical Microbiology, Makerere University, Kampala, Uganda.,Department of Global Health, University of Amsterdam, Amsterdam, the Netherlands
| | - Moses Joloba
- Department of Medical Microbiology, Makerere University, Kampala, Uganda
| | - W Henry Boom
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, USA
| | - Indira Basu
- LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - James Bower
- LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Margarida Saraiva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | | | - Anastasia Koch
- Institute of Infectious Disease and Molecular Medicine and Department of Clinical Laboratory Sciences, University of Cape Town, South Africa
| | - Robert Wilkinson
- Institute of Infectious Disease and Molecular Medicine and Department of Clinical Laboratory Sciences, University of Cape Town, South Africa.,Department of Medicine, Imperial College London, UK.,The Francis Crick Institute Mill Hill Laboratory, London, UK
| | - Linda Gail-Bekker
- Institute of Infectious Disease and Molecular Medicine and Department of Clinical Laboratory Sciences, University of Cape Town, South Africa
| | - Bijaya Malla
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Serej D Ley
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland.,Papua New Guinea Institute of Medical Research, Goroka, PNG
| | - Hans-Peter Beck
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | | | - Kadri Toit
- Tartu University Hospital United Laboratories, Mycobacteriology, Tartu, Estonia
| | | | | | - Ana Gil-Brusola
- Department of Microbiology, University Hospital La Fe, Valencia, Spain
| | - Matthias Frank
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Veronique N Penlap Beng
- Institute Laboratory for Tuberculosis Research (LTR), Biotechnology Center (BTC), University of Yaoundé I, Yaoundé, Cameroon
| | - Kathleen Eisenach
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Issam Alani
- Department of Medical Laboratory Technology, Faculty of Medical Technology, Baghdad, Iraq
| | - Perpetual Wangui Ndung'u
- Institute of Tropical Medicine and Infectious Diseases (ITROMID), Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Gunturu Revathi
- Department of Pathology, Aga Khan University Hospital (AKUH), Nairobi, Kenya
| | - Florian Gehre
- Insitute of Tropical Medicine, Antwerp, Belgium.,Medical Research Council, Fajara, the Gambia
| | | | - Francine Ntoumi
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Fondation Congolaise pour la Recherche Médicale, Université Marien Gouabi, Brazzaville, Congo
| | - Lynsey Stewart-Isherwood
- Right to Care and the Clinical HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Nyanda E Ntinginya
- National Institute of Medical Research, Mbeya Medical Research Centre (NIMR-MMRC), Mbeya, Tanzania
| | - Andrea Rachow
- Division of Infectious Diseases and Tropical Medicine, Medical Centre of the University of Munich, Munich, Germany; German Centre for Infection Research (DZIF), partner site Munich, Germany
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, Medical Centre of the University of Munich, Munich, Germany; German Centre for Infection Research (DZIF), partner site Munich, Germany
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Girts Skenders
- Riga East University Hospital, Centre of Tuberculosis and Lung Diseases, Riga, Latvia
| | - Sven Hoffner
- WHO Supranational TB Reference Laboratory, Department of Microbiology, The Public Health Agency of Sweden, Solna, Sweden
| | - Daiva Bakonyte
- Department of Immunology and Cell Biology, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Petras Stakenas
- Department of Immunology and Cell Biology, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Roland Diel
- Institute for Epidemiology, Schleswig-Holstein University Hospital, Kiel, Germany
| | - Valeriu Crudu
- National Tuberculosis Reference Laboratory, Phthysiopneumology Institute, Chisinau, Republic of Moldova
| | - Olga Moldovan
- 'Marius Nasta' Pneumophtisiology Institute, Bucharest, Romania
| | - Sahal Al-Hajoj
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Larissa Otero
- Instituto de Medicina Tropical Alexander von Humboldt, Molecular Epidemiology Unit-Tuberculosis, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Francesca Barletta
- Instituto de Medicina Tropical Alexander von Humboldt, Molecular Epidemiology Unit-Tuberculosis, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - E Jane Carter
- Alpert School of Medicine at Brown University, Providence, Rhode Island, USA.,Moi University School of Medicine, Eldoret, Kenya
| | - Lameck Diero
- Moi University School of Medicine, Eldoret, Kenya
| | - Philip Supply
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Iñaki Comas
- Institute of Biomedicine of Valencia (IBV-CSIC), 46010, Valencia, Spain.,CIBER Epidemiology and Public Health, Madrid, Spain
| | - Stefan Niemann
- Forschungszentrum Borstel, Germany.,German Center for Infection Research, Borstel Site, Borstel, Germany
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| |
Collapse
|
37
|
Kim J, Jang M, Lee KG, Lee KS, Lee SJ, Ro KW, Kang IS, Jeong BD, Park TJ, Kim HJ, Lee J. Plastic-Chip-Based Magnetophoretic Immunoassay for Point-of-Care Diagnosis of Tuberculosis. ACS APPLIED MATERIALS & INTERFACES 2016; 8:23489-97. [PMID: 27548010 DOI: 10.1021/acsami.6b06924] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Tuberculosis (TB) remains a relevant infectious disease in the 21st century, and its extermination is still far from being attained. Due to the extreme infectivity of incipient TB patients, a rapid sensing system for proficient point-of-care (POC) diagnostics is required. In our study, a plastic-chip-based magnetophoretic immunoassay (pcMPI) is introduced using magnetic and gold nanoparticles (NPs) modified with Mycobacterium tuberculosis (MTB) antibodies. This pcMPI offers an ultrasensitive limit of detection (LOD) of 1.8 pg·ml(-1) for the detection of CFP-10, an MTB-secreted antigen, as a potential TB biomarker with high specificity. In addition, by combining the plastic chip with an automated spectrophotometer setup, advantages include ease of operation, rapid time to results (1 h), and cost-effectiveness. Furthermore, the pcMPI results using clinical sputum culture filtrate samples are competitively compared with and integrated with clinical data collected from conventional tools such as the acid-fast bacilli (AFB) test, mycobacteria growth indicator tube (MGIT), polymerase chain reaction (PCR), and physiological results. CFP-10 concentrations were consistently higher in patients diagnosed with MTB infection than those seen in patients infected with nontuberculosis mycobacteria (NTM) (P < 0.05), and this novel test can distinguish MTB and NTM while MGIT cannot. All these results indicate that this pcMPI has the potential to become a new commercial TB diagnostic POC platform in view of its sensitivity, portability, and affordability.
Collapse
Affiliation(s)
- Jeonghyo Kim
- Departments of Cogno-Mechatronics Engineering, Pusan National University , Busan 46241, Republic of Korea
| | - Minji Jang
- Departments of Cogno-Mechatronics Engineering, Pusan National University , Busan 46241, Republic of Korea
| | - Kyoung G Lee
- Department of Nano Bio Research, National NanoFab Center (NNFC) , Daejeon 305-806, Republic of Korea
| | - Kil-Soo Lee
- Department of Bacterial Respiratory Infections, Center for Infectious Diseases, National Institute of Health, Korea Center for Disease Control and Prevention , Cheongju 28159, Republic of Korea
| | - Seok Jae Lee
- Department of Nano Bio Research, National NanoFab Center (NNFC) , Daejeon 305-806, Republic of Korea
| | - Kyung-Won Ro
- Scinco R&D Center , 746 Daedeok-daero, Yuseong-gu, Daejeon 34055, Republic of Korea
| | - In Sung Kang
- Scinco R&D Center , 746 Daedeok-daero, Yuseong-gu, Daejeon 34055, Republic of Korea
| | - Byung Do Jeong
- Scinco R&D Center , 746 Daedeok-daero, Yuseong-gu, Daejeon 34055, Republic of Korea
| | - Tae Jung Park
- Department of Chemistry, Chung-Ang University , Seoul 06974, Republic of Korea
| | - Hwa-Jung Kim
- Department of Microbiology and Research Institute for Medical Science, College of Medicine, Chungnam National University , Daejeon 35015, Republic of Korea
| | - Jaebeom Lee
- Departments of Cogno-Mechatronics Engineering, Pusan National University , Busan 46241, Republic of Korea
| |
Collapse
|
38
|
Wang L, Deng X, Liu H, Zhao L, You X, Dai P, Wan K, Zeng Y. The mimic epitopes ofMycobacterium tuberculosisscreened by phage display peptide library have serodiagnostic potential for tuberculosis. Pathog Dis 2016; 74:ftw091. [DOI: 10.1093/femspd/ftw091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2016] [Indexed: 11/12/2022] Open
|
39
|
Safety of Recombinant Fusion Protein ESAT6-CFP10 as a Skin Test Reagent for Tuberculosis Diagnosis: an Open-Label, Randomized, Single-Center Phase I Clinical Trial. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:767-73. [PMID: 27413070 DOI: 10.1128/cvi.00154-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/29/2016] [Indexed: 02/04/2023]
Abstract
This trial was conducted to explore the safety of recombinant fusion protein ESAT6-CFP10 as a skin test reagent for the diagnosis of Mycobacterium tuberculosis infection. Twenty-four healthy adult volunteers were recruited and randomized into four groups (groups A to D) to study four increasing doses of ESAT6-CFP10. All subjects in each dose group received an intradermal injection of reagent (0.1 ml) via the Mantoux technique. Then, the vital signs of all subjects were monitored, and skin reactions around injection sites and adverse events were recorded at different detection time points after the skin test. No serious adverse events were observed in this study. A total of 3 subjects had unexpected events. One subject in group A developed subcutaneous hemorrhage 24 h after the skin test, one subject in group B was found with red spots 15 min after the skin test, and another subject in group A showed abnormity during a chest X-ray after the skin test without affecting her health. One of three adverse events (red spots) was probably related to the recombinant ESAT6-CFP10 reagent. A single dose of 1, 5, 10, or 20 μg/ml of recombinant ESAT6-CFP10 as a skin test reagent for M. tuberculosis infection diagnosis is well tolerated and safe in China. (This study has been registered at ClinicalTrials.gov under registration no. NCT01999231.).
Collapse
|
40
|
Saengdee P, Chaisriratanakul W, Bunjongpru W, Sripumkhai W, Srisuwan A, Hruanun C, Poyai A, Phunpae P, Pata S, Jeamsaksiri W, Kasinreak W, Promptmas C. A silicon nitride ISFET based immunosensor for Ag85B detection of tuberculosis. Analyst 2016; 141:5767-5775. [PMID: 27486595 DOI: 10.1039/c6an00568c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A silicon nitride Ion Sensitive Field Effect Transistor (ISFET) based immunosensor was developed as a low-cost and label-free electrical detection for the detection of antigen 85 complex B (Ag85B). The sensing membrane of the ISFET was modified with 3-aminopropyltriethoxysilane (APTES) followed by glutaraldehyde (GA), yielding an aldehyde-terminated surface. This group is available for immobilization of a monoclonal antibody against a recombinant Ag85B protein (anti-Ag85B antibody). The optimal concentration for anti-Ag85B antibody immobilization onto the modified ISFET was 100 μg ml-1. This optimal condition provided the maximal binding capability and minimal non-specific background signal. The binding event between the recombinant Ag85B antigen and anti-Ag85B antibody on the ISFET surface is presented by monitoring the gate potential change at a constant drain current. The dose response for the recombinant Ag85B protein showed a linear response between 0.12 and 1 μg ml-1 without significant interference from other recombinant proteins. The analytical imprecision (CV%) and accuracy of this Ag85B protein biosensor were 9.73-10.99% and 95.29%, respectively. In addition, an irrelevant antibody and other recombinant proteins were employed as a negative control to demonstrate the non-specific interaction of the antigen and antibody. The success of this immunosensor system for Ag85B protein detection facilitates the construction of a promising device which can shorten the turnaround time for the diagnosis of tuberculosis compared to a standard culture method. Furthermore, this device could also be applied for real-time growth monitoring of Mycobacterium tuberculosis in a mycobacterial culture system.
Collapse
Affiliation(s)
- Pawasuth Saengdee
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ofori-Anyinam B, Kanuteh F, Agbla SC, Adetifa I, Okoi C, Dolganov G, Schoolnik G, Secka O, Antonio M, de Jong BC, Gehre F. Impact of the Mycobaterium africanum West Africa 2 Lineage on TB Diagnostics in West Africa: Decreased Sensitivity of Rapid Identification Tests in The Gambia. PLoS Negl Trop Dis 2016; 10:e0004801. [PMID: 27387550 PMCID: PMC4936735 DOI: 10.1371/journal.pntd.0004801] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/02/2016] [Indexed: 01/19/2023] Open
Abstract
Background MPT64 rapid speciation tests are increasingly being used in diagnosis of tuberculosis (TB). Mycobacterium africanum West Africa 2 (Maf 2) remains an important cause of TB in West Africa and causes one third of disease in The Gambia. Since the introduction of MPT64 antigen tests, a higher than expected rate of suspected non-tuberculous mycobacteria (NTM) was seen among AFB smear positive TB suspects, which led us to prospectively assess sensitivity of the MPT64 antigen test in our setting. Methodology/Principal Findings We compared the abundance of mRNA encoded by the mpt64 gene in sputa of patients with untreated pulmonary TB caused by Maf 2 and Mycobacterium tuberculosis (Mtb). Subsequently, prospectively collected sputum samples from presumptive TB patients were inoculated in the BACTEC MGIT 960 System. One hundred and seventy-three acid fast bacilli (AFB)-positive and blood agar negative MGIT cultures were included in the study. Cultures were tested on the day of MGIT positivity with the BD MGIT TBc Identification Test. A random set of positives and all negatives were additionally tested with the SD Bioline Ag MPT64 Rapid. MPT64 negative cultures were further incubated at 37°C and retested until positive. Bacteria were spoligotyped and assigned to different lineages. Maf 2 isolates were 2.52-fold less likely to produce a positive test result and sensitivity ranged from 78.4% to 84.3% at the beginning and end of the recommended 10 day testing window, respectively. There was no significant difference between the tests. We further showed that the decreased rapid test sensitivity was attributable to variations in mycobacterial growth behavior and the smear grades of the patient. Conclusions/Significance In areas where Maf 2 is endemic MPT64 tests should be cautiously used and MPT64 negative results confirmed by a second technique, such as nucleic acid amplification tests, to avoid their misclassification as NTMs. Diagnostics for rapid confirmation of positive liquid cultures presumptive of Mycobacterium tuberculosis bacteria, based on the detection of the MPT64 antigen, are being used in many TB diagnostic laboratories worldwide. Of note, diagnostic performance of these tests in West Africa, where TB is uniquely caused by the geographically restricted Mycobacterium africanum (Maf 1 and 2) and Mycobacterium tuberculosis lineages, has not been properly assessed. Although M. tuberculosis and M. africanum are genetically related, they differ in various aspects. Amongst several differences, Maf 2 grows significantly slower than Mtb bacteria. Because secretion of the MTP64 protein is dependent on the bacterial growth rate, we found that the MPT64 rapid test performance for detecting Maf 2 was lower in our setting in The Gambia. These findings might be relevant for other West African Maf 2 endemic countries where this rapid test is commonly used, as Maf 2 infected patients might have been missed in the past. Our finding emphasizes the need to thoroughly consider the presence of bacterial variants specific to certain regions during product development and implementation of novel diagnostic tests.
Collapse
Affiliation(s)
- Boatema Ofori-Anyinam
- Mycobacteriology Unit, Institute of Tropical Medicine (ITM), Antwerp, Belgium
- Vaccines and Immunity Theme, Medical Research Council (MRC) Unit, Serrekunda, The Gambia
| | - Fatoumatta Kanuteh
- Vaccines and Immunity Theme, Medical Research Council (MRC) Unit, Serrekunda, The Gambia
| | - Schadrac C. Agbla
- Vaccines and Immunity Theme, Medical Research Council (MRC) Unit, Serrekunda, The Gambia
| | - Ifedayo Adetifa
- Disease Control and Elimination Theme, Medical Research Council (MRC) Unit, Serrekunda, The Gambia
- Department of Infectious Diseases Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Catherine Okoi
- Vaccines and Immunity Theme, Medical Research Council (MRC) Unit, Serrekunda, The Gambia
| | - Gregory Dolganov
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
| | - Gary Schoolnik
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
| | - Ousman Secka
- Vaccines and Immunity Theme, Medical Research Council (MRC) Unit, Serrekunda, The Gambia
| | - Martin Antonio
- Vaccines and Immunity Theme, Medical Research Council (MRC) Unit, Serrekunda, The Gambia
- Division of Microbiology & Immunity, Warwick Medical School, Coventry, United Kingdom
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Bouke C. de Jong
- Mycobacteriology Unit, Institute of Tropical Medicine (ITM), Antwerp, Belgium
- Vaccines and Immunity Theme, Medical Research Council (MRC) Unit, Serrekunda, The Gambia
- Division of Infectious Diseases, New York University, New York, New York, United States of America
| | - Florian Gehre
- Mycobacteriology Unit, Institute of Tropical Medicine (ITM), Antwerp, Belgium
- Vaccines and Immunity Theme, Medical Research Council (MRC) Unit, Serrekunda, The Gambia
- * E-mail:
| |
Collapse
|
42
|
Świerzko AS, Bartłomiejczyk MA, Brzostek A, Łukasiewicz J, Michalski M, Dziadek J, Cedzyński M. Mycobacterial antigen 85 complex (Ag85) as a target for ficolins and mannose-binding lectin. Int J Med Microbiol 2016; 306:212-21. [PMID: 27141819 DOI: 10.1016/j.ijmm.2016.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/07/2016] [Accepted: 04/25/2016] [Indexed: 10/21/2022] Open
Abstract
The pattern recognition molecules (PRMs) able to activate complement via the lectin pathway are suspected to be involved in the interaction between pathogenic Mycobacteria and the host immune response. Recently, we have found strong interactions between 25 and 35kDa mycobacterial cell fractions and mannose-binding lectin (MBL) and ficolins. Here we demonstrate that two biologically important mycobacterial structures, mannosylated lipoarabinomannan (ManLAM) and the antigen 85 (Ag85) complex, induce activation of the lectin pathway of complement. The strong interaction of recombinant MBL with purified ManLAM was confirmed, but no binding of recombinant ficolins (ficolin-1, -2, -3) with this structure was observed. Interestingly, all PRMs tested reacted with the mycobacterial antigen 85 (Ag85) complex. Based on the use of specific inhibitors (mannan for MBL, acetylated bovine serum albumin for ficolin-1 and -2, Hafnia alvei PCM 1200 lipopolysaccharide for ficolin-3), we concluded that carbohydrate-recognition (MBL) and fibrinogen-like domains (ficolins) were involved in these interactions. Our results indicate that the mycobacterial antigen 85 complex is a target for ficolins and MBL. Furthermore, those PRMs also bound to fibronectin and therefore might influence the Ag85 complex-dependent interaction of Mycobacterium with the extracellular matrix.
Collapse
Affiliation(s)
- Anna S Świerzko
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Marcin A Bartłomiejczyk
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Anna Brzostek
- Laboratory of Mycobacterium Genetics and Physiology, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Jolanta Łukasiewicz
- Department of Immunochemistry, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland
| | - Mateusz Michalski
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Jarosław Dziadek
- Laboratory of Mycobacterium Genetics and Physiology, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland.
| |
Collapse
|
43
|
Abstract
Tuberculosis (TB), caused byMycobacterium tuberculosis(M.tb.), is one of the most prevalent and serious infectious diseases worldwide with an estimated annual global mortality of 1.4 million in 2010.
Collapse
Affiliation(s)
- Saurabh K. Srivastava
- Plant Research International
- Wageningen UR
- 6708 PB Wageningen
- The Netherlands
- Laboratory of Organic Chemistry
| | - Cees J. M. van Rijn
- Laboratory of Organic Chemistry
- Wageningen UR
- 6703 HB Wageningen
- The Netherlands
| | - Maarten A. Jongsma
- Plant Research International
- Wageningen UR
- 6708 PB Wageningen
- The Netherlands
| |
Collapse
|
44
|
Mertaniasih NM, Handijatno D, Perwitasari ADS, Dewi DNSS, Fanani MZ, Afifah IQ. Sequence Analysis of the Gene Region Encoding ESAT-6, Ag85B, and Ag85C Proteins from Clinical Isolates of Mycobacterium tuberculosis. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.proche.2016.01.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Screening and identification of immunoactive peptide mimotopes for the enhanced serodiagnosis of tuberculosis. Appl Microbiol Biotechnol 2015; 100:2279-87. [DOI: 10.1007/s00253-015-7122-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/21/2015] [Accepted: 10/24/2015] [Indexed: 12/23/2022]
|
46
|
Mozioglu E, Gokmen O, Tamerler C, Kocagoz ZT, Akgoz M. Selection of Nucleic Acid Aptamers Specific for Mycobacterium tuberculosis. Appl Biochem Biotechnol 2015; 178:849-64. [PMID: 26541162 DOI: 10.1007/s12010-015-1913-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/26/2015] [Indexed: 12/14/2022]
Abstract
Tuberculosis (TB) remains to be a major global health problem, with about 9 million new cases and 1.4 million deaths in 2011. For the control of tuberculosis as well as other infectious diseases, WHO recommended "ASSURED" (Affordable, Sensitive, Specific, User-friendly, Rapid and robust, Equipment-free, and Deliverable to the end user) diagnostic tools that can easily be maintained and used in developing countries. Aptamers are promising tools for developing point-of-care diagnostic assays for TB. In this study, ssDNA aptamers that recognize Mycobacterium tuberculosis H37Ra were selected by systematic evolution of ligands by exponential enrichment (SELEX). For this purpose, two different selection protocols, ultrafiltration and centrifugation, were applied. A total of 21 TB specific aptamers were selected. These aptamers exhibited "G-rich" regions on the 3' terminus of the aptamers, including a motif of "TGGGG," "GTGG," or "CTGG." Binding capability of selected aptamers were investigated by quantitative PCR and Mtb36 DNA aptamer was found the most specific aptamer to M. tuberculosis H37Ra. The dissociation constant (K d) of Mtb36 aptamer was calculated as 5.09 ± 1.43 nM in 95% confidence interval. Relative binding ratio of Mtb36 aptamer to M. tuberculosis H37Ra over Mycobacterium bovis and Escherichia coli was also determined about 4 times and 70 times more, respectively. Mtb36 aptamer is highly selective for M. tuberculosis, and it can be used in an aptamer-based biosensor for the detection of M. tuberculosis.
Collapse
Affiliation(s)
- Erkan Mozioglu
- Molecular Biology-Biotechnology & Genetics Research Center, Istanbul Technical University, Istanbul, Turkey. .,Bioanalysis Laboratory, TÜBİTAK UME (National Metrology Institute), Kocaeli, Turkey.
| | - Ozgur Gokmen
- Chemistry Department, Gebze Institute of Technology, Kocaeli, Turkey.
| | - Candan Tamerler
- Molecular Biology-Biotechnology & Genetics Research Center, Istanbul Technical University, Istanbul, Turkey. .,Mechanical Engineering and Bioengineering Research Center, University of Kansas, Lawrence, KS, USA.
| | - Zuhtu Tanil Kocagoz
- Department of Microbiology and Clinical Microbiology, Acıbadem University, Istanbul, Turkey. .,Trends in Innovative Biotechnology Organization, Istanbul, Turkey.
| | - Muslum Akgoz
- Bioanalysis Laboratory, TÜBİTAK UME (National Metrology Institute), Kocaeli, Turkey.
| |
Collapse
|
47
|
Luo W, Qu ZL, Xie Y, Xiang J, Zhang XL. Identification of a novel immunodominant antigen Rv2645 from RD13 with potential as a cell-mediated immunity-based TB diagnostic agent. J Infect 2015; 71:534-43. [DOI: 10.1016/j.jinf.2015.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 12/31/2022]
|
48
|
Zhou F, Xu X, Wu S, Cui X, Fan L, Pan W. Protein array identification of protein markers for serodiagnosis of Mycobacterium tuberculosis infection. Sci Rep 2015; 5:15349. [PMID: 26481294 PMCID: PMC4642701 DOI: 10.1038/srep15349] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 09/22/2015] [Indexed: 01/26/2023] Open
Abstract
The lack of effective and accurate diagnostic tools contributes to the high prevalence of tuberculosis (TB) worldwide. The current serodiagnostics for TB are inadequate mainly due to lack of TB-specific antigens with highly accurate diagnosis. In the current study, we aimed to identify novel diagnostic antigens using glutathione S-transferase (GST)-fusion protein technique. We determined the reactivity of these recombinant proteins arrayed in solution and on GSH-immobilized microplates with TB patient sera. Of 409 TB proteins produced, ninety-two yielded seropositive reactions, fourteen including eight novel proteins showed strong immunoreactivity. Further, six were selected and constructed as a multiple-antigen combination set through analysis of various combinations. A comparative study of the multiple-antigen combination set and a commercially available kit revealed that the combination set showed 66.3% (95% CI 60.5–71.8) sensitivity, which was significantly higher than that of the commercial kit [31.6% (95% CI 26.3–37.3)]. The specificity of both methods was similar at 89.6% (95% CI 83.3–95.4) and 90.6% (95% CI 83.0–95.6), respectively. This study provides a set of novel diagnostic protein markers with great potential for the development of novel diagnostic tools for active TB.
Collapse
Affiliation(s)
- Fangbin Zhou
- Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - Xindong Xu
- Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - Sijia Wu
- Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - Xiaobing Cui
- Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - Lin Fan
- Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weiqing Pan
- Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China.,Department of Tropical Infectious Diseases, Second Military Medical University, Shanghai, China
| |
Collapse
|
49
|
Ayala JC, Pimienta E, Rodríguez C, Sarzo M, Jones J, Vallín C, Guerrero A, Milanés MT, Anné J, Mellaert LV, Huygen K. Assessment of an ELISA for serodiagnosis of active pulmonary tuberculosis in a Cuban population. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2015. [DOI: 10.1016/s2222-1808(15)60943-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
Pukazhvanthen P, Anbarasu D, Basirudeen SAK, Raja A, Singh M. Assessing humoral immune response of 4 recombinant antigens for serodiagnosis of tuberculosis. Tuberculosis (Edinb) 2015; 94:622-33. [PMID: 25459162 DOI: 10.1016/j.tube.2014.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 09/27/2014] [Indexed: 01/16/2023]
Abstract
Serodiagnostic potential of four recombinant proteins (38 kDa[Rv0934], MPT64[Rv1980c], Adk[Rv0733], and BfrB[Rv3874]) was evaluated in Healthy control subjects (HCS), Healthy household contacts (HHC), Pulmonary tuberculosis patients (PTB), and Human immuno deficiency virus & Tuberculosis co-infected patients (HIV-TB). All the antigens tested individually for the detection of serum IgG by indirect ELISA. All the four antigens have a significantly higher antibody response in PTB compared to healthy controls (P < 0.05). The sensitivity of individual antigens ranged from 20% to 52.5% for the prefixed specificity of 95%. When results of all 4 antigens were combined the sensitivity was increased to 75% and specificity was reduced 89% in HCS. In smear- and culture-positive (S+C+) PTB, four antigen combination gives maximum sensitivity (89.6%) with 89% specificity. In smear negative culture negative (S-C+) PTB, three antigen combination (38 kDa with MPT64 and BfrB) gives maximum sensitivity (69.5%) and specificity (91.6%). In HIV-TB, 4 antigen combinations give the maximum sensitivity of 51.2% with 89% specificity. Combining serology (Four antigen combination) with smear was able to increase the sensitivity from 70% to 92.5% in culture positive PTB. So, we propose that this serology test can be used as adjunct test along with smear for rapid diagnosis of PTB.
Collapse
|